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Abstract

The thesis presents a comprehensive study of the LUSI method in-

troduced by Vapnik and Izmailov for the binary classification prob-

lem. Different than usual statistical approaches to classification, it

results from a more analytical approach of approximating the condi-

tional probability function. The method bases on an inverse-problem

definition of the desired function and the appropriate application of

Tikhonov’s regularization principle. It is complemented by so called

statistical invariants. Provided is a rework of related theoretical con-

cepts. In a practical assessment the method is evaluated at the side of

other models regarding the quality of function approximation and the

accuracy of classification. While the basic approach could be verified to

improve the quality of estimating the conditional probability function,

the statistical invariants have not shown a systematic improvement, ex-

cept for single cases. Regarding the classification accuracy the method

did not establish any improvements compared to the common models

such as empirical risk minimization.
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1 Introduction

Various methods for binary classification, ranging from statistical estimation such

as logistic regression to plenty methods being matter of machine learning, have

been developed over the last decades. Most often these methods base on a sta-

tistical approach of explaining the binary observations conditioned on additional

features by decoupling the stochasticity. Examples include maximum likelihood

estimation or squared-loss minimization. From a stochastic point of view, the

binary observation conditioned on additional variables is best characterized by

its conditional probability distribution. Therefore, a new method has been pro-

posed by Vapnik and Izmailov, which is constructed to explicitly approximate this

function. The method bases on an inverse-problem definition of the conditional

probability function, to derive an optimization problem on the basis of a given

random sample. This is complemented by so called statistical invariants, which

serve the incorporation of additional information about the desired function. The

estimated conditional probability function is used to derive a decision rule to per-

form classification. In summary, the method is intrinsically different as it comes

from a function approximation approach.

The purpose of this thesis is to provide a comprehensive investigation of this

new approach to classification. This starts of with a profound analysis of the

theoretical foundations, which also build the mathematical cornerstones of most

models for empirical dependency estimation. The idea is to provide a summary of

the main important conclusions of theoretical literature, working out a theoretical

background in which among others the investigated method is perfectly embed-

ded. In a second part, the new model is explicitly defined and the various notions

behind it explained and further discussed. The last part deals with a practical

evaluation. The authors presented a simulation based study in the original pa-
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per. The objective is to verify these results by reconstructing and extending their

study. As will be pointed out, the analysis conducted in this thesis significantly

augments the reliability of the provided statements. In the evaluation the method

is compared with other models regarding two aspects. This is once the quality of

approximating the conditional probability function and secondly the accuracy of

the subsequent classification.
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2 Theoretical foundations

The purpose of this chapter is to give an insight into selected aspects of ill-posed

inverse problems, statistical learning theory and reproducing kernel Hilbert spaces.

These concepts build the theoretical foundation of many statistical learning prob-

lems within which the later presented method can perfectly be reflected. Presented

are the leading ideas and relevant relationships. Important proofs are outlined and

references for detailed derivations given. In the appendix a summary of some of

the main definitions of functional analysis is provided (app.A).

2.1 Ill-posed problems

In the following section the notion of ill-posed problems together with the most

common solution framework by Tikhonov are introduced.

2.1.1 Definition and inverse problems

The central concept to define is the notion of a well-posed problem, which was

first introduced by Jacques Hadamard. However, at first the term ”problem” has

to be clarified. Originally the concept was introduced in the context of differential

equations. But the (mathematical) formalization of a problem is not necessarily

restricted to this. The definition of a general problem introduced here is unique to

this thesis and shall unify different definitions found in the literature. Let pG, dGq

and pZ, dZq be two metric (topological) spaces. G is called the data space and Z
the solution space. A problem is identified with a subset P of GˆZ, which defines

the set of admissible pairs, which implies the problem: Identify for a given g a z,

such that pg, zq lies in P . A stated problem is called well-posed, if the following

three properties hold [1, 2]:
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1. For each g in G there exists a solution z in Z such that pg, zq in P .

2. For each g in G the corresponding solution z is unique, i.e. if pg, z1q, pg, z2q

in P then z1 “ z2.

3. The function L : G Ñ Z, g Ñ Lpgq with pg, Lpgqq in P is continuous.

A problem is called ill-posed, if one of the conditions is not fulfilled. It is called

essentially ill-posed, if none of the conditions are fulfilled. However, the most

critical aspect is usually the continuity. Note, that the function L is well-defined

due to the first two properties. Well-posed means, that the problem admits a

continuous solution function L, which is defined for all problem instances g of G.
Existence and uniqueness essentially ensure that the problem is (uniquely) solvable.

The continuity is required to guarantee a certain stability of the solution Lpgq under

small disturbances of g. The relevance of continuity will become obvious in the

context of measurements.

For the computational problem of evaluating a function A : DA Ñ Z,DA Ď G the

three properties are satisfied, if DA “ G and A is continuous (uniqueness is clear

if A is a function). This kind of problem formulation is sometimes called direct

problem (the function A is known). It holds L “ A. Correspondingly there is

a kind of problem, which is referred to as inverse problem. An inverse problem

is defined implicitly by a function A : Z Ñ G, such that for a given instance g

out of G, the task consists in determining the z such that Apzq “ g. For the

inverse problem, existence and uniqueness do ensure the existence of an inverse

function A´1 such that ApA´1pgqq “ g. Then being well-posed equates to the direct

problem associated to A´1 being well-posed. However, note that in general A being

well-posed does not imply A´1 to be well posed (assuming its existence). This is

because the inverse of a continuous function is not necessarily continuous. Inverse

problems are often ill-posed and even essentially ill-posed. But inverse problems

take a central role in applied sciences because they represent the typical approach

of modelling. Assuming any kind of system, which transforms a causation z to

an effect g. Mostly the challenge to any scientist is to get to know the causation,

the present state of a system, but having only access to its effect g. However, it is

much harder to relate from an effect to a specific, unique causation. Therefore, a
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model is developed in the inverse direction, by formulating a law A, which relates

a causation z to its effect Apzq. A direct problem could instead be interpreted as

predicting the future state of a system, considering its present conditions. Often

the spaces pG, dGq and pZ, dZq are assumed to be normed vector spaces and the

function A a linear, continuous operator. For the inverse problem a so-called linear

operator equation does result. In [1] a list of examples of ill-posed direct and inverse

linear operator problems is specified. The most prominent examples of ill-posed

inverse problem are integral equations. Correspondingly for direct problems this

is the linear differential operator. It being ill-posed shall be proven by a simple

example:

Consider A :C1pr0, 1sq Ñ Cpr0, 1sq, f Ñ
df
dx

and both spaces are equipped with the

supremum’s norm. Define the series fnpxq “ xn, then Apfnq “ nxn´1 forn P N. It
holds: }Apfnq} “ sup

x
pnxn´1q “ n ¨1 “ n }fnpxq} ùñ there can’t exist a constant

N such that }Apfnq} ď N }fn} for all n. Thus, the operator A is unbounded and

due to its linearity not continuous (app.A).

Special classes of operators are also compact operators and absolutely continuous

operators, which don’t have a continuous inverse operator and therefore imply

ill-posed inverse problems [3, pp. 10, 20].

2.1.2 Solving ill-posed problems

The concept of well-posed problems has a very practical oriented motivation. Often

the problem instance g, for which the solution should be found, is only accessi-

ble by measurements, hence G called the data space. However, the measurement

process is typically incomplete, meaning that if g is a function itself, it can only

be evaluated at finitely many points. Furthermore, the measurements are defec-

tive due to measurement errors leading to imprecise assessments. Consequently,

instead of the real g, one obtains gd, i.e. an element of G such that dGpg, gdq ď d.

This means, one is not even aware of the real instance g, which defines the actual,

current task. Therefore, one can not really wish to find the desired Lpgq, but only a

good approximation to it. At this point the concept of a problem being well-posed

becomes relevant. Intuitively the value Lpgdq could be used as approximation of

Lpgq. If the problem is well-posed, then existence and uniqueness does ensure that
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Lpgdq is well-defined. Note, that existence is not granted due to possible measure-

ment errors, which might cause gd to fall out of G 1. The continuity does justify this

procedure as a reasonable strategy. Because as d Ñ 0 converges, the convergence

of Lpgdq Ñ Lpgq is guaranteed. Note, that the problem being well-posed does not

represent any constructive argument how to actually calculate Lp.q. Especially in

case of inverse problems it might be actually very difficult to determine a solution.

However, if the problem is ill-posed then this convergence is not guaranteed, nor

is the existence of Lpgdq. Thus, an approach has to be worked out how to deal

with ill-posed problems. In the following, unless other stated the inverse problem

formulation is considered, as these cover an essential part of ill-posed problems.

Obviously, the categorization of a problem whether well or ill-posed depends

on the characterization of the spaces G and Z. Thus, a general idea might be to

restrict the spaces in a reasonable way. This leads to a slightly different concept,

which is the conditionally well-posedness (or Tikhonov well-posed). An inverse

problem is called conditionally well-posed with respect to a set M Ď Z, if it is

Hadamard well-posed regarding the spaces pApMq, dGq, pM, dZq [1, 3, 4]. Note,

that continuity of L over ApMq does not imply continuity in pG, dGq. The set M is

also called the set of correctness. Such a restriction represents having additional

information about the problem state or making any assumptions, which lead to

the conclusion that the solution z is element of a subsetM Ď Z. IfM is a compact

set and A is a continuous function (such as a bounded linear operator), then the

problem is conditionally well-posed with respect to M . This results by the follow-

ing relation: If f :M Ñ fpMq is a bijective, continuous function over a compact

set M , then f´1 :fpMq Ñ M is continuous too. This is easily proven. Because f

is continuous and M is compact any closed subset of M is a compact set and is

therefore mapped to a compact, thus closed subset of fpMq. Hence, f as inverse

of f´1 maps any closed set of M to a closed set in fpMq. However, defining a

proper set M is usually quite difficult and restricting G to pApMq, dGq might not

be a good choice [5]. Firstly, verifying whether the unknown solution z is indeed

lying in M is very hard (unless explicitly stated) [1]. Especially the calculation

1The problem definition is regarding pG,dGq. But due to the measurements’ error one actually
operates in G̃ Ě G. But for this space the existence might not be given anymore.
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of A´1pgdq does not reveal anything about the real z “ A´1pgq. Secondly, even

if z is in M equivalently g being in ApMq, because of the measurement process

it is not guaranteed that the observed gd is element of ApMq. This is especially

sensitive, as all approximations gd Ñ g must lie in ApMq, in order to benefit from

the conditional continuity, i.e. the convergence of A´1pgdq to z. Nevertheless, the

notion of conditionally well-posedness shows, that in order to approach an ill-posed

problem either more information or further assumptions are required. The con-

struction and isolation of compact sets of admissible solutions is in fact the basis

of many methods, to approximate ill-posed problems [6]. Some of them are the

methods by Ivanov, Lavrentiev and Morozov. These rely mainly on deriving a so

called ”quasi-solution” and restricting the solution space. More information can

be found in [7].

A widely applied method is Andrei Tikhonov’s regularization principle. The

method is even applicable to essentially ill-posed problems and has various advan-

tages, which will be presented in the following. Tikhonov’s solution does not rely

on restricting the set of admissible solutions. Instead, it bases on the assumption,

that information about the measurement error d between gd and g is available.

The essential concept is the notion of the ”regularization operator” 2, which for-

malizes what a ”good” approximation algorithm is. For any ill-posed problem, a

parametric regularization operator R : G ˆ R` Ñ Z is defined by the following

properties [6, 1] 3. Let g and z “ Lpgq be arbitrary yet fixed instances:

1. The functions Rp., γq are continuous in g.

2. Rpg, γq Ñ z as γ Ó 0

3. There exists an increasing function γpdq, with γpdq Ñ 0 as d Ñ 0, such

that for any ϵ ą 0, there is a d0pϵq ą 0 and dGpgd, gq ă d0pϵq ùñ

dZpRpgd, γpd0qq, zq ă ϵ holds for all such gd.

A problem is called regularizable if there exists such a regularization operator.

As turns out, many practical problems are regularizable. In fact, there are also

2In some literature this is also called the ”regularization algorithm” or ”-functional”.
3In [5] this is defined by lim

γÑ0
sup

gd, dGpgd,gqăγ

dZpRpgd, γq, Lpgqq “ 0, the parametrization is d itself.
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naturally occurring regularization operators. One example is the difference quo-

tient, as regularization operator for the ill-posed differential operator. Note,

that for a well-posed problem L itself is a regularization operator. For an ill-

posed, regularizable problem the functions Rγ can be interpreted as continuous

approximations of L, which converge pointwise to L. However, to ensure the

convergence of Rpgdi , γq for an arbitrary sequence of approximations gdi Ñ g

towards z “ Lpgq, the γ parameter has to be chosen appropriately in depen-

dence of d. According to Tikhonov Rpgd, γpdqq is then a reasonable approxi-

mation for z with d being the data error. Therefore, the problem of solving

ill-posed problems reduces to find a regularization operator and a dependency

relation γpdq. The role of γpdq becomes more clear, when one tries to estimate

the error between z and zd,γ “ Rpgd, γq. To do so, consider the following in-

equality with z “ Lpgq: dZpz, zd,γq ď dZpz, Rpg, γqq ` dZpRpg, γq, zd,γq. For

simplicity, let G and Z be Banach spaces and Rγ a linear operator for any γ.

Then, dZpz, Rpg, γqq “ }z ´ Rpg, γq} “: ρpz, γq. Furthermore, dZpRpg, γq, zd,γq “

}Rpg, γq ´ Rpgd, γq} “ }Rpgd ´ g, γq} ď }gd ´ g} }Rγ} ď d }Rγ}. It follows,

}zd,γ ´ z} ď ρpz, γq ` }Rγ} d [1, p. 349]. This inequality is representative for a

well-known trade-off. Obviously, the error between the approximation zd,γ and

z should be as small as possible. Rpg, γq is the approximation in the best case

scenario of knowing the real g. The trade-off results from seeking an approxima-

tion algorithm, whose output does not vary to much, if a data error d is present

compared to its value at g (continuity). But which is still close to the real solution

z, if the error actually decreases/vanishes (closeness to L). Due to the definition

of R it follows ρpz, γq Ñ 0 for γ Ñ 0. However, because the Rγ are continuous

and converge pointwise to L, it follows that the Rγ can not converge uniformly.

Otherwise, L would be continuous as well meaning that the problem would not

be ill-posed. This implies, that }Rγ} Ñ 8 for γ Ñ 0. Thus, one has to balance

between both errors. The parameter γ has to be chosen in dependence of d and

steers to what extent one relies on L.

An important case is that of G and Z being Hilbert spaces. Then, Tikhonov’s

theory proposes the construction of a regularization operator in the following way:

Rpg, γq :“ argmin
z

}Apzq ´ g}2G ` γ}z}2Z . If A is a linear, compact operator one

can prove that the minimizer exists, is unique and depends continuously on g.

8



Thus, it is in fact a regularization operator. Regarding the choice of the param-

eter dependency γpdq, the following is proven: If γpdq satisfies 1q lim
dÑ0

γpdq “ 0

and 2q lim
dÑ0

d2

γpdq
“ 0, then for any sequence gdk Ñ g the minimizer converges

Rpgdk , γpdkqq Ñ A`g, with A` being the generalized inverse operator (Moore-

Penrose Operator) [1, 8]. This statement admits several insights. Firstly, the

requirements on γpdq to ensure convergence are comparatively simple, which con-

stitutes a first advantage of the method. Secondly, the regularization operator does

approximate the operator A`. This generalized inverse operator is well-defined for

all linear operators A. The operator A` is discontinuous if and only if the range

of A denoted by rngpAq is not closed. This is for example given, if A is com-

pact and the dimension of rngpAq is infinite, which frequently occurs. Hence,

the problem of evaluating A` is usually ill-posed. The domain of A` is defined by

DpA`q “ rngpAq`rngpAqK. This does not necessarily equal G. The sets are differ-
ent if rngpAq is not closed [8, 9]. It can be shown, that for all ZzDpA`q the sequence

of Rpgd, γpdqq does not converge. If A`g does exist, it is the so called minimum

norm quasi solution, i.e. the z̃ with the smallest norm that minimizes }Az ´ g}2Z .

Hence, if the problem does not admit the existence of a solution a reasonable

alternative is defined. This represents another characteristic of the Tikhonov reg-

ularization, as it is applicable to essentially ill-posed problems. Note, that if there

is a z in Z, such that Az “ g holds, then the minimum norm solution is an exact

solution. Furthermore, the operator A` can be expressed analytically, so that the

optimization problem has a closed form solution: Rpgd, γq “ pA˚A ` γEq´1A˚gd,

at which A˚ is the adjoint operator of A (definition of adjoint in app.A).

Some adaptions of the regularization operator have to be made, when encountering

other assumptions on A, G and Z. If A is not linear, then the minimizer might not

be unique anymore. In this case only the existence of a convergent subsequence

can be proven [10]. Furthermore, in case of general metric spaces, the norm is

replaced by the corresponding metric, while the term around z becomes a general

so called stabilizing functional Opzq. More information can be found in [3]. A

relevant generalization worth to mention is the following. It might not be possible

to even evaluate the real A, but only an approximate Ah, where }A ´ Ah} ď h

with respect to some operator norm. Again, the same regularization operator is

applicable by substituting A with its approximation Ah. To guarantee the conver-
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gence of the sequences Rpgd, γ, hq , as h, d Ñ 0 some further requirements on γpdq

and hpdq are required. Detailed information can be found in [1, 11].

2.2 Statistical learning theory

The following section deals with the backgrounds of the statistical learning theory

(SL-theory) mainly shaped by Vladimir Vapnik and Alexey Chervonenkis. The

theory is a mathematical framework, which analyses the conditions under which

the estimation of dependencies based on empirical data succeeds. Specifically,

it investigates the fundamental concept of empirical risk minimization based on

which the extension of structural risk minimization is suggested. For a detailed

insight the following literature can be consulted, based on which the here provided

information was obtained [3, 4, 12].

2.2.1 Risk functional and problems of dependency estimation

In many use cases of natural sciences or engineering the mathematical abstraction

of a problem results in the optimization of a functional I : F Ñ R over a set

of functions F . The elements of F are also called hypotheses. The functional is

problem specific and represents the quality of a hypothesis f P F according to

the requirements of the problem. It is often encountered, that the functional I

is in the form of an integral property, i.e. Ipfq “
ş

Dv
Qpv, fq dv. Qpv, fq mea-

sures the quality of the function f at the selective context defined by v. Usually

v P Dv is a vector of Rd. The SL-theory concerns problems where the vector v is

subject to some randomness or uncertainty. This means, that the quality Qpv, fq

is weighted according to a certain probability distribution Ppvq with respect to

a proper probability space over Dv. The functional I results to be of the form

Ipfq “
ş

Dv
Qpv, fq dPpvq. Under these assumptions Qp., fq is a random variable

and Ipfq its expectation. Q is called the loss function and I the risk functional,

as it represents the cumulative quality of the function f . The vector v is usually

decomposed into two parts v “ py, xq P Y ˆ X . The functions f are defined over

x P X and are determined by some kind of parametrization, i.e. fαpxq P F , α P A.
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The parametrization is allowed to be very general and does not mean any restric-

tion in the generality of the problem. But the identification of a function f equates

now to determining the index α, which is why the notation changes to Qpv, αq and

Ipαq respectively. Based on this framework three types of problems are differenti-

ated, which often occur in statistical use cases according to [3, ch. 1]. As will be

shown these problems are indeed special instances of the problem of minimizing a

specific risk functional. Note, that the definition of the functional I is determined

by four components, i.e. the domain YˆX , the function space F , the function Q

and the distribution Ppvq.

Pattern recognition problem

The so-called pattern recognition problem is the formalization of the well-known

task of binary classification. The vector x is the finite dimensional representation

of some kind of object and usually element of X Ď Rd. The variable y takes on the

values either zero or one and encodes the affiliation to one of two concepts (classes)

of the respective object. The conditional probability distribution Ppy |xq models

the uncertainty in the classification of the object x. This might occur either due

to randomly false assignments or due to the fact, that x is an incomplete repre-

sentation of the actual object. In a more abstract sense Ppvq might be interpreted

in the following way. According to Ppxq an object x occurs. Then an arbiter

decides based on the conditional distribution Ppy |xq to what class this object

should be assigned to. Since y is of discrete nature the functions of F should be

indicator functions mapping into t0, 1u. They represent a decision rule of how the

vector x is assigned to one of the classes. The objective of the pattern recognition

is to realize successful classification. According to [3] the quality of a decision

rule is best defined in terms of the probability of incorrect classification regard-

ing the distribution Ppvq. This probability is expressed by:
ş

Y X̂ 1ty‰fpxqu dPpvq.

By defining Qpv, αq :“ py ´ fαpxqq2 “ 1ty‰fpxqu the integral can be written as
ş

Dv
Qpv, αq dPpvq. Hence, the probability of false classification of a decision rule

fα is a risk functional Ipαq. It is easily proven that among the sets of all possi-

ble decision rules the function f˚pxq “ argmax
y

Ppy |xq leads to the smallest error

probability. The corresponding risk value is called the Bayes error.
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Interpreting results of direct experiments / Regression estimation

Object of interest is a specific function f˚, which arises problem dependent. In the

case of regression the motivation is to extract a summary of a conditional probabil-

ity function Ppy |xq in terms of the conditional expectation, i.e. f˚pxq :“ EpY |xq.

In a more general context, there already exists some lawlike functional relation f˚

which is to be determined. The evaluation of the function at a point x is called

an experiment. However, this evaluation is assumed to be imprecise which is why

the output of the experiment becomes a random variable Y |x and is described

by a probability distribution Ppy |xq. On this distribution three assumptions are

made: 1qEpY |xq “ f˚pxq, 2qVarpY |xq ă 8, 3qY |xi and Y |xj are independent

for xi ‰ xj. The vector py, xq is element of Rd`1, implying that y is real-valued

too. The goal is to retrieve the unknown function on the basis of the experiments.

Accordingly, F is a set of real-valued functions. While in the previous problem the

risk optimization arose naturally, it has to be justified in this case. A well-known

choice of Q is again the quadratic loss: Qpv, αq :“ py ´ fαpxqq2. To see that the

task of function estimation can indeed be reduced to the problem of risk mini-

mization, the minimizer of the corresponding risk Ipαq is analysed. One confirms,

that the minimization of Ipαq is obtained at the function in F , which has the

smallest distance to f˚ with respect to L2
Ppxq

. Hence, by calculating the minimizer

the desired function is reasonably approximated dependent on the choice of F .

Although the settings are very similar, the objectives of both introduced prob-

lems are intrinsically different. In the pattern recognition problem the task was

to optimize the classification quality expressed in terms of the probability of false

classification, which is a risk functional itself. But there is no ”true” decision rule
4. In the context of evaluating direct experiments the task is to determine a spe-

cific function, which occurs to be the minimizer of an appropriate risk functional.

Hence, the risk functional takes on different roles either as natural measure of

quality or as tool to implicitly define the desired function in the context of risk

minimization.

4Of course one could imagine a lawlike assignment procedure, which is supposed to be identified.
The other way around one could define the regression setting as prediction task. Therefore,
the distinction is not that much along the concrete problems but rather along the two different
purposes of the risk functional.
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Interpreting results of indirect experiments

The last dependence structure describes another case, where the objective lies in

determining a specific function. But instead of having access to measurements of

f˚pxq, one can only access a transformed version of it, i.e. Apf˚q “ F ˚. Therefore,

the assumptions made on the measurements Y are changed to EpY |xq “ F ˚pxq.

The choice of Q remains the same. The described scenario is this of an inverse

problem, as introduced in the previous chapter. Obviously of special interest are

ill-posed problems, such that the calculation of the inverse operator A´1 is not

applicable.

So far three instances of the framework of risk minimization were presented.

Minimizing the respective risk functionals is the objective but not the actual chal-

lenge the SL-theory has to deal with. This is given by the circumstance, that the

distribution Ppvq is not known, especially the conditional distribution Ppy |xq 5.

The only available information about Ppvq is a random sample of l i.i.d. obser-

vations denoted by vplq. Consequently, the risk functional can only be approxi-

mated. Hence, it cannot be demanded to really minimize the functional I based

on incomplete information about it. Thus, the resulting statistical problem is

less an optimization problem, but rather the search for an estimator (algorithm)

α̂ : Dl
v Ñ A, which guarantees a sufficient closeness of Ipα̂pvplqqq to the minimal

value I˚
F :“ min

fαPF
Ipαq. This shifts the focus from comparatively simple optimization

to the construction of an appropriate estimator. The quality of such an estimator

is assessed based on the distribution of Ipα̂q ´ I˚
F ą 0, which becomes a random

variable. The SL-theory is especially devoted to making statements about the

quantiles (or some upper bound of it) κpη, lq of Ipα̂q ´ I˚
F dependent on the con-

fidence level η and the sample size l. An estimator with a smallest upper bound

κpη, lq for a given probability η and sample size l would then be optimal. Because

Ipα̂q remains unknown, an estimator should allow the calculation of a meaningful

confidence interval. As will be seen, this requirement falls together with the deriva-

tion of κpη, lq. Of special interest is the convergence behaviour of such estimators.

5For the construction of algorithms and their investigation the assumptions about Ppxq are not
of such decisive relevance. According to [3] this makes the differentiation between ”open”
and ”closed” world, at which the distribution Ppxq is either known or unknown.
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The estimator’s risk Ipα̂q should convergence in probability to the minimal value

I˚
F in order to guarantee a consistent improvement for an increasing amount of in-

formation. Clearly the minimum I˚
F depends on the chosen function space. Thus,

for different spaces a converging estimator converges to different minima. There-

fore, a different perspective is considered. Let F̃ be an overall embedding function

space of admissible functions. The corresponding minimum of the risk functional

is the globally possible minimum I˚

F̃ . Hence, regarding any approximation the rel-

evant quantity is the difference Ipα̂q ´ I˚

F̃ . However, for the actual construction of

an estimator only a subspace F Ă F̃ is considered. Therefore, the difference can

be decomposed in the following way: Ipα̂q´I˚

F̃ “ pIpα̂q´I˚
Fq`pI˚

F ´I˚

F̃q. This rep-

resentation is sometimes referred to as ”generalization - approximation trade-off”

[13]. The first term quantifies the closeness to the achievable minimal risk value

for the estimator operating in F . While the second term describes the discrepancy

between the global minimum and the local minimum. As will be seen, this results

in a trade-off, as more complex spaces do enable a smaller approximation error

but cause a worse convergence behaviour on the other side. This relation already

indicates that the bound κp.q must depend on some kind of characteristic of the

used function space F . An estimator which yields a comparatively small bound κ
on Ipα̂q ´ I˚

F is called to generalize well. However, this only means, that the asso-

ciated risk value is close to the possible (local) minimum, but not necessarily small.

Because fα̂pvplqq as well as Ipα̂pvplqqq can only be approximations of the ”true” val-

ues, it is required to reevaluate the role of the risk functional in general. Whether

the construction of I is only an auxiliary concept or is it the intrinsic indicator

of success? Thus, is it about the actual minimizer or just the minimization? For

tasks of prediction such as the pattern recognition problem, the risk functional

expresses the immediate quantity of interest, as described before. Therefore, two

decision rules are treated as similar if their risk functional’s value is similar too.

However, this is different if the focus lies on the real functional relation, as orig-

inally stated for the problems of direct and indirect experiments. The derived

risk functional served the purpose of implicitly defining the desired function as its

minimizer. But the similarity of functions is rather be defined by the common

metrics such as the L2 metric or supremum’s norm. However, the convergence of
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risk values do not necessarily imply the convergence of the respective functions.

In the case of regression estimation, it holds per definition that similarity in the

defined risk between two functions implies closeness with respect to the L2
Ppxq

met-

ric. However, regarding the supremum’s norm this is not anymore guaranteed.

Especially in case of ill-posed inverse problems, the convergence to none of these

metrics can be assured on the basis of similar risks, as described in the previous

chapter. Therefore, one should be aware of the adjusted objective due to the sta-

tistical challenge. This is for a given sample to obtain, with a certain guarantee

in probability, a value close to the risk functional’s minimum. Consequently the

similarity of different functions of F is measured by means of the respective risk

functional.

2.2.2 Uniform convergence

A generic idea for constructing an estimator α̂, lies in constructing an estimate Î of

the risk functional I on the basis of the given sample, whose minimization defines

the estimator α̂ “ argmin
α

Îpαq. According to the previous section, the value of

interest is Ipα̂q, i.e. the risk value of the approximated minimizer. As stated, the

requirements of a reasonable estimator are the convergence of Ipα̂q to the minimal

risk value and the knowledge about an upper bound of it with a guaranteeing

probability. Both questions are approached by deducing a sufficient condition for

convergence. For this purpose, an upper bound on the value |Ipα̂q ´ I˚
F | is derived.

Let α˚ be the minimizer of the risk functional among F , i.e. Ipα˚q “ I˚
F , then it

holds:

|Ipα̂q ´ I˚
F | ď |Ipα̂q ´ Îpα̂q ` Îpα˚

q ´ Ipα˚
q| p1q

ď |Ipα̂q ´ Îpα̂q| ` |Îpα˚
q ´ Ipα˚

q| p2q

ď 2 τ with τ :“ sup
α

|Ipαq ´ Îpαq| ă 8 p3q (2.1)

Step (1) is valid because â is the minimizer of the estimated functional Î, thus

a positive term is added. (2) follows by definition of any metric. The assump-

tion which has to be made is mirrored in step (3), i.e. the existence of a finite

supremum between the true risk functional and its estimate. The supremum is

a measure of the quality of the approximation of I, as it is its worst-case de-
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viation. The assumption of the existence of a supremum is usually propagated

back to assumptions about the loss function Q (and the function space F). By

the inequality follows, if the supremum converges towards zero, then the risk of

the estimate α̂ becomes arbitrarily close to this of the real minimium. The con-

vergence is formalized by convergence in probability for random variables, i.e.

@ t P R` : Pp sup
α

|Ipαq ´ Îpαq| ą t q Ñ 0 as l Ñ 8 6. This property of any

estimator Î is called uniform convergence [3, ch. 2.6]. In order to construct a

confidence interval, it is sufficient to (non-trivially) bound this probability, i.e.

Pp τ ą κ q ă 1 ´ ηpκ, lq (with ηpκ, lq Ñ 1 as l Ñ 8 for any κ). By deriving

η “ 1´ηpκ, lq ðñ κ “ κpη, lq this is used to construct the following interval. It

holds τ ă κ ùñ |Ipα̂q´Îpα̂q| ă κ , hence for the sample size l the following inter-

val is valid with the probability of at least η: Îpα̂q´κpη, lq ă Ipα̂q ă Îpα̂q`κpη, lq.

This bound might be coarse, as it is valid for arbitrary α at the same time. In order

to derive a reasonable bound on this probability some kind of assumptions have to

be made specifically about the distribution of Qp., αq. The minimum amount of

information is in terms of a uniformly bounded variance (or variation coefficient)

in α or the uniform boundedness of Q itself 7. The last falls together with the

assumption of the finiteness of τ . These are rather weak assumptions comparing

with any parametric distributions. In fact, in [3, ch. 2] it is shown, that various

distributions Ppvq can be grouped behind the restriction of a uniformly bounded

variance of Qp., αq. Since these are the only required assumptions the validity of

the SL-theory is mostly independent of the concrete shape of Q.

Uniform convergence is a sufficient condition for an estimator of I to imply a

reasonable estimator α̂. But there are multiple ways, how to estimate the risk func-

tional. The risk value of a function is an expectation value with respect to a proba-

bility distribution Ppvq, which can be written in terms of the corresponding density

function, presupposing its existence. Thus, one approach could be estimating the

density function and its subsequent substitution in the risk functional’s definition.

This idea bases on two observations. First, the continuity of the integral opera-

6Although in the notations it is omitted, but the randomness of Îpαq occurs, as the estimate Î
depends on the random sample vplq.

7This is because intervals can then be derived based on Chebychev’s or Hoeffding’s inequalities.

16



tor, which ensures that the closer the estimate of the density function, the closer

the risk estimate to the real risk value. Second, the well-known Glivenko-Cantelli

theorem, which asserts a sufficiently good estimator of the distribution function

and might therefore indicate the existence of a reasonable estimator of the density

function too. However as turns out, estimating the density function without any

prior information is a rather complex (ill-posed) problem [3, ch. 2.5]. Thus, there

is no real gain in reducing the task of estimating the risk functional to the problem

of estimating the density function. The method which is finally applied is the so

called functional of empirical risk, i.e. Îpαq “ Iemppαq “ 1
l

řl
i“1Qpvi, αq. The

risk value for a function fα is estimated by the associate average value of the loss

function Q over the given sample vplq. The corresponding minimizer is denoted

by αemp :“ argmin
α

Iemppαq. The SL-theory deals with the analysis of the empir-

ical risk minimizer regarding conditions for uniform convergence for each of the

previously presented problems of dependency estimation.

2.2.3 Sufficient conditions for uniform convergence

Pattern recognition problem

The foundation of the SL-theory lies in the analysis of the pattern recognition

problem. At first one notices, that due to the discreteness of y and fα the loss

function Qpv, αq is bounded, as it takes on the values zero or one. Thus, the

mentioned required assumptions are canonically satisfied. A simple situation is

when the function space F is finite N :“ |F |. Then the required probability

regarding the supremum τemp :“ sup
α

|Ipαq ´ Iemppαq| can easily be bounded. It

follows:

Ppτemp ą tq “ Pp

N
ď

n“1

tvplq
| |Iemppαiq ´ Ipαiq| ą tu q p1q

ď

N
ÿ

i“1

Pp |Iemppαiq ´ Ipαiq| ą t q p2q

ď N 2 expp´2 l t2q p3q (2.2)

It holds N 2 expp´2 l t2q Ñ 0 for l Ñ 8, thus the uniform convergence is always

satisfied in case of finitely many functions. The first equality follows by definition
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of the supremum. Step (2) results due to the sigma-sub-additivity of the proba-

bility measure. (3) is an immediate consequence of Hoeffding’s inequality, which

is applicable because of the relation EpIemppαiqq “ Ipαiq and the boundedness of

Iemp between zero and one. The Hoeffding bound is independent of the αi, which

is why it can be summed over F . Note, that in principle different bounds on the

probabilities at (2) are possible 8. However, the Hoeffding inequality requires only

the boundedness, which is intrinsically satisfied for the pattern recognition prob-

lem. With this bound a confidence interval can be derived, as explained in the

previous section. This simple bound already reveals, that the bigger N , the slower

is the convergence of the probability. This indicates, that in case of infinitely sized

sets F the uniform convergence must be tied to some further conditions about the

function space.

To make statements about the general case of infinitely sized sets F a cor-

responding but more general problem is analysed. This is the uniform conver-

gence of empirical frequencies of events to their probabilities. Let E be a set of

arbitrarily many events with respect to a probability space pDv,Σ,Ppvqq. Let

vplq “ pv1, ..., vlq denote the l dimensional random vector regarding the product

measure associated to Ppvq, representing the set of possible samples of size l.

Then νlpEq :“ 1
l

řl
i“1 1Epviq is the empirical average of the occurrences of event

E P E in a given sample. νl is said to uniformly converge if sup
EPE

|νlpEq ´PpEq|
P
Ñ 0

holds. Clearly Iemp is a special case of νl with EQ :“ ttv P t0, 1uˆRd |Qpv, αq “

py ´ fαpxqq2 “ 1u | fα P Fu. EQ is the set of sets of differently classified observa-

tions than observed applying any decision rule of F . Central element of the study

of uniform convergence is the so-called ”growth function” of the set E , which is

denoted by mEplq. By definition, an event E is a subset of a ground set. Thus,

given a set of observations tv1, ..., vlu each element is either element of E or not.

Hence, the event E splits up a certain subset, which is E X tv1, ..., vlu. An ex-

ample is given in table 2.1, where Dv “ N. Thus, the set E implies a number

8For example each probability could be bounded according to the Chebyshev inequality, which
requires knowledge about the variance VarpQpv, αqq. These probabilities could then be
bounded, if one assumed a known bound on the variances supα VarpQpv, αqq. Because Q
is a Bernoulli variable the variance is bounded by 1{4.
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v1 “ 1 v2 “ 2 v3 “ 3
E1 “ t1, 2, 4u 1 1 0 tv1, v2u
E2 “ t1, 2, 5, 6u 1 1 0 tv1, v2u
E3 “ t2, 3, 4u 0 1 1 tv2, v3u

... ... ... ... ...

Table 2.1: Three different events implying subsets on a given sample.

of subsets of tv1, ..., vlu which can be differentiated by its events. This concept

allows to define dependent on the given sample an equivalence relation „vplq over

E . Accordingly, two events are equivalent, if they imply the same subsets. Let

κEpvplqq “ |tE X vplq |E P Eu| denote the number of these equivalence classes for

the given set of l observations. κEpvplqq is trivially bounded by 2l. In case E is

finite, the number of distinct subsets is bounded by minp2l, |E |q. Note, that the

set of equivalence classes alters depending on the concrete sample vplq. The growth

function is defined as mEplq “ max
vplq

κEpvplqq, i.e. the maximum number of differen-

tiable subsets achievable over all possible samples of size l. The growth function is

monotonically increasing. Further analysis reveals, that mEplq equals 2l and is for

l ą hE bounded from above by lhE`1 ` 1, at which hE “ max tl P N |mEplq “ 2lu

[12]. It is decisive that the existence of hE is not guaranteed for each set E . The

value hE is called the capacity (VC-dimension) of the set E and is set to infin-

ity, if it does not exist. It can be interpreted as the effective size in the sense of

diversity of E regarding its ”power” to separate elements of a sample. The uni-

form convergence is investigated by means of an additional lemma. The lemma

does replace the required supremum over E by a supremum over a finite (yet ran-

dom) set of random variables. More precisely, according to [12] for l ą 2
t2

it holds:

Pp sup
E

|νlpEq´PpEq| ą t q ď 2Pp sup
E

|νlpEq´ ν̃lpEq| ą t
2

q. ν̃l is the analogue func-

tion but for a second, independent sample of size l. The variable |νlpEq ´ ν̃lpEq|

maps into the same range of values t1
l
, 2
l
, ..., 1u for all events E and samples vp2lq.

Furthermore, for a given sample of size 2l two events E1, E2 which fall into the same

equivalence class do evaluate to the same value. Thus, the supremum can be related

to the finite set of equivalence classes: sup
E

|νlpEq ´ ν̃lpEq| “ sup
E z„

vp2lq

|νlpEq ´ ν̃lpEq|.

Taking into account, that the number of equivalence classes is bounded by the

growth function further elaborating the inequality leads to the following bound
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[12]:

Pp sup
E

|νlpEq ´ PpEq| ą t q ď 4mEp2lq expp´ l
8
t2q (2.3)

This inequality finally provides a sufficient condition for the uniform convergence

of νl with respect to E . Replacing the growth function with its upper bound as

specified before, the right-hand side (eq. 2.3) does only converge for l Ñ 8, if

there exists hE meaning that mEp2lq is polynomially bounded in l for a sufficiently

large l.

An even stronger result has been proven, which provides a sufficient as well neces-

sary condition for the uniform convergence of empirical frequencies to their means.

For this purpose, define HEplq :“ EplnpκEpvplqqqq, which is called the entropy of E .
Then, the uniform convergence of νl with respect to E is satisfied if and only if
HEplq
l

Ñ 0 as l Ñ 8 [12]. The relation is usually of little practical relevance. But

it provides an equivalent to the concept of uniform convergence and is therefore

fundamental. It also verifies the previously derived sufficient condition. Because

HEplq ď lnpmEplqq, the convergence of lnpmEplqq

l
Ñ 0 implies uniform convergence.

However, this is only satisfied if mEplq can not grow exponentially for arbitrary l.

Following these insights, the empirical risk estimator Iemp does uniformly con-

verge to the risk functional, if the capacity of the set EQ is finite. According to

the declared properties of good estimators, the uniform convergence implies that

the risk value of the empirical risk minimizer does arbitrarily closely approximate

the risk functional’s minimum (eq. 2.1). The capacity of EQ is a measure of the

complexity of the function space F , because it quantifies the separation ability

of a set of decision rules. To make this connection even more clear, one may

consider EF :“ ttv P t0, 1uˆRd | fαpxq “ 1u | fα P F u. These events perfectly

characterize the various decision rules. Obviously, the implied subsets on a given

sample by EQ and EF are identical. This is because two functions which classify

the same objects differently than observed are also these, which map the same

observations to class one, due to the binary classification. The same reasoning

holds vice versa. Thus, the capacities of EQ and EF are identical. Therefore, one

defines hF :“ hEQ as the capacity of the set of decision rules F . The derived

bounds can furthermore be used to provide a confidence interval for the risk of
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the empirical risk minimizer Ipαempq in the canonical way mentioned before (sec.

2.2.2). To do so, one has to solve the right-hand side of inequality 2.3 for t after

replacing mEp2lq with its respective bound depending on l. It results κpη, l, hFq,

according to which Iemppαq ´ κpη, l, hFq ă Ipαq ă Iemppαq ` κpη, l, hFq holds si-

multaneously for all α with a probability of at least η. Thus, for the empirical risk

minimizer it follows: Iemppαempq ´ κpη, l, hFq ă Ipαempq ă Iemppαq ` κpη, l, hFq.

Depending on the concrete assumptions made during the whole derivation, other

more tight intervals are possible. This is why at this point a concrete interval

is omitted. Instead, it is referred to [3, ch. 6.9, 6.10] for greater detail. How-

ever, all intervals have in common, that the precision depends increasingly on the

quotient hF
l
. Consequently, the higher the capacity the smaller is the uniform

convergence’s rate. Therefore, the bounds mirror the behaviour of the previously

mentioned generalization-approximation trade-off. As on the one hand, the more

powerful the chosen space F is, the smaller is the best possible risk value. On the

other hand, due to an increased capacity the deviation κpη, l, hFq increases and

the estimated risk minimizer does not necessarily represent a small risk value.

Regression estimation

Similar results about the uniform convergence can be obtained for the problem of

interpreting direct experiments 9. Because the risk functional is real-valued the

derivation relies on a discretization of it. This allows to reduce the problem to the

uniform convergence of frequencies to their probabilities of the previous section.

Furthermore, because the loss function Q is not naturally bounded anymore, the

existence of a finite q :“ sup
v,α

Qpv, αq has to be assumed. Central idea is to utilize

the (Lebesgue’s) integral definition to represent the risk and empirical risk func-

tional by their limit series [3, ch. 7.2, 7.4]. Because Qp., αq is a positive random

variable for all α, the following holds by definition of the integral operator:

Ipαq“ lim
nÑ8

n
ÿ

j“1

q

n
PpQpv, αq ą

j
n
qq Iemppαq“ lim

nÑ8

n
ÿ

j“1

q

n
νlpQpv, αq ą

j
n
qq (2.4)

as before νlp.q denotes the frequency of the respective event with respect to a

sample vplq. Defining the events Eα,j,n :“ tv |Qpv, αq ą
j
n
q, j, n P N, j ď nu leads

9Or commonly known as regression estimation.
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to the following bound for an arbitrary α:

|Ipαq ´ Iemppαq| ď lim
nÑ8

n
ÿ

j“1

q

n
|PpEα,j,nq ´ νlpEα,j,nq| ď q sup

j, n
|PpEα,j,nq ´ νlpEα,j,nq|

(2.5)

The supremum on the right-hand side already resembles the uniform convergence

of frequencies of events to the respective probabilities. To generalize the set of

events, one defines: Eα,b :“ tv |Qpv, αq ą b, b P R`u. Then, for an arbitrary α it

holds: supj,n |PpEα,j,nq ´ νlpEα,j,nq| ď supb |PpEα,bq ´ νlpEα,bq|. On the basis of eq.

2.5 it follows:

|Ipαq ´ Iemppαq| ď q supb |PpEα,bq ´ νlpEα,bq|

ùñ Pp supα |Ipαq ´ Iemppαq| ą t q q ď Pp supα,b |PpEα,bq ´ νlpEα,bq| ą t q (2.6)

Hence, if the right-hand side converges (eq. 2.6) the empirical risk functional does

uniformly converge. Because the term on the right-hand side is itself a case of

uniform convergence of frequencies of events, the results of the previous section

(eq. 2.3) can be applied to bound this probability. It follows:

Pp sup
α

|Ipαq ´ Iemppαq| ą t q q ď Ppsup
α,b

|PpEα,bq ´ νlpEα,bq| ą t q

ď 4mEp2 lq expp´ l
8
t2q (2.7)

with E “ tEα,b | fα P F , b P R`u and l being sufficiently large 10. Analogue to

the pattern recognition problem, if the set E has finite capacity, the growth func-

tion is polynomially bounded and the convergence is satisfied. The capacity of

EF “ ttv |Qpv, αq ´ b ą 0u | fα P F , b P R`u is the defined capacity hF of the func-

tion space F in the context of the regression estimation problem [3, ch. 7.4]. It is

easily seen, that this encompasses the given definition for the pattern recognition

problem, because in this case Q can only take on the values 0 or 1. EF characterizes

the functions in F in terms of regions of equivalent prediction quality. The subsets

implied by EF on a given sample vplq in terms of table 2.1 can be imagined in the

following way. A function fα does assign to each observation vi a different loss

value Qpvi, αq. It can be assumed that the loss values are different for each vi as

otherwise a sample is chosen, such that this is satisfied. Then, an order is implied

10According to the derivation in sec. 2.2.3 the bound holds for l ą 2
t2 . Furthermore, the growth

function is only polynomially bounded, if l ą hE .
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to the vi, which is vj1 ą vj2 ðñ Qpvj1 , αq ą Qpvj2 , αq. This ”lines up” the l

observations: vj1 ą ... ą vjl and Qpvj1 , αq ą ... ą Qpvjl , αq. The values Qpvjk , αq

are exactly the levels bα,k which define the sets associated to fα in EF , which con-

tain different subsets of the given sample. Each function refers to l subsets of the

sample, which can be separated by EF . These are tvj1u, tvj1 , vj2u, tvj1 , vj2 , vj3u, ...

. In total l! ą 2l permutations are possible. The capacity of F measures, if there

are enough functions available to produce sufficiently many permutations to cover

all possible subsets of observations.

Regarding the bounds of the risk functional, it might be meaningful, to allow

bigger deviations depending on the magnitude of the risk value. Therefore, the SL-

theory provides an extended analysis of the quantity supα
|Ipαq´Iemppαq|

Ipαq
[3, ch. 7.5].

Following this notion leads to improved confidence intervals. The uniform conver-

gence of the relative empirical risk does still imply the uniform convergence of the

empirical risk. This is because supα |Ipαq´Iemppαq|

supα Ipαq
ď

supα |Ipαq´Iemppαq|

Ipαq
. The analysis

of the relative risk bases on assumptions about the bound of the relative pth order

mean of the loss, which is
p
?

EpQpV,αq2pqq

EpQpV,αq2q
11. The analysis shows that the highest

convergence rate results, if the boundedness for p “ 2 is given. Furthermore, a

sufficient and necessary condition for uniform convergence in the regression esti-

mation problem exists as well. Explicit derivations can be found in [3, ch. 7.A].

2.2.4 Structural risk minimization

The conducted analysis of the two problems of statistical dependency estimation,

has produced an uniform bound of I in terms of the empirical risk Iemp, the sample

size l, the growth function mEF and the cover probability η. This relation allows

to derive a sufficient condition under which the method of empirical risk mini-

mization is justified, in terms of convergence and calculable confidence intervals.

Assuming the existence of a finite capacity hF and a sufficiently large sample size

l, the uniform deviation between I and Iemp is denoted by κpη, l, hFq. Although

different concrete bounds exist, depending on whether one analyses the relative

risk or what assumptions about the distribution of Qp., αq are made, all have in

11For p “ 2 the requirement is equivalent to the uniform boundedness of the relative variance.
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common that κ depends monotonically increasing on the quotient hF
l

[3, ch. 8].

Thus, if there is access to an arbitrary number l of observations, the empirical risk

minimizer αemp could be chosen, such that the associated risk arbitrarily closely

approximates the real minimum (see eq. 2.1). Under this assumption, the function

space, which admits the smaller minimum of risk min
fαPF

Ipαq is to be preferred, as

long as hF is finite. Hence, increasing complexity will only improve the estima-

tion. However, in practice any sample size is limited. The risk of the empirical risk

minimizer among the more complex function space is not necessarily smaller than

for a more restricted space due to the increased offset κ, because of the higher

capacity. This is established by the inequality Ipαempq ă Iemppαempq ` κpη, l, hFq.

The trade-off shows, that the pure empirical risk minimization is incomplete. In-

stead, it is required to control the capacity. Based on these thoughts the SL-theory

proposes an alternative, which is the structural risk minimization (SRM). Instead

of solely minimizing the empirical risk, the upper bound of the risk functional

Ipαq ă Iemppαq ` κpη, l, hFq is minimized. This requires a set of function spaces

over which is to be optimized. For this purpose, consider a space of functions F
with a finite capacity. This space is decomposed into a finite sequence of nested

subsets called a structure 12: S1 Ă S2 Ă ... Ă Sq . The structure has to be defined a

priori independently of the observations. The structure defines multiple (q) func-

tion spaces, of increasing capacity, due to the inclusions: h1 ď h2 ď ... ď hq.

The SRM estimator is the minimizer of the empirical upper bound estimate:

hSRM , αSRM :“ argmin
hi,α:fαPSi

Iemppαq ` κpη, l, hiq. Within any given subset Si, the

upper bound is minimized by the respective empirical risk minimizer. For the risk

of the structural risk minimizer the bound IpaSRMq ă IemppαSRMq `κpη, l, hSRMq

is valid with a probability of at least 1´ q η. Therefore, the confidence probability

η could be adjusted to η
q
. Although the increase in the bound κ is for q ă 100

only slightly bigger [3, ch. 8], it shows, that the more extensive the structure is,

the worse does the SRM generalize. The SRM method essentially consists of two

stages. The first lies in properly defining the structure. The subset relation reflects

in some sense the prior knowledge about the desired dependency. Functions which

are more likely (a priori) to approximate well the desired dependency should be

12A common example of a structure are polynomials grouped by their degree.
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gathered in lower indexed subsets. This is because these obtain some kind of credit,

due to the smaller capacity. The second component is the proper estimator of the

risk value of the empirical risk minimizer. One option are clearly the derived upper

bounds, obtained by the previous analysis of the uniform convergence. However,

in principle different estimators are admissible too. An alternative is the so called

moving-control estimator, which is commonly known as leave-one-out cross valida-

tion [3, ch. 8.1]. It estimates the expected risk EpIpαempqq and can alternatively be

used to select a function within the structure, by testing successively αemp,i, i.e. the

empirical risk minimizer within Si. Note, that this expectation of the risk respects

the randomness in the estimation, due to the random sample vplq. If this expec-

tation was known, then the same on-expectation-best estimator would be chosen,

independent of the given sample. However, the value of Iemppαempq ` κpη, l, hq is

supposed to bound explicitly the random variable Ipαempq. Therefore, applying

this bound intends to find the sample wise optimum. Hence, even if the risk of the

estimated function was known, the selection among the estimators of the structure

would be sample dependent. In [3, ch. 8] multiple examples of possible structures

based on different function spaces and problems are given. The SRM method is

also the foundation of the well-known SVM classifier. Furthermore, based on the

results of the uniform convergence and the SRM method an analysis of the third

kind of introduced dependencies, which are inverse problems is conducted. Details

can be found in [3, ch. 10].

2.3 Reproducing kernel Hilbert space

So far different kinds of problems such as ill posed problems or the statistical es-

timation of dependencies have been presented together with an analysis of how

to solve them. In this section a specific function space shall be introduced, which

is often utilized in statistical estimation problems. This is the reproducing kernel

Hilbert space (RKHS). Besides the general definition, different properties are pre-

sented, which are essential in the context of the SL-theory. The information bases

on the work of Cucker [14] and Paulsen [15]. In the appendix a collection of basic

definitions of functional analysis is provided. A comprehensive introduction into

functional analysis can be obtained in [16].
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2.3.1 Definition

Let H be a Hilbert space of complex valued functions over a domain X , equipped

with the common pointwise addition and scalar multiplication. Mostly X is a

compact subset of the Rn. The evaluation functional Lx for x P X , is a linear

functional, which maps each function f of H to its evaluation at the point x. This

means, Lx : H Ñ C, f Ñ Lxpfq “ fpxq. H is a RKHS, if for all x in X the

respective evaluation functional is continuous. Due to the linearity of Lx, this is

equivalent to being a bounded operator, i.e. }Lxpfq} “ |fpxq| ď Rx }f}H for all

f P H and someRx P C. From the boundedness of Lx follows, that convergence in

H implies pointwise convergence. This immediately explains, why for example the

L2 space is not a RKHS. Note, that in the definition the uniform boundedness of

Lx over X is not required. However, if this is given, that is Rx is bounded over x,

then uniform convergence is implied by convergence in H.

2.3.2 Kernel of a RKHS

The central concept of the RKHS is the associated kernel. This gives a convenient

representation and allows to characterize any RKHS. The Riesz-Frechet represen-

tation theorem (app.A) states that for each bounded, linear functional L of the dual

space H1 of any Hilbert space H, there exists an unique element gL of H, such that

the two properties are satisfied: 1qLpfq “ xf, gLy for all f in H 2q }L} “ }gL}H.

The associated function H Ñ H1 is a conjugate linear, isometric isomorphism [16,

p.246]. Therefore, in case of the RKHS it is possible to apply the theorem to the

evaluation functionals, as these are bounded by definition. Thus, for each Lx there

is a function Kx of H, such that Lxpfq “ fpxq “ xf,Kxy. Because Kx itself is

element of H , it holds Kxpyq “ LypKxq “ xKx, Kyy for any y in X . This relation

leads to following definition:

KH : X ˆ X Ñ C : KHpx, yq “ xKx, KyyH (2.8)

The function KH is called the reproducing kernel of H. It holds Kxpyq “ KHpx, yq.

Some of the most relevant properties of a kernel shall be mentioned:

• KH is conjugate symmetric: KHpx, yq “ xKx, Kyy “ xKy, Kxy “ KHpy, xq.
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• KH is a positive semi-definite function. A function f is called positive (semi-

) definite, if for any finite sequence px1, ..., xnq the matrix mi,j “ fpxi, xjq is

positive (semi-) definite [15, 14]. For the kernel KH the definiteness results,

because all possible matrices are Gram matrices.

• The kernel function KH is not necessarily continuous. However, if KH is

continuous then the space H consists of continuous functions [14]. This

follows by:

– spanptKx |x P X uq is dense in H 13

– |fpxq| “ |Lxpfq| “ |xf,Kxy| ď
a

|xf, fy|
a

xKx, Kxy “ }f}H }Kx}H “

}f}H
a

Kpx, xq. Assuming the existence of a finite supremum CK :“

supx,y |KHpx, yq|, it follows: }f}8 ď }f}H
?
CK . Note, if KH is con-

tinuous and X compact CK exists. This shows, that the convergence

in H implies the convergence in CpX q. If K is continuous, then the

functions Kx “ KHp., xq are continuous too. Due to the dense subspace

each function of H is therefore a limit of continuous functions. Because

continuity is preserved by uniform convergence the proposition follows.

If a kernel is additionally continuous, it is called a Mercer kernel.

2.3.3 Moore-Aronszajn’s theorem

It is intuitive, that the kernel of a RKHS does characterize the space quite specifi-

cally, as it is intrinsically connected to its elements. This raises the question, how

tight the relation between a RKHS and the implied kernel is. Especially whether

two different RKHSs can have the same kernel. This is matter of the theorem by

Moore-Aronszajn, which leads to the conclusion, that each RKHS is uniquely iden-

tified by its kernel. In general a function K :XˆX Ñ C is called a kernel function,

if it is conjugate symmetric and positive semi-definite. Let KH denote the implied

kernel of a RKHS H. If K is a kernel function, then there exists a unique RKHS

HK , such that KHK
“ K. The proof is only outlined at this point. At first it is to

show that there exists a RKHS with K as kernel. This space is constructed as fol-

lows: Consider the linear span of the functions Kx :“ Kp., xq for x in X . For this

13Due to the implication: p p@g P S xf, gy “ 0q ùñ f “ 0 q ùñ S dense in H.
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space, an inner product is defined by xf, gy :“
řn
i“1

řm
j“1 ai bjKpxi, yiq, at which

f “
řn
i“1 aiKxi , g “

řm
j“1 bjKxj . Both together define an inner product space

but not yet a Hilbert space. The desired Hilbert space results as the completion

of this space 14. It can be verified, that the resulting space is in fact a RKHS with

K as kernel. The second part consists in proving, that this is the only RKHS with

K as kernel. For this purpose one can show: If H1,H2 are two RKHS with kernels

KH1 , KH2 , then KH1 “ KH2 implies equivalence H1 “ H2 as well }f}1 “ }f}2 for

all functions. The proof is shown in [15].

This theorem is important, as it allows to completely define any RKHS by defin-

ing a proper kernel function, which is for practical applications quite convenient.

Proving the symmetry or continuity for a given function is rather simple, but prov-

ing it being positive (semi-) definite is rather complicated. However, the kernel

property is invariant under certain operations such as addition and others, which

is why kernels can be constructed recursively.

2.3.4 Mercer’s theorem

Mercer’s theorem is a sentence in the functional analysis and operates outside

the theory of RKHSs. The utilization of the theorem regarding RKHSs allows to

further characterize the elements of the space by means of the kernel function.

This representation enables a different perspective and is also the basis for fur-

ther proofs regarding properties of RKHSs. The theorem involves some advanced

concepts of functional analysis, which is why a complete proof is out of the scope

of this thesis. Furthermore, the literature is rather inconsistent in presenting its

application to the theory of RKHS, which is why the theorem and its use in RKHS

is only outlined. The given formulation is from [16, p.301], which also provides a

full proof of the theorem:

Let K be a complex-valued function of Cpr0, 1s2q and TK : L2pr0, 1sq Ñ L2pr0, 1sq

be the corresponding integral operator, pTKpfqqptq “
ş1

0
Kps, tq fpsq ds. LetKps, tq “

Kpt, sq for s, t P r0, 1s which implies TK being self-adjoint (app.A). Let λ1, λ2, ...

be the eigenvalues different than 0 of TK counted by their geometric number and

e1, e2, ... the corresponding eigenfunctions. The eigenfunctions build an orthonor-

14For the definition of the completion of a normed vector space see app.A.
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mal basis in L2pr0, 1sq. If TK is positive definite, then Kps, tq “
ř8

j“1 λj ejpsq ejptq,

at which the convergence is absolute and uniform.

Note, that the integral operator maps into the subspace of continuous functions,

however the inclusion into the Hilbert space L2 is considered. An operator T is

called self-adjoint if it is its adjoint operator T ˚ “ T . A linear operator T : H Ñ H
is called positive, if it is self-adjoint and @x P H : xTx, xy ě 0. Absolute conver-

gence is equivalent to the known definition of finite dimensional spaces. However,

different to the finite dimensional case, it does not imply the equivalence of any

ordering in the series. The theorem applies the spectral theory of compact linear

operators of Hilbert spaces here L2pr0, 1sq. An even more special case is faced,

due to TK being self-adjoint and positive. This theory is convenient in the sense,

that it admits many results similar to the finite dimensional case. For example

the number of eigenvalues different than zero is at most countable. Furthermore,

all eigenvalues are non-negative, real values due to the positivity of the operator

[16, p.294]. Also, the eigenfunctions of positive eigenvalues are continuous [14].

The continuity of the operator TK follows by the continuity of the function K.

The required compactness can be shown by means of Arzela-Ascoli’s theorem [16,

p.73]. The main aspect of the theorem is the uniform and absolute convergence,

which specifically comes from the positivity. According to [14] the theorem is also

valid in a more general context. For example, in case of a compact set X instead

of r0, 1s2 or when the integral is defined with respect to a measure µ.

Consider a Mercer kernel K. Then all requirements of Mercer’s theorem are sat-

isfied and it is applicable to the function K. This allows to characterize the

functions of the associated RKHS HK and its inner product through the eigen-

functions and the inner product of the L2
µpX q space. For this purpose, define

the space H “ tf P L2
µpX q

| f “
ř8

k“1 ak ek, with p
ak?
λk

q P l2, ak P Cu, with con-

vergence in L2
µpX q

and λk, ek being the respective eigenvalues and eigenfunctions

according to Mercer’s theorem. On this space an inner product is defined by

xf, gyH :“
ř8

k“1
ak bk
λk

. Both together define a RKHS and it can be verified, that

this is exactly the RKHS HK associated to the kernel function K [14].
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2.3.5 Feature maps

The concept of feature maps is used to put an additional intuition behind the

utilization of kernels. A feature map is a function ϕ : X Ñ G, where G is a Hilbert

space. Usually X is the sample space of an estimation problem and describes the

set of observable features. The feature map is a transformation of each (finite-

dimensional) feature to a more evolved concept. There are different ways to define

a RKHS on the basis of a feature map. A canonical way is to define the kernel

Kϕpx, yq :“ xϕpxq, ϕpyqyG , which implies the RKHS HKϕ
as described before.

On the other hand, for each RKHS HK there are (multiple) feature maps ϕK ,

such that HKϕK
“ HK . A canonically example was already presented. This

is given by the function, ϕ : x Ñ Kx “ Kp., xq. Mercer’s theorem gives rise

to a different feature map, which is ϕ : X Ñ l2, ϕpxq “ p
?
λi eipxqqi . The

function ϕ is indeed well-defined, continuous and satisfies Kpx, yq “ xϕpxq, ϕpyqyl2

[14]. The notion of the feature map suggests the interpretation of the functions

Kx as rather simple concepts, e.g. the scalar product of l2, on top of a complex

feature transformation. In other words, the actual function is simple, if the correct

perspective regarding the features is perceived. Thus, the complexity of the RKHS

reduces to the complexity of a proper feature transformation.

2.3.6 Representer theorem

A property, which makes the RKHS a useful function space for statistical estima-

tion problems as introduced in the SL-theory is the representer theorem. So far it

was shown, that in order to define a RKHS it suffices to specify a kernel function.

Although the implied functions can be characterized by means of Mercer’s theo-

rem, this remains a rather theoretical insight and is not very practical for tasks

like optimization. However, the representer theorem reveals that the empirical

risk minimizer among a RKHS has a well-formed representation, which makes the

actual calculation very convenient. Consider the following optimization problem:

min
fPHK

l
ÿ

i“1

Qpvi, fq ` op}f}HK
q (2.9)
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at which o is a monotonically increasing real-valued function, K a kernel function,

Q a loss function and vi “ pxi, yiq, as introduced before in the context of the

SL-theory. Then the minimizing function f˚ within a RKHS HK is of the form:

f˚ “
l

ř

i“1

aiKp., xiq ai P C. Therefore, the solution can be represented as a liner

combination in terms of the kernel’s partial functions at the points xi. Hence, by

replacing this representation in the original optimization problem the minimizer

can actually be calculated. The optimization problem (eq.2.9) comprises an even

more general problem set than the initial empirical risk minimization presented

before. The proof of the theorem uses the characterization according to Mercer’s

theorem and is shown in [14].
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3 Rethinking statistical learning

theory: LUSI

In 2018 Vapnik and Izmailov have released a paper about “Rethinking statis-

tical learning theory: Learning using statistical invariants (LUSI)” [11]. In their

work a new method for the pattern recognition problem was introduced. The basic

procedure aims for estimating the conditional probability function of the data gen-

erating distribution, as means to enable classification in a canonical way through

probability information about the respective class. The method directly applies

the aforementioned Tikhonov regularization principle and considers a RKHS for

approximation. As a result, it arises a quadratically optimization problem. To

enhance the estimation with further information so called statistical invariants are

defined and added as linear side constraints. The estimator is the minimization

of the resulting optimization problem. In the following chapter the method will

precisely be defined and discussed.

3.1 Definition

Conditional probability function

The context is described by the setting of the pattern recognition problem (sec.

2.2.1). Accordingly, the available information is in the form of a random i.i.d sam-

ple pyi, xiq
plq. It is assumed, that x is from a (compact) domain X “ r0, Cs of Rd.

Although in practice this might be achievable only through certain transforma-

tions, this is not really a tight restriction but simplifies calculations. The object of

interest is the function λpxq :“PpY “ 1 |xq, i.e. the conditional probability of ob-

serving Y being 1 having observed the representative x. Based on this information

a decision rule can be derived in a canonical way, which is rpxq “ 1tλpxqą0.5upxq.
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The desired conditional probability function can formally be defined as the function

satisfying the following integral equation among the Lebesgue integrable functions

with respect to the measure Ppxq, mapping into r0, 1s:
ż x̃

0

fpxq dPpxq “ PpY “ 1, X ă x̃q “: F1px̃q (3.1)

Plugging in λ for f reveals its admissibility. The integral definition is advantageous

as it does not require the existence of any density functions to define the conditional

probability as their respective quotient. The definition of the conditional probabil-

ity function in terms of functions of type F1 implies an inverse problem in the form

of a linear operator equation. Under concrete specifications of the integral opera-

tor, i.e. Ppxq, as well as the function spaces encompassing λ and F1 respectively, the

associated direct relation can be explicitly inferred. For example, one might assume

continuity of λ together with a uniform distribution over X . Then the conditional

probability function is obtained by applying the inverse integral operator, which

means differentiation to the distribution alike function on the right-hand side. Al-

though this is a rather special case, it reveals that even under these assumptions

the problem is ill-posed. This is because the differentiating operator is unbounded

and therefore not continuous as has been proven before (sec. 2.1.1). Note, that

the functions used in this proof were also distribution functions. Therefore, even

though the space of functions can be restricted from the general set of differentiable

functions to the set of differentiable distribution functions, the differentiating op-

erator remains discontinuous 1. Consequently, the calculation of the conditional

probability function based on the stated inverse problem is ill-posed. Because the

function F1 is unknown and can only be estimated the ill-posed property causes a

special difficulty as explained. However, a framework how to ”solve” these kinds

of problems has been already introduced. This is the regularization principle by

Tikhonov (sec. 2.1.2). According to the theory the solution space Z becomes the

set of possible conditional probability functions, while the data space G is the set of

approximations of the functions F1 according to the chosen estimator of it. The as-

sociated operator A is the integral operator. To estimate F1 on the basis of a given

sample, the following relation is considered PpY “ 1, X ă xq “ Ep1r0,xspXqY q,

1This should be related to the statement about restricting the data and solution space of ill-
posed problems in sec. 2.1.1.
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leading to the corresponding average estimate F̂1pxq “ 1
l

řl
i“1 yi 1r0,xspxiq. The

theorem by Clivenko-Cantelli gives additional justification for using this kind of

non-parametric estimator. The given problem falls into an even more general

case. Due to the unknown distribution Ppxq both sides of the operator equation

can only be approximated. For the estimation of the operator, the integral is

rewritten as follows:
şx̃

0
fpxq dPpxq “

ş

X 1r0,x̃spxq fpxq dPpxq “ Ep1r0,x̃spXq fpXqq.

Hence, for a fixed function f the laws of large numbers give rise to the canon-

ical average estimator pÂfqpxq “ 1
l

řl
i“1 1r0,xspxiq fpxiq. The set of admissible

solutions Z is restricted to a function space F . The authors decided to choose

F “ tf“g`c | g P HK , c P Ru, where HK is a RKHS of a selected kernel function

K. F is therefore the union of all affine vector spaces regarding HK . The offset

c does not add much expression, however the amount of constant functions is not

necessarily subset of HK
2. For the data space G a reasonable choice is L2pX q

(or L2
µpX q), since both the function F1 as well as its estimates fall inside and a

proper Hilbert space is defined. Finally, Tikhonov’s regularization operator can

be constructed, leading to the associated approximate solution. According to the

previous chapter, it follows (sec. 2.1.2):

λ̂ “ argmin
fPF

TγpÂf, F̂1q

TγpÂf, F̂1q : “

ż

X
ppÂfqpxq ´ F̂1pxqq

2 dx ` γ }f}F (3.2)

Substituting the corresponding estimators, the functional is reduced to the follow-

ing form. Subsequently the term 1
l
of any averages is ignored for obvious reasons.

Considering the first part:
ż

X
ppÂfqpxq ´ F̂1pxqq

2 dx “

l
ÿ

i,j“1

fpxiq fpxjqV pi, jq – 2
l

ÿ

i,j“1

fpxiq yj V pi, jq `

l
ÿ

i,j“1

yi yj V pi, jq

“

l
ÿ

i,j“1

pyi ´ fpxiqq pyj ´ fpxjqqV pi, jq (3.3)

Here V pi, jq :“
ş

X 1r0,xispxq1r0,xjspxq dx. Because X “ r0, Cs, C “ pc1, ..., cdq P Rd,

the expression results to V pi, jq “
d

ś

k“1

ck ´maxpxik , xjkq, where xik denotes the kth

coordinate. Concerning the norm term in equation 3.2 a slight adaption is made.

2The decision for an offset is rather arbitrary and should not confuse the reader.
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Here }f “ g ` c} is replaced by }g}HK
. Note, that this is not a real norm over

F though. However, all originally made statements about the convergence of the

Tikhonov approach remain valid. To actually calculate the norm the following is

recognized. Although the functional T is not identical with the regularized empir-

ical risk as formulated in the previous chapter (sec. 2.3.6), the representer theorem

is still valid. Accordingly, the minimizing function is from SpanptKx1 , ..., Kxluq ` c

where Kxipxq “ Kpx, xiq. In the previous chapter, it was shown, how the RKHS

is constructed on the basis of the kernel function K (sec. 2.3.3). For functions

being a linear combination of Kx the scalar product and hence the norm is rep-

resentable by a finite expression. It holds }g}HK
“

l
ř

i,j“1

αi αjKpxi, xjq, at which

αi are the respective coefficients of the linear combination of g. The desired con-

ditional probability function has a bounded image between 0 and 1. Therefore,

not all functions of the RKHS are meaningful. Only functions, which satisfy this

condition are of actual interest. For this purpose, one would need to add the

constraint 0 ď fpxq ď 1 @x P X to the optimization problem. Because this is

practically not controllable, this property is only demanded at the observations xi.

Statistical invariants

The so far introduced approach constitutes the first part of the LUSI method.

It remains to incorporate the idea of the statistical invariants. In the paper

a ”predicate” ψ is any function of the space L2
Ppxq

. The idea of statistical in-

variants consists in adding constraints to the optimization problem in the form

xf, ψy “ xλ, ψy, where x., .y denotes the respective scalar product 3. This kind of

equation is called an ”invariant”. According to the aforementioned Riesz-Frechet

representation theorem, each such predicate does define a linear functional over

L2
Ppxq

. Thus, an invariant represents the demand of equivalence of the approxima-

tion f and the desired function λ regarding a linear functional of the dual space.

However, there are two challenges. First, it is necessary to make a selection of a

finite number of predicates, in order to actually control the invariants in the opti-

mization problem. Secondly, the values of both parts of any invariant are unknown.

3Because X is a compact interval and λ is bounded, it is element of L2
Ppxq

. Hence the linear
functional is defined. The same usually holds for f P HK .
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As alternative the invariants are replaced by equations, which result by substitut-

ing the left- and right-hand side with appropriate estimates. For f, ψ P L2
PpXq

it

holds xf, ψyL2
Ppxq

“
ş

X fpxqψpxq dPpxq, thus it can canonically be estimated by the

empirical average 1
l

řl
i“1 fpxiqψpxiq. Since λ is unknown, the following relation

is utilized xλ, ψyL2
Ppxq

“
ş

X PpY “ 1 |xqψpxq dPpxq “ EpY ψpXqq, enabling the

estimation by 1
l

řl
i“1 yi ψpxiq. Therefore, for a set of m predicates ψ1, ..., ψm the

corresponding invariants are replaced by the statistical alternatives. The resulting

m equations are added as additional, linear side constraints to the optimization

problem (eq. 3.2). Thus, only functions are considered, whose estimated predicate

property equals the corresponding observed value of the conditional probability

function. Bringing all together the LUSI estimate results as minimizer of the

following optimization problem. Introducing a matrix notation this is:

min
α,c

pKα ` c 1lq
⊺ V pKα ` c 1lq ´ 2 pKα ` c 1lq

⊺V y ` γ α⊺Kα

s.t. Ψ pKα ` c 1lq “ Ψ y

0l ď Kα ` c 1l ď 1l (3.4)

here K, V P Rlˆl with Ki,j “ Kpxi, xjq, Vi,j “ V pi, jq “ V pj, iq “ Vj,i, furthermore

Ψ P Rmˆl, with Ψi,j “ ψipxjq for 0 ď i ď m, 0 ď j ď l, as well as α, y, 0l, 1l P Rl,

with α “ pα1, ..., αlq, y
plq “ py1, ..., ylq, 1

plq “ p1, ..., 1q. The term 1
l
cancels out for

the side constraints.

3.2 Discussion

3.2.1 Why Rethinking?

In the published paper [11], the LUSI method was introduced as a ”Rethinking”

of statistical learning theory. In the following this aspect shall be investigated in

a little bit more detail, explaining where the change in paradigm actually lies. As

argued in the theory chapter, three basic tasks are differentiated in the context of

statistical dependency estimation. The overarching purpose of this method does

coincide with the pattern recognition task. For this, the objective was declared

to attain a certain quality when classifying objects according to a decision rule r,

usually expressed by the risk functional
ş

YˆX py ´ rpxqq2 dPpy, xq (sec. 2.2.1). The
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risk functional should be optimized among a specified set of decision rules. Note,

that this only defines the objective, but not necessarily the strategy how to achieve

it. One option to do so, is the empirical risk minimization. However, the intrinsic

focus is not identifying any ”true” function, but to aim for a minimal probabil-

ity of incorrect classification. This is also why an arbitrary type of decision rules

could be chosen for minimization. Hence, why should the explicit estimation of

the conditional probability function still be a reasonable idea to minimize this risk

functional? First, considering the definition of the Bayes error, the best decision

rule in the sense of the this risk functional is defined by: r˚pxq :“ 1tλpxqą0.5upxq.

Thus, the conditional probability function λ gives the complete information to

obtain the best decision rule. Secondly, usually the set of decision rules is replaced

with some kind of real-valued (continuous) functions, because the minimization

of the discrete empirical risk is most often infeasible. But as already mentioned,

the minimizer of
ş

YˆX py ´ fpxqq2 dPpy, xq among a set of real-valued functions

F is the conditional expectation f˚pxq “ EpY “ 1 |xq, which in case of the bi-

nary random variable Y equals λ. However, if the minimization does anyway

approximate the conditional probability function, then one could choose right at

the beginning a more tailored approach towards the function approximation. So

although argmin
ş

py´ fpxqq2 dPpy, xq and argmin
ş

pEpY |xq ´ fpxqq2 dPpxq have

the same solutions, they both arise from quite different motivations. While the

first formulation does target the problem in a statistical manner of explaining the

observations, the second formulation is oriented to actually approximate a func-

tion.

Due to the inverse definition of the conditional probability function, the goal of

function approximation associated to LUSI can be described with optimizing the

following risk functional
ş

pF1pxq ´Afpxqq2 dPpxq. Instead of F1pxq only imprecise

measurements Yi |x of it are available, with EpYi |xq “ F1pxq, which arise from

the empirical distribution estimator as shown. These circumstances do remind on

the third kind of problems of dependency estimation introduced in the SL-theory,

i.e. interpreting indirect experiments (sec. 2.2.1). However, different to the re-

quirements stated there, the Yi |x “ F̂1pxq are not independent in the current

situation. Furthermore, the integral operator has to be estimated in case of LUSI
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too. Consequently, the problem can not be interpreted as an instance of the indi-

rect experiments setting immediately. This is also why the empirically constructed

optimization problem of LUSI is not an empirical risk as originally defined. This

means, EpTγpÂf, F̂1q q does not represent the real risk functional, aimed to min-

imize, but rather does T0pEpÂf, F̂1q q, with Tγ being Tikhonov’s regularization

operator (eq. 3.2). The operator Tγ itself is not an estimate but a precise inte-

gration of two estimated functions. Also, the requirements of the regularization

principle, as introduced in the previous chapter do differ from the application in

LUSI. This is first because of the approximate operator. However, conditions for

convergence can be found in [11]. Secondly, the regularizing operator is subject to

randomness. A proof for convergence in probability of the approximate solution is

given in [3, ch. 10].

3.2.2 (Statistical) Invariants

In the following, the concept of (statistical) invariants shall be investigated. In

principle, the notion of the statistical invariants is an independent component of

the LUSI method and could be combined with other models of estimating the

conditional probability function too.

Why linear functionals?

In a general estimation setting, additional information about the function of inter-

est f˚ P F could be given in different ways. One possibility is implicitly by knowing

that for an operator (not necessarily linear or bounded) A : F Ñ W the equation

Apf˚q “ w holds. This information could then be incorporated by restricting the

model space F to F̃ “ F XA´1w. But different operator equations have different

practicality. The relevant information is the set A´1w. If for example neither A

nor w is known, but this kind of equation shall still be incorporated, then it does

matter how well A´1 can be approximated. In a statistical setting, this raises

the question, whether/how well this set can be estimated. A canonical idea is

to replace A and w by reasonable estimates and solve this approximate equation.

However, this shifts the focus towards the existence of well behaved estimators

for A and w. A second aspect of practicality is how well shaped the set F̃ is, in
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the sense of how easily it can be optimized over it. This is because the implicitly

defined function space might be quite difficult to actually be determined for any

optimization solver. Concerning these two aspects a convenient situation is faced,

if A is a linear functional over L2
Ppxq

, whose representation is called a predicate in

the context of LUSI. In this case A as well w can easily be estimated through their

representations as expectations as shown before. Furthermore, their empirical def-

initions deform to easily manageable linear side constraints for the optimization

problem. Note, that in principle A could have been chosen independently of the

unknown data distribution, such that Apfq could explicitly be calculated for any

f P F . However, then the problem would have been how to estimate w “ Apλq,

since λ is unknown.

Another view on motivating the linear functionals is given in terms of weak

convergence. In infinite dimensional, normed vector spaces V , one differentiates

between weak and strong convergence 4. A sequence pvnq does weakly converge to

v, if @v1 P V 1 : lim
nÑ8

v1pvnq “ v1pvq, at which the convergence is in the usual sense in

the scalar space. Here V 1 denotes the dual space of V (app.A). The weak limit v

does exist and is unique [16, p.117]. In case V is a Hilbert space then each linear

functional is representable with an element of V , such that the statement is equiv-

alent to @w P V : xvn, wy Ñ xv, wy. Comparing to the LUSI model, V “ L2
Ppxq

pX q,

while v “ λ becomes the conditional probability function and w “ ψ is represented

by any predicate. The associated linear functional is v1
ψpfq “ EpψpXq fpXqq. The

sequence pvnq corresponds to a sequence of estimated functions pflq, for a sequence

of samples of increasing size l. However, now also the functional v1
ψ is approximated

denoted by pv1
ψ, lq. As introduced, the estimators are v1

ψ, lpfq “ 1
l

řl
i“1 ψpxiq fpxiq,

as well as v1
ψ,λ, l :“

1
l

řl
i“1 yi ψpxiq for v1

ψpλq. If v1
ψ, lpflq Ñ lim

lÑ8
v1
ψpflq and v1

ψ,λ, l Ñ

v1
ψpλq converge as l Ñ 8, then by satisfying the corresponding statistical invari-

ants, it follows: p@ l : v1
ψ, lpflq “ v1

ψ,λ, lq ùñ v1
ψpflq Ñ v1

ψpλq (applying the limit

to both sides of the equation). Therefore, incorporating the respective statistical

invariants could be interpreted as constructing a sequence of function estimates,

which does (at least) weakly converge. This is a complement to the strong conver-

gence, which is desired in the first place for function approximations. Of course

4Strong convergence means the convergence with respect to a metric.
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the weak convergence is only an abstraction, since only a finite set of functionals

can actually be considered in practice. Furthermore, the stochastic nature of the

sequences should be noted, which is why any statements of convergence have to be

appropriately adapted to random variables. Strong convergence does imply weak

convergence [16, p.117]. This raises the question, what the gain in deploying weak

convergence is. The reason is that the requirements for the estimators v1
ψ, l and

v1
ψ,λ, l to converge appropriately are somewhat easier to satisfy. At first, it will be

shown, that the required convergence of the empirical invariants is at least not

harder to fulfill, than the uniform convergence of any empirical risk functional.

Again it holds, that uniform convergence of v1
ψ, l to v

1
ψ is sufficient to guarantee the

convergence of v1
ψ, lpflq Ñ lim

lÑ8
v1
ψpflq

5. Because v1
ψ, lpfq is an empirical average of

i.i.d observations, v1
ψ, l conforms with the functional of empirical risk analysed in

the SL-theory. Therefore, the previously derived conditions for convergence apply
6. Especially if F has finite capacity, then the uniform convergence is given. Fur-

thermore, the convergence of v1
ψ,λ, l is basically matter of the laws of large numbers.

But because the i.i.d.-property of the sample is anyway assumed in the context

of the SL-theory, its convergence is implied. Hence the effect of the statistical

invariants in terms of the convergence v1
ψpflq Ñ v1

ψpλq follows at least by the same

requirements as for the empirical risk minimization. Another aspect of the con-

vergence of the statistical invariants is the following. The estimator v1
ψ,l is of a

special form, as it only depends on the observations xi. As mentioned previously,

the relevant uncertainty in the analysis of empirical risk functionals is driven by

Ppy |xq (sec. 2.2.2). The assumptions made about Ppxq are more of secondary

relevance, also because one can take on a view of conditioning on fixed features

xi. Assuming Ppxq is known, the value EpψpXq fpXqq can either be calculated or

is already determined by v1
ψ, l itself. Thus, v1

ψpfq can directly be identified and it

holds v1
ψpflq “ v1

ψ,λ,l. Therefore, the convergence v1
ψpflq Ñ v1

ψpλq depends only on

the convergence of v1
ψ,λ,l anymore. However, as just pointed out, because this is a

simple empirical average the conditions of the respective laws of large numbers are

sufficient. But these conditions are much less restrictive than the ones of uniform

5|v1
ψ, lpflq ´ lim

lÑ8
v1
ψpflq| ă |v1

ψ, lpflq ´ v1
ψpflq| ` |v1

ψpflq ´ lim
lÑ8

v1
ψpflq|

6Although the assumptions of proper boundedness (sec. 2.2.3) have to be met. However, for
example in case of a continuous kernel function over a compact set X this is fulfilled.

40



convergence, as they are satisfied by available independent, identically distributed

observations anyway 7.

Influence of invariants

Selecting m invariants means formulating m integral properties, which the approx-

imate function should preserve. The associated value of the conditional probability

function EpY ψpXqq could be interpreted in the following way: ψpxq might describe

some kind of property of the objects, whose expected value is quite characteristic

for the pattern Y “ 1. Thus, a good approximation of the conditional probability

function should represent this behaviour, resulting in a restriction of the admis-

sible function space. This is a fundamental difference to incorporating additional

features in a model. While an increase of the dimension of x increases the capacity

of the model, more invariants do decrease the capacity of the function space. As

shown in the theory, a smaller capacity does in principle stand for a faster con-

vergence rate of the empirical risks. However, shrinking the function space is not

necessarily better, as it clearly depends what subset is selected. In case of pre-

cise knowledge of the invariants, they represent additional information about the

desired function. Thus, in theory the function space would be shrunk in a mean-

ingful direction, as the conditional probability function would still be contained.

Therefore, the estimation would benefit from adding invariants to the model. In the

statistical situation this is different. Due to the imprecision of the estimation, more

statistical invariants do not necessarily shrink the function space for a given sam-

ple in a meaningful way. This is demonstrated by the following example: Consider

l predicates, such that the following linear equation system results as constraints

for the LUSI related optimization problem: Ψlˆl pKα ` c 1lq “ Ψlˆl py1, ..., ylq
⊺

(eq. 3.4). If Ψ has full rank, then the only admissible solutions are the functions,

which fulfill fpxiq “ yi. If K has full rank, then there is an appropriate vector α,

such that this kind of function is representable in the chosen RKHS. Because this

is the only admissible solution, the further optimization problem of LUSI already

terminates. However, the function flpxiq “ yi just interpolates all the observa-

tions perfectly, but, as is known, does not converge to the conditional probability

7Although in case of conditioning, the Yi |xi are not identically distributed.
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function with increasing sample size. This example shows, that adding further

statistical invariants does not necessarily improve the model. Hence, a trade-off

regarding the selection of invariants results.

How to select invariants?

The main problem in the application of statistical invariants is the appropriate

selection of finitely many predicates. This is especially driven by the trade-off be-

tween the idea of weak convergence (infinitely many invariants) and the empirical

restrictions, as described before. There are no theoretical indicators, which give

any criteria how to decide, what predicates the convergence of the empirical esti-

mates to the conditional probability function will benefit more from. The selection

should be made ideally problem specific. In the original paper, the selection of

invariants is called the ”intelligence driven” part of learning as complement to the

data driven estimation. Proposing invariants is compared with a teacher-student

interaction. Based on the teacher’s domain specific insights he proposes meaning-

ful characteristics. From a statistical point of view, the predicates should at least

admit a good estimation. But this might be hard to tell, without assumptions

about Ppy, xq. Especially, it has to hold that ψ P L2
Ppxq

, in order for the respective

expectation to even exist. The number and set of predicates do represent further

hyperparameters in any model. Therefore, empirically a best subset of predicates

could be determined based on generic procedures such as cross validation. Be-

cause the number of subsets is exponential in the total number of predicates, some

kind of heuristic search might be useful. For this purpose the authors propose a

stepwise selection, based on a modification, which will be presented below.

3.2.3 Substituting the V-matrix

Due to the V-matrix the pairwise products of the residuals influence the optimiza-

tion problem’s objective function (eq. 3.4). If these between-observations products

were ignored, the objective would be equivalent to the common sum of squared

residuals (except for the additive norm term), which results as empirical risk es-

timate of the risk functional
ş

py ´ fpxqq2 dPpy, xq. Hence, if the V-matrix is
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replaced by the identity matrix in equation 3.4, i.e. V “ I 8, the corresponding

model is the empirical regularized squared-loss minimization among a RKHS. This

model is a special case of empirical risk minimization and constitutes a classical

approach to the pattern recognition problem. This relation is useful for evalu-

ating the LUSI model, because it admits a comparable approach in a canonical

way. Therefore, the immediate effect of deploying the V-matrix, as result of the

inverse-problem based approach of estimating the conditional probability function,

can be assessed. Although both methods emerge from different backgrounds their

empirical loss functionals are quite similar. This relation might indicate, that both

methods provide similar approximation as well as classification accuracy.

3.3 Modifications

In the following, two modifications of the LUSI method, introduced in the original

paper [11], are presented and further analysed. They arise quite intuitively and

are important for the practical utilization and final evaluation.

3.3.1 Relaxing statistical invariants

As already pointed out, the statistical invariants lack both certainty of the right-

hand side and left-hand side of the equations. To counteract the estimation

variance a simple solution can be applied. Instead of demanding a function

satisfying the statistical invariants exactly, a (small) deviation is allowed. Con-

cretely, the respective side constraints become inequalities: 1
l

|
řl
i“1 ψjpxiq fpxiq ´

řl
i“1 yi ψjpxiq| ď δ. In the following the absolute difference between right-hand

side and left-hand side of a statistical invariant is called the invariant’s discrep-

ancy/deviation. The deviation δ has to be specified in advance, either as absolute

value or as relative deviation: δabs “ δrel |
1
l

řl
i“1 yi ψjpxiq|. By introducing the

inequalities the probability of a function belonging to the admissible set of the op-

timization problem becomes actually positive. When allowing deviations, the delta

value δ becomes a further hyperparameter to control the estimation. Immediately

the question of how to set them appropriately arises. For this purpose some as-

8Vi,j “ 1 if i “ j, else it is 0
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pects shall be mentioned. At first, a simple theoretical bound on the delta’s value

is derived. Therefore, notice that |
l

ř

i“1

ψpxiq fpxiq ´
l

ř

i“1

yi ψpxiq| “ |
l

ř

i“1

ψpxiq pfpxiq ´

yiq| ď

b

řl
i“1 ψpxiq2

b

řl
i“1pfpxiq ´ yiq2, which follows by Cauchy-Schwartz’ in-

equality. Since fpxiq is bounded between r0, 1s and yi is from t0, 1u, it holds:

pfpxiq ´ yiq
2 ď 1 ùñ

b

řl
i“1pfpxiq ´ yiq2 ď

?
l. Together it results:

|1
l

l
ÿ

i“1

ψpxiq fpxiq ´ 1
l

l
ÿ

i“1

yi ψpxiq| ď

g

f

f

e1
l

l
ÿ

i“1

ψpxiq2 (3.5)

Consequently for the relative deviation follows: δrel ď

d

1
l

řl
i“1 ψpxiq2

1
l

řl
i“1pyi ψpxiqq2

. These

values can be consulted, to obtain a precise bound, up to what any value for δ

has to be searched for. Furthermore, the inequality by Cauchy-Schwartz reveals,

that the function, which interpolates all observations perfectly does always sat-

isfy the statistical invariants and is therefore an admissible solution for the LUSI

optimization problem. This can also be verified directly by taking a look into

the formulated optimization problem (eq. 3.4). A sufficient condition, that this

kind of function is element of the function space is, that the matrix K has full

rank. The delta value could also be specified on the basis of some probability

informed confidence. For this purpose one could consider the following inequality,

with iψ,f :“ EpfpXqψpXqq:

1
l

|

l
ÿ

i“1

ψpxiq fpxiq ´

l
ÿ

i“1

yi ψpxiq|

“ |1
l

l
ÿ

i“1

ψpxiq fpxiq ´ iψ,f ` iψ,f ´ iψ,λ ` iψ,λ ´ 1
l

l
ÿ

i“1

yi ψpxiq|

ď |1
l

l
ÿ

i“1

ψpxiq fpxiq ´ iψ,f | ` |iψ,f ´ iψ,λ| ` |iψ,λ ´ 1
l

l
ÿ

i“1

yi ψpxiq| (3.6)

The first and the third term describe the variation of the empirical averages around

the respective expectation values. The third term is constant across all functions

f . The second term is the offset between the linear functional’s value at λ and

the corresponding value for f . If it is possible to derive meaningful bounds on the

ranges (moments) of these terms, general intervals could be derived by means of
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Hoeffding’s or Chebychev’s inequalities 9. Another approach to bound the delta

value is given by the fact, that in order to enable any difference by incorporating

the invariants into the model, the allowed discrepancy must be smaller than the

achieved deviation of the optimal solution, when ignoring the statistical invariants

at all. Therefore, one could solve the optimization problem twice. First, ignoring

the invariants at all. Afterwards, for the received solution, the discrepancy of the

statistical invariants is calculated. This value can then be used to bound the al-

lowed deviation in the second run, when actually considering the invariants. In

practice some generic approach such as cross-validation might be preferred.

An extension is to allow individual deviations for each predicate δψ. By ma-

nipulating these deltas the respective invariant’s influence on the optimization

problem can be steered. This enables some kind of selection method among a set

of predicates, since allowing big deviations is equivalent to ignoring the respective

invariant. However, the drawback of this approach is the higher number of param-

eters in the model. Based on the discrepancies, the authors proposed a heuristic

selection among a pre-specified set of predicates, in terms of a stepwise selection

process. At first a general threshold is defined. For a given function all invariants,

whose discrepancy is smaller than the specified threshold are considered as satis-

fied. Beginning with no invariants at all, the optimization problem is solved. For

the received estimated function, the invariant with the highest discrepancy bigger

than the threshold is added to the optimization problem. Subsequently, a new

function is estimated. This process continuous, until all invariants are satisfied

with at least the specified threshold accuracy.

3.3.2 Reweighted V-matrix

Although the LUSI method aims to estimate the conditional probability function,

it is still placed in the context of pattern recognition. Therefore, the authors pro-

posed a modification to shift the focus back towards the classification accuracy.

The modification bases on the observation, that for a good classification the prob-

9For example fpxiq as well λ lie between 0 and 1. Also, for a continuous predicate ψ over a
compact interval X a bound exists too.
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ability should precisely be estimated especially at points x with λpxq “ 0.5. This

is because 0.5 is the switchover point for the associated decision rule. For a true

probability of 0.8 it is of not much relevance whether the estimate is 0.6 or 0.9 as

long as it is bigger than 0.5. To put more weight onto these points, the V-matrix

is modified in the following way. The basic idea is to give observations yi, whose

conditional variance is high a bigger weight. This is because, the variance is biggest

if the conditional probability is 0.5, but zero if it is 0 or 1. For this purpose, the

V-matrix is adjusted to: Ṽi,j “ Vi,j opσpxiqq opσpxjqq. Where o is a monotonically

increasing function and σpxq is the standard deviation of Y |x. o is usually set

to the identity function. By this adaption a new optimization problem is defined,

putting more weight on observations with conditional probability similar to 0.5

and less weight for more extreme probabilities. Typically, the standard deviation

has to be estimated. Therefore, the complete procedure consists in two stages. At

first the conditional probability function is estimated based on the original pre-

sented LUSI model. Then the standard deviation is estimated according to its

definition for binary random variables: σpxq “
a

λpxq p1 ´ λpxqq, replacing λ with

the estimated function. According to the adjusted optimization problem a new

function is estimated, based on which a decision rule is derived.
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4 Practical evaluation

Having introduced the theoretical backgrounds of statistical learning as well as

the LUSI model of estimating the conditional probability function, it follows the

presentation of the practical part of this thesis. The purpose is to evaluate the

potential of the new method, together with providing an implementation for fur-

ther independent use. In the original paper a simulation study was conducted,

to analyse the advantages of the newly introduced method against various varia-

tions of it. The objective of the presented study is to verify the original results,

by reconstructing the tests as far as possible. Therefore, analysing how reliable

the claimed improvements really are. As will be pointed out soon, the original

study was not conducted very profoundly and has some critical weaknesses. Espe-

cially, some important information of the context of testing were not documented.

This is why, in this thesis the tests were considerably extended to receive more

expressive and consistent statements about the method’s accuracy. According to

the two purposes behind the LUSI method, two different criteria were analysed in

the paper. These are on the one hand the estimation quality of the conditional

probability function and on the other hand the accuracy of classification. The

LUSI method is essentially characterized by two components, whose effect shall

be assessed. These are the V-matrix, as consequence of the inverse-problem based

function approximation by Tikhonov and the statistical invariants.

4.1 Configurations of testing

In this section the configurations of the undertaken simulation study are presented.

It is contrasted what conditions were specified by the original paper and what the

finally chosen settings for this thesis were. Furthermore, the reasoning behind

the specification of the various parameters is provided, whenever the paper did

47



not give any precise information. The general procedure of the conducted study in

this thesis is summarized as follows. The study was simulation-based, which means

that the data generating distribution is known and accessible. Besides the LUSI

method other methods were defined for comparison. For each such model class,

the regularization parameter γ and the delta value δ in the invariants’ constraints

define the concrete optimization problem (eq. 3.4). For both hyperparameters a

set of values was preassigned 1. Each combination of these values determined a

specific model, which was evaluated. The goal lied in assessing the expected value

of two different evaluation-metrics for each of the models for different sample sizes.

To estimate these expectations, the calculations were repeated for multiple inde-

pendent samples, over which an average was finally determined. The table 4.1

shows the relevant parameters of the conducted study, together with the values

according to the original study and the final applied ones. In the following, the

various parameters are explained in more detail. For the remaining part, the ter-

minology shall uniquely be defined. For this purpose, a model is meant to be an

estimator, mapping from the space of samples into F . While a model class is in

general an arbitrary set of models. This is for example canonically defined, by

specifying a range of values for some hyperparameters, here essentially γ and δ.

Evaluation-metrics

Each estimated function was evaluated with respect to two risk functionals. These

were the L2 metric to the conditional probability function and the probabil-

ity of false classification (error probability) of the derived decision rule. In the

following the evaluation of any of these risk functionals at a specific function

is also called the function’s score. Because the data distribution was accessi-

ble, the real risk values according to the following formulas could be calculated:

l2pfq :“
b

ş

X pfpxq ´ λpxqq2 dx, errprq :“
ş

X py ´ rpxqq2 dPpy, xq, with f P F and

r being the associated decision rule (sec. 3.1). Note, that the function distance

is in L2 and not in L2
Ppxq

, as was specified by the paper. However, no information

was given, whether these integrals were estimated based on the sample data or

by actual (numerical) integration. Therefore, in this study the actual numerical

1In the following the values of γ and δ are referred to as hyperparameters.
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Parameter Value according to [11] Final setting
Evaluation metrics L2 distance to λ

False classification probability (error probability)
Sample size l “ 48, 96, 192 l “ 25, 50, 100, 200
Number of samples No information, presumbly 1 200
Data distribution -λ: No information, but coarse vi-

sualization is given
-λ: polynomial interpolation
based on points derived from vi-
sualization

-PpY “ 1q “ 1{3 -PpY “ 1q “ 0.33338
-X “ r0, 1s, one dimensional -X “ r0, 1s, one dimensional
-Ppxq: No information, only rug
plot of a sample

-Ppxq: Beta(1.98, 2.16), chosen to
achieve the marginal probability
of Y

Model classes SVM: V “ I, no invariants SVM, vSVM, SVM I2, vSVM I2,
vSVM: no invariants mSVM I2, mvSVM I2,
SVM I2: V “ I, two invariants
vSVM I2: two invariants SVM I4, vSVM I4
mSVM I2: V “ I, reweighting
the identity matrix, two invari-
ants
mvSVM I2:modification of
reweighting, two invariants

Predicates ψ1pxq“1, ψ2pxq“x, no selection ψ1pxq “ 1, ψ2pxq “ x, ψ3pxq “

x2, ψ4pxq“x3, no selection
Kernel function INK Kernel, degree 1, bandwidth 1
Gamma γ No information t10´4, 10´3, 10´2, 10´1, 1, 10u

Deltas δ No information, presumbly none for all predicates the same value,
specified as relative difference
t0, 0.05, 0.1, 0.2, 0.4, 0.8u

Table 4.1: Configurations of the simulation study.
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integration over X for both types was considered 2. To do so, the total interpo-

lated function is required, instead of only the estimated function’s value at the

observations xi. According to the introduced representer theorem, the estimated

functions of the RKHS are defined by fpxq “
řl
i“1 α̂iKpx, xiq ` ĉ. pα̂, ĉq are the

minimizers of the respective optimization problem. One should be aware of the dif-

ference between the risk of an estimated function of the function space F , denoted

here as score and the risk of a model (estimator). For a model the measure of in-

terest is usually the expected value of the scores over the space of possible samples.

Sample size

In the paper the models were evaluated on three different sample sizes. To gain

further insights, a fourth sample size of l “ 25 was considered at this point, to

analyse the effects of very little information.

Number of samples

The authors of the original paper did not make any clear statements, how their

presented values were obtained. It is indicated, that the experiments were only

performed on one sample (for each sample size). This is a tremendous weakness,

because any kind of uncertainty quantification was left out. To overcome this

problem, the here presented study is based on multiple repetitions. Concretely

200 samples were chosen for each sample size. This allowed to estimate confidence

intervals, providing a much more consistent insight. The choice of the concrete

number of samples was influenced by the trade-off between accuracy and compu-

tational effort. To make an informed decision a representative model was chosen

and the complete evaluation performed on N samples. The uncertainty of the

received average scores was assessed by the respective variation coefficient as well

as the relative confidence interval length. Based on these indicators a number N

was sought, such that these quantities fall below a minimum level. On top of this,

the number of 200 was set to exhaust the computational power.

2The calculated scores for a given function are the real expectations, up to some approximation
error, due to the numerical integration. It is not an empirical estimate.
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Data distribution

Another difficulty in reconstructing the original study arose from the incomplete

documentation of the applied data distribution. The domain X was given as

r0, 1s Ď R. Furthermore, it was specified, that the marginal probability PpY “ 1q

was one third. The authors chose this, to analyse the robustness in scenarios of

class imbalance. However, the marginal distribution Ppxq and the actual condi-

tional probability function λ were not published. To approximate the conditional

probability function, a cubic spline interpolation was carried out based on 10

points, which were derived from (rather rough) visualizations occurring in the

paper. The original function and the constructed approximation can be seen in

figure B.2. This approximation should be good enough to not distort the final

statements. Due to X “ r0, 1s a beta distribution was chosen for the x-variable.

The concrete density was specified, to satisfy PpY “ 1q “
ş

X λ ppxq dx “ 1
3
. The

density distribution is plotted in figure B.1. In the paper a rug plot over the x-axis

of the used sample is visible. The main amount of observations is located in the

middle, while only few observations are at the extremes, i.e. ă 0.1, ą 0.9. This

gives at least some indication, that an uniform distribution is not plausible. Based

on the rug-plot, one may carefully deduct, that PpX ą 0.9q « 0.02, which is the

same as for the chosen beta distribution.

Model classes

The LUSI method is characterized by the V-matrix, weighting the pairwise residual

products and the m invariants defining linear side constraints. This model class is

denoted by ”vSVM Im” 3. In the paper two invariants were used (m=2), which are

explained below. To compare the method appropriately, the authors considered

four alternatives, which differ in the use of the V-matrix or its substitution with the

identity matrix and the inclusion or ignorance of the invariants. These alternatives

are denoted by either the presence or absence of ”v” or ”I2” respectively. They

are appropriate for comparison, as these models differ in only single components,

which characterize the LUSI approach. Thus, the immediate effect of the inverse-

problem based function approximation or of the invariants can be identified. As

3The notations should not be confused with the common SVM classifier, although there are
certain similarities. Instead, these were overtaken from the original paper.
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explained before, the models substituting the V-matrix (any without ”v”), base

upon the estimation of the conditional probability function according to the em-

pirical risk minimization of the regularized squared-loss risk functional (sec. 3.2.3).

The authors did also consider the modified version of reweighting the V-matrix,

which is denoted by ”m(v)SVM I2”. As mentioned before, this method was in-

troduced with focus on the classification (sec. 3.3). Note, that this adjustment is

independent of the approach how to estimate λ. This is why, ”mSVM I2” is the

model class of regularized squared-loss minimization, at which the reweighting is

applied to the identity matrix. To extend the original analysis this study considers

two further methods, which arise by adding two more invariants, i.e. ”SVM I4”,

”vSVM I4”. This shall provide an improved intuition, whether the invariants are

indeed enhancing the ground methods, but also whether a sub selection among

the predicates can be useful.

Predicates

As mentioned, the creation of predicates is in its core a knowledge-driven part

and should be ideally problem specific (sec. 3.2.2). Because it is not known, how

to decide what predicates are advantageous, the authors proposed two generic

moments-based predicates: ψ1pxq “ 1, ψ2pxq “ x. The predicate ψ1 implies the

invariant: Ep1 fpXqq “
ş

X fpxq dPpxq “ Pλ“f pY “ 1q
!

“ PλpY “ 1q 4. This

means for the empirical version a hypothesis f is sought, such that the estimate of

the marginal probability of class one considering f as the conditional probability

function is equivalent to the mean observed in the data. The second invariant de-

velops to: EpX fpXqq “
ş

X x fpxq dPpxq “ Eλ“f pY Xq
!

“ EλpY Xq. Together with

the first invariant, this relates to finding a hypothesis, such that the conditional

expectation EpX | y “ 1q is maintained. Following this idea of constructing pred-

icates two further moments were considered: ψ3pxq “ x2, ψ4pxq “ x3. Therefore,

demanding to preserve the conditional variance and skewness.

Kernel function

The function space F “ HK is uniquely defined by its kernel. The authors applied

the following kernel: K1px1, x2q “ 1
3

pminpx1, x2qq3` 1
2

pminpx1, x2qq2 |x1´x2|. This

4The second equation results, because f is a conditional probability function itself.
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kernel is a special case of the INK-kernel with degree 1. The INK-kernel is built

up by splines of degree r P N with infinite knots [17]. Usually it is defined without

any bandwidth (scaling) parameter. Therefore, motivated by other kernels, such

as the well-known Gaussian-kernel, one might think to reshape it by introducing a

parameter b, such that: K̃INKpx1, x2q :“ KINKpb x1, b x2q. As can easily be verified,

this scaling parameter b is due to the polynomials equivalent to using a multiplica-

tive coefficient b2r`1, thus: KINKpb x1, b x2q “ b2r`1KINKpx1, x2q 5. Consider the

defined LUSI optimization problem OPLUSIpγ, δ, bq, with the parameters γ, δ and

the bandwidth b. Then, due to the derived property of the INK-kernel regard-

ing the bandwidth, it holds: OPLUSIpγ, δ, bq ” OPLUSIpγ
1

b2r`1 , δ
1

b2r`1 , 1q. This can

easily be verified, by executing the respective substitutions in equation 3.4. This

relation shows, that one can indeed ignore the scaling parameter and fix it to 1

and control the optimization problem via γ and δ.

Regularization parameter γ

The regularization parameter determines the weight of the function norm onto the

objective in the optimization problem. Therefore, it influences the complexity of

the estimated function, which is mirrored in its smoothness. If γ is set to 0 the

solution of the optimization problem will be a function, which perfectly mirrors

the observations. Note, that this function is also always an admissible function of

the invariants, as shown before (sec. 3.3). Again, the authors did not specify, what

γ parameter they applied. In this study a set of values was predefined and each

corresponding model evaluated. The tested values were determined after assessing

on individual samples the influence of the γ parameter. The prior investigation

showed, that values bigger than 10 did not affect the estimated function anymore,

as the function with minimal norm was always chosen.

Deltas δ

The delta value defines the allowed discrepancy in the linear side constraints in the

optimization problem defined by the statistical invariants. Again, no information

5x “ px1, ..., xdq, y “ py1, ..., ydq P Rd

KINK,rpx, yq :“
d

ś

i“1

Krpxi, yiq Krpxi, yiq :“
r
ř

k“0

Ck
r

2r´k`1 rminpxi, yiqs2d´k`1 |xi ´ yi|
k [17]
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about its specification was given by the authors. Instead, it can be assumed, that

strict equality was required, although differently recommended by the authors

themselves. However, in this thesis different deviations were tested. To reduce the

complexity the same relative absolute deviation was used for all invariants. The

higher the allowed discrepancy, the less is the effect of deploying the invariants

at all. An upper bound of the δ values to be considered, was determined, by

estimating the 0.75 quantile of the maximum relative absolute deviation of all

statistical invariants for the defined conditional probability function, based on

200 samples 6. This way, the conditional probability function should remain an

admissible function in a significant amount of times. Furthermore, as for the γ

parameter the effect of the δ value was examined on individual samples and models.

This way, the threshold upon which the invariants could effectively be ignored,

because the allowed deviation represents no constraint anymore, was tried to be

determined.

4.2 Implementation

In the following, some information about the implementation as well as required

technical adaptations are explained.

Module structure

The guiding idea of the implementation was to enable both the separate use of

the LUSI method of its evaluation and the possibility to conveniently modify or

extend the simulation study. Therefore, the LUSI method and its evaluation are

implemented with little interdependency. The simulation infrastructure is hold

generic as far as possible, such that all settings displayed in table 4.1 can easily be

varied. The implementation is realized in R. For the (quadratically) optimization

problem the Gurobi framework is deployed. The implementation is structured into

four main modules. Their main functionality is summarized in the table 4.2.

6These were different, than the ones used for the final evaluation.
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File Functionality
LUSI.R The file contains the implementation of the LUSI model and the presented

various modifications. Both kernels, i.e. the Gaussian- and the INK-kernel
of variable degree are implemented. Furthermore, the calculation of the L2

metric and the accuracy of classification based on one-dimensional numerical
integration as well as the construction of the complete function of the RKHS
for given coefficients are realized. The main function is called lusi(). Its
parameters allow to create each modification presented in the model-classes
for the evaluation. Additionally, aspects such as the customizable stabilization
of the kernel matrix and the proposed algorithm for predicate selection of the
original paper are implemented. Furthermore, it is possible to define individual
deviations for each invariant based on an absolute or relative specification. It
can be specified based on which formulation the optimization problem shall be
solved together with various parameters to adjust the optimization solver.

simulation study.R This file does implement the necessary functionality for the simulation. The
central function is called hyperpar testing(). Among others it takes a list of
four lists. Each sublist contains the testable values for one of these parameters:
regularization parameter γ, delta values δ1, ..., δm for the invariants, bandwidth
of kernel, quality threshold for predicate selection. The remaining attributes
specify a set of samples over which to iterate and the concrete model class
which shall be used. The function outputs as many matrices as score functions
defined. Each matrix contains as many rows as samples and as many columns
as hyperparameter combinations. Each cell contains the score value of the
estimated function on this sample. Furthermore, the file contains the definition
of the data distribution, the predicates and the evaluation-metrics, which can
be applied to a single function using the implementation of the LUSI.R file.

simulation models.R This file serves the definition of the simulation setup, which shall be executed.
The hyperpar testing() function is specified and called. The obtained results
of the simulation are persistently stored on the hard disc.

simulation analysis.R Here the necessary functionality for evaluating the obtained score matrices is
implemented. The file’s structure is rather complex. It contains functionality
for calculating different confidence intervals for averages, as well as for quan-
tiles. The main function model evaluation() calls the function model analysis()
and summarizes the distribution of the score values of the best model for each
model class. The function plots and pairwise eval() serves the pairwise com-
parison of the best models. It can be determined, whether the evaluation
should be based on averages or quantiles. Besides the numerical statistics also
corresponding plots are created.

combine experiments.R Auxiliary file, to combine results of different runs for the same model class.
refitting best models.R Auxiliary file, to refit the best models on new samples.

Table 4.2: Summary of the implementation. Presented are the file names together with an overview
of the main functionalities.
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Problem transformation

The interface of Gurobi requires the optimization problem in a canonical formula-

tion [18]: min
v
v⊺Q v ` c⊺v s.t. Mv ăą“ β where Q,M are the matrices defining

the quadratic objective and the linear side constraints respectively, while c, β are

vectors defining the linear component of the objective and the thresholds of the

linear constraints. The operational relations can be specified for each constraint

individually. To satisfy the required form, the LUSI optimization problem as in-

troduced (eq. 3.4), has to be transformed. Working in the relative delta value δ

(sec. 3.3), the following optimization problem results:

α̃ :“ pα⊺, cq⊺
pl`1q̂ 1 K1 :“

´

K 1l

¯

l̂ pl`1q
K2 :“

˜

K 0l

0⊺l 0

¸

pl`1q̂ pl`1q

min
α, c

pKα ` c 1lq
⊺V pKα ` c 1lq ´ 2 pKα ` c 1lq

⊺V y ` γ α⊺Kα

“ pK1 α̃q
⊺ V pK1 α̃q ´ 2pK1 α̃q

⊺V y ` γ α̃⊺K2 α̃

“ α̃⊺
pK⊺

1 VK1 ` γK2q α̃ ` p´2 y⊺ VK1q α̃

s.t.p

¨

˚

˚

˚

˚

˝

Ψm̂ l

Ψm̂ l

Il̂ l
Il̂ l

˛

‹

‹

‹

‹

‚

K1q α̃

¨

˚

˚

˚

˚

˝

ď

ě

ď

ě

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

Ψ y ` δ pΨ yq

Ψ y ´ δ pΨ yq

1l

0l

˛

‹

‹

‹

‹

‚

(4.1)

Numerical aspects

First experiments revealed some numerical instability. The main causation was the

kernel matrix. Depending on its rank or condition respectively the Gurobi solver

did sometimes not converge in an optimal state, although an optimal admissi-

ble solution should exist. Further investigations showed, that this is especially a

problem when using the Gaussian-kernel. Then, the rank heavily depends on the

bandwidth. For the finally applied INK-kernel, the matrix showed almost always

full rank, such that the problem was not as much severe. However, to counteract

this behaviour the following actions were implemented. As explained in theory, the

kernel matrix is symmetric as well as positive semi-definite by definition. There-

fore, a small constant of 10´6 is added to the diagonal of the kernel matrix to
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make it regular. The implementation allows to either force this stabilization in-

dependently of the actual rank or, as finally used, to add it only if the rank is

incomplete. The constant should be small enough to not distort the results with

respect to the following equation: K pK` q Iq´1 « I, q P R`. This is especially rel-

evant for the construction of the total function based on the coefficient estimates.

The coefficients α̃ are obtained with respect to the specification of the optimiza-

tion problem using pK ` q Iq. However, the corresponding total function, which is

finally evaluated, is defined by means of the partial functions Kxipxq “ Kpx, xiq

(sec. 2.3.6). Hence, for the evaluation at x other than xi the offset q cannot be

incorporated (as it is meaningless) and has to be ignored for the interpolation. The

official Gurobi documentation recommends some guidelines, how to deal with nu-

merical problems [19]. According to these, the following parameter configurations

were used: NumericalFocus=2, BarHomogenous=1. Furthermore, especially the

ranges and the magnitudes of the matrices specifying the optimization problem

are of importance. According to the documentation the most effective action is to

reformulate or simplify the problem, to avoid unnecessary calculations or to receive

bounded variables. For this purpose, the optimization problem is transformed, by

substituting the estimated function’s values at the observations xi by an individual

vector:

Kq :“ K ` q I p :“ Kq α ` c 1l p̃ :“ pp⊺, cq⊺
pl`1q̂ 1 Ĩ :“

´

I -1l

¯

l̂ pl`1q

min
p, c

pKq α ` c 1lq
⊺V pKq α ` c 1lq ´ 2 pKq α ` c 1lq

⊺V y ` γ α⊺Kq α

“ p⊺ V p ´ 2 p⊺V y ` γ pp ´ c 1lq
⊺ K´1

q pp ´ c 1lq

“ p̃⊺
p

˜

V 0l

0⊺l 0

¸

` γ Ĩ⊺ K´1
q Ĩq p̃ `

´

´2 y⊺V 0
¯

1̂ pl`1q
p̃

s.t.

¨

˚

˚

˚

˚

˝

Ψm̂ l 0m

Ψm̂ l 0m

Il̂ l 0l

Il̂ l 0l

˛

‹

‹

‹

‹

‚

p̃

¨

˚

˚

˚

˚

˝

ď

ě

ď

ě

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˝

Ψ y ` δ pΨ yq

Ψ y ´ δ pΨ yq

1l

0l

˛

‹

‹

‹

‹

‚

(4.2)
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This substitution brings some advantages. At first, it reduces the number of ma-

trix multiplications, because it cancels out the matrix K1 (eq. 4.1). The second

point is, that the variables p, representing the estimated probabilities at the ob-

servations xi, are naturally bounded. This property is favourable for the solver

routine, than the unbounded variables α before. This formulation requires the

kernel matrix K to be invertible. However, due to the implemented stabilization

Kq this is always guaranteed. After having estimated the function’s values p,

the corresponding coefficients of the actual function are derived, by calculating

K´1
q pp ´ c 1lq. Furthermore, in the optimization problem the boundedness of the

estimated function’s values can only be controlled at the observations. This is why

it is possible, that some values of the interpolated function are below zero or bigger

than one respectively. In this case, the implementation proceeds by truncating the

values at zero or one.

Running time

Based on the presented ranges (tab. 4.1) for the hyperparameters γ and δ, for each

model class, which considers the invariants, up to 36 models result. For the other

cases it is 6 models. All models were evaluated on 200 samples for four sample sizes

and two scores were calculated based on numerical integration for each estimated

function. This led to some considerably amount of computational effort. However,

the whole process can be executed for each sample independently. This fact was

exploited, in order to reduce the duration, by implementing a parallel computa-

tion across the samples. The total time required for running all experiments and

associated evaluations was still about 60 hours on an Intel(R) Core(TM) i5-8265U

CPU at 1.60GHz and 64-Bit system.

4.3 Methodology of evaluation

All model classes were tested on the same set of 200 samples. For each model,

implied by a combination of the hyperparameters γ and δ, the corresponding op-

timization problem was solved. Subsequently, the L2 distance of the estimated

function to the conditional probability function as well as the error probability of

classification for the associated decision rule were calculated. The result of these
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simulations can be imagined as two matrices for each model class, one for each

type of the presented evaluation-metrics. A matrix has as many columns as tested

hyperparameter combinations and as many rows as used samples. In the following,

the methodology of analysing these received score matrices will be explained. In

general, the procedure is about to identify for each model class a best model for

each type of the evaluation-metrics (tab. 4.1). Subsequently, these best models are

compared across the model classes. Selecting a best model means facing a decision

problem. The evaluation bases on two different approaches of how to define the

performance of a model(-class).

Priori evaluation 7

The most intuitive way is to evaluate the models based on the expected score

value, e.g. Epl2pλ̂γ,δppYi, Xiq
plqqqq (sec. 4.1), at which λ̂γ,δ depicts the model as an

estimator mapping from the space of samples into F . Consequently, a model class

is represented by the risk value min
γj ,δj

Epl2pλ̂γj ,δjppYi, Xiq
plqqqq, at which γj, δj are the

considered values of the respective models in the model class 8. This approach

might be interpreted as an ”a-priori” selection, because the evaluation of a model

is based on the marginal expected performance, which considers the variation in

the estimation. Thus, if in practice there was enough information to calculate

these expectations, the best model would be determined independently (a-priori)

of the given sample. To estimate the risk of a model, the empirical average of the

respective 200 score values is calculated. According to these averages, for each

model class a best model is identified regarding the lowest L2 distance and a best

model regarding the lowest error probability of classification.

Posteriori evaluation

Whenever a model is deployed in practice, the finally estimated function depends

on the available sample. Therefore, the model should be selected, whose current

function estimate on the given sample achieves the best score. Thus, the selection

7The descriptions as ”priori” and ”posteriori” perspective of evaluation should not be confused
with the usual meanings in the context of Bayes statistics, but should be independently
understood.

8The definition is equivalently transferable to the error probability.
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of models is actually a selection over concrete functions. This means, that the

model selection is ideally conditional on the concrete sample. Hence, an addi-

tional way of evaluation is considered based on an ”a-posteriori”, i.e. sample-wise

or local selection. For a model class, for each of the 200 samples the best score

across the tested models is focused. Different model classes are then compared

based on the distribution of these conditionally best values. In this way no single

models are selected, but the model class as a whole is represented by the series

of minimal values over the set of samples. By calculating the average of these

posteriori scores, the following value is estimated in the case of the L2 distance

to λ: Epmin
γj ,δj

l2pλ̂γi,δippYi, Xiq
plqqqq 9. Hence, a model class is represented by the

expected minimum score over the corresponding models, as contrast to the priori

evaluation, which considers the minimal expected score. Furthermore, it holds

min
γj ,δj

l2pλ̂γj ,δjppyi, xiq
plqqq ď l2pλ̂γppyi,xiqplqq,δppyi,xiqplqqq for any empirical hyperparame-

ter selection algorithm γppyi, xiq
plqq, δppyi, xiq

plqq (e.g. cross-validation). Therefore,

this kind of selection represents the theoretically best selection process. In this

sense, the posteriori evaluation might be interpreted as applying a best-case anal-

ysis. Note, that this selection method is only feasible, because the scores l2p.q as

well as errp.q could be calculated, due to the known distribution in this study.

However, in practice this is not possible. In addition, this selection process might

be compared with the aforementioned structural risk minimization (sec. 2.2.4).

There the model selection is not based on estimates of the risk of a model, but

on an approximation of the score of the current estimated function of the given

sample. This approximation is specified in terms of an upper bound. Related

to here, this means: min
γj ,δj

Bj with Bj ą l2pλ̂γi,δiq with a probability ηplq. This is

similar to the posteriori evaluation, except that instead of an upper bound the

actual score of the estimated function can be calculated, due to the known data

distribution. The respective expectation is therefore conceptually similar to the

risk of the SRM-estimator. However, it should be clear, that here no structure in

the sense of the SRM was defined over the γ, δ parameters. This is why, it is not a

structural risk minimization in the usual sense. On the other hand, the priori eval-

uation might be compared with applying the moving-control estimator (sec. 2.2.4).

9Analogue definition for the error probability.
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Information presentation

For each type of evaluation-metrics, the model classes are evaluated based on

these two perspectives. Presented are for each model class the (marginal) aver-

aged scores of the selected priori models as well as the average of the posteriori

minimum values. However, to assess the effect of the V-matrix and the invariants,

the sample-wise differences of the scores between two models are analysed. In the

priori evaluation, this means the average difference between the selected models

of two model classes. In the posteriori case, it is the average difference of two

minimum score sequences of two model classes. Only model classes differing in

one technicality are paired up, to evaluate the immediate effect of the different

concepts. Because all models are estimated on the same set of samples, this is a

joint sample evaluation. To facilitate the interpretation of the calculated scores,

they are rescaled similar to the original paper. The L2 distances are scaled by

the L2 norm of the conditional probability function. The error probabilities are

transformed to relative quantities, i.e. ˜err “ err
errbayes

. Here errbayes is the lowest

achievable probability of false classification among any decision rules (sec. 2.2.1).

Thus, the rescaled quantity is always greater than 1.

Assess uncertainty

To assess the uncertainty in the calculated mean estimates confidence intervals are

provided. However, their calculation is accompanied by some complications. The

provided confidence intervals are calculated based on the normality assumption,

according to the central limit theorem. One reason, which supports this assump-

tion is the comparatively high number of samples (200), such that a reasonable

convergence might be plausible. To assess the potential convergence, the esti-

mated skewness and kurtosis of the respective scores (-differences) are provided.

What might question the normal assumption is, that the average values of the

selected models in case of the priori analysis are minimas within the respective

model class. Therefore, the averages should rather be treated by an extreme value

distribution. Depending on how variable the selection of the same model is, this

might vary from the normal distribution. To overcome this problem, these best

models were evaluated again on an independent set of 200 samples. The presented
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quantities in the priori evaluation are based on these runs. To still provide an

alternative to the average based comparisons, the evaluation is supplemented by

quantile based information, specifically median estimates. This has the advantage,

that for quantiles exact, nonparametric, non-trivial confidence intervals can be cal-

culated [20], which are applied. Another problem is the effect of multiple testing.

When analysing the pairwise average differences, several confidence intervals are

calculated. To weaken the effect of false significance, the used cover probability

is increased to 0.9995, such that the associated significance tests are equivalent to

an error probability of 0.005. Also, the number of comparisons is hold as small as

possible.

4.4 Results

In the following the obtained results are presented and conclusions made. The

evaluation focuses on these five questions:

1. Is there an improvement by using the V-matrix in the function approximation

or the classification quality?

2. Is there an improvement by using statistical invariants in the function ap-

proximation or the classification quality?

3. Is there an improvement by using the modified version of reweighting the

V-matrix in the classification accuracy?

4. Is there any difference observable when using different sets of invariants?

5. Does the relaxation of the statistical invariants, by allowing deviations affect

the performance?

The first three questions shall be answered regarding statistical significance.

4.4.1 Marginal performances

To get a first overview, the average values according to the priori and posteriori

evaluation of the various model classes are displayed depending on the sample
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size. Because the very concrete values are of not much interest at this point, no

confidence intervals are provided. This kind of information is comparable with the

one given in the original paper.

Function approximation of λ

The lineplots of figure 4.1 show the relative L2 distances. The smaller this value,

the better is the approximation. The L2 norm of λ is about 0.53253. Although for

the evaluation of the function approximation the modified version of reweighting

the V-matrix is of not much relevance, it is still included for the sake of complete-

ness, as was done in the original paper. At first, one confirms an intuitive effect,

which is that for all models the performance improves with increasing sample size.

Priori evaluation

In figure 4.1(a) the constantly best model across all samples sizes is the complete

LUSI method vSVM I2. The models considering the V-matrix (vSVM, vSVM I2,

vSVM I4) represent the three lowest lines and thus the best performances. This

might already indicate an advantage of the inverse-problem based approach for

function estimation. Especially for the smaller sample sizes, the models realiz-

ing the regularized squared-loss minimization (SVM, SVM I2, SVM I4) lead to

comparatively high L2 distances. On the other hand, these show the steepest im-

provement over the sample size. Furthermore, the models SVM, SVM I2, SVM I4

perform very similar across all sample sizes. This grouping is analogue to the

corresponding methods considering the V-matrix. This might indicate, that the

invariants and especially the concrete set of invariants are not of much relevance.

Although the mvSVM I2 approach is at first in the middle field, which might

underline the importance of an initially better function estimate, due to the V-
matrix approach. The reweighting of the observations, represented by the models

mSVMI2, mvSVM I2, ends up causing the worst models for l “ 200. While in the

beginning the maximal spread between any of the models is about 0.03, the overall

difference gets smaller with increasing sample size down to approximately 0.015.

However, this magnitude leads to the conclusion, that despite some differences the

approximations of the different models are actually of very similar quality.
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(a) Priori

(b) Posteriori

Figure 4.1: The marginal performances of the various model classes with respect to the approx-
imation of the conditional probability function dependent on the sample size. (a)
Priori perspective: Averaged scaled L2 distance of the best models per model class.
Best models were evaluated on a second set of independent samples. (b) Posteriori
perspective: Average of the smallest scaled L2 distance per sample for each model
class.
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Posteriori evaluation

The individual models achieve a smaller L2 distance than in the priori case (fig.

4.1(b)). This is obvious, because on each sample the smallest score value across

a model class is selected. Again, the best models are the vSVM I2 and vSVM I4,

at which vSVM I4 ends up being slightly better for l “ 200. The worst two are

the regularized squared-loss estimates of SVM and the modified version mSVM I2.

Comparing models with respect to the application of the V-matrix it seems, that

the V-matrix associated approach of approximating the conditional probability

function performs better than the models following the empirical risk minimization

of the regularized squared-loss (compare SVM : vSVM, SVM I2/4 : vSVM I2/4).

Analysing the influence of the invariants it seems, that incorporating the sta-

tistical invariants leads to a better performance than their corresponding models

ignoring them (compare SVM : SVM I2/4 , vSVM : vSVM I2/4). Furthermore, the

posteriori evaluation might lead to the conclusion, that the larger set of invariants

(... I4) entails a slightly better approximation, if the sample size is big enough.

Differently to the priori case, there is not much crossing between the lines. The

lines stay parallel, thus the improvement over the sample size is for all models con-

stant. This does also mean, that there is no kind of interaction effect between the

application of the V-matrix and the statistical invariants. The maximum difference

does not decrease and stays about the same of roughly 0.03.

Classification performance

The figure 4.2 shows the respective relative error probability of the estimated func-

tions’ associated decision rules. The smaller the value, the better the performance.

The Bayes error is about 0.15124. This value is actually similar to the documented

value in the original paper, which carefully indicates that the data distribution was

not too differently specified. As for the L2 distance, all performances become bet-

ter when increasing the sample size.

Priori evaluation

At first one recognizes, that for the sample sizes, which were considered in the

original paper, i.e. l ě 50, the classification quality is almost identical among
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the models. Therefore, it is difficult to carve out any (reliable) differences based

on figure 4.2(a). For l ě 50 the total difference among all performances is about

0.005, which shows that these differences can not be of any practical relevance.

Taking a close look, it seems like the models considering the V-matrix perform

slightly worse for l ě 100. While the models of SVM and SVM I2/4 are similarly

best at l “ 100 and l “ 200. This pattern also suggests, that the application of

statistical invariants is not affecting the classification. Especially the modification

of reweighting the V-matrix does not establish any relevance. Interestingly, the

models seem to exchange their performance ranking for the case of l “ 25. It

holds the following. The models realizing the V-matrix based approach of func-

tion approximation do perform best. Surprisingly, the method SVM of regularized

squared-loss minimization, which is more common in the context of classification,

performs worst and is identical with its correspondent SVM I2. The model of

SVM I4 achieves a smaller error probability than the analogue models with less

invariants (SVM, SVM I2). For the approaches considering the V-matrix (vSVM,

vSVM I2/4) the incorporation of the invariants does not lead to any difference.

Therefore, no effective influence of the invariants can be concluded also concerning

the choice of invariants. The modifications by reweighting (mSVM I2, mvSVM I2)

perform similar to vSVM and do not cause any improvement. The biggest differ-

ence at l “ 25 between any of the models is about 0.035.
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(a) Priori

(b) Posteriori

Figure 4.2: The marginal performances of the various model classes with respect to the classifi-
cation dependent on the sample size. (a) Priori perspective: Averaged relative error
probability of classification of the best models per model class. Best models were
evaluated on a second set of independent samples. (b) Posteriori perspective: Av-
eraged relative error probability of the minimum values per sample for each model
class.
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Posteriori evaluation

Similar to the L2 distances, the lines of the posteriori evaluation do not cross as

often as in the priori evaluation (fig. 4.2(b)). The maximum difference at l “ 25 is

even smaller than for the priori case of about 0.015, which differently to the priori

case is also hold up for l “ 50. Afterwards, the total differences shrink similar

to the priori case below 0.005. It seems, that the application of the invariants

is in fact decisive and improving the performance, independently of the use of

the V-matrix. The model SVM I2 is constantly the best, especially for l ď 50,

followed by the models of vSVM I2, vSVM I4, SVM I4, which perform almost

identically. Surprisingly, the model vSVM is worst for small sample sizes, different

to the priori evaluation. Hence, at this point the LUSI based approach of function

approximation can not be claimed to improve the classification. The modified

methods of reweighting (mSVM I2, mvSVM I2) perform similarly to the straight

empirical risk minimization model SVM. As for the L2 distance, the posteriori

evaluation indicates a weak tendency of improvement, when incorporating the

statistical invariants. But again, taking the concrete magnitude into account it

is obvious, that all models perform already quite well. Especially for the larger

sample sizes the Bayes error is almost achieved, as the values are near to 1.

Evaluation of δ values

As explained, different values of admissible deviation in the linear side constraints

of the statistical invariants were tested within the respective model classes (tab. 4.1).

The value range also included zero, meaning that strict equality is demanded. To

detect whether allowing these deviations has made any difference, the delta values

of the best models concerning the priori evaluation for the various model classes

considering invariants are shown in table B.2 in the appendix. The table clearly

shows, that for both, the quality of function approximation, i.e. L2 distance to λ,

as well as for the classification accuracy these selected models are mostly allowing

some deviation in the statistical invariants. Although it might be, that the effect

difference to the best models of strict equality is negligible, any deeper analysis is

left out at this point, as in practice incorporating these hyperparameters is rather

convenient.
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4.4.2 Pairwise evaluation of effects

To analyse the effect differences of the various models in greater detail, the fol-

lowing pairwise comparisons are given. In the subsequent plots, the first three

pairs should be consulted to assess the effect of the V-matrix, while the last four

are dealing with the influence of deploying the invariants. The two middle ones,

fourth and fifth, are about evaluating the modified reweighting approach. Note,

that a positive value means that the first method with respect to the labels per-

forms worse. The plots contain the comparisons for the four different sample sizes,

denoted in the labels by ”#l”.

Function approximation of λ

Priori evaluation

V-matrix

Pairs 1, 2 (SVM : vSVM, SVM I2 : vSVM I2) fig. 4.3(a): For small sample sizes

the V-matrix leads indeed to a significant improvement. Also, for the case of

l “ 100 the effect of the complete LUSI approach vSVM I2 is still significant

against SVM I2. On the other hand, it becomes clear that as the sample size

increases this impact vanishes, beginning with an effect difference of about 0.03

down to less than 0.0025. For l “ 200 the effect differences are not significant

anymore. This observation seems plausible as with more data, the empirical regu-

larized squared-loss minimizer should estimate the conditional probability function

precisely as well.

Pair 3, (mSVM I2 :mvSVM I2): For models considering the reweighting, the in-

fluence of the V-matrix is not really consistent. While for l “ 25 and l “ 100 it

shows a comparatively high significant improvement, the effect difference almost

vanishes for l “ 50 and l “ 200 and even worsens the quality.
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(a) Priori

(b) Posteriori

Figure 4.3: The pairwise comparisons of model classes regarding the approximation of the con-
ditional probability function. (a) Priori perspective: Averaged differences of scaled
L2 distances between the best models of two model classes. Best models were eval-
uated on a second set of independent samples. (b) Posteriori perspective: Averaged
differences of the minimum values of scaled L2 distances per sample of two model
classes.
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Invariants

Pairs 6 - 9 fig. 4.3(a): The invariants show instead along all sample sizes and meth-

ods no real improvement. The effect differences do almost vanish and are in most

cases not even significant. For l “ 100 a small improvement might be observable.

However, in general the impact on the function estimation seems rather negligible.

Accordingly, the concrete set of invariants does not make any difference.

Reweighted V-matrix

Pairs 4, 5 (SVM I2 :mSVM I2, vSVM I2 :mvSVM I2) fig. 4.3(a): The proposed

modification based on adjusting the V-matrix does impair the function approx-

imation. The evaluation indicates that this negative effect is stable along the

various sample sizes and does not vanish. It becomes significant for l “ 50, 200.

This is intuitive, because the modification was proposed to benefit the classifica-

tion and not the function approximation in the first place.

Posteriori evaluation

V-matrix

Pairs 1, 2 (SVM : vSVM, SVM I2 : vSVM I2) fig. 4.3(b): The conclusions are simi-

lar to the priori evaluation. The V-matrix based approach of function approxima-

tion establishes a significant improvement. Other than in the priori evaluation, the

effect size stays about the same along the sample sizes as already observed in the

previous line-plots (fig. 4.1). The effect size is comparable to the priori evaluation

and is in all cases less than 0.02.

Pair 3, (mSVM I2 :mvSVM I2): Other than in the priori case, also for the reweight-

ing based models the V-matrix holds up a significant improvement.

Invariants

Pairs 6 - 9 fig. 4.3(b): Other than in the priori evaluation, the invariants based

methods imply in all cases a significant improvement. For the models consider-

ing only two invariants (compare SVM : SVM I2, vSVM : vSVM I2), the influence

seems to be bigger when the model applies the V-matrix. The effect differences

begin at 0.015 and decrease with increasing sample size down to 0.005 or 0.01

respectively. Thus, end being rather negligible. In case of four invariants, their

influence is greater for the regularized squared-loss minimization based models

(compare SVM : SVM I4, vSVM : vSVM I4). The effect size increases with in-
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creasing sample size up to 0.0175.

Reweighted V-matrix

Pairs 4, 5 (SVM I2 :mSVM I2, vSVM I2 :mvSVM I2) fig. 4.3(b): Likewise the pri-

ori evaluation, the modification tends to worsen the function approximation. Al-

though the effect difference is only small, it is significant and negative for both

pairs and all sample sizes.

Median informed evaluation

In table B.1 in the appendix, the estimated skewness and kurtosis of the differ-

ence value distributions are given, to help assess the reasonableness of the normal

assumption of the respective average values. While the skewness is in many cases

reasonably close to zero, the kurtosis is especially for the models considering the

invariants rather big, indicating the presence of some extreme observations. There-

fore, to supplement the evaluation, the same comparisons based on the estimation

of the median differences are provided 10. The corresponding plots can be found

in the appendix figure B.3. The findings can be summarized as follows.

Priori evaluation

Considering this quantile information, it is recognized, that the results are quite

similar, which gives the general evaluation more credibility (fig. B.3(a)). The statis-

tical significance and the magnitudes are in most cases identical. Slightly different

is the somewhat more pronounced statement with respect to the invariants. Here

the plot reveals the presence of some extreme observations as the median is mostly

smaller and sometimes set to almost 0. Thus, it even further lessens the influence

of the invariants.

Posteriori evaluation

The statements about the statistical significance are identical. All observed dif-

ferences basically remain significant. In most cases the effect difference is even

smaller. The effect of the V-matrix seems to become bigger with increasing sam-

ple size and converges for the respective comparisons towards 0.01. Other than for

the average based evaluation the effect of the invariants shrinks with increasing

10Note, that the determination of a best model for a model class in case of the priori evaluation
was still done on the basis of the average values. The calculated medians for the priori
evaluation are these of the evaluation of the best models on the new set of samples.
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sample size. This is especially for the models involving the set of two invariants,

whose differences are almost zeroed. One exception is SVM : SVM I4, which re-

mains similar to the previous analysis and grows to 0.015. The modification of

reweighting is not showing any improvement. In fact, with increasing sample size

a small decline is observable.

Classification performance

Priori evaluation

V-matrix

Pairs 1, 2 (SVM : vSVM, SVM I2 : vSVM I2) fig. 4.4(a): The comparisons show,

that the LUSI based approach of estimating the conditional probability func-

tion never establishes a significant improvement. Increasing the sample size to

l “ 100, 200, the V-matrix actually seems to worsen the classification ability, some-

times even significantly. On the other hand, the magnitude of these differences is

at its most about -0.002 (l “ 200) and therefore out of any practical relevance.

Pair 3, (mSVM I2 :mvSVM I2): Also, the reweighting does not benefit from de-

ploying at first the V-matrix. Instead, the effects are always insignificant.

Invariants

Pairs 6 - 9 fig. 4.4(a): Incorporating the invariants does not show any significant

difference compared to ignoring them. The effect differences are negligible and

with increasing sample size it rather worsens the accuracy.

Reweighted V-matrix

Pairs 4, 5 (SVM I2 :mSVM I2, vSVM I2 :mvSVM I2) fig. 4.4(a): Although the

idea of reweighting the objective function targets the classification, no significant

improvement can be established. Instead, by increasing the sample size a signifi-

cant decline can be observed.
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(a) Priori

(b) Posteriori

Figure 4.4: The pairwise comparisons of model classes regarding classification. (a) Priori per-
spective: Averaged differences of the relative error probability between the best
models of two model classes. Best models were evaluated on a second set of inde-
pendent samples. (b) Posteriori perspective: Averaged differences of the minimum
relative error probabilities per sample of two model classes.
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Posteriori evaluation

In general the conclusions are about the same as for the priori evaluation (fig.

4.4(b)).

V-matrix

Pairs 1, 2 (SVM : vSVM, SVM I2 : vSVM I2) fig. 4.4(b): Again, the effect differ-

ences are marginal and not significant. But for all sample sizes, the average value

is negative, indicating a small increase in the error probability when following the

function approximation approach according to the V-matrix.

Pair 3, (mSVM I2 :mvSVM I2): In case of the modified alternative of reweight-

ing, the positive influence of the V-matrix increases with increasing sample size.

For l “ 200 even a significant improvement can be observed. However, the effect

difference is only about 0.0015.

Invariants

Pairs 6 - 9 fig. 4.4(b): Differently than for the priori evaluation, the invariants

based methods do show some improvement as well as significant influence for the

sample sizes l “ 25, 50, 100. In general, the effect size does shrink with increas-

ing sample size. The most pronounced effect is for vSVM I4 in case of l “ 25 of

roughly 0.02.

Reweighted V-matrix

Pairs 4, 5 (SVM I2 :mSVM I2, vSVM I2 :mvSVM I2) fig. 4.4(b): Again, the reweight-

ing does lead to an increase in the error probability, especially for the models based

on the regularized squared-loss minimization. For all sample sizes the average ef-

fect is even significant.

The estimated differences in the error probabilities are of small magnitude, which

is why even a significant difference is out of any practicality here. This must be

kept in mind, when interpreting the observed differences. Thus, the practical

relevance for the classification is mostly clarified. This is why, no evaluation based

on quantile information as for the function approximation is provided here.
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4.5 Conclusion

4.5.1 Summarizing and relating findings

The conclusions of the original paper [11] have to be treated carefully as they are

obtained on the basis of a single sample and no uncertainty quantification is pro-

vided. The authors argue that both parts, i.e. the V-matrix as result of the func-

tion approximation in terms of the inverse-problem definition of the conditional

probability function and the Tikhonov regularization, as well as the statistical in-

variants lead to explicit improvements. These statements could not be confirmed

with the same generality and clearness.

Function approximation of λ

V-matrix

Across all evaluations most often a clear, significant improvement could be ob-

served. While for the posteriori evaluation the effect difference remains similar

or is slightly increasing with increasing sample size, the effect seems to vanish

with increasing sample size considering the priori evaluation. This does actually

make sense, as this model was intentionally constructed with focus on the func-

tion estimation. But with increasing sample size, the empirical risk minimizer of

the regularized squared-loss might compensate this difference, whose limit is the

conditional probability function too. The conclusions basically accord with the

original paper, although the discovered effect in this thesis is much less expressive.

The absolute magnitude is even at its most still below 0.03 (priori, l “ 25).

Invariants

Deriving conclusions about the impact of the applied statistical invariants is some-

what more difficult, as it depends on the evaluation perspective. For the priori

evaluation the invariants do not establish any clear improvement. Only single

cases, especially the one SVM I4 are constantly showing a significant (small) im-

provement. However, the most comparisons show a negligible and mostly insignif-

icant difference. Furthermore, no real difference between the sets of invariants

could be identified. In the posteriori evaluation a significant, small yet constant

improvement is always present, which is at its most still below 0.02 (posteriori,
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l “ 100). In the posteriori evaluation a fine difference might be identified, that the

set of four invariants has a more stable positive effect than the set of two invariants.

The median based evaluation does underline these results, although the effect size

is usually somewhat smaller such that the invariants are of no practical use then

anymore. Summarizing, a distinct and systematic improvement by the statistical

invariants could not be proven for the considered data distribution. This is dif-

ferently depicted in the original study. However, it should be noted, that clearly

the construction of predicates and corresponding invariants was not exhaustively

tested here. Furthermore, the posteriori evaluation gives at least some indication,

that the concept of statistical invariants should be investigated in the concrete

use case. Especially because the influence of the invariants can conveniently be

controlled by the allowed deviation δ, which is why the models of strict equality,

as well as discarding the invariants are implicitly contained.

Reweighted V-matrix

The modification of adjusting the V-matrix does not benefit the function esti-

mation at all. Instead, its influence seems indifferent and in some cases even

worsens the performance, especially with increasing sample size. Considering that

reweighting the V-matrix served the purpose of classification this result is not very

surprising. However, the conclusion drawn here is opposite to the statement in the

original paper.

Classification performance

The investigations show, that basically none of the introduced LUSI related meth-

ods have any relevant improving impact on the classification performance. This is

directly proven by the small magnitude of effect differences, especially when being

aware of the fact, that these are relative values (sec. 4.3). All evaluated models

perform almost perfectly. Only in the priori evaluation the methods vSVM and

vSVM I2 seem to have a small improving influence for l “ 25. Otherwise, they

rather tend to worsen the classification accuracy in both the priori and posteriori

evaluation. Furthermore, the modification of reweighting the V-matrix does not

imply any improvement. Consulting the posteriori evaluation, a small benefit is

shown for small sample sizes when involving the invariants. These conclusions
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contradict the claimed performance boosts for classification in the original paper.

The evaluation of L2 distance and classification accuracy at the same time un-

derlines the role of defining the concrete risk functional and how performances

are differently reflected. Although knowing the conditional probability function

would mean having a much richer set of information, the immediate goal is to

minimize the probability of false classification for the pattern recognition prob-

lem. Therefore, a more direct approach such as the empirical risk minimization

of the squared-loss is due to the estimation variation at least equally successful.

Hence, the obtained results conform with the theory.

4.5.2 Outlook

The results show, that all models achieve almost the perfect Bayes error, espe-

cially for l ě 50. This indicates, that the chosen example might be too simple

to actually carve out the differences between the methods regarding the pattern

recognition problem. Therefore, a new evaluation on a more complex distribution

might be meaningful. Such a distribution could already be defined by a condi-

tional probability function with multiple cross points at the level of 0.5. Also, a

uniform distribution over X might be reasonable, to get more observations at the

extremes. This would avoid, that the effect differences only arise because of the

methods’ (insufficient) performance at the scope’s limits. Furthermore, one might

elaborate the analysis of the statistical invariants. Because this study showed in

single cases some improving trends, an in-depth analysis might be promising. Such

an investigation could focus on both. On the one hand, the theoretical analysis

of defining meaningful predicate functions, also for a multi dimensional domain

X . In the original paper some first approaches are already given. On the other

hand, an empirical evaluation could be conducted in greater detail. This might

entail the construction and evaluation of predicate selection algorithms and how

different subsets of predicates influence the performance. Finally, to assess the

models under realistic circumstances, an evaluation based on real datasets should

be considered. Similar tests were already given in the original paper. However,

again most of the information of the experimental setup was not documented. Fur-

thermore, only the methods SVM and vSVM I2 were evaluated, which is why clear
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statements about the individual effects of neither the V-matrix nor the invariants

are deducible.
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A Functional analysis

In the following some basic definitions of theory of functional analysis are provided.

All definitions are obtained by [16].

Definition A.1 (Completeness, Banach space). A metric space, at which each

Cauchy sequence converges is called complete. A complete, normed vector space

is a Banach space.

Definition A.2 (Completion of a metric space). Let pX , dX q be a metric space

and CSpX q the set of all Cauchy sequences of it. Then an equivalence relation

over CSpX q is defined: pxnq „ pynq ðñ dX pxn, ynq Ñ 0. Let X̂ be the set of all

equivalence classes and define: dX̂ prpxnqs, rpynqsq :“ lim
nÑ8

dpxn, ynq. Then pX̂ , dX̂ q is

the completion of X and is a complete metric space, in which X lies densely.

This procedure can be applied canonically to a normed vector space. Its com-

pletion is then a Banach space.

Definition A.3 (Operator, Functional). A function between two normed vector

spaces is called an operator. If the image space is the scalar space, then it is called

functional.

Definition A.4 (Operator norm). For an operator T :X Ñ Y , define

}T } :“ inftM ě 0 : }Tx} ď M }x} @x P X u. This defines on LpX ,Yq :“tT :X Ñ

Y |T is a linear and continuous operatoru a norm and is called operator norm.

Proposition A.1. Let X and Y be normed vector spaces and T :X Ñ Y be any

linear operator. The following statements are equivalent: (1) T is continuous. (2)

There exists a M ě 0 s.t. }Tx} ď M }x}. If T is continuous, it is also called

bounded.
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Definition A.5 (Isomorphism, Isometric). A linear, continuous operator T :X Ñ

Y is called an isomorphism, if T is bijective and T´1 is continuous. If }Tx} “ }x}

for all x P X , then T is called isometric.

Definition A.6 (Dual space). The space LpX ,Kq is the set of continuous, linear

functionals of a normed vector space X and is called the dual space X 1 of X .

Corollary A.1. The dual space of a normed vector space together with the op-

erator norm is always a Banach space.

Definition A.7 (Compact operator). A linear operator T between X and Y is

called compact, if T pBX q is relatively compact, i.e. T pBX q is compact, at which

BX :“ tx | }x} ď 1u. The following statements are equivalent: (1) T is compact.

(2) T maps bounded sets on relatively compact sets. (3) For each bounded sequence

pxnq in X , the sequence pTxnq Ď Y has a convergent subsequence.

A compact operator is continuous.

Definition A.8 (Adjoint operator). Let X ,Y be two normed vector spaces and

T P LpX ,Yq. Then the adjoint operator T 1 : Y 1 Ñ X 1, is defined by pT 1y1qpxq “

y1pTxq. The adjoint operator is linear and continuous itself.

Definition A.9 (Inner product). Let X be a K vector space. A function x., .y :

X ˆX Ñ K is called inner product (scalar product), if @x, y, x1, x2 P X , λ P K:

i xx1, x2y “ xx1, yy ` xx2, yy

ii xλx, yy “ λ xx, yy

iii xx, yy “ xy, xy

iv xx, xy ě 0

v xx, xy “ 0 ðñ x “ 0

Corollary A.2. The map x Ñ xx, xy
1{2 defines a norm on X .

Definition A.10 (Pre-Hilbert space, Hilbert space). A normed vector space X is

called pre-Hilbert space, if there is an inner product x., .y, such that }x} “ xx, xy
1{2.

If X is complete, then it is a Hilbert space.
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Definition A.11 (Orthogonality, Orthogonal complement). Let X be a pre-Hilbert

space. Two vectors x, y P X are called orthogonal, x K y, if xx, yy “ 0. Two sets

A,B Ď X are called orthogonal, A K B, if x K y for all x P A, y P B. The set

AK :“ ty P X |x K y @x P Au is called orthogonal complement of A.

Proposition A.2 (Projection sentence). Let H be a Hilbert space and K Ď H
a closed, convex subset and x0 P H. Then, there is exactly one x P K with:

}x ´ x0} “ inf
yPK

}y ´ x0}.

Theorem 1 (Representation theorem by Frechet-Riesz). LetH be a Hilbert space.

Then, the map Φ : H Ñ H1, y Ñ x., yy is bijective, isometric and conjugate linear

(Φpλ yq “ λΦpyq). This means, that for any x1 P H1 there is exactly one y P H,

such that x1pxq “ xx, yy for x P H and }x1} “ }y}.

Definition A.12 (Orthonormal system, Orthonormal basis). A subset S Ď H
is called an orthonormal system, if }e} “ 1 and xe, fy “ 0 for e, f P S, e ‰ f .

A orthonormal system S is called orthonormal basis, if: S Ď P , P orthonormal

system ùñ P “ S.

Corollary A.3. Let S Ď H be a orthogonal system and x P H. Then, Sx :“ te P

S | xx, ey ‰ 0u is at most countable.

Definition A.13 (Unconditional convergence). Let X be a normed vector space

and I an infinite index set. Let xi P X for i P I. The series
ř

iPI xi converges

unconditionally against x P X , if I0 “ ti |xi ‰ 0u is at most countable and for

any numeration I0 “ ti1, i2, ...u the equation
ř8

n“1 xin “ x holds. For infinite di-

mensional vector spaces, unconditionally convergence is not equivalent to absolute

convergence anymore.

Proposition A.3. The following statements are equivalent: (a) S is an orthonor-

mal basis. (b) @x P H : x “
ř

ePSxx, ey e, the convergence is unconditional.

Proposition A.4. For a Hilbert space H the following are equivalent: (a) H is

separable (b) All orthonormal bases are countable. (c) There is one countable

orthonormal basis.
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Definition A.14 (Adjoint operator in Hilbert spaces). Let T : H1 Ñ H2 be a

linear, continuous operator between two Hilbert spaces. Let Φi : H1 Ñ H1
2 be

the corresponding isomorphism of the Frechet-Riesz representation. The adjoint

operator in the sense of Hilbert spaces is defined by T ˚ “ Φ´1
1 T 1 Φ2, at which T

1

is the original adjoint operator. Thus, it holds: xTx, yyH2 “ xx, T ˚yyH1 .

Definition A.15 (Unitary, Self-adjoint, Normal). T is called unitary if T´1 “ T ˚.

LetH1 “ H2. T is called self-adjoint if T “ T ˚. T is called normal if T T ˚ “ T ˚ T .
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B Supplementary

Figure B.1: Chosen beta distribution for the one dimensional space X “ r0, 1s,
Beta(1.98, 2.16).
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(a) Paper

(b) Reconstructed

Figure B.2: Conditional probability functions. The figure (a) is a screenshot of
the original paper [11]. The blue curve is the conditional probability
function applied in the paper. The figure (b) shows the reconstructed
function used in this thesis.
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(a) Priori

(b) Posteriori

Figure B.3: Median based evaluation of the approximation of the conditional probability function,
calculated over 200 samples. (a) Priori: Median of the differences of scaled L2 distances
between the selected best models of two model classes. (b) Posteriori: Median of the
differences of the smallest values of scaled L2 distances per sample between two model
classes.
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Priori
l/model SVM : SVM I2 : mSVM I2 : SVM I2 : vSVM I2:

vSVM vSVM I2 mvSVM I2 mSVM I2 mvSVM I2
25 1.165, 6.423 0.781, 5.532 1.663, 6.222 -1.123, 4.071 2.433, 4.582
50 0.133, 7.604 -1.111,6.066 1.377, 8.094 -1.299, 5.677 0.424, 4.844
100 -0.142, 3.278 0.004, 2.961 0.894, 5.291 -1.574, 6.830 -0.426, 5.951
200 -0.251, 4.861 -0.633, 4.398 0.622, 4.611 -1.413, 6.626 -0.302, 3.987
l/model SVM : vSVM : SVM : vSVM :

SVM I2 vSVM I2 SVM I4 vSVM I4
25 -1.099, 6.504 -2.802, 5.884 2.013, 5.596 -2.699, 4.573
50 1.377, 5.722 -2.658, 5.774 -1.295, 3.174 0.494, 6.844
100 -0.043, 6.167 0.507, 6.301 -1.500, 6.420 0.518, 4.415
200 -0.343, 4.734 -1.178, 4.959 2.876, 5.350 4.444, 7.350

Posteriori
l/model SVM : SVM I2 : mSVM I2 : SVM I2 : vSVM I2 :

vSVM vSVM I2 mvSVM I2 mSVM I2 mvSVM I2
25 2.281, 7.554 1.890, 6.341 1.706, 7.314 -1.095, 6.096 -1.493, 5.751
50 3.065, 4.597 1.391, 5.074 1.891, 7.773 -2.322, 5.918 -0.932, 3.096
100 0.113, 4.998 0.932, 4.564 0.651, 5.090 0.302, 7.509 -0.629, 4.677
200 -0.604, 3.462 0.408, 2.302 0.079, 4.581 -0.975, 6.328 -0.623, 3.812
l/model SVM : vSVM : SVM : vSVM :

SVM I2 vSVM I2 SVM I4 vSVM I4
25 2.968, 7.017 1.493, 7.010 2.771, 6.909 1.146, 5.177
50 2.107, 8.321 0.5322, 4.016 1.931, 7.088 -0.065, 4.397
100 2.865, 4.081 1.944, 6.264 0.834, 2.987 1.610, 5.421
200 2.159, 7.421 2.270, 5.113 0.829, 2.997 1.626, 5.035

Table B.1: Empirical skewness (first value) and kurtosis (second value) of the differences in the
pairwise evaluation regarding the L2 distances (related to fig. 4.3).

Function approximation
l/model SVM I2 vSVM I2 mSVM I2 mvSVM I2 SVM I4 vSVM I4
25 0.05 0.4 0.05 0.05 0.1 0.4
50 0 0.4 0 0.2 0.8 0.4
100 0.05 0.4 0 0.2 0.05 0.2
200 0.4 0.4 0.2 0.2 0.05 0.4

Classification
l/model SVM I2 vSVM I2 mSVM I2 mvSVM I2 SVM I4 vSVM I4
25 0 0.4 0 0 0.1 0.4
50 0.2 0.8 0.05 0.05 0.2 0.8
100 0.4 0.4 0.1 0 0.4 0.2
200 0.8 0.05 0.1 0.1 0 0

Table B.2: The delta values of the best models according to the priori evaluation of the model classes
considering invariants.
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