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Abstract

Special methods are needed to model the impact of time-dependent covariates in longi-

tudinal data. For instance, the outcome can depend on multiple past observations with

potentially time-varying exposures and time delays. Therefore the intensity and time of

past exposures have to be taken into account for modeling cumulative effects. Since the

time window, denoting all exposures affecting the hazard rate at a given time, is mostly

unclear a priori, we apply a proposed method in which a fairly wide time window is cho-

sen, in which past observations are penalized more strongly the further they are in the

past (Obermeier et al., 2015). We consider the WCE model proposed by Sylvestre and

Abrahamowicz (2009) to model cumulative effects, where a weight function for past expo-

sures is estimated. By extending the method proposed by Obermeier et al. (2015) to the

WCE model, the weight function is estimated using additional ridge penalties where either

small or great latencies or both are penalized more strongly, making it possible to choose

a fairly wide time window. We evaluate the correctness of the approach by performing

simulation studies and comparing them to the method proposed so far. Lastly, we apply

the extended method to data from the Colorado Plateau uranium miners cohort, where

the association between radon exposures and mortality is modeled, to show the beneficial

performance of the proposed methods.
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1 Introduction

In the past different approaches were made to model the impact of time-dependent covariates

(TDC) in longitudinal data. These special methods are needed because exposure status and

its intensity may vary over time (Sylvestre and Abrahamowicz, 2009). Additionally, the effects

of covariates can be lagged and last beyond the exposure period itself which means that the

outcome is influenced by multiple exposure events with potentially time-varying exposures in

the past. To measure the effect at a given time the intensity and the time of past exposures have

to be taken into account when modeling cumulative effects. These dependencies are defined

as exposure-lag-response associations (ELRA) (Gasparrini, 2014). To incorporate a variety of

covariate effects we fit a piece-wise exponential additive mixed model (PAMM) (Bender et al.,

2018b). It is unclear how the time window has to be chosen to consider all exposures that can

affect the hazard rate at a given time. Moreover the choice of the maximal time lag is crucial

and challenging since the true number of past observations is often unknown. In most existing

implementations the time window for cumulative effects must be set a priori, which limits the

functional utility of the approach. One proposed idea was to choose a fairly wide time window,

including the true unknown maximal time lag, where partial effects of past observations are

penalized depending on how far in the past the exposures occur. That requires the use of an

additional ridge penalty (Obermeier et al., 2015).

In this thesis we strive to extend that approach to fit cumulative effects of PAMMs by

constructing penalty matrices where the choice of the time window is not crucial anymore. In

addition to penalizing partial effects that are further in the past, we also introduce another

penalty to penalize partial effects of recent observations. These two penalties can be combined

to penalize partial effects of observations that are either far in the past or occurred recently.

The thesis is structured as follows. First, in Section 1 the current problems of estimating

time-dependent covariates in time-to-event data and its limitations are shown to motivate the

proposed methods. In Section 2, we introduce the piece-wise exponential additive model and

its ability to incorporate a wide variety of effects like time-varying effects or cumulative effects.

For exposure-lag-response associations we present one possible model for modeling cumulative

effects, the WCE model. After that we describe the idea of penalized splines for non-linear

effects, providing the background knowledge for the use of additional ridge penalties. To con-

clude the methodology section, we introduce the methods extended to the cumulative effects

setting and the use of two further penalty matrices. In Section 3, we present a simulation study

to evaluate the proposed modeling approach and its estimation for two different shapes of the

weight function. That section also includes the implementation of the use of penalties in R. To

evaluate the performance, the proposed methods are applied to a data set from the Colorado

Plateau uranium miners cohort in Section 4. The discussion in Section 5 deals with the main

findings and addresses limitations and suggestions for further research. Finally, we conclude in

Section 6.
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2 Methodology

Section 1 showed the importance of special methods for modeling time-to-event data and its

limitations. Therefore we start with the definition and notation of the used model, the piece-

wise exponential additive mixed model (Section 2.1), and introduce the different effects that can

be modeled with PAMMs (Bender et al., 2018b). Since PAMMs can include non-linear effects,

splines are needed for modeling those effects. For that we introduce P -splines and penalty

matrices proposed by Eilers and Marx (1996) which are used for the penalization (Section 2.2).

As mentioned before, the practical use of the PAMM is limited because of the lack of

knowledge about the number of past observations to choose. Obermeier et al. (2015) proposed

a method for modeling linear effects of covariates that have a lagged effect on the response

variable, where the mentioned limitation is removed (Section 2.3). This approach is described

and is then applied and extended to the case of complex cumulative effects (Section 2.4).

2.1 Piece-wise exponential additive mixed models

Survival time analysis focuses on the time T until a certain event or the censoring of an indi-

vidual occurs (Cox, 1972). When dealing with time-to-event data the focus lies on the hazard

rate which is defined as λ(t). It represents the risk for an event occurring at the time t under

the condition that the event has not yet occurred by time t. The hazard rate is mathematical

given by

λ(t) := lim
∆t→0

P (t ≤ T < t+∆t|t ≤ T )

∆t
. (2.1)

In the following we are using Piece-wise exponential additive mixed models for modeling time-

to-event data as proposed in Bender et al. (2018b). The PAMM is an extension of the piece-wise

exponential model (PEM), which allows us to include diverse kind of effects like non-linear,

multivariate or random effects by incorporating some of the methodology and algorithm which

are already developed for Generalized additive mixed models. First the model specifications

and framework for the PEM are described, which also apply to the PAMM. After defining those

requirements the complete specification of the PAMM is introduced.

When using a PEM or a PAMM the follow-up time (0, tmax] has to be divided into J intervals

with interval cut-points 0 = κ0 < · · · < κJ = tmax, where tmax denotes the maximal follow-up

time. Additionally we assume that the baseline hazard rate λ0(t) is constant for each interval

j, so that λ0(t) = λ0j,∀t ∈ (κj−1, κj], t > 0. The general proportional hazard model is given by

log(λi(t|xi)) = log(λ0(t)) + xT
i β, ∀t ∈ (κj−1, κj] (2.2)

where xT
i = (xi,1, ..., xi,P ) is a row-vector of P time-constant covariates for subjects i = 1, . . . , n.

Under the assumption that the basline hazard rate is constant, we can simplify (2.2) to

log(λi(t|xi)) = log(λ0j) + xT
i β, ∀t ∈ (κj−1, κj]. (2.3)
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As described in Bender et al. (2018a) the data must include event indicators δij for subject i

for each interval j = 1, . . . , J to fit the required data structure. For that we define δij = I(ti ∈
(κj−1, κj]∧ti = Ti) with ti := min(Ti, Ci), which either stands for the event time Ti or the right-

censored time Ci. Additionally, an offset log(tij), in which tij = min(ti−κj−1, κj −κj−1) stands

for the time a subject i was under risk in interval j, has to be incorporated into the likelihood

of the model (Bender et al., 2018b). Finally, the likelihood of the PEM can be denoted as

log(E(δij|xi)) = log(λ0j) + xT
i β + log(tij) (2.4)

and will be extended in the following to the PAMM. Note that the likelihood of a PEM corre-

sponds to the likelihood of a poisson generalized linear model (Bender et al., 2018b).

The extension of a PEM to a PAMM is analogous to the extension of a generalized linear

model to a generalized additive mixed model. Model (2.4) can then be extended to include

other effects besides linear ones and to get rid of some restrictions of the PEM. The complete

specification of the piece-wise exponential additive mixed model is given by

log(λi(t|xi, zi, li)) = log(λ0(t)) +
P∑

p=1

fp(xi,p, t) + g(zi, t) + bli + log(tij) (2.5)

where log(λ0(t)) describes the log-baseline hazard rates, fp(xi,p, t) flexible covariate effects,

g(zi, t) exposure-lag-response-associations and bli describes random effects (Bender et al., 2018b).

Those individual components are discussed in more detail below.

Baseline hazard

In contrast to PEM where the baseline hazard, denoted as λ0(t) = λ0j, was a step function it

is now estimated as a smooth, non-linear function. This is advantageous since the step func-

tion often led to instability and large changes between adjacent intervals. To overcome this

issue the baseline hazard is now estimated with a spline at every interval midpoint t̃j, so that

big changes in the hazard rate between adjacent intervals are appropriately penalized. Conse-

quently log(λ0j) can be rewritten to f0(t̃j) (Bender et al., 2018b).

Flexible covariate effects

In addition to model (2.4), PAMMs can contain non-linear and time-varying effects which are

included by fp(xi,p, t) in the model specification and allows more flexibility. The term fp(·) can
represent linear, time-constant effects, like xT

i β in (2.4), as well as time-varying effects, which

can be linearly or smoothly included. The smooth function is described with the help of splines

fp(·) =
∑M

m=1 γm,pBm,p(·), with the covariate specific basis functions Bm,p and the belonging

spline coefficients γm,p (Bender et al., 2018b).
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Random effects

By incorporating random effects bli into the model, group-specific effects can be taken into ac-

count where li indicates the group l = 1, . . . , L to which subject i belongs (Bender et al., 2018b).

Exposure-Lag-Response-Associations

When computing the risk at time t time-varying exposures and the timing of past exposures

have to be taken into account as proposed in Gasparrini (2014). The outcome can then depend

on multiple exposure events with potentially different intensities over the follow-up time t. Be-

fore describing one possible specification of exposure-lag-response-associations g(zi, t), which is

described in Sylvestre and Abrahamowicz (2009), we introduce some notation.

Variables that have time-varying exposures are denoted as time-dependent covariates (TDC).

These time-varying exposures can be described through a subject’s exposure history z =

(z(te1), z(te2 , ..)) where the value of the TDC at exposure time te is denoted as z(te). In order

to model cumulative effects over the follow-up time, it is necessary to indicate a time window,

which is defined by tlag(te) and tlead(te). The lag time tlag(te) describes the time delay until

the TDC registered at time te affects the hazard. The lead time tlead(te) describes the time

interval in which the TDC registered at time te has an effect on the hazard. These definitions

lead to considering the following exposures {z(te) : te ∈ [t − tlag(te) − tlead(te), t − tlag(te)]}
when computing the hazard at time t. To model cumulative effects we compute the so-called

partial effects over the lag-lead window Te(j) := {te : (κj−1, κj] ∈ J (t, te)} with J (t, te) :=

{((κj−1, κj] : κj−1 > te + tlag ∧ κj ≤ te + tlag + tlead} indicating those intervals j in which the

exposure at time te can affect the hazard rates (Bender et al., 2018b).

One possible specification of ELRA is the weighted cumulative exposure (WCE) model and

was introduced by Sylvestre and Abrahamowicz (2009) where partial effects are assumed to be

linear in z(te) and are only dependent on the latency t− te. Using the notation given in Bender

et al. (2018a) the WCE is defined as

g(z, t) =

∫
Te(t)

h(t− te)z(te)dte. (2.6)

The WCE model computes the cumulative effects of time-varying exposures weighted by re-

cency. Sylvestre and Abrahamowicz (2009) proposed to estimate the weights h(t− te) with the

help of cubic regression B-splines.1

1Sylvestre and Abrahamowicz (2009) provides a more detailed discussion of the WCE.
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2.2 Penalized splines

As mentioned earlier non-linear effects as well as time-varying effects can be included in the

smooth function fp(·) with the help of splines. There are different kind of splines, but we

will focus on the P -splines, which were defined by Eilers and Marx (1996) and represent a

combination of B-splines and difference penalties. For B-splines the choice of knots is crucial:

if too many knots are chosen it will lead to overfitting, but if too few knots are used it will lead

to underfitting the data. This problem is avoided when using P -splines because the number

of knots that must be selected is chosen relatively large. In order to prevent overfitting a

difference penalty is used on the coefficients of adjacent B-splines. This method is described

in more detail in the following for univariate smooth functions (Eilers and Marx, 1996).

Without any penalization, the aim of a regression, withm observations (xi, yi) on n B-splines

Bj(·) with associated spline basis coefficients γj, is to minimize the least squares objective

function

LS =
m∑
i=1

(yi −
n∑

j=1

γjBj(xi))
2. (2.7)

In order to avoid overfitting when choosing a relatively large number of knots Eilers and Marx

(1996) recommended a penalty based on finite differences of the coefficients of adjacent B-

splines. Then (2.7) can be extended to the penalized least squares criterion

PLS =
m∑
i=1

(yi −
n∑

j=1

γjBj(xi))
2 + λ

n∑
j=k+1

(∆kγj)
2 (2.8)

where differences of order k are used, with ∆k as the kth difference of the B-spline coefficients

and parameter λ for controlling the smoothness of the fit (Eilers and Marx, 1996, Fahrmeir

et al., 2013). The difference operator ∆k in (2.8)

∆1γj = γj − γj−1

∆2γj = ∆1∆1γj = ∆1γj −∆1γj−1 = γj − 2γj−1 + γj−2

...

∆kγj = ∆k−1γj −∆k−1γj−1

(2.9)

can be recursively defined (Fahrmeir et al., 2013). With the help of these smoothing splines the

dimensionality of the problem is reduced from the number of data points m to the number of

B-splines n. Depending on the model different orders of difference penalties can be used where

the difference penalty get more complex the higher the order of the penalties get (Eilers and

Marx, 1996). The first-order difference matrix, where Dk denotes the matrix notation of the
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difference operator ∆k, is given by

D1
(n−1)×n

=


−1 1

−1 1
. . . . . .

−1 1

 (2.10)

which leads to

D1γ =


γ2 − γ1

...

γn − γn−1

 . (2.11)

Differences of higher orders are recursively defined:

Dk
(n−k)×n

= D1Dk−1. (2.12)

This results in the penalty

λ
n∑

j=k+1

(∆kγj)
2 = λγTDT

k Dkγ = λγTKkγ (2.13)

with DT
k Dk = Kk (Fahrmeir et al., 2013). Analogous to the least squares method on B-splines

we now have to minimize (2.8). Therefore a system of equations, where the number of equations

are equal to the number of splines, is given by

BTy = (BTB + λKk)γ (2.14)

with B consisting of the elements bij = Bj(xi). When λ = 0 we get the least squares objective

function with a B-spline basis as in (2.7). When λ > 0 only the main diagonal and k subdiag-

onals of the system of equations are affected by the penalty. After introducing the penalty the

penalized likelihood function is given by

lp(γ) = l(γ)− 1

2
λγTKkγ (2.15)

with the log-likelihood l(γ) (Eilers and Marx, 1996).

2.3 Flexible distributed lag model

In many situations it is of interest to model the association between a covariate x and a response

variable y, where the association is likely to be cumulative over a time period. Therefore

preceding time points t− 1, t− 2, .., t−L must be taken into account for modeling the effect at

time t. The association between a covariate xt−l and a response variable yt at time t is denoted
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as the lag effect of x on y with time lag l = 0, .., L. There have been several approaches to

model this effect especially since the simple inclusion of all lagged covariates xt−l, l = 0, .., L

leads to an estimation with many parameters that are likely to be collinear. Furthermore the

choice of L is crucial and challenging since it is often unclear how many past time points have

an effect on the response variable. Obermeier et al. (2015) proposed a lag modeling approach,

the so-called flexible distributed lag (FDL) model, for the linear influence of lagged covariates

on the response variable based on B-splines in which, in addition, the crucial choice of L is

no longer critical. A difference penalty as well as a ridge penalty are used in the FDL model.

The former is used for smoothing the shape of the lag effects and the latter is used to make

sure that the last lag coefficient is shrunk towards 0. Since a ridge penalty is used, a large lag

length L can be chosen where those coefficients, which are redundant, are estimated close to 0.

In the following we will discuss the mathematical background of the FDL model and the use

of difference and ridge penalties (Obermeier et al., 2015).

First, consider a lag model where the lag coefficients βL are developed in B-splines of degree d:

β
(L+1)×1

= B
(L+1)×m

γ
m×1

(2.16)

with

B
(L+1)×m

=


B1(0) . . . Bm(0)

...
...

B1(L) . . . Bm(L)

 (2.17)

with m = d +K basis coefficients and K equidistant knots κk. We will refer to this model as

the lag model based on basis functions. To this model a smoothing and a shrinkage penalty is

added. For penalizing adjacent coefficients a difference penalty, as described in Section 2.2, is

used. The lag coefficients β are penalized by penalizing the basis coefficients γ with the m×m

smoothing penalty matrixKd = DT
2 D2 when using differences of second order (Obermeier et al.,

2015). Additionally a ridge penalty is defined to penalize the last lag coefficient βL. Since d+1

d-degree B-spline basis functions are non-zero at any point l ∈ [0, L] , especially at point L,

this can be used to make sure that the last lag coefficient βL is shrunk towards 0 by penalizing

the last d+ 1 γ-coefficients with the ridge penalty matrix, also called shrinkage matrix, which

is given by

Kr
m×m

=



0
. . .

0
1

. . .

1


. (2.18)

After defining the smoothing and the ridge penalty the penalized likelihood can be defined by

lp(γ) = l(γ)− 1

2
γT (λdKd + λrKr)γ (2.19)
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with smoothing parameter λd > 0 and shrinkage parameter λr > 0. The smoothing parameter

controls the smoothness of the fit by penalizing large differences between adjacent coefficients

whereas the shrinkage parameter penalizes large values in the last lag coefficient. The estimation

can be performed with known methods like the maximization of the penalized likelihood. In

addition to the difference and ridge penalty the model can be further limited by applying the

constraint matrix C to make sure that the last lag coefficient is not only shrunk towards 0 but

is equal to 0. C consists of the first row of the model matrix X (Obermeier et al., 2015).

Besides this use of difference and ridge penalties, another variation can also be considered,

the full-rank penalty. Instead of (2.19) the penalized likelihood can be denoted as

lp(γ) = l(γ)− 1

2
λγT (Kd +Kr)γ (2.20)

when using a full-rank penalty, where the ridge penalty is added with the same variance as the

difference penalty and therefore only one coefficient λ is estimated.

2.4 Extension and application of the FDL model to PAMMs

In the following section we will apply the methods proposed by Obermeier et al. (2015) to

the estimation of exposure-lag-response-associations, which were presented in Section 2.1, and

extend the approach to more complex cumulative effects. One limitation when modeling cumu-

lative effects is the choice of the lag-lead window Te(t), which must be set a priori. To remove

this limitation a relative wide window is chosen, in which partial effects of past observations are

penalized more strongly. Further on, when modeling ELRA, we will focus on the WCE model.

We are interested in penalizing the latency t− te since the partial effects in (2.6) are dependent

on it. Therefore we introduce penalty matrices to penalize the latency. For the WCE model

regular P -splines are used to penalize the basis coefficients instead of cubic regression B-splines.

Analogous to the FDL model we add a smoothing penalty matrix Kd = DT
2 D2, when using

differences of second order with D2 as defined in (2.12). Additionally we also add a shrinkage

matrix as in (2.18) to the model, which we refer to as lag-penalty Kr,1:

Kr,1
n×n

=



0
. . .

0
1

. . .

1


(2.21)
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with n as the number of basis coefficients. This ensures that great values for t−te are penalized.

In addition also small latencies can be penalized by adjusting Kr,1 to

Kr,2
n×n

=



1
. . .

1
0

. . .

0


(2.22)

called lead-penalty. Now, we can also combine these two shrinkage penalties to penalize the

greatest values and the smallest values for t− te with the laglead-penalty matrix Kr,3:

Kr,3
n×n

=



1
. . .

1
0

. . .

0
1

. . .

1


. (2.23)

The penalized likelihood can then be defined by

lp(γ) = l(γ)− 1

2
γT (λdKd + λr,iKr,i)γ (2.24)

for i = 1, 2, 3, where the latency coefficients are penalized by penalizing the basis coefficients

γ = (γ1, . . . , γn)
T for the WCE model. As mentioned in Section 2.3 the shrinkage matrix

penalizes the last d+1 basis coefficients in the case of Kr,1 and the first d+1 basis coefficients

in the case of Kr,2. For Kr,3 the first d + 1 and the last d + 1 basis coefficients are penalized,

however, it should be noted that the number of coefficients that are penalized is min(2·(d+1), n).
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3 Simulation study

We perform a simulation study to evaluate the performance of the proposed modeling approach

of cumulative effects. The simulation focuses on the investigation of ELRAs and its estimation

of partial effects based on the WCE model as described in (2.6), where the weights h(t − te)

are estimated with the help of P -splines and the use of the different penalty matrices defined

in Section 2.4. Two different simulation studies are performed to evaluate the ability of the

proposed approach in Section 2.4 for two different distributions of the weight function h(t− te).

In Simulation Part A a normal distribution is used to simulate h(t − te) whereas in Simu-

lation Part B a half-normal distribution was chosen. Simulation Part A (Section 3.2) demon-

strates the effect of variables where their impact on the outcome is lagged. Therefore relative

small latencies, as well as great latencies, are weighted weaker than intermediate latencies.

In contrast, Simulation Part B (Section 3.3) examines the performance of variables whose ef-

fect is only slightly lagged or not lagged at all. The results are evaluated using graphical

comparisons of the estimated weight function ĥ(t − te) to the respective true weight function

h(t − te). Additionally, the simulation is evaluated with the root mean square error statis-

tic RMSE =
√

1
R

∑R
i=1(h(t− te)− ĥ(t− te))2 (Fahrmeir et al., 2013) and with coverageα =

1
R

∑R
i=1 I

(
h(t − te) ∈ [ĥ(t − te) ± ζ1−α

2
σ̂ĥ(t−te)

]
)
, where ζ1−α

2
is the (1 − α

2
)-quantile of the

standard normal distribution and σ̂ĥ(t−te)
is the estimated standard deviation of the estimated

weight function, for R replications (Bender et al., 2018b).

3.1 Data generation

In both parts random survival times are simulated from the piece-wise exponential distribution

(t ∼ PEXP(λ,κ)) with piece-wise constant hazards λ for each interval and time-points κ. We

aim to simulate data with hazard rate

log(λ(t|x1, z)) = −3.5 + f0(t̃j)− 0.5x1 +

∫
Te(t)

h(t− te)z(te)dte (3.1)

where f0(t̃j) is a gamma density function G(8, 2). The window of effectiveness Te(t) is shown

in Figure 1 and partial effects are integrated over the preceding 12 time units. The shape of

h(t− te) differs between Part A and Part B

h(t− te)z(te) =

2 · Φ6,1.72(t− te) · z(te) for Part A

2 ·HN0.45(t− te) · z(te) for Part B
(3.2)

with Φµ,σ2 density function of the normal distribution with mean µ and variance σ2. HNθ

denotes the density function of the half-normal distribution with parameter θ. Figure 2 shows

the two different shapes of h(t− te). Data is generated for different number of observations n ∈
{500, 1000, 1500, 3000} to evaluate the impact of the number of observation on the estimation.
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Figure 1: Illustration of the lag-lead window Te(t). Viewed column-wise the black squares
indicate which exposure times te are affecting the hazard at time t. For example, the hazard
at t = (1, 2] is affected by exposures which were recorded at te ∈ [−5, 1].

Figure 2: h(t− te) defined for Simulation Part A (left) and Simulation Part B (right).

After simulating the data all models are estimated by PAMMs. We differ between four

methods for estimating the weight function h(t − te). To investigate the performance of the

three ridge penalties Kr,i for i = 1, 2, 3 as defined in Section 2.4, three different models are

estimated using one penalty matrix each. To compare their performance, a fourth model is

fitted, where the latency is penalized using cubic regression B-splines as originally proposed for

WCE models by Sylvestre and Abrahamowicz (2009). For each setting, where we use different

number of observations and different penalization approaches, R = 100 replications were run.
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3.2 Simulation Part A

The results for Simulation Part A are shown in Figure 3. It gives an overview of the performance

of the different methods in comparison to the proposed use of cubic regression B-splines by

Sylvestre and Abrahamowicz (2009). As mentioned before, we simulated data for four different

numbers of observations. Note that in every run different survival times, and therefore different

datasets, are simulated.

Figure 3: Simulation Part A for h(t − te) with the shape of a normal distribution: estimated
WCE and true simulated WCE for different number of observations n and different penalty
methods: Cubic regression B-splines (first column), FDL model with lag-penalty Kr,1 (second
column), FDL model with lead-penalty Kr,2 (third column) and FDL model with laglead-
penalty Kr,3 (fourth column).

First, we consider the second column in Figure 3 for penalization with additional lag-penalty

Kr,1: in comparison to the estimation with cubic regression B-splines great latencies are suc-

cessfully shrunk towards 0 whereas small latencies remain unaffected. This applies to all n but

the quality of the shrinkage varies between different numbers of observations. Graphically, the

estimation based on the largest dataset with n = 3000 delivers the best result as the estimated

h(t − te) are the closest to the true weight function. If we additionally look at the RMSE in

Table 1, we see that the FDL model with lag-penalty peformed well since it has a noticeably

lower RMSE for great latencies compared to the model using cubic regression B-splines. Com-

paring the coverage displayed in Table 2, the model using the lag-penalty yields, especially for

great latencies, a higher coverage than using cubic regression B-splines. This applies to all

settings except for n = 500 with t − te = 6.0, where the coverage decreases compared to the

usual method.

The FDL model with lead-penalty Kr,2 ensures that small latencies are properly penalized.
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RMSE
number observations t− te cr lag lead laglead

0.0 0.07 0.07 0.02 0.02
n = 500 6.0 0.04 0.04 0.04 0.04

12.0 0.15 0.04 0.15 0.03
0.0 0.04 0.04 0.01 0.01

n = 1000 6.0 0.03 0.03 0.03 0.03
12.0 0.10 0.02 0.11 0.02
0.0 0.04 0.04 0.01 0.01

n = 1500 6.0 0.03 0.03 0.03 0.03
12.0 0.11 0.03 0.11 0.03
0.0 0.03 0.03 0.01 0.01

n = 3000 6.0 0.02 0.02 0.02 0.02
12.0 0.06 0.02 0.07 0.02

Table 1: Evaluation of Simulation Part A: RMSE for different number of observations n and
different latencies t− te using cubic regression B-splines (third column), FDL model with lag-
penalty Kr,1 (fourth column), FDL model with lead-penalty Kr,2 (fifth column) or FDL model
with laglead-penalty Kr,3 (sixth column).

coverage
number observations t− te cr lag lead laglead

0.0 0.94 0.93 0.79 0.79
n = 500 6.0 0.90 0.86 0.88 0.90

12.0 0.94 1.00 0.94 1.00
0.0 0.99 1.00 0.99 0.95

n = 1000 6.0 0.88 0.89 0.91 0.93
12.0 0.98 1.00 0.99 1.00
0.0 0.97 0.99 1.00 0.91

n = 1500 6.0 0.91 0.94 0.95 0.95
12.0 0.97 1.00 0.96 1.00
0.0 0.97 0.99 1.00 0.81

n = 3000 6.0 0.94 0.95 0.96 0.96
12.0 0.99 0.99 0.99 0.99

Table 2: Evaluation of Simulation Part A: coverage0.05 for different number of observations n
and different latencies t− te using cubic regression B-splines (third column), FDL model with
lag-penalty Kr,1 (fourth column), FDL model with lead-penalty Kr,2 (fifth column) or FDL
model with laglead-penalty Kr,3 (sixth column).

This is supported by consideration of the simulation study as depicted in the third column

in Figure 3. Small latencies are shrunk towards 0 for all numbers of observations. For small

latencies the simulated weight functions were estimated very well and the RMSE for the FDL

model with lead-penalty has been successfully reduced. Note that the coverage decreased

notably for small latencies for n = 500.

Finally, we examine the estimation when using the third penalty, the laglead-penalty Kr,3.

The laglead-penalty combinesKr,1 andKr,2 by penalizing small and great values for t−te. Small
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latencies were penalized similarly as when using the lead-penalty Kr,2 and great latencies were

penalized similarly to the second case, where an additional lag-penalty Kr,1 was used. As we

see in Figure 3 the estimated weight functions in the fourth column represent a combination of

the weight functions seen in the second and third columns. For all settings the RMSE decreased

as supposed for t− te = 0.0 and t− te = 12.0 when using the laglead-penalty. Considering the

coverage for that case, it only increased for t− te = 6.0 and t− te = 12.0 compared to the model

with cubic regression B-splines, whereas the coverage for t − te = 0.0 does not correspond to

the coverage yielded when using the lead-penalty.

3.3 Simulation Part B

The results of the simulation study with weight function h(t−te) from a half-normal distribution

are shown in Figure 4. Considering the estimation with cubic regression B-splines, we see that

in general small latencies are already better estimated than great latencies where the estimated

weight functions differs more from the true weight function.

Figure 4: Simulation Part B for h(t−te) with the shape of a half-normal distribution: estimated
WCE and true simulated WCE for different number of observations n and different penalty
methods: Cubic regression B-splines (first column), FDL model with lag-penalty Kr,1 (second
column), FDL model with lead-penalty Kr,2 (third column) and FDL model with laglead-
penalty Kr,3 (fourth column).

For the FDL model with additional lag-penalty Kr,1 great latencies were successfully shrunk

towards 0 as displayed in Figure 4. Comparing the FDL model with lag-penalty to the model

using cubic regression B-splines, the RMSE notably decreased for t− te = 12.0 for all number

of observations (Table 4).
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RMSE
number observations t− te cr lag lead laglead

0.0 0.07 0.07 0.06 0.06
n = 500 6.0 0.03 0.03 0.03 0.03

12.0 0.11 0.01 0.11 0.09
0.0 0.06 0.06 0.05 0.05

n = 1000 6.0 0.02 0.02 0.02 0.02
12.0 0.08 0.01 0.08 0.07
0.0 0.04 0.05 0.05 0.05

n = 1500 6.0 0.02 0.02 0.02 0.02
12.0 0.06 0.01 0.06 0.06
0.0 0.04 0.04 0.04 0.04

n = 3000 6.0 0.01 0.01 0.01 0.01
12.0 0.05 0.01 0.05 0.04

Table 3: Evaluation of Simulation Part B: RMSE for different number of observations n and
different latencies t− te using cubic regression B-splines (third column), FDL model with lag-
penalty Kr,1 (fourth column), FDL model with lead-penalty Kr,2 (fifth column) or FDL model
with laglead-penalty Kr,3 (sixth column).

coverage
number observations t− te cr lag lead laglead

0.0 0.90 0.88 0.95 0.94
n = 500 6.0 0.91 0.90 0.91 0.91

12.0 0.95 1.00 0.95 0.97
0.0 0.85 0.81 0.86 0.86

n = 1000 6.0 0.95 0.96 0.97 0.96
12.0 0.98 1.00 0.98 0.98
0.0 0.80 0.71 0.83 0.83

n = 1500 6.0 0.96 0.95 0.96 0.96
12.0 0.99 1.00 1.00 1.00
0.0 0.70 0.65 0.74 0.73

n = 3000 6.0 0.97 0.98 0.98 0.98
12.0 0.99 1.00 0.99 0.99

Table 4: Evaluation of Simulation Part B: coverage0.05 for different number of observations n
and different latencies t− te using cubic regression B-splines (third column), FDL model with
lag-penalty Kr,1 (fourth column), FDL model with lead-penalty Kr,2 (fifth column) or FDL
model with laglead-penalty Kr,3 (sixth column).

When considering the use of the lead-penalty Kr,2 we see in Figure 4 that the estimated

weight functions looks very similar to the estimated weight functions using cubic regression B-

splines. Due to the distribution of the weight function, h(t− te) for small latencies should not

be shrunk towards 0 since the true weight function has its maximum at t− te = 0. Since small

latencies have the greatest values for the weight function, recent exposures get weighted more

strongly. Therefore an additional penalty matrix has hardly any influence on the estimation

of the weight function since Kr,2 was designed to shrink small latencies that are redundant.
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Considering Table 3 and Table 4 we see that the RMSE for the model using cubic regression

B-splines is nearly equivalent to the RMSE for the model using Kr,2, however, the use of the

lead-penalty resulted in a higher coverage.

Lastly, if we look at the fourth column in Figure 4, we see that the use of an additional

ridge penalty Kr,3 leads to almost the same estimation as we saw for cubic regression B-splines

and for the lead-penalty Kr,2. Unlike Simulation Part A, the use of Kr,3 does not lead to a

combination of the estimated weight functions seen in the second and third columns. The

RMSE in Table 3 show the same result, the RMSE approximately corresponds to the RMSE

of the model with cubic regression B-splines or of the model with lead-penalty. Further, the

RMSE for t− te = 12.0 did not decrease as well as with the lag-penalty. Considering Table 4,

the coverage for the model using Kr,3 roughly corresponds to the coverage when using Kr,2 and

is slightly higher than the coverage when using cubic regression B-splines.

3.4 Computational Details

The simulation study was performed using the software R (Version 4.1.0). In general the R

package pammtools (Version 0.5.8) was used for data generation of random survival times from

the piece-wise exponential distribution and for model post-processing (Bender et al., 2022). For

estimation the package mgcv (Version 1.8-40) was used for fitting GAMs with smooth terms

(Wood, 2017). To apply the FDL model approach, Obermeier et al. (2015) used a constructor

function to specify smooth terms in a GAM, which was already embedded in the packagemgcv.

That constructor function was then extended to add two further penalties Kr,2 and Kr,3. Data

and code used for both simulation study parts and for the following application in Section 4

are provided on GitLab.
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4 Application

We apply our method in a survival analysis of time-to-event data. The analysis is based on

data from the Colorado Plateau uranium miners cohort, that was collected by the National

Institute for Occupational Safety and Health (Gasparrini, 2014). Since the exposure histories

for radon for each subject vary during the follow-up time, it represents a setting where we can

apply our proposed methods to model cumulative effects. We are interested in the performance

of the proposed methods compared to the use of cubic regression B-splines when estimating

the weight function h(t− te).

4.1 Data

If miners worked within the Colorado Plateau area between 1950 and 1960 they were suitable

to enter the cohort. In this example we used data referring to the follow-up on December 31,

1982. Exposure histories for radon are available from the time the subjects started to work in

the mines, even if this was before entering the cohort. The radon exposures were expressed in

working-level months (WLM) and reconstructed for each year the subject worked in the mines

(Gasparrini, 2014). A working level is defined as 1.3× 105 MeV of alpha energy/l air, which is

emitted by short lived radon progeny. A WLM equals exposure to 1 WL for 170 hours (Kreuzer

et al., 2011). We are interested in the association between radon exposure and mortality. If

a subject entered the cohort on January 01, 1950, we considered the maximal follow-up time

t = 33 years after study entry. Therefore all miners still alive after December 31, 1982, were

censored and the follow-up time t was set to t = 33. The cohort includes n = 3323 miners

(after pre-processing), from which 2639 (79.4%) miners were smokers and 1245 (37.5%) miners

died during the follow-up time. A summary of the data is provided in Table 5.

Min Q1 Median Q3 Max
Follow-up time (years) 0.1 19.6 23.8 25.5 32.5
Age at study entry 15.8 25.8 34.0 44.0 80.0
Smoking starting age 3.0 15.0 17.0 19.0 60.0
Radon exposure starting age 6.9 22.5 29.5 40.3 73.0
Total cumulative radon exposure (WLM/year) 0.0 153.0 429.0 1015.5 10000.0

Table 5: Descriptive statistics of the Colorado Plateau uranium miners cohort.

4.2 Modeling

Beside the radon exposures for each subject we included the age at which the subject started

smoking. The effect of radon is represented in the model by ELRA g(zradon, t) as structured in

(2.6). The model specification is given by

log(λi(t|xi, zi, li)) = log(λ0(t)) + fsmk(xi,smk, t) + g(zradon, t) + log(tij) (4.1)
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where fsmk(xi,smk, t) incorporates the non-linear effect of the age at which subject i started

smoking. The weight function h(t− te) was estimated using four different ELRA specifications

each: cubic regression B-splines, lag-penalty, lead-penalty or laglead-penalty. The lag-lead

window Te(j) was chosen relatively wide with maximal latency t− te = 40.

4.3 Model selection

We are mainly interested in the performance of the proposed methods when estimating the

weight function h(t− te) for radon exposures. Therefore, we focus on model selection criteria .

One criterion we will first consider is the Akaike Information Criterion (AIC) which is defined

as AIC = −2 · l(β̂M , σ̂2)+2(|M |+1) where l(β̂M , σ̂2) is the maximum value of the log-likelihood

and |M | + 1 is the total number of parameters. Smaller values of the AIC represent a better

model fit. Secondly, we look at the Bayesian Information Criterion (BIC) which is defined by

BIC = −2 · l(β̂M , σ̂2) + log(n)(|M | + 1), where l(β̂M , σ̂2) and |M | + 1 are defined in the same

way as for the AIC and n is the number of recorded measurements. Here, too, smaller values of

BIC represent a better model fit. The main difference between AIC and BIC is that complex

models are more strongly penalized by BIC than by AIC (Fahrmeir et al., 2013).

ELRA specification AIC BIC
laglead 14882.8 15042.0
lag 14883.2 15043.5
lead 14883.4 15044.1
cr 14883.6 15050.3

Table 6: Evaluation of the application to data from the Colorado Plateau uranium miners
cohort: Values for AIC and BIC for different models of ELRA between radon and mortality.

The fit of different ELRA specifications is shown in Table 6 by AIC and BIC. Both criteria

came to the same result, identifying the model where h(t− te) was estimated using a laglead-

penalty as the model with the best performance. That model penalizes the weight function for

small latencies as well as for great latencies more strongly. All our proposed methods obtained

smaller values for AIC and BIC, although the differences can be marginal, than the originally

proposed method using cubic regression B-splines. The findings suggest that for estimating

ELRA an additional laglead-penalty should be used.
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5 Discussion

In this thesis, we explored how to model time-to-event data using PAMMs without the con-

straint of defining the time window for cumulative effects a priori. We successfully applied the

FDL model for modeling effects of lagged linear covariates proposed by Obermeier et al. (2015)

to model cumulative effects of TDCs (ELRA) (Bender et al., 2018b). For estimating ELRAs

we focused on the WCE model, where partial effects are assumed to be linear in z(te) and are

only dependent on the latency t − te (Sylvestre and Abrahamowicz, 2009). By applying the

additional ridge penalty proposed by Obermeier et al. (2015), the weight function h(t− te) for

great latencies is properly estimated by penalizing the last d+1 basis coefficients. Additionally

we extended the FDL model by introducing two additional ridge penalties, the lead-penalty

Kr,2 and the laglead-penalty Kr,3, to penalize the first d + 1 basis coefficients or the first and

the last basis coefficients. By penalizing those latencies, the time window for cumulative effects

can be chosen quite wide since h(t−te) for superfluous latencies are correctly estimated close to

0. Another advantage over the originally proposed use of cubic regression B-splines to estimate

the weight function is that the choice of knots is not further critical when using the FDL model.

Since the weight function h(t− te) can have different shapes we have looked at two different

distributions. Regarding the shape of a normal distribution, which represents the lagged effect

of TDCs, we observe the following: the use of the three proposed ridge penalties leads to the

intended results, where the weight function for either small latencies, great latencies or both are

successfully shrunk towards 0. Compared to the originally proposed use of cubic regression B-

spline (Sylvestre and Abrahamowicz, 2009), the use of the lag-penalty led to an notable smaller

RMSE for great latencies, whereas the model, in which the lead-penalty was used, yielded in a

smaller RMSE for small latencies. The use of an additional laglead-penalty led to an smaller

RMSE for small and great latencies. For each of the four different penalization methods, the

RMSE decreased or at least remained the same as the number of observations increased. In

general, a high coverage was achieved when using the FDL model with either the lag-penalty or

lead-penalty. Although the laglead-penalty showed the smallest RMSE, it did not achieved the

highest coverage among the other methods. For increasing number of observations, the FDL

models with lag-penalty or lead-penalty showed the highest coverage.

In Simulation Part B we observed that, compared to the use of cubic regression B-splines

for estimating h(t − te), for the FDL model with lag-penalty the weight function was shrunk

towards 0 for great latencies. For all number of observations and for t − te = 12 the RMSE

were decreased to 0.01 and coverage was increased to 1.00. For the FDL model using the

lead-penalty, the RMSE could hardly or not at all be reduced for small latencies, however, the

coverage could be increased. Considering the last ridge penalty, we saw that, unlike Simulation

Part A, the use of the laglead-penalty does not lead to a combined result of the lag-penalty

and the lead-penalty. Especially, RMSE for great latencies were minimally reduced but not as

well as with lag-penalty. The coverage of the FDL model with laglead-penalty could slightly be

increased for small and great latencies, compared to the model using cubic regression B-splines.
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After applying the proposed methods to data from the Colorado Plateau uranium miners

cohort, we have detected that the use of a additional laglead-penalty is suggested, especially

since we do not know the true window of effectiveness Te(t). The application also showed that

the use of an additional ridge penalty, regardless of which of the three proposed penalty ma-

trices is used, led to better performance, regarding AIC and BIC, than using cubic regression

B-splines.

While we focused on the WCE model as one possible specification of ELRA there are other

specifications of those associations. Since the assumption that partial effects are linear in z(te)

and are only dependent on the latency t−te is restricted, we present two further specifications of

ELRAs: One further specification is the distributed lag non-linear model (DLNM) where partial

effects are specified by Berhane et al. (2008) and the framework was proposed by Gasparrini

(2014). The DLNM is given by

g(z, t) =

∫
Te(t)

h(t− te, z(te))dte (5.1)

where the partial effects are also assumed to depend on the latency t − te. In contrast to

the WCE model (2.6), function h(·) is now defined as a two-dimensional function. Therefore

special tensor product P -splines are used to extend the one-dimensional function h(·) to a two-

dimensional function, where tensor product basis coefficients are penalized, depending on the

latency t− te and the exposure z(te).

Another specification was proposed by Bender et al. (2018b) where the assumption made for

the WCE model or DLNM is relaxed. The general exposure-lag-response-association is given

by

g(z, t) =

∫
Te(t)

h(t, te, z(te))dte (5.2)

where h(t, te, z(te)) ensures that partial effects can also depend on the time t and on the exposure

time te, and not only on the latency t− te. Therefore specific combinations of t and te can be

considered. For example, for the WCE model or for DLNM h(t = 30, te = 3)
!
= h(t = 40, te =

13)
!
=

∼
h(t− te = 27) applies, whereas for the general ELRA partial effects for t = 30 and te = 3

are not the same as for t = 40 and te = 13 (Bender et al., 2018b).

Based on the results from our analysis, further research should examine the extension and

construction of penalty matrices to estimate more complex cumulative effects like the presented

DLNM (5.1) or the general ELRA (5.2). A special focus will be on embedding the additional

penalties into the mgcv environment since for both specifications tensor product P -splines are

used for penalizing.
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6 Conclusion

In this thesis an approach was shown to loosen the limitation of setting the width of the time

window for cumulative effects a priori when using the WCE model. By applying the approach

made by Obermeier et al. (2015) to cumulative effects, the estimation of the weight function

was shrunk towards 0 for great latencies. Thus, past observations are penalized more strongly

the further they are in the past by using the additional lag-penalty. Additionally, we introduced

two further penalty matrices, one to penalize past observations more strongly the closer they

are to the time of interest t, by shrinking the weight function for small latencies towards 0. We

refer to this penalty matrix as the lead-penalty. The second introduced penalty matrix, the so-

called laglead-penalty, combines these two penalty matrices. When using the laglead-penalty for

estimating the weight function, small latencies and great latencies are penalized more strongly,

which results in the weight function being pushed towards 0 at both ends. Moreover, the choice

of knots, which was crucial when using cubic regression B-splines, is no longer crucial when

using penalty matrices. Especially for weight functions with shape of a normal distribution,

the use of one of the proposed penalty matrices leads to an advanced estimation in comparison

to the originally proposed use of cubic regression B-splines for the WCE model.
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