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Abstract

One of the most widely used network model, the Exponential Random Graph Model

(ERGM), is based on the assumption of homogeneous network nodes. This assump-

tion is not very realistic, and a big concern with respect to both model validity and

estimation instability. Kevork and Kauermann proposed a way to account for the

presence of unobserved node-specific heterogeneity by including node-specific random

effects in the ERGM. The estimation is then achieved by iterating between approx-

imate pseudolikelihood estimation for the random effects, and maximum likelihood

estimation for the ERGM parameters. The goal of this work is to extend their ap-

proach to dynamic networks, using the Temporal ERGM (TERGM).
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1 Introduction

At first glance, network science may seem like a niche within the statistical do-

main. But in a world which becomes more and more connected and globalized,

the structures of the emerging new networks become ubiquitous, and so does their

relevance. This makes network science an interdisciplinary field in high demand. In

the last two decades, more than 50,000 scientists published around 30,000 papers

in this field (cf. [Molontay and Nagy, 2019]). Of course, not every one of them is

a game changer, but the amount of citations of [Granovetter, 1973] (> 64,000) or

[Watts and Strogatz, 1998] (> 48,000) speaks volumes.

This work aims to contribute by expanding on [Kevork and Kauermann, 2021],

which introduces a method to account for heterogeneity in the popular Exponential

Random Graph Models (ERGM), which assumes homogeneity of actors in networks.

We will transfer this method to the TERGM, which is simply an ERGM with added

temporal dimension.

The structure of this work is as follows: In chapters 2 and 3 we will establish a

framework for modeling networks. In chapter 4 we will lay out a way to part with

the homogeneity assumption. Chapter 5 will give a quick overview on available

implementations of estimation procedures for network models. And in chapter 6 we

will put our findings to the test by applying them on simulated networks.
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2 Network Analysis

When it comes to networks, we find the same divide between descriptive and inferen-

tial statistics as in many other statistical domains. Although the graph-like nature of

networks makes the descriptive approach dominated by visualizations rather than

plain ’statistics’ (metrics describing the data at hand with aggregated numbers).

This natural inclination towards qualitative visuals, however, comes at the cost of

more difficulties when building a framework for statistical modeling, which requires

quantitative metrics.

If we consider a network as a set of nodes (’actors’) and edges (connections/relation-

ships) between a set1 of two nodes (a ’dyad’), we can represent it as a graph. This

approach can be used for directed, undirected, valued (weighted), unvalued, and bi-

partite networks. For simplicity, we will focus on undirected, unweighted networks.

So we only distinguish tie (connection between nodes) and no tie. If there is a tie

between two nodes, we call them adjacent.

The network (with n nodes) can then be represented by an n × n dimensional

adjacency matrix Y , where the matrix element Yij = 1 when there is a tie between

the nodes i and j (i, j ∈ {1, ..., n} and i ̸= j), and Yij = 0 otherwise. This matrix is

symmetric. A realization of the random variable Y ∈ Y is denoted as y. As we can

see from the definition of the adjacency matrix, we are modeling cases where the

nodes are known and fixed, and the edges between them are the subject of interest.

It is also possible to include covariates for both nodes and dyads to this model.

When the network is evolving over time, we represent this dynamic in the form of

a discrete time-series, where we have one adjacency matrix Y t for each time step t.

1or a 2-tuple, if we consider the relationships to have a direction
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3 Network Modeling

Statisticians are usually less interested in describing network y in front of them, than

making inferences on the process that created it, as this allows them to generalize

their findings. Accordingly, they are interested in the parameters of the process

itself, rather than the parameters of this particular network sample the process cre-

ated. So, following the lead of every other statistical domain, we consider the given

network y as realization of the stochastic variable Y representing all networks that

could have been. For statistical inference, we now need to conceive a statistical model

with parameter θ that assigns every considered probability distribution Pθ(Y ) over

Y a unique value for θ, allowing us to estimate the value based on the given net-

work y. [Kolaczyk and Csardi, 2020] identifies three main classes of such statistical

network models.

The class of Exponential Random Graph Models (ERGM), which we will be using

in this work, resembles standard regression models. The Stochastic Block Models,

in their most basic form a mixture of classical random graph models. And Latent

Network Models, using both observed and unobserved variables in modeling.

When we imagine a network y with N nodes, one of the simplest models we could

come up with would be to consider the potential existence of each individual edge as

(independent) Bernoulli trial with probability p. p would then be the parameter of

our simple model giving us the probability distribution Pp(Y ) over all possible net-

works Y with N nodes. With all dyads (a set of two nodes, regardless if there exists

an edge between them) being assumed independent and therefore indistinguishable,

all networks with the same number of edges will be assigned the same probabil-

ity. The number of edges s(Y ) is therefore a sufficient statistic, as it contains all

information about the network necessary for this model.
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We can formalize it as

s(Y ) =
n−1∑
i=1

n∑
j=i+1

Yij, Yij =

1, if edge between i and j

0, otherwise.

for undirected, unweighted edges. The model can then be explicitly written as

Pp(Y = y) =

(
p

1− p

)s(y)

(1− p)N(N−1)/2 (3.1)

(cf. [Kauermann et al., 2019]) This type of random graph is often referred to as an

“Erdős-Rényi” graph. As the simplest model of its kind, they often serve as “null”

hypothesis for more elaborate models. This model is historically also refered to as

p0. From here, the search for more sophisticated models forks into two directions.

On the one side we find models refered to as p1 and p2, while the other path leads

us to the p∗ model, better know as ERGM.

The first path (as cuccinctly summarized by [Thiemichen, 2016]) leads us to

[Holland and Leinhardt, 1981]’s p1 model, by adding node-specific covariates rep-

resented by zij :

log

{
P(Yij = 1)

1− P(Yij = 1)

}
= αi + αj + z

′
ijβ

where αi and αj are fixed nodal effects. Going one step further, the p2 model pre-

sented by [Duijn et al., 2004] treats the node-specific effects as latent, non-observable

random effects ϕ:

log

{
P(Yij = 1|ϕ)

1− P(Yij = 1|ϕ)

}
= ϕi + ϕj + z

′
ijβ (3.2)

where

ϕ = (ϕ1, ϕ2, ..., ϕn)
′ ∼ N (0, σ2

ϕIn)

with In being the n dimensional unit matrix. Both models build upon the notion

that the probability of an edge in the network depends on which nodes this tie would

connect.
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There is, however, as mentioned before, another direction one can go from the p0

model. As [Kauermann et al., 2019] laid out, if we transform p into a new parameter

θ ≡ log( p
1−p

) and define a normalization factor Z(θ) ≡ (1 − p)−N(N−1)/2, (3.1) can

be rewritten as

Pθ(Y = y) = exp{θs(y)}qN(N−1)/2 =
exp{θs(y)}

Z(θ)
(3.3)

which fulfills the formal requirements for the multidimensional random variable Y

to belong to an exponential family. This allows us to take advantage of the plethora

of well-established statistical tools designed for classical generalized linear models

(GLM), including methods for construction, fitting and comparison of models. A

natural extension of this model would be to make use of the GLMs freedom and add

more dimensions to θ, allowing to add more statistics like s(Y ), resulting in what

we call Exponential Random Graph Models (ERGM).

A more exhaustive overview on the landscape of network models which trace back

to the Erdös-Rényi-Gilbert graph model is presented in 3.1 from [Fritz et al., 2019],

where DyNAM = dynamical actor oriented model, REM = relational event model.

Figure 3.1: Dependencies between network models by [Goldenberg et al., 2010], ex-
panded by [Fritz et al., 2019]
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3.1 Exponential Random Graph Models

Exponential random graph models (ERGM) describe networks as multivariate obser-

vations, where relations in the network may depend on exogenous data (covariates)

as well as endogenous processes. They “describe parsimoniously the local selection

forces that shape the global structure of a network”, as [Hunter et al., 2008] put it.

Although it might seem more appropriate to refer to these modeled networks as

snapshots of networks, to emphasise they are not static, as we will put our focus on

the dynamic changes of networks over time. Mathematically, we basically only need

to add more dimensions to the parameter of the (3.3) representation of p0:

P(Y = y|θ) = exp{θ′Ψ(y)}
Z(θ)

If θ ∈ Rk, we also need a vector of suitable model statistics Ψ : Y → Rk. This

extension is one of the appeals of the ERGM. It is very flexibile in capturing a

wide range of sufficient statistics describing connectivity patterns in the networks.

Hence, there finally is a way to account for probably the most important factor of

all, the actual shape of the network itself, finally acknowledging that edges are not

independent, which has been ignored by previous models. And it does so in a simple,

’plug and play’ fashion. We just need to define sufficient statistics representing

certain characteristics of networks (see [Handcock et al., 2014] for an extensive list

of examples).

Usually, these characteristics follow a Markovian assumption, called a Markovian

neighborhood, as described in detail by [van der Pol, 2019]. This assumption derives

from the understanding, that the odds of a tie between nodes are mostly impacted

by local, node-level dependencies, i.e. the relation with the nearest neighbors of the

dyad. Like the number of shared partners. This not only appears like a reasonable

assumption, but also avoids severe computational issues with statistics that span

the whole network, like the longest distance between nodes. Local characteristics

of dyads can be calculated independently and then summed up to get a sufficient

network statistic.

Incorporating exogene covariates is just as straight forward. On top of that,

ERGMs can be used to simulate networks.
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But naturally, this models has its pet peeves as well. Although we can draw

on most on the standard inferential infrastructure of GLMs, as pointed out by

[Kolaczyk and Csardi, 2020], their asymptotic approximation to χ2 distributions is

not formally justified for ERGMs yet. Plus, the normalization constant Z(θ) =∑
Y ∈Y exp{θ

′Ψ(Y )} may be intractable to compute. (A comparably small, undi-

rected network of 10 nodes for example would be accompanied by 2
1
2
(n2−n) = 35·1012

possible graphs.)

In addition to the normalization constant, the chosen statistics themselves may

be impractical to compute. Many ERGM statistics are what we call unstable,

meaning the statistic grows faster than linearly with increasing number of poten-

tial links, i.e. ψ(y) > O(N2), N being the number of nodes in the network (cf.

[Kauermann, 2020] and [Thiemichen, 2016]). The very intuitive (undirected) two-

star (2 nodes connected through a third node) and triangle (3 nodes connected with

each other) counts, for example, fall into this category. Thus, especially in large

networks, linear statistics may have to be replaced by smooth functional compo-

nents [Thiemichen and Kauermann, 2016]. This is not just a computational burden,

though, as unstable network statistics are known to lead to degenerated networks

(e.g. most of the probability distribution’s mass concentrated on the empty and/or

complete network). This proves a severe obstacle in the estimation process. As

the normalization constant is computationally intractable, Markov Chain Monte

Carlo simulations are employed. When the model is not a good representation of

the observed network, however, these simulations may not just be far enough off

to affect the estimation process, but in the worst case, make the algorithm fail

altogether. Either by not being able to converge at all, or by producing samples

that would not have been produced under the Maximum Likelihood Estimator (cf

[Handcock et al., 2021]). How hard hitting the space of non-degenerate parameter

values can be is visualized in 3.2 by [Schweinberger, 2011]. The plots show the

MCMC sample proportions of the respective parameters plottet against their cor-

responding natural parameters (in the third plot, the two-star parameter is fixed

to 1). The shaded areas are supposed to indicate unstable regions, visualizing his

conclusion that the two-star and triangle statistics are unstable for all values ̸= 0.

The discovery in the third plot, that the linear combination θtwostar = −θtriangle/3
leads to stable networks, is visualized in 3.3 by [Thiemichen, 2016], demonstrating

how delicate non-degenerate settings of unstable parameters can be.
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Figure 3.2: Effect of given parameters to resulting network structure

Figure 3.3: Effect of the given linear combination of resulting network structure

Lastly, these models do not account for (potential, but very realistic) nodal hetero-

geneity. Thus, the choice between the two paths (p1, p2 vs p
∗) partly comes down to

the question of modeling network structure vs modeling heterogeneity. To overcome

this problem, [Kevork and Kauermann, 2021] and [Thiemichen, 2016] have proposed

two different approaches for amending ERGMs. The work of latter one, building

upon the Bayesian framework for ERGMs by [Caimo and Friel, 2011], derives an

approximation of the Bayes factor for model selection. The most basic benefit being

the ability to identify if the model generating processes contain structural effects

(captured by a classic ERGM), nodal random effects (captured by the p2 model),
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or both. In this work, we will translate the work of [Kevork and Kauermann, 2021],

focused on estimation of ERGMs taking into account heterogeneity, to an extension

of the ERGM, which also has a temporal component, referred to as TERGM.

3.2 Temporal Exponential Random Graph Models

This chapter is based on [Hanneke et al., 2010]. Expanding the ERGM for multiple

time steps, we now have to consider multiple snapshots of the same network over

time, again represented by the respective weight matrices Y 1, Y 2, Y 3, ..., Y t. To

account for the dependence of every state on the preceding ones, we will need a new

set of statistics making use of this additional information.

Thus we define a new function Ψ : Rn×n×Rn×n× ...×Rn×n → Rk representing a

sufficient statistic on Y t|Y t−1, ..., Y 1 allowing us to model each step t in our dynamic

network series as an ERGM:

P(Y t = yt|Y t−1 = yt−1, Y t−2 = yt−2, ..., Y 1 = y1,θ) =
exp{θ′Ψ(yt, yt−1, ..., y1)}

Z(θ, yt−1, ..., y1)

This model is refered to as temporal ERGM, in short TERGM.

3.2.1 Markov Chains

The temporal dimension, which is meant to capture the dynamic behaviour of net-

works is modeled as a discrete-time stochastic process. A stochastic process is

essentially a sequence of random variables. It is said to be a Markov Chain, if fulfills

the following requirement:

TheMarkov Property states, that for any discrete-time stochastic process Y (with

at least n time steps) having this property, any realization y1, y2, ...yt of this process

fulfills the following equation:

P(Y t = yt|Y 1 = y1, ..., Y t−1 = yt−1) = P(Y t = yt|Y t−1 = yt−1)

for every t ≤ n.
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This means every time step Y t, although depending on every previous time step

y1, ...yt−1, is conditionally independent of every time step except the one right before

yt−1. In other words, every information about the history of the process we need to

predict Y t is contained in ’the present’, yt−1. What matters is where we are at t−1,

not how we got there. This assumption is feasible for many real-world processes,

and will simplify our model drastically. Generally, Y t depends on t. In this work,

we only consider homogeneous Markov chains, where Y t does not depend on t. If

needed, however, t can simply be included as covariate.

When we now break the probability distribution of the network series down into

its factors, the Markov assumption gives us:

P(Y 2, Y 3, ..., Y t|Y 1) = P(Y t|Y t−1) · P(Y t−1|Y t−2) · ... · P(Y 2|Y 1)

This also simplifies our function Ψ : Rn×n × Rn×n → Rk to represent a sufficient

statistic on Y t|Y t−1, reducing our model to

P(Y t = yt|Y t−1 = yt−1,θ) =
1

Z(θ, yt−1)
exp{θ′Ψ(yt, yt−1)} (3.4)

for each individual time step Y t. As this model requires information about preceding

states of the dynamic network, however, the joint distribution requires a distribution

over the initial network Y 1 to be specified. This can be done with a classic ERGM

in a previous step.

The one-step Markovian dependence assumption can be relaxed and generalized

by including more than one time-step in the ’recent history’, allowing investigation

of phenomena stretching across multiple time-steps. These are called higher order

Markov chains. Mathematically, this extension is straight forward:

P(Y t = yt|Y t−1 = yt−1, Y t−2 = yt−2,θ) =
1

Z(θ, yt−1, yt−2)
exp{θ′Ψ(yt, yt−1, yt−2)}

As in many applications (3.4) suffices, we will focus on this case for the remainder

of this work. But everything explained here, including the following chapter about

example statistics, can easily be adapted to cover additional time steps, if needed.

Nevertheless, there are some statistics, which require full access to historical infor-

mation, for example age (of extant ties) based terms like the ones found in the tergm
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package of R (cf [Krivitsky, v3]) So would the tergm-term mean.age() need the full

history in order to compute the mean age of each tie, i.e. the number of time steps

between its formation and its dissolution. The fact that these terms rejecting the

Markov assumption are, at the time of this writing (package version 4.0.2), still

not available during estimation in the current implementation of the package, only

as target variables or summary statistics, may be a strong hint for the merits of

making the Markov assumption from a pragmatic perspective. In addition to the

Markov assumption, there is another property of statistics in the succeeding section,

which is highly recommended to strive for when choosing TERGM statistics.

3.2.2 TERGM Statistics

When it comes to constructing network statistics with a temporal component, func-

tions satisfying the following form are of special interest:

Ψ(Y t, Y t−1) =
∑
ij

Ψij(Y
t
ij, Y

t−1) (3.5)

In these cases, the conditional probability distribution P(Y t|Y t−1) factors over

the individual edges of Y t. If all k statistics incorporated in the model fulfill this

property, then the model can be rewritten as

P(Y t = yt|Y t−1 = yt−1,θ) =
1

Z(θ, yt−1)
exp

{∑
k

θkΨk(y
t, yt−1)

}

=
1

Z(θ, yt−1)
exp

{∑
k

θk

(∑
ij

Ψijk(y
t
ij, y

t−1)

)} (3.6)

As explained by [Hanneke et al., 2010], this representation of the model reaps two

very appealing benefits:

1. For one, when it comes to estimation, this property makes it possible to

“tractably perform exact updates in Newton’s method”, instead of having to

resort to approximation through sampling-based estimation procedures.

2. Additionally, it alleviates the degeneracy issues mentioned in the previous

chapter, ERGMs often suffer from. With TERGM statistics being calculated
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based on more than one snapshot of the network, finding ways to avoid this

pitfall is of particular importance. As [Handcock, 2003] concludes, the effec-

tive parameter space of ERGMs is limited to a small, bounded subset of the

theoretical parameter space. Limiting inferences to this region can be achieved

with a Bayesian framework. But degenerate distributions reside very close to

non-degenerate distributions, causing slight variations of parameters to cause

degeneracy. This imposes a severe burden on the commonly used MCMC

methods for maximum likelihood estimation as well as inference, causing it to

require an impractically large number of samples, assuming them to conver-

gence at all.

Thankfully, it can be shown that for (3.6), as long as
∑

k |θk| is not too large,

the entropy of the fitted model will be reasonably large, preventing degenerate

probability distributions, resulting in consistently empty or complete graphs.

In fact, [Hanneke et al., 2010] show that for (3.6), where each Ψijk has a range

contained in [−β, β] for some β > 0, then the expected number of ties in Y t

is in the range[
n(n− 1)

exp{2β
∑

k |θk|}+ 1
, n(n− 1)

(
1− exp{2β

∑
k |θk|}

exp{2β
∑

k |θk|}+ 1

)]

The reason being that the edges of Y t are conditionally independent given

Y t−1, as long as the dependence of Y t on Y t−1 is not too strong. So the degen-

eracy issues innate to ERGMs are not obstructing their temporal extension.

To show this restriction does not impose a strong hindrance to common applications

[Hanneke et al., 2010] presents three examples for such statistics:

1. stability, capturing the tendency of a tie’s existence (or lack thereof) in t − 1

to continue at time t

ΨS(Y
t, Y t−1) =

1

1− n

∑
ij

[Y t
ijY

t−1
ij + (1− Y t

ij)(1− Y t−1
ij )]

12



2. reciprocity, describing the tendency of a tie from i and j at t−1 to be amended

with a tie from j to i at time t (in directed networks)

ΨR(Y
t, Y t−1) = n ·

∑
ij Y

t
jiY

t−1
ij∑

ij Y
t−1
ij

, setting
0

0
≡ 0

3. transitivity, representing the tendency of two ties from i to j and from j to

k respectively in t − 1 to result in a tie from i to k at time t (in directed

networks)

ΨT (Y
t, Y t−1) = n ·

∑
ijk Y

t
ikY

t−1
ij Y t−1

jk∑
ijk Y

t−1
ij Y t−1

jk

, setting
0

0
≡ 0

3.2.3 Markov Chain Monte Carlo Estimation

When it comes to the estimation of θ, the normalizing constant Z turns out to be

a problem, as it may very well be computationally intractable in many cases. This

problem, however, is not unique to dynamic networks, but, as already mentioned,

immanent to ERGMs in general. So there are solutions based on Markov Chain

Monte Carlo (MCMC) ([Gilks et al., 1996]) sampling for approximate maximum

likelihood estimation, which have been well studied and tested. This approach is

useful when the probability density function is known except for the normalizing

constant, especially when dealing with very high dimensional densities. Instead of

drawing from the density itself, MCMC methods generate a Markov chain, which

has this density as stationary distribution. [Hanneke et al., 2010] expanded these

algorithms to account for TERGMs:

To calculate the log-Likelihood

L(θ;Y T , ..., Y 2, Y 1) = logP(Y T , ..., Y 3, Y 2|Y 1,θ) (3.7)

he defines

M (t,θ) = Eθ[Ψ(Y t, Y t−1)|Y t−1] (3.8)

and

C(t,θ) = Eθ[Ψ(Y t, Y t−1)Ψ(Y t, Y t−1)′|Y t−1] (3.9)

leading to
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∇L(θ;Y T , ..., Y 2, Y 1) =
T∑
t=2

(
Ψ(Y t, Y t−1)−M(t,θ)

)
and

∇2L(θ;Y T , ..., Y 2, Y 1) =
T∑
t=2

(
M(t,θ)M(t,θ)′ − C(t,θ)

)
We can see the Markov assumption paying off in (3.8) and (3.9). The expectation

values then need to be approximated by Gibbs sampling (or Metropolis-Hastings

algorithms, cf. [Hunter et al., 2008]) from conditional distributions and used to

update the parameter values in (3.7). This two-step process is then repeated until

convergence. This is where statistics satisfying (3.5) come in handy, as they allow

for performing exact updates using Newton’s method instead. Not forgetting to

mention that the behaviour of MCMC algorithm is highly dependent on the chosen

statistics ([Snijders, 2002]). In this regard, [Hunter et al., 2008] cites studies having

reported difficulties obtaining convergence to non-degenerate networks at all when

trying to simulate social networks.

3.3 Alternative Models

3.3.1 Seperated TERGM (STERGM)

As [Krivitsky and Handcock, 2014] points out, there is a big issue with interpreta-

tion of TERGMs. By splitting a dynamic network into a discrete series of snapshots,

the resulting instances only provide information about prevalence of ties, convolut-

ing two distinct processes: incidence (the rate at which new ties are formed) and

duration (how long ties tend to last). This blending of processes is not inherent to

the discrete time series, but due to the way it is parametrized in TERGM models,

which means it can be accounted for by adapting the model. The authors provide

a few examples how the TERGM loses this kind of information.

First, the most basic statistic of all: the count of edges in a network. A high

coefficient assigns a higher probability to networks with more ties. But in a dynamic

network, this can be accomplished in two ways: Increasing the rate of formation, or

making existing ties last longer.
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The same happens with a TERGM-specific term, stability (ratio of the number of

ties whose state did not change between two time steps, to the maximum number

of possible ties). Here again, a higher coefficient (indicating a slower rate of change

in the network) is the result of both fewer ties formed and longer lasting ties.

This not only adds additional complexity to the problematic of correlating pa-

rameters in (T)ERGMs, but presents a serious obstacle to model specification and

interpretation.

A seperable TERGM (STERGM) solves this issue by assuming the formation and

dissolution of ties occurring independently from each other within a time step. Each

of these independent processes can be modeled as an ERGM.

If we define the relation ⊇ as: y ⊇ y′ <=> any tie present in y′ is also present

in y, for two networks y,y′ ∈ Y , and define Y+(y) = {y′ ∈ Y : y′ ⊇ y} (the set

of possible networks constructed by forming ties in y), as well as its counterpart

Y−(y) = {y′ ∈ Y : y′ ⊆ y} (all networks which can be constructed by dissolution

of ties in y), we can model the formation network Y + and respective dissolution

network Y − as

P(Y + = y+|Y t = yt;θ+) =
exp{η(θ+) ·Ψ+(y+)}

Z(θ+,Y+(Y t))
, y+ ∈ Y+(yt)

and

P(Y − = y−|Y t = yt;θ−) =
exp{η(θ−) ·Ψ−(y−)}

Z(θ−,Y−(Y t))
, y− ∈ Y−(yt)

where the formation statistics Ψ+(y+), with respective formation parameter θ+, is

conditional only on added ties, and Ψ−(y−) only on dissolving ties. The subsequent

time step Y t+1 can then be constructed by applying Y + and Y − to yt:

Y t+1 = Y + − (Y t − Y −)

This process is visualized in 3.4 by [Krivitsky and Goodreau, 2016]. Now we can

formulate the previous assumption more precisely: We call the model of a dynamic

network separable if Y+ is conditionally independent of Y− given Y t−1, and the

parameter space of θ is the product of the individual parameter spaces of θ+ and

θ−.
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Figure 3.4: Visualization of the STERGM concept

As we can see, the step from TERGM to STERGM is not far, and the proposed

methods to account for heterogeneous networks in this work can be easily extended

to STERGM. Formally speaking, the stated independence assumption allows us to

factorise the probability:

P(Y t = yt|Y t−1 = yt−1; θ) = P(Y + = y+|Y t−1 = yt−1; θ)×

= P(Y − = y−|Y t−1 = yt−1; θ)

=
exp{η(θ+) ·Ψ+(y+,yt−1)}

Z(θ+,Y+(yt−1))
× exp{η(θ−) ·Ψ−(y−,yt−1)}

Z(θ−,Y−(yt−1))

=
exp{η(θ) ·Ψ(yt,yt−1)}

Z(θ+,Y+(yt−1)) · Z(θ−,Y−(yt−1))
,

resulting in a TERGM, proving the STERGM is a subclass of a (Markov) TERGM.
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3.3.2 Longitudinal ERGM

[Koskinen et al., 2015] introduced a longitudinal extension of ERGM. In contrast to

the TERGM, the LERGM is based on a continuous time model, where changes are

restricted to sequences of changes of single tie variables. Similar to the basic ERGM,

a logistic regression is used to model opportunities for change of dyads, conditional

on the rest of the graph. Due to its continuous nature, within the ERGM family,

this model is the closest one to Stochastic Actor Oriented Models, one of the most

influential non-ERGM-based approaches.

3.3.3 Stochastic Actor Oriented Models (SAOM)

The Stochastic Actor Oriented Model (SAOM) introduced by [Snijders et al., 2010],

sometimes also called Stochastic Actor Based Model (SABM), is based on the notion

that a network evolves as a stochastic process driven by its actors. The probabilities

of tie changes are partly endogenous (as a function of the current network structure),

partly exogenous (as a function of the actors themselves, as well as covariates of the

respective dyad). Due to this actor-focus, the SAOM is designed with directed

networks in mind. Its assumptions include

• a continuous time parameter, with networks representing observations, also

referred to as network panel waves in analogy to panel surveys, at discrete

points in time

• the changing network being the outcome of a Markov process

• actors controlling their outgoing ties (while still being subject to structural

constraints)

• at any given moment (in the continuous process), on (probabilistically selected)

actor may get the opportunity to change one outgoing tie
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As a consequence, the actor-based change process consists of two (stochastic)

sub-processes:

1. a change opportunity process, modeling the frequency of tie changes by actors

2. a change determination process, modeling the actual tie changes made (after

actors got the opportunity)

As exact calculations for this model are infeasible, simulation based procedures are

used. The estimation method used in practice is a method of moments procedure,

but Bayesian and frequentist likelihood-based estimators have been developed as

well (cf [Snijders, 2017]).

The SAOM’s focus on the actors of the network makes it a great choice for repre-

senting theories describing how actors change their outgoing ties, where interpreta-

tion on a micro- (/actor-) level is important (as opposed to interpretations limited

to network-level). This does not mean microlevel interpretations of TERGMs are

not possible, though, as demonstrated in [Desmarais and Cranmer, 2011].

An in-depth theoretical and empirical comparison of the TERGM and the SAOM

can be found in [Leifeld and Cranmer, 2019].

18



4 Heterogeneity

4.1 Definition

While the p2 model of [Duijn et al., 2004], an alternative to ERGMs, accounts for

heterogeneous nodes, one of the limitations of ERGMs is the obligatory assumption

of homogeneous nodes, except for differences captured in exogenous nodal covariates

[Thiemichen, 2016]. This limitation carries over to TERGMs. The homogeneity

assumption, however, does not seem very realistic, as we intuitively expect nodes

to display different levels of affinity for forming ties. And in many cases we may

not be able to fully attribute this affinity to a set of exogenous covariates. Instead,

we should consider this phenomenon to be caused by a latent variable we need to

approximate through an indicator variable. This indicator variable is endogenous,

meaning we need to extract it from the network structure itself.

The official ERGM package for R provides a term called sociality, which is defined

as follows: “This term adds one network statistic for each node equal to the number

of ties of that node.” (cf. [Handcock et al., 2014])

We cannot ’override’ the ERGM’s assumption of homogeneity by adding this term

to every model we fit, as the number of parameters to be estimated becomes way

too large. We will need a more elaborate approach. So we will start by formulating

the issue at hand mathematically. Fortunately, [Kevork and Kauermann, 2021] and

[Kevork and Kauermann, 2022] already worked out a solution for ERGMs, so we

only need to make a few modifications to expand his concept to include a temporal

component. For the remainder of this work, we will refer to the latent variable as

affinity (of a given node towards forming ties) to avoid confusion with the sociality

term implemented in the ERGM package. We will use the degree (the number of ties)

of a node as indicator variable for the node’s affinity towards forming nodes.
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Replicating their approach, we extend the linear predictor θ′s(yt, yt−1) of our

TERGM

P(Y t = yt|Y t−1 = yt−1,θ) =
exp{θ′s(yt, yt−1)}

Z(yt−1, θ)

to include a metric u capturing the individual affinity of each node:

P(Y t = yt|Y t−1 = yt−1,θ, u) =
exp{θ′s(yt, yt−1) + u′t(yt)}

Z(yt−1, θ, u)

with t(yt) =
(∑

j ̸=1 y
t
1j,
∑

j ̸=2 y
t
2j, ...

)
being the n dimensional vector of node

degrees (where n is the number of nodes in the network).

This also requires the normalization Z(·) to be updated:

Z(yt−1, θ, u) = log
∑
yt∈Y t

exp(θ′s(yt, yt−1) + u′t(yt))

As already mentioned before, this creates a plethora of parameters exceeding the

number of nodes in the network. To resolve this, [Box-Steffensmeier et al., 2018]

proposed a pseudo-likelihood approach. As [Duijn et al., 2009] pointed out, by as-

suming each edge in the network to be independent of every other edge, the MLE

and MPLE approach are identical. If this condition is not met, however, esti-

mates and standard errors from the MPLE approach are biased. Recognizing that

this assumption is unfeasibly strict, they suggest applying a penalized likelihood

method originally proposed by [Firth, 1993] to reduce the asymptotic bias of es-

timates. [Kevork and Kauermann, 2021], whose method we will use in this work,

on the other hand propose to iterate between separate estimations of θ and u re-

spectively, allowing to estimate θ via MLE, avoiding the assumption of independent

edges, while keeping the MPLE solution for u.
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4.2 Modeling Random Effects

Formally speaking, the way we integrate the sociality vector u into our model is

as random effects, expanding the linear predictor θ′s(yt, yt−1) into a linear mixed

model.

4.2.1 Linear Mixed Models

As [Wood, 2006] describes, a linear mixed model extends the linear model

y =Xβ + ϵ, ϵ ∼ N(0, Iσ2),

with fixed population effects b to

y =Xβ +Zb+ ϵ, b ∼ N(0,ψϑ), ϵ ∼ N(0,Λϑ)

with all elements of b and ϵ mutually independent. The random vector b contains

the individual, not necessarily independent, random effects. The (positiv definite)

covariance matrix ψϑ, however, depends on some parameters ϑ. By introducing a

new error term u = Zb+ ϵ, we get a linear model

y =Xβ + u, u ∼ N(0,ZψϑZ
′/σ2 + I)

(cf [Kevork, 2017]), where the required assumptions, i.e. the identical and inde-

pendent distribution of the error terms, is fulfilled, allowing to estimate β using the

least squares criterion.

Now we can model the existence of a tie Y t
ij between node i and j in the network

Y t taking into account random effects as follows:

“Y t
ij“ = θ′∆ijs(y

t, yt−1) + ui + uj, 1 ≤ i < j ≤ n

As you can see, there is a small modification to s(yt, yt−1). In order to consider

each edge in the network individually, we define the change statistics1 ∆ijs(y
t, yt−1) =

s(ytij = 1, yt−ij, y
t−1) − s(ytij = 0, yt−ij, y

t−1). The notation Y t
ij for the ties is in quo-

tation marks, because in our case we only consider unweighted and undirected ties,

1Let yt−ij be the network yt excluding information about the dyad ij
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reducting the possibles values for Y t
ij to 1 (tie between i and j ) and 0 (no tie between

i and j ), requiring the use of a link-function, which will be covered in the succeeding

chapter.

4.2.2 Logistic Regression

As our target variable Y t
ij only has two values, edge and no edge, represented as 1

and 0, we essentially have a classification problem. And as [Molnar, 2019] points

out, “The linear regression model can work well for regression, but fails for classifi-

cation.”

There are various reasons for this. One of the more obvious ones being the fact

that the linear model extrapolates, meaning the response variable can yield values

beyond 1 and below 0, which not presents a challenge for interpretation, but can

also jeopardize subsequent analysis depending on well-defined values.

But, as [Kevork, 2017] pointed out, there are additional, more subtle issues with

this approach. For once, the homoscedasticity assumption of the error terms, stat-

ing that the variance of the response variable shall not depend on the independent

variables, is violated:

Let ϵij be the error term in our model, then we can easily see that in our binary

case, var(ϵij) = P(Y t
ij = 1) · (1 − P(Y t

ij = 1)). And as P(Y t
ij = 1) depends on our

linear predictor, the error terms depend on our independent variables.

Another violated assumption of classical regression models is the error term not

following a normal distribution, as the response variable only takes on two possible

values.

But probably the most severe issue with this approach is that a linear regression

is incredibly unreliable when misused for classification. In order to obtain a binary

result, we will need to define a threshold in the continuous spectrum between 0 and 1.

In graphic 4.1, [Molnar, 2019] provides an illustrative example, why this is not going

to work. The data for this example classifies tumors as malignant (1) or benign (0).

A linear model fit to predict the classification of the tumor depending on its size.
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0.5 is used as classification threshold. The left and right picture show the results

for different samples, with the right one having a few additional ’obvious’ cases (i.e.

very big and malignant tumors). As we can see, the regression line is shifted and

no longer useful after adding these obvious cases, which should not happen in a

classification model.

Figure 4.1: Attempts of classification with a linear model

A linear model classifies tumors as malignant (1) or benign (0) given their size.

The lines show the prediction of the linear model. For the data on the left, we can

use 0.5 as classification threshold. After introducing a few more malignant tumor

cases, the regression line shifts and a threshold of 0.5 no longer separates the classes,

rendering the model useless.
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Fortunately, all these issues can be resolved quite easily by transforming the linear

predictor into a form that emits monotonically increasing values between 0 and 1,

allowing us to interpret them as probabilities for a tie between the respective actors

i and j to exist:

P(Y t
ij = 1|θ, u, yt−ij, y

t−1) =
exp(θ′∆ijs(y

t, yt−1) + ui + uj)

1 + exp(θ′∆ijs(yt, yt−1) + ui + uj)

Now the model produces a curve as displayed in graphic 4.2. This result satisfies

the needs for a binary classification. Conveniently, its steepness represents how fuzzy

or clear the separation of both categories turned out in the sample.

Figure 4.2: Classification with a logistic regression model

When it comes to estimation, however, linear models have very appealing prop-

erties we do not want to miss out on. There is a simple mathematical ’trick’, which

allows us to combine the advantages of both the logistic model and the linear mixed

model we had earlier. As this happens to be the standard approach to estimating

logistic models, there is a plethora of well-established research and literature on this

topic, known as generalized linear (mixed) models.
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4.2.3 Generalized Linear Mixed Models

When trying to model non-linear response variables, other than constructing non-

linear predictors, there is often the possibility to instead transform the response

variable into a linear quantity. Doing this gives us what we call a generalized linear

(mixed) model (GLMM). Let µb ≡ E(y|b), then a GLMM has the form

g(µb) = Xiβ + Zib, b ∼ N(0, ψϑ)

where yi|b follow an exponential family distribution and are independent, and g is

a monotonic link function. (cf [Wood, 2006], [Fahrmeir et al., 2013])

To get to this form, we define a response function h(·),

h(ηij) =
exp(ηij)

1 + exp(ηij)
,

to link the probability P to the linear predictor:

P(Y t
ij = 1|θ, u, yt−ij, y

t−1) = h
(
θ′∆ijs(y

t, yt−1) + ui + uj

)
h(·) has a distribution from the exponential families, the binomial family in our

case, and h(ηij) ∈ [0, 1].

As h(·) is strictly monotonically increasing, we can define its inverse function

g(·) = h−1(·), also called link function. Let πij = h(ηij), then

g(πij) = log

(
πij

1− πij

)
= ηij,

which gives us the GLMM

g
(
P(Y t

ij = 1|θ, u, yt−ij, y
t−1)

)
= θ′∆ijs(y

t, yt−1) + ui + uj

or, in explicit form

log

{ P(Y t
ij = 1|yt−ij, y

t−1θ, u)

1− P(Y t
ij = 1|yt−ij, y

t−1,θ, u)

}
= θ′∆ijs(y

t, yt−1) + ui + uj
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If we replace 1− P(Y t
ij = 1|...) with P(Y t

ij = 0|...), we get

log

{ P(Y t
ij = 1|yt−ij, y

t−1θ, u)

P(Y t
ij = 0|yt−ij, y

t−1,θ, u)

}
= θ′∆ijs(y

t, yt−1) + ui + uj

This form reminds us of (3.2) of model p2, meaning we have successfully inte-

grated the features of p2 into TERGM. This logit-model-typical form also provides

an easy means of interpretation: the log odds ratio.

Although inference in GLMMs is based on the same likelihood or Bayes principles

as in LMMs, the commonly non-linear relationship between mean and predictor

often requires numerical methods or approximations, e.g. approximate penalized

likelihood or MCMC techniques (cf [Fahrmeir et al., 2013]). The mgcv library we

are using employs penalized regression terms.

4.3 Nodal Random Effects in Networks

Now we can formalize our full model. We start off with a TERGM and account for

the heterogeneity of the nodes by extending the linear predictor to include random

effects u for each node:

P(Y t = yt|Y t−1 = yt−1,θ, u) =
exp{θ′s(yt, yt−1) + u′t(yt)}

Z(yt−1, θ, u)
(4.1)

with

u ∼ N (0, σ2
uIn), (4.2)

where In is the n dimensional identity matrix. We derive the log-likelihood

l(θ, σ2
u) = log

∫
exp{θ′s(yt, yt−1) + u′t(y)}

Z(yt−1, θ, u)
· 1

(2πσ2
u)

n
2

· exp
(
−1

2

u′u

σ2
u

) n∏
i=1

dui

= θ′s(yt, yt−1)− n

2
log(2π)− n

2
log(σ2

u)+

+log

∫
exp

(
u′t(yt)− log(Z(yt−1, θ, u))− 1

2
· u

′u

σ2
u

) n∏
i=1

dui (4.3)
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Replacing the integral with a Laplace approximation, as proposed by

[Breslow and Clayton, 1993], yields

l(θ, σ2
u) ≈ θ′s(yt, yt−1)+ û′t(yt)− log(Z(yt−1, θ, û))− 1

2

û′û

σ2
u

− n

2
log(2π)− n

2
log(σ2

u)

−1

2
log

∣∣∣∣∣∂
2(û′t(yt)− log(Z(yt−1, θ, û))− 1

2
· û′û

σ2
u
)

∂û∂û

∣∣∣∣∣ (4.4)

We can consider this as (approximated) profile likelihood where we can find our

estimator û by maximizing the last term in (4.4), using

∂(u′t(yt)− log(Z(yt−1, θ, u))− 1
2
· u′u

σ2
u
)

∂u
= 0

and

∂log(Z(yt−1, θ, u))

∂u
= E(t(yt)|u) (4.5)

Then we can focus solely on θ:

P(Y t = yt|Y t−1 = yt−1,θ, û) =
exp{θ′s(yt, yt−1) + û′t(yt)}

Z(yt−1, θ, û)
(4.6)

for which we can use any TERGM estimation method, like the common MCMC-

MLE. There is still an issue with (4.5), though, as the high dimensionality of u

proves numerically challenging. This is where we need the GLMM we prepared in

previous chapters:

log

{ P(Y t
ij = 1|yt−ij, y

t−1θ, u)

P(Y t
ij = 0|yt−ij, y

t−1,θ, u)

}
= θ′∆ijs(y

t, yt−1) + ui + uj (4.7)
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Following [Duijn et al., 2009] we can now derive the pseudo-log-likelihoods

lpseudo(u) =
∑
i

∑
j>i

ytij{oij + ui + uj} − log{1 + exp(oij + ui + uj)} (4.8)

and

lpseudo(σ
2
u) ≈ −1

2
· ǔ

′ǔ

σ2
u

− n

2
log(σ2

u), (4.9)

where ǔ is the maximizer of

u′t(yt)−
∑
i

∑
j

log{1 + exp(oij + ui + uj)} −
1

2
· u

′u

σ2
u

(4.10)

In combination with (4.2), we receive a (pseudo) generalized linear mixed model.

and can use [Breslow and Clayton, 1993] for estimation. The attentive reader may

have spotted a new symbol in (4.8) and (4.10). We integrated θ′∆ijs(y
t, yt−1) as

given offset oij.

Here we can see one final problem with our approach: u depends on θ, meaning

we need θ to estimate u as much as we need u to estimate θ. The solution is an

iterative process alternately updating the respective values of u and θ.
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4.4 Iterative Estimation using TERGM

Putting it all together, we will use our TERGM and GLMM to iteratively estimate

u and θ. We estimate the first θ(0) as intercept alongside u(0), which we can then

use as offset for the first TERGM estimation of θ(1), which we then again use to

estimate an updated u(1) with the GLMM, where we set θ′∆ijs(y
t, yt−1) as fixed

offset. We continue this process until θ converges.

4.4.1 Initial Values

First we need to obtain an initial prediction for u and estimate σ2
u. As we do not

yet have an estimation for θ, we fit the first GLMM with an intercept θ(0):

log

{ P(Y t
ij = 1|yt−ij, y

t−1θ, u)

P(Y t
ij = 0|yt−ij, y

t−1,θ, u)

}
= θ(0) + ui + uj

(4.8) and (4.9) give us û and σ̂2.

4.4.2 Estimate TERGM

Now we can estimate (4.6):

P(Y t = yt|Y t−1 = yt−1, θ, û) =
exp{θ′s(yt, yt−1) + û′t(yt)}

Z(yt−1, θ, û)

where û′t(yt) is fixed as given offset.

4.4.3 Estimate Random Effects

We can now use the resulting θ′∆ijs(y
t, yt−1) as offset to replace the intercept, and

fit the GLMM (4.7):

log

{ P(Y t
ij = 1|yt−ij, y

t−1θ, u)

P(Y t
ij = 0|yt−ij, y

t−1,θ, u)

}
= θ′∆ijs(y

t, yt−1) + ui + uj

using (4.8) and (4.9) again and update û and σ̂2 for the next iteration cycle.
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5 TERGM Implementations in R

An overview over relevant software implementations of network modeling can be

found in [Kauermann et al., 2019]. Most software for statistical inference is written

for the R environment, with a notable exception being the PNet 1 software for

statistical network models, developed at the University of Melbourne. Especially

for implementations of models residing right at the frontier of academic research,

R’s open source model seems like the perfect fit. A good starting point is R’s

statnet suite of packages 2, offering a plethora of statistical network models. This

is also the one used for the code behind this work. For stochastic actor oriented

models (SAOM) on the other hand, the RSiena 3 package is worth a look. An

approach which can be considered analogous to the SAOM is the temporal network

autocorrelation model (TNAM) 4. There is also a generalized ERGM for networks

with weighted ties under development in the GERGM packgage5. A library focused on

simulation of networks (based on the SAOM) is NetSim6.

5.1 Change Statistics

For the initial estimation of the GLMM, the network’s change statistics are needed.

The ERGM package makes their extraction easy by providing this functionality out

of the box. With TERGM libraries, however, we are not as lucky. So, for the first

GLMM fit, manual calculation of the change statistics of specific TERGM terms

may be necessary.

1https://www.melnet.org.au/pnet/, last visited on 10.2.2022
2https://statnet.org/, last visited on 10.2.2022
3https://www.stats.ox.ac.uk/ snijders/siena/, last visited on 10.2.2022
4https://CRAN.R-project.org/package=tnam, the package is archived and currently not available
through the CRAN repository

5https://CRAN.R-project.org/package=GERGM, last visited 15.3.2022
6https://rdrr.io/rforge/NetSim/, last accessed 16.3.2022
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5.2 TERGM Package in statnet

The specifications supported in the tergm package of the statnet suite are based on

a separation of edge loss and edge creation functions, as proposed by [Krivitsky and

Handcock, 2014] , allowing to smoothly transition between TERGM and STERGM

by choosing the respective formula. Unfortunately, at the time of this writing (ver-

sion 4.0.2), the library does not have implemented estimation for TERGM-terms

yet. They can only be used as targets, monitors or summary statistics, as stated in

the documentation (cf [Krivitsky, v3]).

The available tergm-terms are all following a durational pattern, e.g. mean.age,

edge.ages, degree.mean.age, et cetera.

The estimation comes with two options (currently only supporting ERGM-terms):

Conditional-Maximum-Likelihood-Estimation (CMLE) and a simulated method of

moments procedure, named Equilibrium-Generalized-Method-of-Moments (EGMME).

5.2.1 CM(P)LE

The CMPLE version (using pseudo-likelihood) is not recommended, as it is still very

inaccurate at this time [Krivitsky, v3]. The CMLE version on the other hand, which

is the one used in this work, is very accurate, assuming it converges, which is not

guaranteed unfortunately, as it is prone to degeneracy when the model specification

does not capture the true data-generating process. The CMLE algorithm is based on

[Krivitsky and Handcock, 2014]. It is an extension of [Hunter and Handcock, 2006],

which uses a Method-of-Moments estimator

Eθ̂Ψ(Y ) = Ψ(yobs)

with a simulated Newton-Raphson zero-finding algorithm. The extension includes

cases where η(θ) ̸= θ. The conditional MLE is obtained by maximizing the log-

likelihood

l(θ) = η(θ) ·

(
T∑
t=1

Ψ(yt,yt−1)

)
− log

(
T∏
t=1

Zη,Ψ(θ,y
t−1)

)
with the log-likelihood-ratio
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l(θ)− l(θ0) =
(
η(θ)− η(θ0)

)
·

(
T∑
t=1

Ψ(yt,yt−1)

)
− log

(
T∏
t=1

Zη,Ψ(θ,y
t−1)

Zη,Ψ(θ
0,yt−1)

)

The problematic normalizing constant can be expressed as

T∏
t=1

Zη,Ψ(θ,y
t−1)

Zη,Ψ(θ
0,yt−1)

=
T∏
t=1

∑
y∈Y

exp((η(θ)−η(θ0))·Ψ(yt,yt−1))×exp(η(θ
0) ·Ψ(yt,yt−1))

Zη,Ψ(θ
0,yt−1)

=
T∏
t=1

∑
y∈Y

exp((η(θ)− η(θ0)) ·Ψ(yt,yt−1))× P(Y t = y|Y t−1 = yt−1;θ0) (5.1)

(5.1) is the product of expectations over the conditional distribution of Y t given

Y t−1 at θ0. These can be estimated by MCMC simulation, using the algorithm

proposed in [Hunter and Handcock, 2006]:

1. Select initial value for θ0

2. Generate MCMC sample Z(Y1), ...Z(Ym) based on θ0

3. Iterative estimation until convergence, obtaining a maximizer θ̃ for the log-

likelihood ratio l(θ)− l(θ0).

4. If the estimated variance of the log-likelihood-ratio is too large compared to

l̂(η(θ̃)), then set θ0 = θ̃ and repeat from step 2.

5. θ̃ is the MCMCMLE

The reason for the use of a conditional MLE in the first place is, that a new sample

would have to be generated each time the value of θ changed, which is computation-

ally highly expensive. Thus, a single sample is generated based on a fixed parameter

θ0 instead.
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5.2.2 EGMME

The Equilibrium Generalized Method of Moments Estimation is based on a single

cross-sectional network with retrospective temporal information (collected on the

duration of ties), assuming that it is a product of a TERGM process running to its

stationary (equilibrium) distribution.

We could imagine a real world example where this kind of data is collected in

a one-time survey. The EGMME serves as method to better account for these

scenarioes. It assumes that this process has reached an equilibrium and uses the

relationship

prevalence = incidence× duration

of ties and use the given data to solve for incidence in the formation model (cf.

[Krivitsky et al., ] for more details). The implementation is based on [Krivitsky, 2012].

The distinction between incidence (formation) and duration (time until dissolution)

aligns with the idea behind the STERGM.

5.3 TERGM Package btergm

Because the TERGM library from the statnet suite is computationally demanding,

which makes estimation for big networks unfeasible, [Leifeld et al., 2018] created the

btergm library to fill that gap.

The btergm package comes packed with three implemented temporal network

statistics:

• delrecip: delayed reciprocity or mutuality

• timecov: time trend or interaction with time

• memory: ’memory’-statistic of one of the three types positive autoregression,

dyadic stability, edge innovation or loss

The package provides three different methods of estimation. It’s main option, boot-

strapped pseudo-likelihood, as well as an MCMC-MLE (mtergm) option for smaller

networks, and the recently added Bayesian (tbergm) counterpart.
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5.3.1 Bootstrapped Pseudo-Likelihood

As laid out in [Leifeld et al., 2018], maximum pseudo-likelihood estimation (MPLE)

replaces the joint likelihood with the product over dyadic tie propabilities πij con-

ditional on the network, where

πij(θ) = P(Yij = 1|Y−ij,θ)

The estimation is then, considering πij to be a function of the past t−K networks,

done by maximizing

argmaxθ

T∑
t=K+1

∑
⟨ij⟩

ln
[
(πt

ij(θ))
Y t
ij(1− πt

ij(θ))
1−Y t

ij

]
,

where T indicates the networks in the time series, and ⟨ij⟩ indicates the set of

dyads in the network. The optimization is achieved with a hill-climbing algorithm

which does not involve simulation. This is where the speed behind this approach

originates, keeping estimations computationally feasible for big volumes of data. As

the MPLE asymptotically converges to the MLE, this is where this approach shows

its strength. When the amount of data, i.e. the number of nodes or the number

of timesteps, goes to infinity, the estimation is consistent, while at the same time

other, computationally more expensive, approaches become impractical.

Furthermore, taking into account the fact that

T∑
t=K+1

∂
∑

⟨ij⟩ ln
[
(πt

ij(θ̂))
Y t
ij(1− πt

ij(θ̂))
1−Y t

ij

]
∂θ̂

= 0

when taking n estimates of θ by drawing n samples of T −K networks, shows this

bootstrapping approach (originally described by [Desmarais and Cranmer, 2012])

mitigates the problem of substantially underestimating the MPLE’s variance, like

it would be the case for single network ERGMs. With the sample data used in this

work being limited to only two time steps, however, this approach will not work for

our purposes.
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5.3.2 MCMC-MLE

Even though the focus of the btergm package lies on the fast method of MPLE with

bootstrap confidence intervals, it also offers the classic Markov Chain Monte Carlo

Maximum Likelihood Estimation (MCMC-MLE) for TERGMs. In this approach,

all networks are combined into a big block-diagonal matrix (with structural zeros

prohibiting cross-network edges), which is then used to estimate an ERGM using

the procedure proposed by [Hunter et al., 2008]. This implementation, however, is

extremely slow and not recommended for anything but small networks with very

few observations. As our iterative approach would only magnify this speed issue,

this was not a feasibly option for our objective. Additionally, although it may yield

more accurate results than the bootstrapped counterpart, it is prone to degeneracy

when the model is misspecified.

5.3.3 Bayesian Estimation

Recently, there was added another option to this package, tbergm 7, acting as a wrap-

per for the bergm function in the Bergm package. It computes TERGMs through

Bayesian estimation (cf. [Caimo and Friel, 2014]) using block-diagonal matrices and

structural zeros, similar to the MCMC-MLE approach. For a mathematical formu-

lation of our model (TERGM including nodal random effects, (4.1)) in a Bayesian

framework, we can extend the formulation for ERGMs in [Thiemichen, 2016] by

imposing a prior distribution p(θ) on θ = (θ1, ...θp)
′, resulting in the posterior

p(θ,u, σ2
u|yt, yt−1) =

f(yt, |yt−1, θ, u)p(θ)p(u|σ2
u)p(σ

2
u)

p(y)
,

where p(u|σ2
u) is the prior distribution of the random nodal effects u and

f(yt, |yt−1, θ, u) =
exp{θ′s(yt, yt−1) + u′t(yt)}

Z(yt−1, θ, u)

The respective distributions are u ∼ N (0, σ2
uIn), θ ∼ N (0, ρ2Ip) (ρ

2 chosen such

that the prior distribution is flat), and the assumption of the inverse gamma distri-

bution σ2
u ∼ IG(a, b) (a, b again being chosen so that the hyper prior distribution

is flat). It shall be noted, however, that at the time of this writing this library is

7https://rdrr.io/cran/btergm/man/tbergm.html, last accessed 14.2.2022
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rather new and there is not much documentation about the implementation to be

found.

5.4 GLMM Package mgcv

When it comes to the random effects, we will use the same library as original ver-

sion of this approach in [Kevork and Kauermann, 2021]. While the mgcv package

provides the gamm function for fitting GLMMs, the gam function will be used in-

stead. The reason being that, for estimation purposes, the smooth components of

GAMs can be viewed as random effects. In this approach, the random effects are

represented as penalized regression terms.

Other than classic GLMM libraries, however, gam, needs the full penalty matrix

for each random effect, and doesn’t use sparse matrices for efficient computation,

like . This can lead to high computation times for bigger networks. Because compu-

tation time is a crucial factor in our iterative approach, we will use the bam function

instead. It fits based on derivates of the Reduced Maximum Likelihood score, reduc-

ing the expensive computations to one parallel block Cholesky decomposition per

bam-iteration. [Wood, 2021]
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6 Evaluation

In order to properly evaluate our algorithm, we will run it on simulated networks,

so we both have knowledge over the true parameters of the network, as well as have

the ability to see how changes of the parameters affect the result. We will focus on

dynamic networks consisting of exactly two time steps. Meaning we have one initial

network and one for the TERGM estimation. Our networks will be undirected and

unweighted. As we do not use bootstrap procedures (like in btergm), we will also

have to limit ourselves to small network sizes, as calculation time is a crucial bot-

tleneck in our iterative approach.

Once we have the simulated network series, we will estimate the parameters of

the chosen model with both our iterative approach and the traditional TERGM

estimation assuming homogeneity. We will then compare the two results with the

true parameters behind the data generation process.

6.1 Samples of Heterogeneous Networks

To simulate our networks, we will need to choose network statistics and their pa-

rameters. In addition, we need to pick a network size n (n being the number of

nodes) and decide how heterogeneous we want our networks to be. Incorporating

the heterogeneity will be straight forward, as the implementations of the statnet

package we are using for simulation allows us to specify a sociality parameter for

each node. We will randomly generate those values based on a normal distribution

with µ = 0 and σ =
√
h, with h being our heterogeneity-parameter.

The simulation of the initial network will be through an ERGM. This network

will then be passed on as starting point for the TERGM simulation of the second

network. The TERGM simulation will use the same parameters as the ERGM

simulation. As ERGM also requires a starting point to simulate the equilibrium
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state we are looking for, we will hand it an empty network. Unfortunately, the

TERGM estimation algorithm does not provide a step-wise option like the ERGM

package, so each iteration all sub-iterations within the TERGM estimation will be

executed until convergence. With no option shortcut this process, we are limited

to small network sizes to keep calculation times feasible. On top of that, with long

execution time, it would be hard to identify degeneracy issues (which happen a lot

through poor choice of parameters) preventing any convergence eary on, meaning we

would not be able to see if the computation is making progress or already stuck until

a long amount of time has passed. Table 6.1 shows the parameter settings chosen for

each dynamic network series. Finding a good combination of statistics is not trivial,

as they may be correlated, causing degeneracy. Furthermore, as already mentioned,

the statistics may also face stability issues. A very simple, although admittedly not

very sophisticated, remedy to mitigate these issues is the use of very few parameters

per model. In this case, we are using the count of all edges (ties) present in the

network, and the Geometrically-Weighted Edgewise Shared Partnerships (gwesp)

statistic, which models triad closure and is calculated as

w = eα
n−2∑
i−1

{1− (1− e−α)i}pi,

where α is the decay parameter (in our case α = 0.6), and pi is the number of actor

pairs with exactly i shared (edgewise) partners. n is the number of nodes in the

network. This statistic was chosen due to its stabilizing effect.

Parameter Sample 1 Sample 2 Sample 3 Sample 4
network size (n) 25 25 25 25
heterogeneity (h) 0.6 0.6 0.01 0.6
edges -2.5 -2.5 -2.5 -2.5
gwesp 0.2 0.2 0.2 -0.5
mean age1 0.2 -0.01 -0.01 -0.01

Table 6.1: Parameters

Even though the network statistics with a temporal dimension of the used library

cannot be used for estimation yet, we used mean age for the simulation of the

1This statistic equals the average amount of time elapsed since formation of all ties present in
the network.
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sample networks, to ensure we receive two consecutive snapshots of a single time

series, rather than two samples of unrelated networks who simply share the same

parameters.

6.2 Parameter Estimation

The actual estimation is where our iterative algorithm comes in. We start by ex-

tracting the change statistics for each time step, and feeding the data to our GLMM

to estimate the random effects with an intercept using the mgvc package. Getting

the change statistics of ERGM-terms is straight forward, as the statnet package

takes care of that. As for the TERGM-terms, however, change statistics have to

be calculated manually from the network matrices, as this feature appears to be

missing at the time of this writing.

Once we have the random effects, we loop between...

1. ..using them as offset for the sociality parameter to fit a TERGM, and

2. ..feeding the estimated network parameters back to the GLMM to update the

random effects

..either until it converges or until it reaches a set maximum number of iterations.

6.3 Comparison with traditional Approach

As the goal of this work is not to find a new, more convoluted approach to a problem

that has already been solved, but to provide a remedy for situations not having been

accounted for, we need to compare its performance to the traditional approach.

Thus, we will estimate the selected parameters of the simulated network series with

a plain TERGM estimation assuming homogeneity. For networks constructed with

small values for h, we would expect the results of our iterative estimation and a

normal TERGM fit to be more or less identical. While for high values for h we

would expect our approach to yield more accurate results, justifying the additional

effort when fitting the model.
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6.4 Results

Plots

In addition to comparing the estimated parameters with the true values used for the

simulation, we will run a batch of simulations based on the estimated parameters,

and compare their features to the original network. With our time series consisting

of only two time steps, we will only simulate the second step, conditional on the

same initial network as used for the original data.

1. We will extract various network statistics (both the ones used in the models

for generation and estimation, and statistics not captured in our models) from

the simulations and display the results in boxplots. The plotted statistics are

• edges equal to the number of edges (i.e. nonzero values) in the network

(for undirected networks, equal to kstar(1))

• kstar(2) number of 2-stars, where a k-star is defined to be a node n0

and a set of k different nodes {O[1], ..., O[k]} such that the ties {n0, O[i]}
exist for each i = 1, ..., k

• gwesp equal to the geometrically weighted edgewise (not dyadwise) shared

partner distribution with decay parameter α = 0.6

• nsp(2) equals the number of dyads that do not have an edge in the

network with exactly 2 shared partners

• kstar(3) number of 3-stars

• dsp(3) equals the number of dyads in the network with exactly 3 shared

partners

The respective values for the original network (blue dot) are added for reference

(if they are missing, this means they are beyond the scope of the boxplots).

2. Since the focus is on heterogeneous networks, we will also plot the affinities

(true parameters of the latent variable are sky blue) of each node, in order

to compare their actual, realized number of degrees (normalized). Again, the

values of the original network series are added for reference, as this is the

only data available for estimation (The violet marker represents the initial
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network of the time series used for both original data generation and the

simulations based on estimated parameters represented by the boxplots, and

the grey marker represents the second network of the original time series.).

This plot will be generated twice, once for a model estimated with our iterative

approach, and once for a model estimated with a classic TERGM estimation

assuming homogeneity.

Non-negative Mean Age

As our time series only consists of two networks, both the formation of a new tie and

the dissolution of an existing tie would shrink the mean age of all ties. Therefore,

non-negative parameter values discourage any changes in the network. Nevertheless,

the strength of its effect on the network structure proved admittedly unexpected.

Even though their illustrations are optically slightly distorted, they are completely

identical. We decided to include the full analysis results of these ’twins’ anyway

as reference, to see how our algorithm behaves, even though this kind of analysis

would not be conducted on a time series including only two time steps in real world

scenarios, if these are identical.

Figure 6.1: Networks simulated with positive mean age

Both the parameters and the variance (h) of the estimated random effects con-

verged in less than 5 iterations. The results can be seen in table 6.2. Even though
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this scenario is a distorted edge case, the estimation is not too far off, and slightly

better than a classic TERGM estimation. The heterogeneity of the network, how-

ever, was not recognized by our algorithm.

Parameter True Value Iterative Estimation Traditional Estimation

heterogeneity (h) 0.6 0.04 ”0”

edges -2.5 -2.5 -2.5

gwesp 0.2 0.4 0.5

Table 6.2: Estimated Parameters

As expected, the edges and gwesp of the simulations based on the estimated

values reflect the original values (see figure 6.2). The other network statistics seem

reasonably replicated as well, with only dsp(3) being bigger than in the original

data.

Figure 6.2: Results of simulations based on estimated parameters (blue dots repre-

sent original data)

A look at figure 6.3 shows that the individual affinity) of each node (measured

through the degree, the number of edges containing the node) was replicated quite

well in the simulations, despite the severely underestimated heterogeneity (sky-blue

dots: true affinity. rhombus: realized affinity (actual degrees) in original data).
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Figure 6.3: Degrees (normalized) of individual nodes, across multiple simulated net-

works - Based on parameters estimated with random effects

A look at 6.4, however, shows that the classic TERGM estimation, assuming

homogeneity, yielded a very similar result. This is not surprising, as we used the

same initial network for the second time step. So, the heterogeneity captured is

basically the heterogeneity already contained in the initial network.

Figure 6.4: Degrees (normalized) of individual nodes, across multiple simulated net-

works - Based on parameters estimated without random effects (tradi-

tional approach)
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Negative Mean Age

Interestingly, as soon as the mean age parameter is set below zero, the two time-

steps look quite different (see figure 6.5). And the actual value of the parameter

does not seem to make much of a difference here (i.e. if it’s set to -0.00001 or -

2.0). Furthermore, no ties are dissolved. Only ties added. As a consequence, both

networks can indeed be considered as two consecutive snapshots from a time series,

even though they visually look like two unrelated networks at first glance. A χ2-

test formally corroborates a connection between the networks (far beyond identical

affinities of their individual nodes towards forming ties).

Figure 6.5: Simulated network series

Parameter True Value Iterative Estimation Traditional Estimation

heterogeneity (h) 0.6 0.27 ”0”

edges -2.5 -1.9 -2.4

gwesp 0.2 0.3 0.6

Table 6.3: Estimated Parameters

Again, both the estimations for the parameters and for the variance h converged in

less than 5 iterations. The estimated parameters now look quite different between

the two approaches (see table 6.3). While the iterative approach made a more

accurate prediction of gwesp, it is quite off when it comes to edges.
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Figure 6.6: Results of simulations based on estimated parameters (blue dots repre-

sent original data)

An assessment of the estimated values can be seen in figure 6.6. Most of the

original values are not even within the displayed scope. A juxtaposition of figure

6.7 and 6.8 reveals that the affinities (/random effects) of the nodes have been

severely misjudged. Maybe the initial network’s structure was a bit atypical for

the respective affinities, leading to strong bias in the iterative approach. While the

classic approach, ignoring the affinity-distribution completely, was probably ’saved’

by regression to the mean.
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Figure 6.7: Degrees (normalized) of individual nodes, across multiple simulated net-

works - Based on parameters estimated with random effects

Figure 6.8: Degrees (normalized) of individual nodes, across multiple simulated net-

works - Based on parameters estimated without random effects (tradi-

tional approach)
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Low Heterogeneity

One criterion for success of this approach would be results similar to the traditional

TERGM estimation when heterogeneity is very low, meaning the homogeneity as-

sumption inherent in ERGMs and TERGMs is fulfilled. To test this special case,

we set h = 0.01 (figure 6.9).

Figure 6.9: Simulated network series (homogeneous nodes)

Parameter True Value Iterative Estimation Traditional Estimation

heterogeneity (h) 0.01 0.04 ”0”

edges -2.5 -1.9 -2.0

gwesp 0.2 0.3 0.4

Table 6.4: Estimated Parameters

Table 6.4 shows that the iterative approach recognized the low heterogeneity.

Nevertheless, the estimation for the edges parameter was again quite off. This time,

however, for the classic TERGM estimation as well.
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Figure 6.10: Results of simulations based on estimated parameters (blue dots repre-

sent original data)

The resulting simulations don’t have much in common with the original networks

(see 6.10). But, as expected, figures 6.11 and 6.12 show only very little difference

between both approaches. In conclusion, the results of this parameter-combination

suggest, that for low heterogeneity, the new approach, which models potential het-

erogeneity, does not create artifacts if used in homogeneous networks.

Figure 6.11: Degrees (normalized) of individual nodes, across multiple simulated

networks - Based on parameters estimated with random effects
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Figure 6.12: Degrees (normalized) of individual nodes, across multiple simulated

networks - Based on parameters estimated without random effects (tra-

ditional approach)

Negative GWESP

In another attempt, the gwesp parameter was changed to a negative value. In this

scenario, the second time step, again, contains all the edges present in the previous

time step. Convergence was again achieved within 5 iterations.

Figure 6.13: Simulated network series (negative gwesp)
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Parameter True Value Iterative Estimation Traditional Estimation

heterogeneity (h) 0.6 0.08 ”0”

edges -2.5 -2.0 -2.2

gwesp -0.5 0.27 0.37

Table 6.5: Estimated Parameters

Table 6.5 shows that the pattern continues. The estimation for gwesp is closer,

while the edges estimation of more off than in the classic TERGM estimation. None

of the estimations, however, reached a negative value for gwesp.

Figure 6.14: Results of simulations based on estimated parameters (blue dots repre-

sent original data)

The resulting simulations, again, do not have much in common with the original

networks (see 6.14). And the estimated affinities of the nodes seem more chaotic

and capricious in 6.15, than in its traditional counterpart 6.16.
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Figure 6.15: Degrees (normalized) of individual nodes, across multiple simulated

networks - Based on parameters estimated with random effects

Figure 6.16: Degrees (normalized) of individual nodes, across multiple simulated

networks - Based on parameters estimated without random effects (tra-

ditional approach)
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7 Conclusion

We have shown that we can account for unobserved node-specific heterogeneity by

including node-specific random effects in the TERGM. In our test-cases, however,

this did not result in a significant improvement compared to a classic TERGM esti-

mation. Maybe this changes for sufficiently large networks (or a network series with

sufficiently many time steps). As this will become computationally very expensive,

a shift to the bootstrap implementation may be necessary. This, on the other hand,

may leave a gap with moderately sized networks, as the bootstrap implementation

may require big network sizes, and more than two time steps. Another question

that remains open is the effectiveness of the presented approach for networks with

a heterogeneity parameter greater than one. So far, testing bigger values was not

possible due to computational and degeneracy problems, which will require further

studies.
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