SECOND VIENNA SHOCK FORUM
Vienna Shock Forum Series
Series Editors: Günther Schlag and Heinz Redl

First Vienna Shock Forum
Part A: Pathophysiological Role of Mediators and Mediator Inhibitors in Shock

First Vienna Shock Forum
Part B: Monitoring and Treatment of Shock

Second Vienna Shock Forum
Contents

Contributors ... xix
Preface
Günther Schlag and Heinz Redl .. xli

1. ORGAN FAILURE/MEDIATORS

1.1. Acute Respiratory Failure
Lung in Shock—Posttraumatic Lung Failure (Organ Failure)—MOFS
Günther Schlag and Heinz Redl ... 3

Adult Respiratory Distress Syndrome. Pathophysiology and Inflammatory Mediators in Bronchoalveolar Lavage
Jan Modig ... 17

Morphologic Features of the Lung in the Respiratory Failure Associated With Hypovolemic and Septic Shock
James C. Hogg .. 27

Pulmonary Fat Embolism—An Epiphenomenon of Shock or a Proper Mediator Mechanism?
Ulrich Bosch, Susanne Reisser, Gerd Regel, Gisela Windus, Werner J. Kleemann, and Michael L. Nerlich 37

The Role of C3a in Pulmonary Alveoli Following Trauma
Udo Obertacke, Theo Joka, Gertrud Zilow, Michael Kirschfink, and Klaus-Peter Schmit-Neuerburg 43

Cytological Changes in Alveolar Cells With ARDS
Theo Joka, Udo Obertacke, Z. Atay, E. Kreuzfelder, J. Kalotai, and L. Olivier ... 51

Septic Adult Respiratory Distress Syndrome and Multiple System Organ Failure
Jesus Villar, Miguel A. Blazquez, Santiago Lubillo, and Jose L. Manzano ... 57

Septic Shock and Acute Respiratory Failure
Jesus Villar, Miguel A. Blazquez, Santiago Lubillo, Jose Quintana, and Jose L. Manzano .. 61
Escherichia coli Hemolysin Causes Thromboxane-Mediated Hypertension and Vascular Leakage in Rabbit Lungs
Werner Seeger, Henrik Walter, Heinz Neuhof, Norbert Suttorp, and Sucharit Bhakdi .. 67

Leukocyte Induced Pulmonary Damage Using Intraperitoneal Zymosan
Osvaldo Chiara, Pier P. Giomarelli, Emma Borrelli, Sandra Betti, Pietro Padalino, and Angelo Nespoli 73

1.2. Endothelial Cells as Target Organ (in Shock)

Reaction of Vascular Intima to Endotoxin Shock
Nikolaus Freudenberg .. 77

Endotoxin-Induced Pulmonary Endothelial Injury
Barbara Meyrick, J.E. Johnson, and K.L. Brigham 91

Thrombin-Induced Neutrophil Adhesion
Peter J. Del Vecchio and Asrar B. Malik 101

Cellular Interactions in Sepsis Induced Organ Failure
G. Zeck-Kapp, U.N. Riede, and N. Freudenberg 113

Effects of Bacterial Exo- and Endotoxins on Endothelial Arachidonate Metabolism
Norbert Suttorp, Werner Seeger, and Heinz Neuhof 119

Effects of Bacterial Toxins and Calcium-Ionophores on Endothelial Permeability In Vitro
Norbert Suttorp, Thomas Hessz, Thomas Fuchs, Werner Seeger, Detlev Drenckhahn, and Heinz Neuhof 127

1.3. Microcirculation

Tissue Oxygen Debt as a Determinant of Postoperative Organ Failure
William C. Shoemaker, Paul L. Appel, and Harry B. Kram 133

Is Skeletal Muscle PO$_2$ Related to the Severity of Multiple Organ Failure and Survival in Critically Ill Patients?
Gerard I.J.M. Beerthuizen, R. Jan A. Goris, and Ferdinand J.A. Kreuzer 137

Phase-Related Vascular Reactivity in Hemorrhagic Shock
Hermann August Henrich, Franz Bäumer, and Rolf Edgar Silber 143

Ultrastructural Study of the Gastric Mucosa After Septic Shock in the Rat
Katerina Kotzampanis, Efthimios Eleftheriadis, Athanasia Alvanou, Emmanouel Tzartinoglou, Chryssi Foroglou, and Homeros Aletras 151

Do Endotoxemia and Sepsis Impair the Regulatory Functions of Capillary Endothelial Cells?
Anders Gidlöf and David H. Lewis 157
Peripheral Circulation in Septic Shock

Pulmonary Pressure-Flow Relationship and Peripheral Oxygen Supply in ARDS Due to Bacterial Sepsis
Thomas Kloess, Ulrich Birkenhauer, and Bernd Kottler 175

The Relationship Between Oxygen Supply and Oxygen Uptake in Septic Shock: The Possible Role of Endotoxin
D. De Backer, A. Roman, and J.L. Vincent .. 181

Pulmonary Venous Hemodynamics and Disturbances of Gas Exchange During E.Coli Bacteremia in the Goettingen Miniature Pig
Reinhold Fretschner, Thomas Kloess, Heinz Guggenberger, and Bernd Wagener .. 185

1.4. Cardiovascular System

Cardiovascular Dysfunction in Human Septic Shock
Joseph E. Parrillo ... 191

Cardiopulmonary Response to Endotoxin and the Eicosanoids
Daniel L. Traber, David N. Herndon, and Lillian D. Traber 201

Cardiac Function Changes Monitored by Radionuclide Ventriculography in the Septic Shock Baboon Model
I.C. Dormehl, J.P. Pretorius, R.D. Burow, M.F. Wilson, J. Kilian, M. Maree, N. Hugo, and R. de Winter .. 207

The Influence of Tachycardia During Shock on Changes in Cardiac Volumes

Isolated Rabbit Heart Preparation to Evaluate the Inotropic Effect of Endotoxin
Peter E. Krösl, Zafar Khakpour, Martin Thurnher, Seth W.O. Hallström, and Heinrich M. Schima .. 225

Negative Inotropic and Cardiovascular Effects of a Low Molecular Plasma Fraction in Prolonged Canine Hypovolemic Traumatic Shock—Papillary Muscle and Isolated Heart Preparation
Seth Hallström, Christa Vogl, Zafar Khakpour, Martin Thurnher, Peter Krösl, Heinz Redl, and Günther Schlag .. 231

Evaluation of Heart Performance During Septic Shock in Sheep
Josef Newald, Kazuro Sugi, Christa Vogl, Peter Krösl, Daniel L. Traber, and Günther Schlag .. 237

The Cultured Rat Heart Cell: A Model to Study Direct Cardiotoxic Effects of Pseudomonas Endo- and Exotoxins
Karl Werdan, S.M. Melnitzki, G. Pilz, and T. Kapsner 247
Chemical Characterization of a Positive Inotropic Plasma Factor in Shock
Imre Szabó, Botond Penke, József Kaszaki, and Sándor Nagy 253

Pathophysiologica Correlates of Cardiac Overperformance in Sepsis and Septic Shock
Carlo Chiarla, Ivo Giovannini, Giuseppe Boldrini, and Marco Castagneto 259

1.5. Mediators Complement System
Anaphylatoxin Generation and Multisystem Organ Failure in Acute Pancreatitis
Lennart Roxvall, Anders Bengtson, and Mats Heideman 265

Is Activated C3 a Premier Factor of DIC Development in Septic Shock?
Qixia Wu, Zhenyuan Liu, Ying Dang, Li Chen, and Huacui Chen 271

Complement Activation and Endotoxin in Sepsis
P. Padalino, M. Gardinali, J. Pallavicini, O. Chiara, G. Bisiani, and
A. Nespoli .. 277

In-situ Complement Activation, Pulmonary Hypertension, and Vascular Leakage in Rabbit Lungs—the Role of the Terminal Complement Complex
Werner Seeger, Ruth Hartmann, Heinz Neuhof, and Sucharit Bhakdi 283

The Role of the Complement System in the Pathogenesis of Multiple Organ Failure in Shock
T. Zimmermann, Z. Laszik, S. Nagy, J. Kaszaki, and F. Joo 291

Quantitation of C3a by Elisa Using a Monoclonal Antibody to a Neoantigenic C3a Determinant
Gertrud Zilow, Werner Naser, Arno Friedlein, Andrea Bader, and
Reinhard Burger .. 299

1.5.1. Granulocytes, Proteinases, Oxygen-Radicals
Proteases as Mediators of Pulmonary Vascular Permeability
H. Neuhof, Ch. Hoffmann, W. Seeger, N. Suttorp, and H. Fritz 305

Role of Endotoxin and Proteinases in Multiple Organ Failure (MOF)
Ansgar O. Aasen, Anne-Lise Rishovd, and Jan O. Stadaas 315

Neutrophil Stimulation by PMA Increases Alveolar Permeability in Rabbits
Hilmar Burchardi, Notker Graf, Hartmut Volkmann, and Heribert Luig 323

Changes of Ceruloplasmin Activity in Patients With Multiple Organ Failure
Reiner Dauberschmidt, Heinz Mrochen, Barbara Griess, Karin Kaden,
Christel Dressler, Hans Grajetzki, and Manfred Meyer 331

Chemiluminescence-Inducing Radicals in Experimental Porcine Septic Shock Lung
Hubert Reichle, Ulrich Pfeiffer, Peter Wendt, and Günther Blümel 339
Contents / xi

Lipid peroxidation in a Canine Model of Hypovolemic-Traumatic Shock
Camille Lieners, Heinz Redl, Helmut Molnar, Walter Fürst, Seth Hallström, and Günter Schlag ... 345

Detection of 4-Hydroxy-Nonenal, a Mediator of Traumatic Inflammation, in a Patient With Surgical Trauma and in the Sephadex Inflammation Model
Mohie Sharaf El Din, Günter Dussing, Gerd Egger, Herwig P. Hofer, Rudolf J. Schaur, and Erwin Schauenstein ... 351

1.5.2. Endotoxin
Mediators of Acute Lung Injury in Endotoxaemia
J.R. Parrat, N. Pacitti, and I.W. Rodger .. 357

The Overwhelming Inflammatory Response and the Role of Endotoxin in Early Sepsis
Ulrich Schoeffel, Martin Lausen, Günther Ruf, Bernd-Ulrich von Specht, and Nikolaus Freudenberg ... 371

The Effect of Mucosal Integrity and Mesenteric Blood Flow on Enteric Translocation of Microorganisms in Cutaneous Thermal Injury
David N. Herndon, Stephen E. Morris, J. Allen Coffey, Jr., Rusty A. Milhoan, Daniel L. Traber, and Courtney M. Townsend. 377

Endogenous Fibrinolysis in Septic Patients
Reinhard Voss, Gerhard Borkowski, Daniela Reitz, Heinrich Ditter, and F. Reinhard Matthias ... 383

Hemodynamic and Proteolytic Responses in Relation to Plasma Endotoxin Concentrations in Porcine Endotoxemia
Frode Naess, Olav Røise, Johan Pillgram-Larsen, Tom E. Ruud, Jan O. Stadaas, and Ansgar O. Aasen ... 389

Functional Determination of tPA, PAI, and Fibrinogen in Endotoxin Shock of the Pig
M. Spannagl, H. Hoffmann, M. Siebeck, H. Fritz, and W. Schramm 395

Studies on Interactions of Endotoxin With Factors of the Contact System of Plasma
Olav Røise, Bonno N. Bouma, Jan O. Stadaas, and Ansgar O. Aasen 401

Dose Related Effect of Endotoxin on the Reticulo Endothelial System (RES), the Sinusoidal Cells in the Liver, and on Hepatocytes From Rats
M.R. Karim, N. Freudenberg, M.A. Freudenberg, and C. Galanos 407

The Trigger for Posttraumatic Multiple Organ Failure: Surgical Sepsis or Inflammation?
M.L. Nerlich ... 413

Endotoxin Does Not Play a Key Role in the Pathogenesis of Multiple Organ Failure. An Experimental Study
Ignas P.T. van Bebber, Ron G.H. Speekenbrink, Paul H. M. Schillings, and R. Jan A. Goris ... 419
1.5.3. Platelet Activating Factor (PAF)

The Potential Role of Platelet-Activating Factor (PAF) in Shock, Sepsis, and Adult Respiratory Distress Syndrome (ARDS)
Pierre Braquet and David Hosford .. 425

The Role of Platelet-Activating Factor (PAF) in Immune and Cytotoxic Processes
Jean Michel Mencia-Huerta, Bernadette Pignol, Monique Paubert-Braquet, and Pierre Braquet .. 441

Effect of Platelet-Activating Factor (PAF) Administration in Chronically Instrumented Sheep—Analysis of PAF in Plasma
Harald Gasser, Anna Schiesser, Heinz Redl, Martin Thurnher, Christa Vogl, Eva Paul, Sabine Krautschneider, and Günther Schlag ... 447

Modulation of Resynthesis of 1-Alkyl-2-Arachidonyl-Glycerol-3-Phosphocholine and Phosphatidylinositol for Interception In Vivo of Free Arachidonic Acid, Lyso-PAF, Diacyl-Glycerols, and Phosphoinositides
J.A. Bauer, K. Wurster, P. Conzen, and H. Fritz .. 455

1.5.4. Tumor Necrotizing Factor (TNF)

The Role of Tumor Necrosis Factor/Cachectin in Septic Shock
Joop M.H. Debets, Wim A. Buurman, and Cees J. van der Linden 463

TNF-Induced Organ Changes in a Chronic Ovine Model—Possible Role of Leukocytes
Heinz Redl, Günther Schlag, Camille Lieners, Eva Paul, Anna Schiesser, Herbert Lamche, Walter Aulitzky, and Christoph Huber .. 467

The Involvement of Platelet-Activating Factor(PAF)-Induced Monocyte Activation and Tumor Necrosis Factor (TNF) Production in Shock
B. Bonavida, M. Paubert-Braquet, D. Hosford, and P. Braquet 485

1.6. Trauma(Sepsis)-Induced Changes of the Immune System

Graduation of Immunosuppression After Surgery or Severe Trauma
Michael W. Holch, Peter J. Grob, Walter Fierz, Werner Glinz, and Stephanos Geroulanos .. 491

Mediators and the Trauma Induced Cascade of Immunologic Defects
Eugen Faist, Wolfgang Ertel, Angelika Mewes, Theo Strasser, Alfred Walz, and Sefik Alkan .. 495

Early Deterioration of the Immune System Following Multiple Trauma
Mohammad Maghsudi, Michael L. Nerlich, Johannes A. Sturm, Michael Holch, Jochen W. Seidel, and Uwe Schmuckall ... 507

Monocyte Dependent Suppression of Immunoglobulin Synthesis in Patients With Major Trauma
Wolfgang Ertel and Eugen Faist .. 513
The T Lymphocyte-Mediated Immune Reaction in Polytrauma
Matthias Cebulla, Peter Kühnl, Knut Frederking, Peter Konold, and Alfred Pannike .. 517

Serum Mediated Depression of Chemiluminescence Response of Granulocytes in Hemorrhagic Shock
Volker Bühren, Oliver Gonzchorek, Günther Sutter, and Otmar Trentz 523

Breakdown of C3 Complement and IgG in Peritonitis Exudate—Pathophysiological Aspects and Therapeutic Approach
A. Billing, H. Kortmann, D. Fröhlich, and M. Jochum ... 527

1.7. Metabolic Disorders

Abnormal Metabolic Control in the Septic Multiple Organ Failure Syndrome: Pharmacotherapy for Altered Fuel Control Mechanisms
John H. Siegel, Thomas C. Vary, Avraham Rivkind, Ron Bilik, Bill Coleman, Ben E. Tall, and J. Glenn Morris 535

Alterations in the Metabolic Control of Carbohydrates in Sepsis
John J. Spitzer, Gregory J. Bagby, Diane M. Hargrove, Charles H. Lang, and Károly Mészáros ... 545

Hepatic Dysfunction in Multiple Systems Organ Failure as a Manifestation of Altered Cell-Cell Interaction
Frank B. Cerra, Michael West, Timothy R. Billiar, Ralph T. Holman, and Richard Simmons .. 563

Modification of Protein Kinase C (PKC) Activity and Diacylglycerol (DAG) Accumulation in Hepatocytes in Continuous Endotoxemia
Judy A. Spitzer, I.V. Deaciuc, E.B. Rodriguez de Turco, B.L. Roth, J.B. Hermiller, and J.P. Mehegan 575

Influence of Sepsis on Perfused Rat Liver Metabolism
E. Kovats, J. Karner, A. Simmel, J. Funovics, and E. Roth 589

Changes of Serum Amino Acid Concentrations in Experimentally Induced Endotoxic Shock. The Significance of Hyperalaninemia in the Prediction of Lethality
Birgit Metzler, Albert W. Rettenmeier, Isolde Wodarz, and Friedrich W. Schmahl .. 595

Metabolism and Function of Septic Kidneys
K. Kürten .. 601

Regional Respiratory Quotients in Sepsis and Shock
Ivo Giovannini, Carlo Chiarla, Giuseppe Boldrini, and Marco Castagneto 607

Analysis of the Determinants of CO2 and O2 Exchange Ratios in Shock
Ivo Giovannini, Carlo Chiarla, Giuseppe Boldrini, Carlo Iannace, and Marco Castagneto ... 613

Hyperventilation in Trauma and Shock
Carlo Chiarla, Ivo Giovannini, Giuseppe Boldrini, and Marco Castagneto 619
Contents

2. **MONITORING SCORES/BIOLOGICAL MONITORING**

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Use of Scoring Systems in Patients With Cardiogenic and Septic Shock</td>
<td>625</td>
</tr>
<tr>
<td>G"unter Pilz, Alexander St"ablein, Elisabeth Reuschel-Janetschek, Gernot Autenrieth, and Karl Werdan</td>
<td></td>
</tr>
<tr>
<td>Prognostic Indices of Sepsis</td>
<td>633</td>
</tr>
<tr>
<td>Angelo Nespoli, Pietro Padalino, Claudio Marradi, Jacopo Pallavicini, Luca Fattori, and Giuliana Bisiani</td>
<td></td>
</tr>
<tr>
<td>Efficiency of Sepsis Score, AT III- and Endotoxin Evaluation in Predicting the Prognosis of Post-Operative Sepsis in the Intensive Care Unit</td>
<td>637</td>
</tr>
<tr>
<td>N. Kipping, R. Grundmann, M. Hornung, and C. Wesoly</td>
<td></td>
</tr>
<tr>
<td>Risk Factors of the Multiple Organ Failure</td>
<td>643</td>
</tr>
<tr>
<td>P. Lehmkuhl, A. Schultz, and J. Gebert</td>
<td></td>
</tr>
<tr>
<td>Biochemical Analysis in Posttraumatic and Postoperative Organ Failure</td>
<td>649</td>
</tr>
<tr>
<td>Heinz Redl and Günther Schlag</td>
<td></td>
</tr>
<tr>
<td>Posttraumatic Plasma Levels of Mediators of Organ Failure</td>
<td>673</td>
</tr>
<tr>
<td>Marianne Jochum, Alexander Dwenger, Theo Joka, and Johannes Sturm</td>
<td></td>
</tr>
<tr>
<td>Plasma Levels of Granulocyte Elastase and Neopterin in Patients With MOF</td>
<td>683</td>
</tr>
<tr>
<td>Richard Pacher, Heinz Redl, and Wolfgang Woloszczuk</td>
<td></td>
</tr>
<tr>
<td>Elastase-α₁-PI: Early Indicator of Systemic Infections in Pediatric Patients</td>
<td>689</td>
</tr>
<tr>
<td>Christian P. Speer, Michaela Rethwilm, Friedrich Tegtmeier, and Manfred Gahr</td>
<td></td>
</tr>
<tr>
<td>Leucocytes, Neutrophilia, and Elastase-a₁-Proteinase-Inhibitor-Complex: Marker of Different Validity for Monitoring the Perioperative Infection Risk</td>
<td>695</td>
</tr>
<tr>
<td>Peter C. Fink, Rolf Erdmann, Friedrich Schönude, and Ivo Baca</td>
<td></td>
</tr>
<tr>
<td>Validity of the Elastase Assay in Intensive Care Medicine</td>
<td>701</td>
</tr>
<tr>
<td>Hermann Lang, Marianne Jochum, Hans Fritz, and Heinz Redl</td>
<td></td>
</tr>
<tr>
<td>An Automated Homogeneous Enzyme Immunoassay for Human PMN Elastase</td>
<td>707</td>
</tr>
<tr>
<td>M. Dreher, G. Gunzer, R. Helger, and H. Lang</td>
<td></td>
</tr>
<tr>
<td>Diodotyrosine (DIT): A New Marker of Leukocyte Phagocytic Activity in Sepsis and Severe Infections</td>
<td>711</td>
</tr>
<tr>
<td>H.-J. Gramm, H. Meinhold, K. Voigt, and R. Dennhardt</td>
<td></td>
</tr>
<tr>
<td>Serum Proteins and Cytokines for Prediction of Sepsis?</td>
<td>715</td>
</tr>
<tr>
<td>A.F. Hammerle, G. Pöschl, R. Kirnbauer, F. Trautinger, M. Micksche, and O. Mayrhofer</td>
<td></td>
</tr>
<tr>
<td>The Prognostic Value of Plasmaproteins in Patients With Abdominal Sepsis</td>
<td>719</td>
</tr>
<tr>
<td>Michael Rogy, Reinhold Függer, Wolfgang Graninger, Friedrich Herbst, Michael Schemper, and Franz Schulz</td>
<td></td>
</tr>
<tr>
<td>CRP Predicts Complications in Pancreatitis and Peritonitis</td>
<td>725</td>
</tr>
<tr>
<td>Åke Lasson, Rikard Berling, and Kjell Ohlsson</td>
<td></td>
</tr>
<tr>
<td>The PFI-Index According to Aasen for Prognosis and Course of Polytraumatized Patients</td>
<td>731</td>
</tr>
<tr>
<td>D. Nast-Kolb, Ch. Waydhas, I. Baumgartner, M. Jochum, K.-H. Duswald, and L. Schweiberer</td>
<td></td>
</tr>
</tbody>
</table>
Contents / xv

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components of the Kallikrein-Kinin-System in Patients With ARDS</td>
<td>737</td>
</tr>
<tr>
<td>G. Fuhrer, W. Heller, W. Junginger, O. Gröber, and K. Roth</td>
<td></td>
</tr>
<tr>
<td>Biochemical and Hormonal Parameters in Patients With Multiple Trauma</td>
<td>743</td>
</tr>
<tr>
<td>M. Brandl, E. Pscheidl, W. Amann, A. Barjasic, and Th. Pasch</td>
<td></td>
</tr>
<tr>
<td>Patterns of Endocrine Secretion During Sepsis</td>
<td>751</td>
</tr>
<tr>
<td>R. Dennhardt, H.-J. Gramm, K. Meinhold, and K. Voigt</td>
<td></td>
</tr>
<tr>
<td>Phospholipase A in Severely Ill Patients</td>
<td>757</td>
</tr>
<tr>
<td>Roland M. Schaefer, M. Teschner, and A. Heidland</td>
<td></td>
</tr>
<tr>
<td>The Clinical Significance of Serum Phospholipase A in Patients With</td>
<td>763</td>
</tr>
<tr>
<td>Multiple Trauma</td>
<td></td>
</tr>
<tr>
<td>Ch. Waydhas, I. Baumgartner, D. Nast-Kolb, P. Lehnert, K.H. Duswald,</td>
<td></td>
</tr>
<tr>
<td>and L. Schweiberer</td>
<td></td>
</tr>
<tr>
<td>Lymphocyte/Monocyte-Ratio Correlates With Survival From Infections</td>
<td>769</td>
</tr>
<tr>
<td>and Multi-Organ Failure Following Polytrauma</td>
<td></td>
</tr>
<tr>
<td>Michael W. Holch, Peter J. Grob, and Werner Glinz</td>
<td></td>
</tr>
<tr>
<td>A Prospective Study to Evaluate Posttraumatic Liver Function by</td>
<td>775</td>
</tr>
<tr>
<td>Scintigraphy as a Possible Predictor of Organ Failure</td>
<td></td>
</tr>
<tr>
<td>G. Regel, M.L. Nerlich, K.F. Gratz, H.P. Friedl, and J.A. Sturm</td>
<td></td>
</tr>
</tbody>
</table>

3. GENERAL THERAPY

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prophylaxis and Therapy of the Multiple Organ Failure Syndrome (MOFS):</td>
<td>783</td>
</tr>
<tr>
<td>Early Ventilatory Support</td>
<td></td>
</tr>
<tr>
<td>Herbert Benzer, Wolfgang Koller, Christian Putensen, and Günther Putz</td>
<td></td>
</tr>
<tr>
<td>The Use of Exogenous Surfactant to Treat Patients With Acute</td>
<td>791</td>
</tr>
<tr>
<td>High-Permeability Lung Edema</td>
<td></td>
</tr>
<tr>
<td>Roger G. Spragg, Paul Richman, Nicolas Gilliard, T.Allen Merritt,</td>
<td></td>
</tr>
<tr>
<td>Bengt Robertson, and Tore Curstedt</td>
<td></td>
</tr>
<tr>
<td>Exogenous Surfactant in Experimental Aspiration Trauma</td>
<td>797</td>
</tr>
<tr>
<td>Wolfgang Strohmaier, Heinz Redl, and Günther Schlag</td>
<td></td>
</tr>
<tr>
<td>Effect of an Altered Fluid Regimen on Extravascular Lung Water in</td>
<td>803</td>
</tr>
<tr>
<td>Advanced Septic Shock States</td>
<td></td>
</tr>
<tr>
<td>Ernst Zadrobilek, Vichra Evstatieva, Paul Sporn, and Karl Steinbereithner</td>
<td></td>
</tr>
<tr>
<td>Effect of Large Volume Replacement With Crystalloids on Extravascular</td>
<td>809</td>
</tr>
<tr>
<td>Lung Water in Human Septic Shock Syndrome</td>
<td></td>
</tr>
<tr>
<td>Ernst Zadrobilek, Werner Hackl, Paul Sporn, and Karl Steinbereithner</td>
<td></td>
</tr>
<tr>
<td>Hydroxyethyl Starch and Lung Lymph Flow in an Ovine Model of</td>
<td>815</td>
</tr>
<tr>
<td>Endotoxemia</td>
<td></td>
</tr>
<tr>
<td>Hans J. Lubbesmeyer, Jesse Basadre, Michael Möllmann, Lillian Traber,</td>
<td></td>
</tr>
<tr>
<td>James Maguire, David N. Herndon, and Daniel L. Traber</td>
<td></td>
</tr>
<tr>
<td>Can Hemofiltration Increase Survival Time in Acute Endotoxemia—A</td>
<td>821</td>
</tr>
<tr>
<td>Porcine Shock Model</td>
<td></td>
</tr>
</tbody>
</table>
Decontamination of the Gastrointestinal Tract and Prevention of Multiple Organ Failure. An Experimental Study
Ignaas P.T. van Bebber, Roland M.G.H. Mollen, Joop P. Koopman, and R. Jan A. Goris ... 827

3.1. Corticosteroids
Development of Animal Models for Application to Clinical Trials in Septic Shock
Lerner B. Hinshaw ... 835

Dilemmas of the Clinical Trial; Review and Critique of VA Cooperative Study of Corticosteroid in Systemic Sepsis
Michael F. Wilson .. 847

Corticosteroids for Septic Shock and the Adult Respiratory Distress Syndrome
Roger C. Bone ... 857

Nebulized Corticosteroid in Experimental Respiratory Distress
Sten Walther, Ingvar Jansson, Björn Bäckstrand, and Sten Lennquist 867

Influence of Methylprednisolone Pretreatment on Coagulation, Fibrinolysis, Hemodynamics, and Cellular Responses in Porcine Endotoxemia
Olav Røise, Frode Naess, Johan Pillgram-Larsen, Tom E. Ruud, Jan O. Stadaas, and Ansgar O. Aasen .. 873

Prevention of Anaphylatoxin Formation by High-Dose Corticosteroids in Total Hip Arthroplasty
Wolfgang Gammer, Anders Bengtson, and Mats Heideman 879

3.2. Radical Scavengers
Free Radical Scavengers in the Cardiopulmonary Response to Endotoxin
Daniel L. Traber, David N. Herndon, and Lillian D. Traber 885

The 21-Aminosteroid U74006F Reduces Systemic Lipid Peroxidation, Improves Neurologic Function, and Reduces Mortality After Cardiopulmonary Arrest in Dogs
JoAnne E. Natale, Robert J. Schott, Edward D. Hall, J. Mark Braughler, and Louis G. D’Alecy ... 891

Alpha-Mercaptopropionylglycine in Haemorrhagic Shock
B. Weidler, B. v. Bormann, M. Kahle, and G. Hempelmann 897

Dynamics of Prostacyclin and Thromboxane During Myocardial Ischemia
Elizabeth Röth, Dezső Keleman, Bela Török, Alexander Nagy, and Susan Pollak ... 907

Protection by Recombinant Human Superoxide Dismutase in Lethal Rat Endotoxemia
Johannes Schneider, Elmar Friderichs, and Hubert Giertz 913
3.3. PAF Antagonists

Effect of a New and Specific PAF-Antagonist, WEB 2086, on PAF and Endotoxin/Tumor Necrosis Factor Induced Changes in Mortality and Intestinal Transit Velocity
Hubert Heuer .. 919

The Pathophysiological Role of PAF in Anaphylactic Lung Reaction in the Guinea Pig and in Endotoxin Shock Evidenced by the Specific PAF-Antagonist WEB 2086
Hubert Heuer and Jorge Casals-Stenzel 925

Effect of PAF-Antagonists in Endotoxin Shock—Ovine and Rat Experiments
Soheyl Bahrami, Heinz Redl, Martin Thurnher, Christa Vogl, Eva Paul, Anna Schiesser, and Günther Schlag 931

3.4. Protease Inhibitors

Therapeutic Effects of the Combination of Two Proteinase Inhibitors in Endotoxin Shock of the Pig
M. Siebeck, H. Hoffmann, J. Weipert, and M. Spannagl 937

Leukocyte Neutral Proteinase Inhibitor of the Pig: Modification by Eglin C and Superoxide Dismutase of the Response to Shock
M. Siebeck, H. Hoffmann, R. Geiger, and L. Schweiberer 945

Reasons for the Ineffectiveness of Eglin C to Ameliorate Endotoxin Shock in Sheep
Wolfgang G. Junger, Camille Lieners, Heinz Redl, and Günther Schlag 953

Clinical Relevants of the Membrane Protective Action of Aprotinin on the Intraoperative Histamine Liberation
Henning Harke and Salah Rahman .. 959

Antithrombin III and Plasma Substitution in Septic Shock
Rainer Seitz, Martin Wolf, and Rudolf Egbring 965

Immunological Determination of Proteinase Inhibitor Complexes (PICs) and Their Behaviour During Plasma Derivate Treatment in Septic Infections
Rudolf Egbrin, Rainer Seitz, Heiner Blanke, T. Menges, R. Südhoff, T. Stober, G. Kolb, and L. Lerch ... 971

Therapeutic Modalities to Ameliorate Endotoxin Induced DIC in the Rats
Soheyl Bahrami, Eva Paul, Heinz Redl, and Günther Schlag 977

Endotoxin Shock in the Rat: Reduction of Arterial Blood Pressure Fall by the Bradykinin Antagonist B4148
Joachim Weipert, Hans Hoffmann, Matthias Siebeck, and Eric T. Whalley 983

3.5. Immune Therapy

First Experience With Immunomodulation in Septic Shock
Ch. Josten, G. Muhr, and R. Sistermann 989
Thymopentin (TP-5) in the Treatment of the Postburn and Postoperative Immunodeficiency Syndrome
Gerhard Hamilton, Gerald Zöch, Thomas Rath, and Günther Meissl 995

Protection Against the Consequences of Intravascular Coagulation by Reticuloendothelial Stimulation
George Lázár, Jr., Elizabeth Husztik, and George Lázár 1001

Behavior of Leukocyte Elastase and Immunoglobulins in Septic Toxic Multiorgan Involvement: Observations on 50 Gas Gangrene Cases
D. Tirpitz 1007

Haemodynamic Effects During Treatment of Sepsis and Septic Shock With Immunoglobulins and Plasmapheresis
Karl Werdan, Günter Pilz, and Stefan Kääb 1025

Prediction and Prevention, by Immunological Means, of Septic Complications After Elective Cardiac Surgery

Stimulation of Phagocytosis by Immunoglobulins in Animal Experiment
Stefan W. Frick and Rolf Hartmann .. 1037

Determination of Antibodies Against Bacterial Lipopolysaccharides and Lipid A by Immunoblotting
Peter C. Fink, Gert Bokelmann, and Rainer Haeckel 1043

3.6. Inotropic Agents—Calcium Antagonists
Diltiazem Prevents Endotoxin-Induced Disturbances in Intracellular Ca²⁺ Regulation
Mohammed M. Sayeed 1053

Calcium Antagonists in Shock—A Minireview of the Evidence
James R. Parratt 1065

Circulatory Responses to the Sepsis Syndrome
William J. Sibbatt 1075

Therapy of Acute Respiratory Distress Syndrome With Nifedipine
Peter Hoffmann, Michael Imhoff, and Ralf Gahr 1087

Pharmacological Effects of RA 642 on Cerebrocortical Perfusion in Acute Hemorrhagic Shock in Rats
Stefan Hergenröder and Richard Reichl 1091

Long Term Administration of Dopamine: Is There a Development of Tolerance?
G.G. Braun, F. Bahlmann, M. Brandl, and R. Knoll 1097

Use of Systolic Time Intervals to Evaluate the Effect of Dopamine Infusion in Septic and Burn Shock
Kornél Szabó 1101

Index 1107
Contributors

Ansgar O. Aasen, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [315,389,401,873]

Homeros Aletras, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Sefik Alkan, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Athanasia Alvanou, Department of Histology, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Gernot Autenrieth, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Ivo Baca, Department für Chirurgie, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695]

Björn Bäckstrand, Department of Surgery, Regionsjukhuset, S-581 85 Linköping, Sweden [867]

Andrea Bader, Institute of Immunology, University of Heidelberg, 6900 Heidelberg, Federal Republic of Germany [299]

Gregory J. Bagby, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

W. Amann, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

Paul L. Appel, Department of Surgery, King-Drew Medical Center, Los Angeles, CA 90059 [133]

Z. Atay, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [51]

Walter Aulitzky, Department of Internal Medicine, University of Innsbruck, Innsbruck A-6020, Austria [467]

F. Bahlmann, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [1097]

Soheyl Bahrami, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [931,977]

A. Barjasic, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

The numbers in brackets are the opening page numbers of the contributors’ articles.
Robert E. Barrow, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Jesse Basadre, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [815]

J.A. Bauer, Chirurg. Klinik Innenstadt und Chirurg. Polikl. der Universität, D-8000 München 2, Democratic Republic of Germany [455]

Franz Bäumer, Chirurgische Universitätsklinik, Experimentelle Chirurgie, D-8700 Würzburg, Federal Republic of Germany [143]

Gerard I.J.M. Beerthuizen, Department of General Surgery, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands [137]

Anders Bengtson, Department of Anesthesiology, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265,879]

Herbert Benzer, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Rikard Berling, Department of Anaesthesiology, Malmö General Hospital, University of Lund, S-214 01 Malmö, Sweden [725]

Sandra Betti, Cardiovascular Surgery, University of Siena, 53100 Siena, Italy [73]

G. Beverley, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [217]

Sucharit Bhakdi, Department of Microbiology, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,283]

Ron Bilik, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Timothy R. Billiar, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

A. Billing, Chirurg. Klinik und Poliklinik der Universität München, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [527]

Ulrich Birkenhauer, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175]

G. Bisiani, Department of Internal Medicine, University of Milan, 20122 Milan, Italy [277]

Giuliana Bisiani, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

Heiner Blanke, Department Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Miguel Blazquez, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

Günther Blümel, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Gert Bokelmann, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [1043]
CARLO CHIARLA, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

J. Allen Coffey, Jr., Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Bill Coleman, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Tore Curstedt, Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden [791]

Louis G. D'Alecy, Departments of Physiology and Surgery, The University of Michigan Medical School, Ann Arbor, MI 48109 [891]

Ying Dang, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Reiner Dauberschmidt, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

I.V. Deaciuc, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [575]

D. De Backer, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]

Joop M.H. Debets, Department of General Surgery, University of Limburg, Biomedical Center, 6200 MD Maastricht, The Netherlands [463]

Peter J. Del Vecchio, Departments of Ophthalmology and Physiology, The Albany Medical College, Albany, NY 12208 [101]

R. Dennhardt, Klinik für Anästhesiologie, Krankenhaus Nordwest, 6000 Frankfurt 90, Federal Republic of Germany [711,751]

E.B. Rodriguez de Turco, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [575]

R. de Winter, Medical Center Veterans Administration, Oklahoma City, OK 73104 [207]

Heinrich Ditter, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

I.C. Dormehl, AEC Institute for Life Sciences, University of Pretoria, Pretoria, South Africa [207,217]

M. Dreher, Diagnostica Forschung, E. Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

Detlev Drenckhahn, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Christel Dressler, Department of Anaesthesiology, Friedrichshain Hospital of Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

Günter Dussing, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]

K.H. Duswald, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2, Federal Republic of Germany [731,763]

Alexander Dwenger, Klinische Biochemie, Medizinischen Hochschule Hannover, D-3000 Hannover 61, Federal Republic of Germany [673]
Rudolf Egbring, Division of Internal Medicine, Department of Hematology, Philipps-University, D-3550 Marburg, Federal Republic of Germany [965,971]

Gerd Egger, Institute of Functional Pathology, University of Graz, A-8010 Graz, Austria [351]

Efthimios Eleftheriadis, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

O. Elert, Department of Thoracic and Cardiovascular Surgery, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

W. Engelhardt, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Rolf Erdmann, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695]

Wolfgang Ertel, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 München 70, Federal Republic of Germany [495,513]

Vichra Evstatieva, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, A-1090 Vienna, Austria [803]

Eugen Faist, Department of Surgery, LMU Munich, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [495,513]

Luca Fattori, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

Walter Fierz, Section of Clinical Immunology, Department of Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland [491]

Peter C. Fink, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695,1043]

Chryssi Foroglou, Department of Histology, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Knut Frederking, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

Reinhold Fretzchnr, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [185]

M.A. Freudenberg, Max-Planck-Institut für Immunobiologie, Freiburg/Br., Federal Republic of Germany [407]

Nikolaus Freudenberg, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [77,113,371,407]

Stefan W. Frick, Surgical University Clinic Marienhospital Ruhr-University of Bochum, D-4690 Herne 1, Federal Republic of Germany [1037]

Elmar Friderichs, Department of Pharmacology, Grünenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

H.P. Friedl, Department of Traumatology, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [775]

Arno Friedlein, Progen Biotechnik, 6900 Heidelberg, Federal Republic of Germany [299]

Hans Fritz, Department of Surgery, Division of Clinical Chemistry and Clinical Biochemistry, University of Munich, D-8000 Munich 2, Federal Republic of Germany [305,395,455,701]
D. Fröhlich, Chirurg. Klinik und Poliklinik der Universität München, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [527]

Thomas Fuchs, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Reinhold Függer, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

G. Fuhrer, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

J. Funovics, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Walter Fürst, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna A-1200, Austria [345]

Manfred Gahr, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

Ralf Gahr, Unfallchirurgische Klinik, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

C. Galanos, Max-Planck-Institut für Immunbiologie, Freiburg/Br., Federal Republic of Germany [407]

Wolfgang Gammer, Department of Orthopaedic Surgery, Ludvika Hospital, 771 00 Ludvika, Sweden [879]

M. Gardinali, Department of Internal Medicine, University of Milan, 20122 Milan, Italy [277]

Harald Gasser, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447]

J. Gebert, Zentrum für Anästhesie der Medizinischen, Hochschule Hannover, 3000 Hannover 51, Federal Republic of Germany [643]

Stephanos Geroulanos, Department of Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland [491]

Anders Gidlöf, Clinical Research Center, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden [157]

Hubert Giertz, Department of Pharmacology, Grünenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

Nicolas Gilliard, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

Pier P. Giomarelli, Cardiovascular Surgery, University of Siena, 53100 Siena, Italy [73]

Ivo Giovannini, Centro di Studio per Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

Werner Glinz, Section of Clinical Immunology, Department of Surgery, University Hospital, CH-8091 Zurich, Switzerland [491,769]

Oliver Gonschorek, Department of Trauma Surgery, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

R. Jan A. Goris, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [137,419,827]
Notker Graf, Department of Anaesthesiology, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Hans Grajetzki, Central Resuscitation and Intensive Care Unit, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

H.-J. Gramm, Klinik für Anästhesiologie und operative Intensivmedizin, Klinikum Steglitz der Freien Universität Berlin, D-1000 Berlin 45, Federal Republic of Germany [711,751]

Wolfgang Graninger, Department of Chemotherapy, University of Vienna Medical School, A-1090 Vienna, Austria [719]

K.F. Gratz, Department of Nuclearmedicine, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [775]

Barbara Griess, Research Department of Intensive Care Medicine, Friedrichshain Hospital of Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

Peter J. Grob, Section of Clinical Immunology, Department of Medicine, University Hospital, CH-8091 Zurich, Switzerland [491,769]

O. Gröber, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

A.B.J. Groeneveld, Medical Intensive Care Unit, Free University Hospital, Amsterdam [163]

R. Grundmann, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

Heinz Guggenberger, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [185]

G. Gunzer, Diagnostica Forschung, E.Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

C.E. Hack, Central Laboratory of the Netherlands Red Cross Bloodtransfusion Service and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, Amsterdam [163]

Werner Hackl, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [809]

Rainer Haeckel, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [1043]

Edward D. Hall, CNS Diseases Research, The Upjohn Company, Kalamazoo, MI 49001 [891]

Seth W.O. Hallström, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231,345]

Gerhard Hamilton, Experimental Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

A.F. Hammerle, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

Diane M. Hargrove, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]
Henning Harke, Department of Anaesthesia, General Hospital of Krefeld, D-4150 Krefeld, Federal Republic of Germany [959]

Rolf Hartmann, Surgical University Clinic Marienhospital Ruhr-University of Bochum, D-4690 Herne 1, Federal Republic of Germany [1037]

Ruth Hartmann, Department of Internal Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [283]

Mats Heideman, Department of Surgery, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265,879]

A. Heidland, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]

R. Helger, Diagnostica Forschung, E. Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

W. Heller, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

G. Hempelmann, Department of Anaesthesia and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]

Hermann August Henrich, Chirurgische Universitätsklinik, Experimentelle Chirurgie, D-8700 Würzburg, Federal Republic of Germany [143]

Friedrich Herbst, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

Stefan Hergenröder, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim/Rhein, Federal Republic of Germany [1091]

J.B. Hermiller, Naval Medical Research Institute, Bethesda, MD 20814 [575]

David N. Herndon, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [201,377,815,885]

Thomas Hessz, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Hubert Heuer, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim, Federal Republic of Germany [919,925]

Lerner B. Hinshaw, Oklahoma Medical Research Foundation, and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 [835]

Herwig P. Hofer, Surgical Clinic, University of Graz, A-8010 Graz, Austria [351]

Ch. Hoffmann, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [305]

Peter Hoffmann, Abteilung für Anästhesiologie, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

James C. Hogg, Pulmonary Research Laboratory, University of British Columbia, St. Paul’s Hospital, Vancouver, Canada V6Z 1Y6 [27]
Contributors / xxvii

G. Hohlbach, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Michael Holch, Department of Trauma Surgery, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]

Michael W. Holch, Section of Clinical Immunology, Department of Medicine, University Hospital, CH-8091 Zurich, Switzerland [491, 769]

Ralph T. Holman, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

M. Hornung, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

David Hosford, I.H.B. Research Labs., 92350 Le Plessis-Robinson, France [425, 485]

Christoph Huber, Department of Internal Medicine, University of Innsbruck, A-6020 Innsbruck, Austria [467]

N. Hugo, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [207, 217]

Elizabeth Husztik, Institute of Medical Biology, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

Carlo Iannace, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [613]

Michael Imhoff, Chirurgische Klinik, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

Ingvar Jansson, Department of Surgery, Regionsjukhuset, S-581 85 Linköping, Sweden [867]

Marianne Jochum, Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Universität München, D-8000 München 2, Federal Republic of Germany [527, 673, 701, 731]

J.E. Johnson, Department of Pathology, The Center for Lung Research, Vanderbilt University Medical Center, Nashville, TN 37232 [91]

Theo Joka, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43, 51, 673]

F. Joo, Biological Research Center of the Academy of Science of Hungary, Hungary [291]

Ch. Josten, Department of Surgery, Berufsgenossenschaftliche Krankenanstalten “Bergmannsheil”, 4630 Bochum, Federal Republic of Germany [989]

Wolfgang G. Junger, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [953]

W. Junginger, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

Stefan Kääb, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [1025]

Karín Kaden, Paediaetric Clinic, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

M. Kahle, Department of General and Thoracic Surgery, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]
J. Kalotai, Department of Traumatology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

T. Kapsner, Department of Medicine I, Klinikum Grosshadern, University of Munich, 8000 Munich 70, Federal Republic of Germany [247]

J. Karner, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

József Kaszaki, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6720 Szeged, Hungary [253,291]

Dezső Kelemen, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

Zafar Khakpour, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231]

J.G. Kilian, Department of Medicine, University of Pretoria, Pretoria, South Africa [207,217]

N. Kipping, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

R. Kirnbauer, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

Michael Kirschfink, Department of Immunology, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [43]

Werner J. Kleeman, Department of Forensic Medicine, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]

Thomas Kloess, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175,185]

R. Knoll, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [1097]

G. Kolb, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Wolfgang Koller, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Peter Konold, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

A. Kooistra, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Joop P. Koopman, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen. The Netherlands [827]

H. Kortmann, Chirurg. Klinik und Poliklinik der Universität München, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [527]

Bernd Kottler, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175]
Katerina Kotzampassi, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

E. Kovats, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Harry B. Kram, Department of Surgery, King-Drew Medical Center, Los Angeles, CA 90059 [133]

Sabine Krautschneider, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447]

H.G. Kress, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Ferdinand J.A. Kreuzer, Department of Physiology, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands [137]

E. Kreuzfelder, Institute of Virology and Immunology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

Peter E. Krösl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231,237]

Peter Kühnl, Institute of Immunohematology, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [278]

K. Kürten, Chirurgische Universitätsklinik Köln, 5000 Köln 41, Federal Republic of Germany [601]

Herbert Lamche, Ernst Boehringer Institute, A-1120 Vienna, Austria [467]

Charles H. Lang, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Hermann Lang, Diagnostic Research, E. Merck Darmstadt, D-6100 Darmstadt, Federal Republic of Germany [701,707]

Åke Lasson, Departments of Surgery and Surgical Pathophysiology, Malmö General Hospital, University of Lund, S-214 01 Malmö, Sweden [725]

Z. Laszik, Institute of Pathology, Medical University of Szeged, Szeged, Hungary [291]

Martin Lausen, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

George Lázár, Institute of Pathophysiology, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

George Lázár, Jr., Department of Surgery, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

P. Lehmkuhl, Zentrum für Anästhesie der Medizinischen Hochschule Hannover, 3000 Hanover 51, Federal Republic of Germany [643]

Sten Lennquist, Department of Surgery, Regionssjukhuset, S-581 85 Linköping, Sweden [867]

L. Lerch, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

David H. Lewis, Clinical Research Center, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden [157]

Camille Lieners, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [345,467,953]

Zhenyuan Liu, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]
Hans J. Lübbesmeyer, Department of Anesthesiology and Operative Intensive Care, Westfaelian Wilhelms University, D-4400 Münster, Federal Republic of Germany [815]

Santiago Lubillo, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

Heribert Luig, Department of Nuclear Medicine, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Mohammad Maghsudi, Department of Trauma Surgery, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]

James Maguire, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [815]

Asrar B. Malik, Department of Physiology, The Albany Medical College, Albany, NY 12208 [101]

Jose L. Manzano, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

M. Maree, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [207,217]

Claudio Marradi, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

F. Reinhard Matthias, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

O. Mayrhofer, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

J.P. Mehegan, Naval Medical Research Institute, Bethesda, MD 20814 [575]

Günther Meissl, I. Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

S.M. Melnitzki, Department of Medicine I, Klinikum Grosshadern, University of Munich, 8000 Munich 70, Federal Republic of Germany [247]

Jean Michel Mencia-Huerta, I.H.B. Research Labs., 91952 Les Ulis, France [441]

T. Menges, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

T. Allen Merritt, Department of Pediatrics, University of California, San Diego, CA 92103 [791]

Károly Mézáros, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Birgit Metzler, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Angelika Mewes, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Manfred Meyer, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]
Barbara Meyrick, Department of Pathology, The Center for Lung Research, Vanderbilt University, Nashville, TN 37232 [91]

M. Micksche, Institute for Applied and Experimental Oncology, University of Vienna, A-1090 Vienna, Austria [715]

Rusty A. Milhoan, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Jan Modig, Department of Anesthesiology and Intensive Care, University Hospital of Uppsala, S-751 85 Uppsala, Sweden [17]

Roland M.G.H. Mollen, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [827]

Michael Möllmann, Department of Anesthesiology and Operative Intensive Care, Westfaelien Wilhelms University, D-4400 Münster, Federal Republic of Germany [815]

Helmut Molnar, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [345]

Glenn Morris, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Stephen E. Morris, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Heinz Mrochen, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

G. Muhr, Department of Surgery, Berufsgenossenschaftliche Krankenanstalten “Bergmannsheil”, 4630 Bochum, Federal Republic of Germany [989]

Frode Naess, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [389,873]

Sándor Nagy, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253,291,907]

Werner Naser, Progen Biotechnik, 6900 Heidelberg, Federal Republic of Germany [299]

D. Nast-Kolb, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2, Federal Republic of Germany [731,763]

JoAnne E. Natale, Department of Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109 [891]

Michael L. Nerlich, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37,413,507,775]

Angelo Nespoli, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [73,277,633]

Heinz Neuhof, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,119,127,283,305]

Josef Newald, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [237]
J.H. Nuyens, Central Laboratory of the Netherlands Red Cross Bloodtransfusion Service and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, Amsterdam [163]

Udo Obertacke, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43,51]

Kjell Ohlsson, Departments of Surgery and Surgical Pathophysiology, Malmö General Hospital, S-214 01 Malmö, Sweden [725]

L. Olivier, Department of Traumatology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

Richard Pacher, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [683]

N. Pacitti, Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G1 1XW, Scotland [357]

Pietro Padalino, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [73,277,633]

Jacopo Pallavicini, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [277,633]

Alfred Pannike, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

James R. Parratt, Department of Physiology and Pharmacology, Royal College, University of Strathclyde, Glasgow G1 1XW, Scotland [357,1065]

Joseph E. Parrillo, Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892 [191]

Th. Pasch, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

Monique Paubert-Braquet, Centre de Traitement des Brûlés, Hôpital Percy, 92140 Clamart, France [441,485]

Eva Paul, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [477,467,931,977]

Botond Penke, Institute of Medical Chemistry, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253]

Ulrich Pfeiffer, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Bernadette Pignol, I.H.B. Research Labs., 91952 Les Ulis, France [441]

Johan Pillgram-Larsen, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [389,874]

Günter Pilz, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [247,625,1025]

Susan Pollak, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

G. Pöschl, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

J.P. Pretorius, AEC Institute for Life Sciences, University of Pretoria, Pretoria, South Africa [207,217]

E. Pscheidl, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]
Christian Putensen, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Günther Putz, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Jose Quintana, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [61]

Salah Rahman, Department of Anaesthesia, General Hospital of Krefeld, D-4150 Krefeld, Federal Republic of Germany [959]

Thomas Rath, I. Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

H.-G. Rau, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Heinz Redl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [xli,3,231,345,447, 467,649,683,701,797,931,953,977]

Gerd Regel, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37,775]

Richard Reichl, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim/Rhein, Federal Republic of Germany [1091]

Hubert Reichle, Department of Anaesthesiology, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Susanne Reisser, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]

Daniela Reitz, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

Michaela Rethwilm, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

Albert W. Rettenmeier, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Elisabeth Reuschel-Janetschek, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Paul Richman, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

U.N. Riede, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [113]

Anne-Lise Rishovd, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, Oslo 4, Norway [315]

Avraham Rivkind, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Bengt Robertson, Departments of Pediatrics and Pediatric Pathology, St. Goran’s Children’s Hospital, Stockholm, Sweden [791]

I.W. Rodger, Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G1 1XW, Scotland [357]

Michael Rogy, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]
Olav Røise, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [389,401,873]

A. Roman, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]

B.L. Roth, Naval Medical Research Institute, Bethesda, MD 20814 [575]

E. Roth, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Elizabeth Röth, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

K. Roth, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

Lennart Roxvall, Department of Surgery, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265]

Günther Ruf, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

Tom E. Ruud, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [389,873]

Mohammed M. Sayeed, Department of Physiology, Loyola University, Stritch School of Medicine, Maywood, IL 60153 [1053]

Roland M. Schaefer, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]

H.-M. Schardey, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Erwin Schauenstein, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]

Rudolf J. Schaur, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]

C. Scheidewig, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Michael Schemper, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

Anna Schiesser, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447,467,931]

F.W. Schindler, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Paul H.M. Schillings, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [419]

Heinrich M. Schima, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225]

Günther Schlag, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [xli,3,231,237,345,447,467,649,797,931,953,977]

Friedrich W. Schmahl, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Klaus-Peter Schmit-Neuerburg, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43]

Uwe Schmuckall, Department of Immunology, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]
Contributors / xxxv

Johannes Schneider, Department of Pharmacology, Grünenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

Ulrich Schoeffel, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

Friedrich Schöndube, Department für Chirurgie, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695]

Robert J. Schott, Department of Surgery, The University of Michigan Medical School, Ann Arbor, MI 48109 [891]

W. Schramm, Medizinische Klinik Innenstadt, Ludwig-Maximilians Universität, 8000 Munich, Federal Republic of Germany [395]

A. Schultz, Zentrum für Anästheisie der Medizinischen. Hochschule Hannover, 3000 Hannover 51, Federal Republic of Germany [643]

Franz Schulz, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

L. Schweiberer, Chirurgische Klinik Innenstadt und Chirurgische Poliklinik, Ludwig-Maximilians-Universität München, D-8000 München 2, Federal Republic of Germany [731,763,945]

Werner Seeger, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,119,127,283,305]

Jochen W. Seidel, Department of Immunology, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]

Rainer Seitz, Division of Internal Medicine, Department of Hematology, Philipps-University, D-3550 Marburg, Federal Republic of Germany [965,971]

Mohie Sharaf El Din, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]

William C. Shoemaker, Department of Surgery, King-Drew Medical Center, Los Angeles, CA 90059 [133]

William J. Sibbald, Critical Care Trauma Centre, The Victoria Hospital Corporation, and the University of Western Ontario, London, Ontario N6A 4G5, Canada [1075]

Matthias Siebeck, Chirurgische Klinik Innenstadt und Chirurgische Poliklinik, University of Munich, D-8000 Munich 2, Federal Republic of Germany [395,937,945,983]

John H. Siegel, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Rolf Edgar Silber, Chirurgische Universitätsklinik, Experimentelle Chirurgie, D-8700 Würzburg, Federal Republic of Germany [143]

A. Simmel, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Richard Simmons, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

R. Sistermann, Department of Surgery, Berufsgenossenschaftliche Krankenanstalten “Bergmannsheil”, 4630 Bochum, Federal Republic of Germany [989]

Ron G.H. Speekenbrink, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [419]

Christian P. Speer, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

John J. Spitzer, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Judy A. Spitzer, Department of Physiology, Louisiana State University Medical School, New Orleans, LA 70112 [575]

Paul Sporn, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

Roger G. Spragg, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

Alexander Stäblein, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Jan O. Stadaas, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [315, 389,401,873]

Karl H. Staubach, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Karl Steinbereithner, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

T. Stober, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Theo Strasser, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Wolfgang Strohmaier, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [797]

Johannes Sturm, Unfallchirurgische Klinik, Medizinischen Hochschule Hannover, D-3000 Hannover 61, Federal Republic of Germany [507,673,775]

R. Südhoff, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Kazuro Sugi, The University of Texas Medical Branch and Shriners Burns Institute, Galveston, TX 77550 [237]

Günther Sutter, Department of Trauma, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

Norbert Suttorp, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,119,127,305]

Imre Szabó, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253]

Kornél Szabó, Burn Center of Central Hospital H.P.A., 1553 Budapest, Pf 1, Hungary [1101]

Ben E. Tall, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]
Friedrich Tegtmeyer, Department of Pediatrics, Medical School of Lübeck, D-2400 Lübeck 1, Federal Republic of Germany [689]

M. Teschner, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]

L.G. Thijs, Medical Intensive Care Unit, Free University Hospital, Amsterdam [163]

Martin Thurnher, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231,447,931]

D. Tirpitz, Department of Surgery I and Center for Hyperbaric Medicine, St. Joseph-Hospital, D-4100 Duisburg 12, Federal Rebublic of Germany [1007]

Bela Török, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

Courtney M. Townsend, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Daniel L. Traber, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [201,237,377,815,885]

Lillian Traber, Department of Anesthesiology and Surgery, The University of Texas Medical Branch, and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [201,815,885]

F. Trautinger, Institute for Applied and Experimental Oncology, University of Vienna, A-1090 Vienna, Austria [715]

Otmar Trentz, Department of Trauma Surgery, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

Emmanouel Tzartinoglou, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Ignas P.T. van Bebber, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [419,827]

Cees J. van der Linden, Department of General Surgery, University of Limburg, Biomedical Center, 6200 MD Maastricht, The Netherlands [463]

Thomas C. Vary, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

B. v. Borman, Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]

G. Vermaak, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [217]

Jesus Villar, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain; present address: Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [57,61]

JL. Vincent, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]

Christa Vogl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [231,237,447,931]

K. Voigt, Institut für Normale und Pathologische Physiologie, Marburg, Federal Republic of Germany [711]

Hartmut Volkmann, Department of Anaesthesiology, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Bernd-Ulrich von Specht, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

Reinhard Voss, Department of Internal Medicine, University of Giessen. 6300 Giessen, Federal Republic of Germany [383]

Bernd Wagener, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tübingen, D-7400 Tübingen, Federal Republic of Germany [185]

H. Wallasch, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Henrik Walter, Department of Internal Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67]

Sten Walther, Department of Anaesthesia and Intensive Care, Lasarettet, S-601 82 Norrköping, Sweden [867]

Alfred Walz, Department of Surgery, LMU Munich. Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Ch. Waydhas, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2. Federal Republic of Germany [731,763]

B. Weidler, Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen. Federal Republic of Germany [897]

Peter Wendt, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Karl Werdan, Department of Medicine I. Klinikum Grosshadern. University of Munich, D-8000 Munich 70, Federal Republic of Germany [247,625,1025]

C. Wesoly, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41. Federal Republic of Germany [637]

Michael West, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

Eric T. Whalley, Department of Physiological Sciences, University of Manchester, Manchester, England [983]

Michael F. Wilson, Research Service, VA Medical Center and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 [207,217,847]

Gisela Windus, Department of Forensic Medicine, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]
Isolde Wodarz, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Martin Wolf, Division of Internal Medicine, Department of Hematology, Philipps-University, D-3550 Marburg, Federal Republic of Germany [965]

Wolfgang Wołoszczuk, Ludwig Boltzmann Institute for Clinical Endocrinology, A-1090 Vienna, Austria [683]

Qixia Wu, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Ernst Zadrobiek, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

G. Zeck-Kapp, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [113]

Gertrud Zilow, Department of Immunology, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [43,299]

T. Zimmermann, Surgical Department of the Medical College Dresden, Dresden, German Democratic Republic [291]

Gerald Zöch, I. Surgery, University Clinic, Burn Care Clinic, A-1090 Vienna, Austria [995]
POSTTRAUMATIC PLASMA LEVELS OF MEDIATORS OF ORGAN FAILURE

Marianne Jochum1, Alexander Dwenger2, Theo Joka3 and Johannes Sturm4

1Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Universität München, FRG
2Klinische Biochemie, Med. Hochschule Hannover, FRG
3Unfallchirurgie, Universitätsklinikum Essen, FRG
4Unfallchirurgische Klinik, Med. Hochschule Hannover, FRG

INTRODUCTION

Severe traumatic events are often followed by the development of acute respiratory distress syndrome (ARDS) or even multiorgan failure in case of additionally occurring septic complications (Nuytinck et al., 1986). In recent years, a nearly illimitable variety of humoral and cellular mediators has been described which all may contribute more or less to the posttraumatic organ failure (Schlag and Redl, 1987). Among these factors activated inflammatory cells such as polymorphonuclear leukocytes (PMNL), monocytes/macrophages, lymphocytes or fibroblasts are supposed to play an essential role in the initiation and perpetuation of inflammatory processes (Dittmer et al., 1986; Dwenger et al., 1986; Nuytinck et al., 1986; Joka et al. 1987; Redl et al., 1987; Lammers et al., 1988).

In the early posttraumatic phase mainly PMNL and monocytes are attracted into the wound area and stimulated to phagocytosis of damaged tissue and invasive organisms. During this physiological repair, however, the phagocytizing cells release destructive enzymes and oxygen free radicals from
their phagolysosomes also extracellularly thus contributing considerably to the consumption of the body's antiproteolytic and antioxidative defence mechanisms. Especially liberated proteinases (e.g. elastases, cathepsins) may overcome locally the inhibitory potential of their main antagonists, \(\alpha_1 \)-proteinase inhibitor (\(\alpha_1 \)-PI), \(\alpha_2 \)-macroglobulin and cysteine proteinase inhibitors, thereby being able to destroy vital structural as well as humoral proteins. Such pathobiocchemical reactions are suggested to be, at least in part, conducive to the maintenance of inflammation (Lang and Fritz, 1986). As shown previously (Jochum et al., 1986), the extracellular amount of neutrophil elastase complexed to \(\alpha_1 \)-PI in plasma can be taken as a reliable likeness of the PMNL activation in the wounded or infected area, whereas stimulation of monocytes/macrophages is reflected by the serum concentration of neopterin, a specific guanosinetriphosphate metabolite excreted from activated mononuclear cells (Huber et al., 1987 a,b; Redl et al., 1987).

Fibroblasts also play a dual role during the posttraumatic inflammatory response. On the one hand the recruitment of fibroblasts into the wound initiates the reparative phase of wound healing, whereby among other substances high amounts of type I and III collagens are synthesized to restore connective tissue matrices. Those fiber-forming collagens are produced as procollagens with additional propeptide extensions at both ends. Before the mature molecules are deposited into the tissue the propeptides are cleaved off and liberated into the extracellular fluid. Only recently it could be demonstrated that the increase in the synthesis rate of type III collagen in the granulation tissue after major abdominal surgery is high enough to be reflected by the increasing amount of the N-terminal procollagen-III-peptide (P-III-P) in serum (Haukipuro et al., 1987). On the other hand, several lines of evidence suggest that the conversion of functional organ tissue (e.g. in liver or lung) to connective tissue is also indicated by elevated serum P-III-P levels and allows a rough quantification of the fibrosis grade of these organs (Surrenti et al., 1987; McCullough et al., 1987; Lammers et al., 1988; Kirk et al., 1984).

Here we describe a close follow-up measurement of plasma or serum levels of complexed neutrophil elastase, neopterin and P-III-P which may be indicative of organ failure subsequently to severe multiple trauma.
PATIENTS AND METHODS

24 multiply injured patients (Injury Severity Score more than 30 points) with predisposition to ARDS were prospectively studied up to 14 days after trauma. Increase of extravascular lung water (EVLW) above 10ml/kg body weight (pulmonary arterial wedge pressure below 15mmHg) was taken as a main criterion of ARDS (Joka et al., 1987). Septic complications and hepatic failure (total serum bilirubin above 34μmol/l) were diagnosed according to Goris et al. (1985).

Blood samples were drawn 4 times per day up to 48 hours post trauma and thereafter once a day till the end of the observation period. The specimens were processed either to plasma or to serum and kept frozen at -70°C until use. Complexed neutrophil elastase in plasma was assayed by an ELISA test kit (PMN Elastase, E. Merck, Darmstadt; upper normal range: 180 ng/ml). The RIA technique was applied for the determination of D(+)neopterin in serum (Neopterin-RIAcid/serum, Henning, Berlin; normal range: 6-10nmol/l) as well as of P-III-P in plasma (RIA-gnost Prokollagen-III-Peptid, Behringwerke, Marburg; normal range: 3-15ng/ml). Total serum bilirubin was quantified with a test combination of Boehringer, Mannheim (upper normal range: 17μmol/l).

RESULTS

Twelve of the 24 patients studied had to be allocated to the ARDS group according to the rise of EVLW above the prospectively established limit of 10ml/kg b.w. during the early (48 hours) or late (from day 4 onwards) observation period. Whereas all patients of this group developed moderate to severe septic complications and hepatic failure (total bilirubin well above 34μmol/l), only 4 patients without acute respiratory disease showed minimal transient signs of bacterial infection. However, in about 80% of the non-ARDS patients total serum bilirubin was moderately elevated above normal indicating impairment of liver function.

As demonstrated in Fig.1 increased release of neutrophil elastase could be assayed in both groups already in the first blood sample (time 0) taken at least within two hours after trauma. In plasma of patients without development of ARDS maximal elastase liberation was evident 6 hours later followed by a rapid normalization. ARDS patients showed highly elevated
plasma levels of complexed elastase up to the 7th posttraumatic day. Even at the end of the observation period these values did not decline to the normal range.

![Graphs showing plasma/serum levels of elastase, neopterin, and P-III-P in patients with or without ARDS.](image_url)

Fig. 1: Posttraumatic plasma/serum levels (median ± pseudo SE) of elastase in complex with α_1-proteinase inhibitor (E-\(\alpha_1\)-PI), neopterin and procollagen-III-peptide (P-III-P) in patients with or without acute respiratory distress syndrome (ARDS).

Increase of neopterin respectively P-III-P levels above normal was evident only from the second posttraumatic day onwards (Fig.1). Neopterin serum concentrations reached a first
maximum about 6 days post trauma in both groups; thereafter an additional significant rise was seen in ARDS patients till the end of the study period, whereas in the non-ARDS collective a slight decrease was measurable. P-III-P levels increased steadily without significant differences in both patient groups up to the 14th posttraumatic day.

Case Reports

Fig. 2 shows the sequential plasma/serum levels of the above mentioned parameters in 4 individual cases.

In patient 334 the accident caused severe lung and liver contusion. ARDS and sepsis was diagnosed at the 4th posttraumatic day; the patient died at the 7th day due to irreversible lung, liver and kidney failure. The severe clinical course is closely reflected by the highly elevated and repetitively increasing elastase levels during the whole observation period.
as well as by the tremendously rising concentrations of neo­
pterin, bilirubin and P-III-P from the second day onwards.

In contrast, patient 336 did not develop ARDS despite severe lung contusion. Apart from tracheal germs, which were sufficiently treated with antibiotics from the 6th posttrau­matic day till recovery, no septic complications or organ failure occurred. The initial trauma-induced elastase release was followed by a rapid normalization, the minor signs of the local infection seem to be reflected by a small additional increase of complexed elastase and a more retarded transient extracellular secretion of neopterin. Although the slightly elevated bilirubin levels between day 4 and 8 indicate only minor liver dysfunction, the P-III-P plasma concentrations rose remarkably until the end of the study phase.

Patients 337 and 338 also sustained severe lung contu­sions. In patient 337 the traumatic event was followed imme­diately by manifestation of ARDS and was further complicated by liver dysfunction - the latter being indicated by a steady increase in total serum bilirubin - were present till to the end of the study period. The development of the infectious complications are indicated by the consistently high elastase levels in the early phase and the repeatedly release of the PMNL protease in the later posttraumatic phase. A significant increase of the neopterin and P-III-P levels is evident between day 5 and 8. The patient recovered from the multiorgan dysfunction about 7 weeks after trauma. Patient 338, in contrast, did not develop life-threatening long-term organ failure. After an early clinical normalization, which is reflected also in the rapid decline of extracellular elastase release, a transient septic period from day 5 to 11 was accompanied with moderate respiratory insufficiency. There­after the patient convalesced without further complications. The sepsis-like phase was paralleled by increasing elastase levels as well as by a slight elevation of neopterin and P-III-P in the circulation. Total serum bilirubin was only modestly and temporarily increased.

DISCUSSION

In recent years, a great number of studies have focused on the role of neutrophils as a prominent source of powerful mediators in the acute inflammatory process initiated by po­lytrauma or major surgery. With respect to the proteases re­leased extracellularly from the activated PMNL cells, sequen-
tial measurements of complexed elastase in plasma turned out to be a helpful tool in early diagnosis of septic complications and the grading of the severity of septicemia (Jochum et al., 1986, Nuytinck et al., 1986, Inthorn and Jochum, 1988). As shown in this paper, the primary activation of the PMNL immediately after the polytraumatic event is followed by repetitive increases of elastase in plasma in those patients who developed ARDS and additional organ failure. Since this multiple organ insufficiency in our patients was mainly due to septic complications, we cannot confirm the former statement of Nuytinck et al. (1986) and Redl et al. (1987) that ARDS per se is indicated by elevated plasma levels of complexed PMNL elastase. In agreement with these authors, however, the involvement of the monocyte/macrophage system in sepsis-related ARDS could be proven. Neopterin, an activation marker of the lymphocyte/macrophage axis as well as of the direct action of bacterial endotoxins on the mononuclear cells (Huber et al., 1987b), significantly increased in the circulation even before severe sepsis became manifest. Transient signs of infection were indicated only by a minor rise of the neopterin serum levels. Neither the traumatic event per se nor the severity of the trauma was reflected by neopterin which is in contrast to the behaviour of PMNL elastase as demonstrated recently by Dittmer et al. (1986).

Conflicting results have also arisen concerning P-III-P excretion to the circulation as a valuable sign of liver (Surrenti et al., 1987; McCullough et al., 1987) and/or lung fibrosis (Kirk et al., 1984; Lammers et al., 1988) in acute and chronic diseases. Moreover, elevated posttraumatic P-III-P plasma levels may only indicate physiological wound healing (Haukipuro et al., 1987). From our data the latter can be deduced at least for those patients who did not develop organ failure in the posttraumatic course. On the other hand, in most of the patients with infaust multiorgan insufficiency P-III-P levels increased clearly above the maximal median value (60 ng/ml) of the non-ARDS group some time before lethal outcome. Therefore, highly elevated P-III-P plasma concentrations may be a reliable marker of bad prognosis due to massive organ fibrosis. The threshold value, however, has to be evaluated in further studies.

In conclusion, measurement of sequential plasma levels of cell-derived inflammation mediators turned out to be a helpful tool for early diagnosis of severe posttraumatic multiorgan failure.
REFERENCES

Acknowledgement

We are very grateful to Mrs. U. Hof, Mrs. G. Schweitzer and Mrs. C. Seidl for excellent technical assistance and to Dr. G. Flohr, Behringwerke AG MIV, Frankfurt a. Main for supplying us with P-III-P test kits. This work was supported by the "Deutsche Forschungsgemeinschaft", project II B 6.
REFERENCES

Index

A23187, 121
endothelium permeability and, 129, 131
AA-861, 131
Aasen index (PFI), polytrauma, 731–735
Acetylcholine, bradykinin antagonist B4148 administration with, 983, 984
Acetylcholinesterase, red blood cell, activated C3 in DIC, fulminant meningococcal meningitis, 272, 274
Acetylsalicylic acid, 131, 457, 459, 461
\(\alpha_1\)-Acid glycoprotein, plasma, and sepsis prognosis, 634, 635, 716, 717
ACTH, sepsis, 753, 755
Acute phase reactants, 337
ADH. See Vasopressin (antidiuretic hormone)
Adherence, granulocyte-endothelial cell, bacterial endotoxin role, 123–124
ADP
- induced platelet aggregation, 367
ribosylation, \textit{Pseudomonas} endotoxin A, elongation factor-2, 250
Adrenal glands, animal models for shock, 838–839
Age, antithrombin III and plasma substitution in septic shock, 966, 968
AH 23848, 366
Albumin, plasma, and abdominal sepsis prognosis, 720, 721
Allopurinol, 350
Alveolar
and C3a in ARDS, 43–47, 52
cell cytological changes, ARDS, 51–54
permeability, 323–329
see also under Permeability
Alveolo capillary interface
ARDS, 27–28
corticotestoroid, nebulized, in experimental respiratory distress, 867
membrane permeability, cell interactions in septic shock, 116–117
Ambiquitous enzymes, 576
Amino acid clearance, prognostic index in sepsis, 634, 635
Amino acid concentrations, serum, experimental endotoxin shock, 595–599
gabexate mesilate administration, 596, 597
glutamine and glutamic acid, 598
hyperalinemia and lethality, 595, 597–599
tyrosine, 598
Amino acid metabolism, respiratory quotient (\(\text{CO}_2/\text{O}_2\) exchange ratio) in shock, 619–621
Amino acid release, perfused liver, sepsis effect on metabolism, 590–592
21-Aminosteroid U74006F, 891–895
Anaphylactic lung reaction, guinea pig, WEB 2086 (PAF antagonist), 925–929
Anaphylatoxins. See C3a; C5a
Angiopathy, diabetic, 1008, 1009
Angiotensin, 379
Animal model development for shock, 835–840, 843–844, 851
application to humans, 839–840, 843–844
endotoxin shock, history, 836

1107
methyprednisolone with gentamicin, dogs, *E. coli* shock, 836–837
adrenal gland role, 838–839
cf. baboons, 836–840
rationale, 837–838
Anipamil, traumatic shock, 1067, 1068
Antibiotics
burns, enteric translocation of microorganisms, 377, 378
and calcium antagonists in endotoxin shock, 1070
Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1043–1050
Antichymotrypsin cf. C-reactive protein as prognostic index, 725–727
Antigen, inhaled, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Antigen-presenting cells, trauma-induced cascade of CMI effects, 495, 496
Antioxidant, MTDQ-DA, myocardial ischemia, 907–911; see also Free radical scavengers; Oxygen radicals
Antiplasmin
kallikrein-kinin system components in ARDS after polytrauma, 738, 741
methyprednisolone pretreatment, endotoxemia, 874, 875
α2-Antiplasmin
aprotinin membrane protective action, intraoperative histamine liberation, 961, 963
plasma, and abdominal sepsis prognosis, 720, 721
Anti-protease. See Protease inhibitor entries
Antithrombin III, 319, 384, 386, 940
endotoxin and overwhelming inflammatory response of early sepsis, 372
kallikrein-kinin system components in ARDS after polytrauma, 738, 740–742
methyprednisolone pretreatment, endotoxemia, 874, 875
multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 652
neutrophils, thrombin-induced adhesion with endothelial cells, 103
plasma
and abdominal sepsis prognosis, 720
corticosteroid, nebulized, in experimental respiratory distress, 869–871
endotoxin-induced DIC, AT III-heparin complex therapy, 979
plasma substitution in septic shock, humans, 965–968
prognostic value in sepsis, 637
lethality, 639, 640
thrombocyte counts, 637–641
scintigraphic evaluation of posttraumatic liver function, 776, 777
Antithrombin III-heparin complex, DIC, endotoxin-induced, 977–981
α1-Antitrypsin
immune suppression, post-surgical or post-traumatic, 492
lymphocyte/monocyte ratio in polytrauma survival, 769
plasma, and abdominal sepsis prognosis, 716, 717, 720, 721
Aorta, vascular intima in endotoxin shock, 85, 86
Apache II scoring system, 280, 384, 386, 626–630, 635, 643, 645, 664, 716, 1026–1030
Aprotinin
immunoglobulin profiles and PMN-elastase in septic gas gangrene, 1008, 1012, 1014–1016
membrane protective action, intraoperative histamine liberation, 959–963
Arachidonate/arachidonic acid metabolism, 21, 351
in ARDS, pulmonary edema, 306–307, 309–311
burns, PAF inhibitor effect, scalded pig, 455, 461
cyclooxygenase metabolites, lung injury in *E. coli* endotoxemia, 358, 362–364
early ventilatory support, 785
dotoxin effects, endothelium, 119–121, 121–123
hemofiltration and survival time, porcine acute endotoxic shock, 823–825
myocardial ischemia, 911
see also specific metabolites
ARDS, 7, 8, 13–14, 17–23, 27–33, 787, 788
alveoli, 31–33, 43–47, 51–54
alveoloalcapillary membrane damage, 27–28
arachidonic acid cascade in, and pulmonary edema, 306–307, 309–311
bronchoalveolar lavage, 13, 19, 20, 22, 23
C3a, 31–33, 43–47, 52, 299, 880
causes, 17–18
air-borne cf. blood-borne, 18, 19
ceruloplasmin changes, 331–337
C-reactive protein, 335, 336
number of organs involved, 333, 334, 336
complement activation, 43
pulmonary hypertension and vascular leakage, 283, 284, 286
diagnostic markers, 22–23
dopamine infusion, effect evaluation with systolic time intervals, 1102
early cf. late, 18
exogenous surfactant, 791–795
exudate organization, 27–29
hypovolemic shock, 32, 33
ischemia and circulatory system in MSOF, 1076, 1078, 1081, 1083
nifedipine, 1087–1090
pathogenesis, 19–22
pathophysiology, 27–28
phospholipase A as prognostic index, 757
PMN degranulation, 18–20, 31–33
polytrauma, kallikrein-kinin system, 737–742
postoperative organ failure, 133–136
posttraumatic, plasma levels of mediators, prognosis, 673–679
macrophages, 679
cf. non-ARDS, 676, 677, 679
septic, and multiple system organ failure, 57–60
prognosis, 59, 61–65
clinical conditions, 62
mortality, 63, 65
septicemia, pulmonary vascular resistance, 175–179
septic shock, 30–33
corticosteroids in, 857, 860–864
metabolic abnormality, 535, 537, 538
oxygen supply-uptake relationship, 181
shock as predisposing factor, 64
surfactant replacement, 29, 797
Arrhythmias, myocardial ischemia, 907
Arterial pressure, mean
α-mercaptotranscarboxylase in hemorrhagic shock, 899–902
RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1093
see also Pulmonary artery pressure
Arthroplasty, total hip, high-dose corticosteroids to prevent C3a and C5a formation, 879–882
Artifact rejection, heart performance during septic shock, awake sheep, 239–242
Aspiration trauma, experimental, exogenous surfactant, 797–800
Asthma, 486
ATPase, calcium antagonists in shock/ischemia, 1065, 1066
ATP MgCl2, kidney metabolism in E. coli sepsis, 602, 605
Atrial pressure, left, pulmonary venous hemodynamics and gas exchange disturbances, E. coli septicemia, Gottingen pig, 185, 186
Autoradiography, in situ, hepatocyte protein kinase C and diacylglycerol accumulation, endotoxemia, 579, 583–584, 586
Autoregulation, hemorrhagic shock, phase-related vascular reactivity, cats, 147, 148
B4148, blood pressure maintenance, endotoxin shock, 983–987
Bacterial toxins, endothelium permeability effects, 127–131; see also specific bacteria and toxins
Bacteroides fragilis, 538

Base excess, respiratory quotient (CO$_2$/O$_2$ exchange ratio) in shock, 613, 614, 619

B cells(s)

Ig synthesis suppression after multiple trauma, 513–515
maturation, trauma-induced cascade of cell-mediated immune effects, 496, 497, 499, 501, 502
multiple trauma, early events, 507–509

B-cell growth factor (IL-4), trauma-induced cascade of cell-mediated immune effects, 497

Beclometasondipropionate (BDP), nebulized corticosteroid, in experimental respiratory distress, 867, 868, 870, 871

Bilirubin

ARDS, posttraumatic, prognosis, 675, 676, 678
polytrauma, 743, 745
lymphocyte/monocyte ratio in survival, 769

Biologically active site, C3a, 299

Biological response modifiers. See **Immunomodulation**

Blood flow redistribution, septic shock, 164

Blood volume redistribution, septic shock, 164–165

BM 13, 177, 366, 367

BN 56, 020, 428

BN 52, 021, 426–433, 442–444, 485–488
endotoxin shock effects, 931–935
PAF effects in sheep, 448

BN 52, 022, 428
BN 56, 023, 429

Bombesin, 378–380

Bone, long, fracture, and pulmonary fat embolism, 39–41

Bradykinin antagonist B4148, blood pressure maintenance, endotoxin shock, 983–987

Brain, PAF antagonist inhibition of induced shock, 430

Branched chain amino acids, 617
amino acid concentrations, serum, experimental endotoxin shock, 595, 598

metabolic abnormalities in sepsis, 539, 540

Bronchoalveolar lavage, ARDS, 13, 19, 20, 22, 23, 44
exogenous surfactant, 795

Bronchoconstriction, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 925, 926, 928

Burimamide, 362

Burn(s)
dopamine infusion, effect evaluation with systolic time intervals, 1101–1105
total burn surface estimation with Nine Rule, 1102–1103
endotoxin and overwhelming inflammatory response of early sepsis, 372–374
enteric translocation of microorganisms, 377–380
scalded rats, 379
sheep, 378

PAF antagonist inhibition of induced shock, 431
scalded pig, 455–461

sepsis after, TP-5 immunomodulation, 995–998

Butyrophenones, 755

BW 755C, glucose turnover in sepsis, 552, 553

C3
activated, DIC in septic shock, 271–274
IgG breakdown in peritonitis exudate, 527–532
lymphocyte/monocyte ratio in polytrauma survival, 769, 770
plasma, and abdominal sepsis prognosis, 720, 721

C3a, 7, 204
activation
endotoxin role in sepsis, 278–280
MSOF pathogenesis in septic shock, dogs, 296
pulmonary hypertension and vascular leakage, 283
alveoli in, post-trauma, 43–47, 52
ARDS, 299, 880
biologically active site, 299
circulation, peripheral, septic shock, 170
corticosteroids to prevent formation, total hip arthroplasty, 879–882
ELISA quantitation with monoclonal antibodies, 299–303
cf. C3, 300–303
endotoxin and overwhelming inflammatory response of early sepsis, 372, 373
in MSOF, 296, 880
acute pancreatitis, 265–268
polytrauma, 414
postoperative/posttrauma, biochemical analysis and scoring, 650, 651
prognostic index in sepsis, 635
rheumatoid arthritis, 299
systemic lupus erythematosus, 299
C3c, complement activation, MSOF pathogenesis in septic shock, dogs, 292, 294–296
C4
complement activation, endotoxin role in sepsis, 279, 280
lymphocyte/monocyte ratio in polytrauma survival, 769, 770
plasma, and abdominal sepsis prognosis, 720, 721
C5a, 7, 13, 43, 44, 46, 115, 116, 204, 825
activation
endotoxin role in sepsis, 278–280
MSOF pathogenesis in septic shock, dogs, 292, 296
pulmonary hypertension and vascular leakage, 283, 284
corticosteroids to prevent formation, total hip arthroplasty, 879–882
MSOF in acute pancreatitis, 265–268
terminal complement complexes, 266, 267
and PAF, 366
C5b9, 266
Cachectin. See Tumor necrosis factor (TNF, cachetin) entries
Calcium
capillary endothelial cells, 159
endothelium permeability effects, 127–131
endotoxin-induced intracellular overload, 1053–1061
hepatocytes, protein kinase C and
diacylglycerol accumulation, endotoxemia, 575, 578, 584
isolated heart, effect of LMW plasma fraction in hypovolemic traumatic shock, 234
overload in ischemic cell death, 1065–1066
and PAF, 366
rapid influx and toxic action, 68
Calcium antagonists in shock/ischemia, 1060, 1065–1073
ATPase, 1065, 1066
calcium overload in ischemic cell death, 1065–1066
endotoxin shock, 1068–1071
glucose deficiency, 1066
hemorrhagic shock, 1067
mechanisms of action, 1072
magnesium, 1072
mitochondrial function, 1066
muscle spasm, smooth, 1066
phospholipase, 1066, 1071
platelet aggregation, 1066
traumatic shock, 1067–1068
see also specific agents
Calcium gates, 119, 120
Calmodulin, 120
Calvin, John, 850
Cancer patients, 493–494
Candida tropicalis, in vitro phagocytosis assay, 508, 510
Candidiasis, systemic, 378
Capillary endothelium
contractile elements, 157–160
endotoxemia and shock, impaired regulation, 157–160
lung, complement activation, MSOF pathogenesis in septic shock, dogs, 292, 294–296
Capillary permeability. See under Permeability
Capillary pressure, lung edema, 28
Capillary surface area reduction, ischemia and circulatory system in MSOF, 1082
Carbon dioxide, arterial, metabolic abnormalities in sepsis, 537, 538; see also Respiratory quotient (CO2/O2 exchange ratio) in shock
Carbon monoxide, α-
mercaptopropionylglycine in hemorrhagic shock, 899, 900, 902

Cardiac function
heart cells, cultured, effects of *Pseudomonas aeruginosa* toxins, rat, 247–251
muscle pO₂ role, critically ill patients, 139

see also Heart entries

Cardiac index, 625, 626
extravascular lung water
 altered fluid regimen, advanced septic shock with acute respiratory failure, 804–806
 large volume replacement with crystalloids, 810, 811
hydroxyethyl starch, volume replacement in ovine endotoxia, 818, 819
immunoglobulin and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1026, 1027
pulmonary vascular resistance, ARDS in septicemia, 175–179
pulmonary venous hemodynamics and gas exchange disturbances, *E. coli* septicemia, Goettingen pig, 185, 186

Cardiac output
 cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202
circulation, peripheral, septic shock, 163–166
hemofiltration and survival time, porcine acute endotoxic shock, 822, 825
ischemia and circulatory system in MSOF, 1076–1077, 1080, 1082
oxygen supply-uptake relationship, septic shock, 183
PAF effects in sheep, 448–449
Cardiac work, septic shock, heart
 overperformance in, 260–262
Cardiogenic shock, scoring systems, 625–630
CI and SVR, 625, 626
Cardiopulmonary arrest, lipid peroxidation inhibition, 891–895
Cardiopulmonary response to endotoxin eicosanoids in, sheep, 201–204
 free radical scavengers, 885–888
Catalase, 201–202, 887
Catecholamines, 755, 756
 glucose turnover in sepsis, 552–553, 557, 559
ischemia and circulatory system in MSOF, 1077
 see also specific catecholamines
Cathepsin D, 431, 168
Cathepsin G, 937, 941, 942
Cement, methylmethacrylate, 879, 880
Cerebrocortical perfusion, RA642 effects, hemorrhagic shock, 1091–1094
Ceruloplasmin, changes in MSOF and ARDS, 331–337
C-reactive protein, 335, 336
 number of organs involved, 333, 334, 336
C₁-esterase inhibitor
circulation, peripheral, septic shock, 170–171
 complement activation, endotoxin role in sepsis, 278, 280
lymphocyte/monocyte ratio in polytrauma survival, 769
plasma, and abdominal sepsis prognosis, 720
Chemiluminescence-inducing radicals, 339–344; *see also* Oxygen radicals
Chemotactic factors, alveolar macrophages, 20
Chemotaxis, 4-hydroxy-nonenal, 351
Chloramphenicol, 852
Cholecystectomy, 493
Cholecystokinin, 380
Cholinesterase, scintigraphic evaluation of posttraumatic liver function, 777
Chromatography
 HPLC, PAF effects in sheep, 448–451
ion exchange, positive inotropic factor as myocardial stimulant, 254–255
Chronotropic effect, negative, α-
 mercaptopropionylglycine in hemorrhagic shock, 902
Chymase, mast cell, 937, 941, 942
Cimetidine, 755
Circulating immune complexes, and abdominal sepsis prognosis, 716
Circulation, peripheral, septic shock, 163–171
blood flow redistribution, 164
blood volume redistribution, 164–165
cardiac output, 163–166
oxygen utilization, 163, 167–169
pathogenesis, 169–171
peripheral vascular failure, 165–167
permeability, microvascular, 167
systemic vascular resistance, 163–166, 168, 170
Clostridium, 1008, 1020
sordelli, 1018
Clotting factor infusion, MSOF prognostic indices, logistic regression analysis, 644
Coagulation cascade, 31, 318–319
fibrinolysis, and kallikrein system, MSOF, postoperative/posttrauma, biochemical analysis and scoring, 652–654
lung, 6
microvascular bed, cell interactions in septic shock, 115
methylprednisolone pretreatment effects in porcine E. coli endotoxemia, 873
pulmonary vascular permeability, 305–307
septic patients, 383–387
see also Disseminated intravascular coagulation; specific components
Collagen III propeptide, 665
ARDS, posttraumatic, prognosis, 674–679
Colloid osmotic pressure, plasma, extravascular lung water, large volume replacement with crystalloids, 810–812
Compensated shock, hemorrhagic shock, phase-related vascular reactivity, cats, 144–148
Complement, 31
ARDS, 43
cascade
lung, microvascular bed, cell interactions in septic shock, 115, 116
MSOF, postoperative/posttrauma, biochemical analysis and scoring, 650–651
and endotoxin role in sepsis, 277–281
Igs, therapeutic, phagocytosis stimulation, peritonitis, 1039, 1041
and immune suppression, post-surgical or post-traumatic, 492
lung in shock, 4, 5, 7, 13
hypertension and vascular leakage, rabbit, 283–286
vascular permeability, 305, 306
MSOF pathogenesis, septic shock, dogs, 291–296
pathway, classical cf. alternative, MSOF pathogenesis in septic shock, dogs, 293
PMNs, 20
prognostic index in sepsis, 633, 634
septic shock, 169–170
see also specific components
Complement complexes, terminal acute pancreatitis, 266, 267
pulmonary hypertension and vascular leakage, 283–286
Contractile elements, capillary endothelial cells, 157–160
Contractility and cardiac function, Pseudomonas aeruginosa toxins, 247, 248
heart performance during septic shock, awake sheep, 238
Coronary artery disease, 1079, 1080
Corticosteroid(s)
nebulized, in experimental respiratory distress, 867–871
aveolo-capillary interface, 867
antithrombin III, plasma, 869–871
beclometasondipropionate (BDP), 867, 868, 870, 871
superoxide, PMN production, 869, 870
correlative, PMN production, 869, 870
for septic shock with ARDS, 857, 860–864
dexamethasone, 861
methylprednisolone, 861–863
severity of underlying disease, 858
VA comparative study of severe sepsis, 840–844, 847–855, 862–863
encephalopathy, 841, 843, 853–855
entry criteria, 853
inflammation pathways, 850–851
mortality, 842
cf. previous trials, 852
rationale of therapy, 851, 852
sepsis criteria, 841
trial design, 852–853
see also specific drugs
Cortisol, sepsis, 753, 755
C reactive protein, 665
ceruloplasmin changes in MSOF and ARDS, 335, 336
immune suppression, post-surgical or post-traumatic, 492
lymphocyte/monocyte ratio in polytrauma survival, 769
plasma, and abdominal sepsis prognosis, 716, 717
Creatinine
dopamine and renal function, 1098
polytrauma, 743, 745
Crossed immunoelectrophoresis, C3 and IgG breakdown in peritonitis exudate, 529, 531
Crystalloids
corticosteroid, nebulized, in experimental respiratory distress, 868
cf. hydroxyethyl starch, volume replacement in ovine endotoxia, 815–819
large volume replacement with, EVLW in septic shock, 809–813
c-sis, neutrophils, thrombin-induced adhesion with endothelial cells, 109
CTP:phosphocholine citidyl transferase, 576
Cutaneous thermal injury. See Burn(s)
CV-3988, 428, 430, 442, 485
CV-6209, 426
Cyclic nucleotides, lung, endotoxin-induced microvascular endothelial injury, 95, 97
Cycloheximide, 122
liver, perfused, sepsis effect on metabolism, 590, 591
Cyclooxygenase inhibition
cardiopulmonary response to endotoxin, eicosanoids in, 202, 203
lung injury in E. coli endotoxia, 365–366
Cysts, honeycomb, 29, 32
Cytotoxic processes, effects, platelet activating factor antagonists, 443–444
Cytoxan, 377
Dazoxiben, 365
D-Dimer, fibrinolysis, 383–386
 Decompensated shock, hemorrhagic shock, phase-related vascular reactivity, cats, 145–148
Decontamination, GI tract, multiple organ failure prevention, zymosan-induced peritonitis, 827–832
Delayed-type hypersensitivity
Ig prophylactic therapy after cardiac surgery, 1031–1033, 1035
T-cell-mediated immune suppression after polytrauma, 518, 519
2-Deoxyglucose tracer, metabolic abnormalities in sepsis, 549–551
Dexamethasone, 121, 122
corticosteroids for septic shock with ARDS, 861
Dextran sulfate, 653
Diabetic angiopathy, 1008, 1009
Diabetic microangiopathy, 1009
Diacylglycerol accumulation, hepatocytes, endotoxia, rats, 575–586
in situ receptor autoradiography, 579, 583–584, 586
phorbol ester binding sites, 583–584
Dialysis, MSOF prognostic indices, logistic regression analysis, 644, 645
Dichloroacetic acid therapy, metabolic abnormalities in sepsis, 540, 541
Diiodotyrosine (DIT), sepsis, 752–754, 756
leucocyte phagocytic activity, marker for, 711–713
Diisofluorophosphate-α-thrombin, neutrophils, cf. thrombin-induced adhesion with endothelial cells, 103, 104
Diltiazem and endotoxin-induced intracellular Ca²⁺ overload, 1053–1061
epinephrine, 1057–1059
hepatocytes, cytosolic Ca²⁺ in, 1055–1060
muscle, skeletal, 1054–1061
Dimethylthiourea, 887
Dipyrimadole (RA8), effects on
cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
Disseminated intravascular coagulation, 383, 386
endotoxin, dose-related effects on RES, 410
endotoxin-induced, antithrombin III-heparin complex, 971, 972, 974
fibrinolysis syndrome, 971, 972, 974
reticuloendothelial stimulation to protect against, 1001–1005
septic ARDS, 59
and multiple system organ failure, 62, 63
in septic shock, activated C3, 271–274
TNF, induction of organ changes in chronic lymph fistula, sheep, 479, 480
Dopamine
kidney function, 1097–1099
long-term administration and tolerance, 1097–1099
hemodynamics, 1098
cf. RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
sepsis, 755
systolic time interval evaluation, 1101–1105
Doppler flowmetry, laser RA642 effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
DPPC:egg PG, surfactant, exogenous, 798
DPPC in surfactant, C3a and alveoli in, post-trauma ARDS, 44, 45
DTPA and gamma-scintillation, alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 324–327
Edema, lung. See Pulmonary edema
Eglin C
endotoxin shock, ineffectiveness in, 953–957
pulmonary vascular permeability, 311
septic shock, 945–948
Eglin C/hirudin, recombinant, proteinase/protease inhibitor therapy, 937–942
Eicosanoids
cardiopulmonary response to endotoxin, sheep, 201–204
pulmonary vascular permeability, mediators, 305, 306, 308, 312
see also Arachidonate/arachidonic acid metabolism; specific eicosanoids
Elastase-α,-antiproteinase complex, 7, 8 with antithrombin (EAT), humans, 971–974
early indicator of pediatric systemic infection, 689–693
endotoxin and overwhelming inflammatory response of early sepsis, 372, 373
immunoassay, automated homogenous enzyme immunoassay, 707–710
cf. coated tube ELISA, 708–710
intensive care unit assay, validity, 701–705
correlation to MOF score, 704–705
correlation to physician’s classification, 703–704
ELISA, 701–702
IMAC assay, 702
kallikrein-kinin system components in ARDS after polytrauma, 737, 738, 741, 742
marker for perioperative infection risk monitoring, validity of ELISA, 695–700
total leukocyte counts, 699, 700
mediation of pulmonary vascular permeability, 308–310
MSOF, polytrauma, 414, 656–659
and neopterin, plasma levels in MSOF, 683–687
and prognostic index in sepsis, 634
TNF, induction of organ changes in chronic lymph fistula, sheep, 470, 477–478, 480
see also PMN elastase
Elebute and Stoner Sepsis Score, 626–630, 638, 664, 1026, 1027, 1029
Electrical stimulation, efferent, isolated intestinal vascular bed, hemorrhagic shock, phase-related vascular reactivity, cats, 145
ELISA, 695–700
coated-tube, 708–710
proteinase inhibitor, leukocyte neutral, 945–946
quantitation with monoclonal antibodies, C3a, 299–303
cf. C3, 300–303
Elongation factor-2, ADP ribosylation, Pseudomonas endotoxin A, 250
Embolism, fat, pulmonary, 10, 37–41
Hannover Polytrauma Score, 38
histologic appearance, 40
Injury Severity Score, 38
long-bone or pelvis fracture, 39–41
respiratory failure, 37, 41
Encephalopathy, corticosteroids (glucocorticoid), VA comparative study of severe sepsis, 841, 843, 853–855
Endobulin, 1048, 1050
Endocrine secretion patterns, sepsis, 751–756
ADH, 751, 753, 755, 756
prolactin, 751, 753–754, 756
thyroid hormones, 751–756
Endothelial cells, thrombin-induced adhesion with neutrophils, 101–109
Endothelial injury, endotoxin-induced, 91–97
grading, 84–85
Endothelial proliferation inhibiting capacity, endotoxin and overwhelming inflammatory response of early sepsis, 373, 374
Endothelial swelling, lung in shock, 8, 9, 11
Endothelium
arachidonate/arachidonic acid metabolism, 119–123
permeability in vitro, bacterial toxins and calcium effects, 127–131
see also Vascular intima in endotoxin shock
Endothelium-derived relaxing factors, 157
Endotoxemia
HES volume replacement, 815–819
lung injury in, 357–368
failure, 12
phases I–III, 885–888
oxygen free radicals, 886–888
recombinant human SOD in, 913–917
and shock, impaired regulation, capillary endothelial cells, 157–160
Endotoxin, 850
antithrombin III-heparin complex, DIC, 977–981
arachidonate/arachidonic acid metabolism, 119–123
complement activation, 277–281
MSOF pathogenesis in septic shock, dogs, 291
effect, healthy volunteers, heart dysfunction cf. septic shock, 196–197
free radical scavengers and cardiopulmonary response, 885–888
granulocyte effects, lung, microvascular bed, cell interactions in septic shock, 114–116, 118
granulocyte-endothelial cell adherence, 123–124
heart cells, cultured, effects of Pseudomonas aeruginosa toxins, rat, 247–251
inflammatory reaction, GI tract decontamination, MOF prevention, 832
inotropic effect in isolated rabbit heart, 225–230
oxygen delivery, 227
perfusion circuit, 226, 227
ventricular pressure cf. perfusion flows, 227, 228
metabolic abnormalities in sepsis, 550
microvascular endothelial injury, 91–97
MSOF, postoperative/posttrauma, biochemical analysis and scoring, 654–655
antibody levels, 645–655
no role in MSOF, 419–423
and overwhelming inflammatory response of early sepsis, 371–375
endothelial proliferation inhibiting capacity, 373, 374
oxygen supply-uptake relationship, septic shock, 181–183
plasma concentrations related to responses, pig, 389–393
plasma contact system factors, in vitro interactions, 401–405
arterial O₂ tension, 391–392
hemodynamics, 390–391
kallikrein-kinin system, 389, 390, 392, 393
prognostic value in sepsis, 634, 635, 637
lethality, 639, 640
thrombocyte counts, 637–641
proteases in MSOF due to septicemia, 315–321
renal microthrombosis, 916
reticuloendothelial system, dose-related effects, 407–411
structure and biological activity, 79–81
and TNF, 463, 464
see also Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting; specific bacteria
Endotoxin shock
amino acid concentrations, serum, 595–599
animal model development for shock, 836
calcium antagonists in shock/ischemia, 1068–1071
eglin C ineffectiveness, 953–957
fibrinolytic functional determinants, pig, 395–399
hemofiltration and survival time, 821–826
hirudin/eglin C, recombinant, 937–942
PAF antagonists, 428–429, 931–935
proteinase/protease inhibitor therapy, 937–942
cf. traumatic shock, 941
vascular intima in, 77–87
WEB 2086 (PAF antagonist), cf. in anaphylactic lung reaction, 925, 927, 928
Enteric translocation of microorganisms, burns, 377–380
scalded rats, 379
sheep, 378
Enterobacteriaceae, 827–832
Eosinophil cationic protein, 22
Epidermal growth factor, 380
Epinephrine
diltiazem and endotoxin-induced intracellular Ca²⁺ overload, 1057–1059
metabolic abnormalities in sepsis, 54, 548
Epithelial lining fluid, ARDS, C3a and alveoli in, post-trauma, 44
Escherichia coli, 420, 426, 429, 538, 539, 546, 547, 551, 557, 561, 723, 881, 940
animal models for shock, 836–837
antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1043–1049
endotoxin, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 271, 273
hemolysin injury, septicemia in, lung, 67–70
transmembrane pores, 69
sepsis, kidney metabolism in, 601–605
see also Endotoxemia; Septicemia; Septic shock
Expired minute volume, respiratory quotient (CO₂/O₂ exchange ratio) in shock, 613, 614, 619–621
Extravascular lung water (EVLW)
altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
cardiac index, 804–806
microvascular integrity, 806
plasma colloid osmotic pressure, 803–808
pulmonary artery pressure, mean, 804
pulmonary artery wedge pressure, 803–808
ARDS, posttraumatic, prognosis, 675
and chemiluminescence-inducing radicals, porcine septic shock, 340, 342
hemofiltration and survival time, porcine acute endotoxic shock, 822, 823, 825
large volume replacement with crystalloids, septic shock, 809–813
MSOF, polytrauma, 414, 415
recombinant hirudin/eglin C, endotoxin shock, 938, 939, 941

Factor XII (Hageman factor), 384
and endotoxin interactions with plasma contact system factors, 402, 404
overwhelming inflammatory response of early sepsis, 372
kallikrein-kinin system components in ARDS after polytrauma, 737, 738, 741
Factor Xlla, circulation, peripheral, septic shock, 171
Fat embolism after bone fracture, 10, 37–41
Fat metabolism respiratory quotient (CO₂/O₂ exchange ratio) in shock, 619–621
in sepsis, 536–539, 545
Fentanyl, 755
Fibrin endotoxic shock, fibrinolytic functional determinations, pig, 395, 399
lung organ failure, 10, 11
Fibrinogen consumption, recombinant hirudin/eglin C, endotoxin shock, 937–942
endotoxic shock, fibrinolytic functional determinations, pig, 395–399
plasma endotoxin-induced DIC, AT III-heparin complex therapy, 979, 980
recombinant human SOD in endotoxemia, 915, 917
RES stimulation to protect against DIC, 1002, 1005
scintigraphic evaluation of posttraumatic liver function, 776
Fibrinolysis aprotinin membrane protective action, intraoperative histamine liberation, 961
cascade, 318
lung, microvascular bed, cell interactions in septic shock, 115
functional determinants, pig, endotoxic shock, 395–399
kallikrein-kinin system components in ARDS after polytrauma, 737
methylprednisolone pretreatment effects in porcine E. coli endotoxemia, 873, 877
pulmonary vascular permeability, 305–307
septic patients, 383–387
syndrome, DIC, 971, 972, 974
tests for, 383–386
Fibrinopeptide A, endotoxin and overwhelming inflammatory response of early sepsis, 372, 373
Fibrin peptides, specific, and proteinase inhibitor complex, immunologic determination, humans, 971, 972, 974
Fibrin split products, 395, 654
Fibronectin, 886
capillary endothelial cells, 158
determination of inflammatory response of early sepsis, 372
plasma, and abdominal sepsis prognosis, 716, 720, 722, 723
Fluid substitution, hemorrhagic shock, phase-related vascular reactivity, cats, 147–148
Fluorescent products, lipid peroxidation, hypovolemic-traumatic shock, dogs, 345–349
Flurbiprofen, 365
FMLP, 508, 510
Free radical scavengers C3 and IgG breakdown in peritonitis exudate, 527
cardiopulmonary response to endotoxin, sheep, 885–888
α-mercaptopropionyl glycine in hemorrhagic shock, 897–903
Fructose infusion, kidney function in sepsis, 603
Gabexate mesilate, 309
amino acid concentrations, serum, experimental endotoxin shock, 596, 597
D-Galactosamine, 1070, 1071
Gamma-scintillation with DTPA, alveolar permeability, 324–327
Gangrene, gas. See Immunoglobulin profiles and PMN-elastase in septic gas gangrene

Gangrene, gas. See Immunoglobulin profiles and PMN-elastase in septic gas gangrene

Gas exchange
- alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 326, 327
- hemofiltration and survival time, porcine acute endotoxic shock, 823, 825
- septicemia (E. coli), Goettingen pig, 185–188

Gas gangrene. See Immunoglobulin profiles and PMN-elastase in septic gas gangrene

Gastric mucosa ulceration
- ultrastructure after septic shock, rat, 151–155
- irreversible changes, 154–155
- parietal cells, 152, 153
- stress ulcer diseases, correlation with, 151
- surface epithelial cells, 153, 154
- WEB 2086 (PAF antagonist) and, 919

Gastrin, 380

Gastrointestinal tract
- decontamination, 827–832
- endotoxin-induced damage, and WEB 2086 (PAF antagonist), 919–922
- PAF antagonist inhibition of induced shock, 430

Gel filtration, positive inotropic factor as myocardial stimulant, 254

Gentamicin and methylprednisolone, animal models for shock, 836–840

Glasgow Coma Scale, 644–646

Global Index, polytrauma, 744–746

Glucagon, glucose turnover in sepsis, 552–553, 556, 559

Glucocorticoids, glucose turnover in sepsis, 552–553, 559

Glucose
- concentrations, kidney metabolism in E. coli sepsis, 602, 604
- deficiency, calcium antagonists in shock/ischemia, 1066
- metabolism
 - liver dysfunction in MSOF, altered cell-cell interactions, 563–565
 - polytrauma, 744
 - respiratory quotient (CO2/O2 exchange ratio) in shock, 619–621

oxidation, metabolic abnormalities in sepsis, 536–539, 545

turnover, metabolic abnormalities in sepsis, 547–552

mediators, 552–557

Glutamate pyruvate transaminase activity, endotoxin, dose-related effects on RES, 408, 410, 411

Glutamine and glutamic acid concentrations, serum, experimental endotoxin shock, 598

alpha1-acid Glycoprotein, prognostic index in sepsis, 634, 635, 716, 717

Goris multiple organ failure score, 626–628, 664, 1026, 1027, 1029

Granulocytes. See PMN entries

Growth hormone, 380

Gut decontamination, early ventilatory support, 786

H7, 122

HA 1004, 122

Hageman factor. See Factor XII (Hageman factor)

Haldane effect, 615

Hannover Polytrauma Score, 38

Haptoglobin, and abdominal sepsis prognosis, 716

Heart
- inotropic plasma factor
 - positive, hypovolemic shock, 253–257

isolated, effect of LMW plasma fraction, hypovolemic traumatic shock, dog, 231–234

LV systolic pressure, 233, 234

negative inotropism, shock plasma ultrafiltrates, 231–234

isolated, rabbit, endotoxin inotropic effects, 225–230

overperformance in septic shock, 259–263
in septic shock, awake sheep, 237–245
artifact rejection, 239–242
contractility, 238
hemodynamic parameters, respiratory influence, 243
pressure/volume loop, 238, 244
sonomicrometer LV dimension, 237–243
see also Cardiac entries; Myocardial entries
Heart cells, cultured, effects of *Pseudomonas aeruginosa* toxins, rat, 247–251
and cardiac function, 247–251
endotoxins, 247, 249
type A, 247–251
immunoglobulins, *Pseudomonas*, protection, 247–249, 251
Heart dysfunction, septic shock, human, 191–197
cf. dog. 196
end diastolic volume index, 193, 194, 197
cf. endotoxin effect on healthy volunteers, 196–197
hemodynamic profiles, 192–193
interleukin-2, 197
left ventricular ejection fraction, 193–196
mechanisms, 194–196
myocardial depressant substance/factor, 194–196
right ventricle, 194
stroke volume index, 193, 194, 196, 197
TNF, 197
Heart function changes, septic shock, chacma baboon (*Papio ursinus*), 207–215, 217–222
cardiac output, 207, 210–215, 219–222
heart rate, 208, 210–215
tachycardia and cardiac volume, 214–215, 217–222
left ventricular compliance, 221, 222
left ventricular ejection fraction, 207, 210, 211, 213–215
left ventricular end diastolic volume, 207, 209–214, 217, 219–222
left ventricular end systolic volume, 207, 209–214, 219–222
pulmonary capillary wedge pressure, 217, 219–222
stroke volume, 207, 210–214, 219, 221–222
systemic vascular resistance, 219, 220
ventriculography, radionuclide, 209–210, 218, 219

Heart rate
dheart function changes, septic shock, chacma baboon (*Papio ursinus*), 208, 210–215, 217–222
α-mercaptopropionylglycine in hemorrhagic shock, 899, 900
RA 642 effects on, acute hemorrhagic shock, 1094
Hematocrit, recombinant human SOD in endotoxemia, 914–916
Hemodynamics
dopamine infusion, effect evaluation with systolic time intervals, 1104–1105
dendotoxin, 390–391
liver dysfunction in MSOF, altered cell-cell interactions, 565
methylprednisolone pretreatment effects in porcine *E. coli* endotoxemia, 874, 876–877
PVR, 874, 876–877
PAF antagonists in endotoxin shock, 933, 935
PAF effects in sheep, 448–449
septic shock/septicemia, 192–193
immunoglobulin and plasmapheresis therapy, 1025–1030
pulmonary venous hemodynamics and gas exchange disturbances, Goettingen pig, 186
respiratory influence, awake sheep, 243
TNF, induction of organ changes in chronic lymph fistula, sheep, 472, 479

see also specific parameters
Hemofiltration and survival time, porcine acute endotoxic shock, 821–826
arachidonic acid metabolites, 823–825
cardiac output, 822, 825
extravascular lung water, 822, 823, 825
Index / 1121

gas exchange, 823, 825
6-keto-PGFα, 823, 825
peripheral resistance, total, 822, 825
thromboxane, 823–825
Hemoglobin, respiratory quotient (CO2/O2 exchange ratio) in shock, 608
Hemolysin, Escherichia coli, 67–70
Hemorrhagic shock
calcium antagonists in shock/ischemia, 1067
cerebrocortical perfusion, RA642 effects, 1091–1094
α-mercaptpropionylglycine, 897–903
Hemorrhagic shock, phase-related vascular reactivity, cats, 143–149
autoregulation, 147, 148
compensated shock, 144–148
decompensated shock, 145–148
electrical stimulation, efferent, isolated intestinal vascular bed, 145
fluid substitution, 147–148
noradrenaline, 146
oxygen free radicals, 144, 148, 149
permeability, capillary and postcapillary, 143
PMNs, 148, 149
vascular tone, 143
Heparin, 940
Hepatocytes
cystolic Ca2+ in, diltiazem and endotoxin-induced intracellular Ca2+ overload, 1055–1060
endotoxin, dose-related effects on RES, 408, 411
liver dysfunction in MSOF, altered cell-cell interactions, 563, 567, 568
phorbol ester binding sites, 583–584
protein kinase C and diacylglycerol accumulation, entodoxemia, rats, 575–586
in situ receptor autoradiography, 579, 583–584, 586
phorbol ester binding sites, 583–584
see also Liver entries
Hepatotoxin D-galactosamine, 1070, 1071
Hernioraphy, 493
Herniotomy, 1018, 1020
HETE, cardiopulmonary response to endotoxin, eicosanoids in, sheep, 203
5-HETE, 351
15-HETE, 351
Hetrezepine, WEB 2086 (PAF antagonist), 925, 928
High-density lipoproteins, 81
Hip arthroplasty, total, high-dose corticosteroids to prevent C3a and C5a formation, 879–882
Hirudin, neutrophils, thrombin-induced adhesion with endothelial cells, 103
Hirudin/eglin C, recombinant, endotoxin shock, proteinase/protease inhibitor therapy, 937–942
Hirudo medicinalis, 937
HIS scoring system, 626–628, 645, 1026, 1027, 1029
Histamine, 941
intraoperative liberation, aprotinin membrane protective action, 959–963
WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 927
Histologic appearance, pulmonary fat embolism, 40
Honeycomb cysts, 29, 32
5-HT (serotonin)
lung injury in E. coli endotoxemia, 362, 368
platelet, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 272, 273
Hyaline membrane disease, 29
elastase-α1-PI as early indicator, 690, 691
Hydrocortisone, 121, 122
Hydrogen peroxide, 886, 888, 950
eglin C ineffectiveness in endotoxin shock, 954–956
lipid peroxidation, hypovolemic-traumatic shock, dogs, 346
Hydroxyethyl starch, volume replacement in ovine endotoxemia, 815–819
cardiac index, 818, 819
cf. crystalloids, 815–819
lung lymph, 817, 818
plasma colloid osmotic pressure, 816–819
pulmonary artery pressure, main, 816, 817
Hydroxyl radical, 887, 950
alveolar permeability increased by PMA-
stimulated neutrophils, rabbits, ARDS, 328
eglin C ineffectiveness in endotoxic
shock, 954–956
4-Hydroxynonenal (HNE), 662, 663
inflammation in surgical trauma, human, 351–355
lipid peroxidation, hypovolemic-
traumatic shock, dogs, 345–348
PMNs in Sephadex inflammation model,
rats, 351–355
chemotaxis, 351
superoxide anion production, 354,
355
Hydroxyurea, 887, 888
Hyperalaninemia and lethality, endotoxic
shock, 595, 597–599
Hyperbaric oxygenation, 1008, 1010, 1013,
1020
Hypersensitivity, delayed-type. See Delayed
type hypersensitivity
Hypertension, pulmonary
PAF effects in sheep, 450, 451
thromboxane-mediated, E. coli
hemolysin injury to, septicemia,
67, 70
vascular leakage, and complement
activation, 283–286
cf. pore-forming, Staphylococcus
alpha-toxin, 286
Hyperthermia, metabolic abnormalities in
sepsis, 547
Hyperventilation, respiratory quotient
(CO₂/O₂ exchange ratio) in shock,
615, 619–621
Hypovolemic shock
ARDS, 32, 33
positive inotropic factor as myocardial
stimulant, 253–257
Hypovolemic traumatic shock, 228, 229
lipid peroxidation, dogs, 345–350
plasma fraction, LMW, effect on
isolated heart, 231–234
LV systolic pressure, 233, 234
negative inotropism, shock plasma
ultrafiltrates, 231–234
Hypoxanthine levels, lipid peroxidation,
hypovolemia-traumatic shock, dogs,
346–349
Hysterectomy, aprotinin membrane
protective action, intraoperative
histamine liberation, 959–963
Ibuprofen, cardiopulmonary response to
endotoxin, eicosanoids in, sheep,
202, 203
Ileus, MSOF prognostic indices, logistic
regression analysis, 644
IMAC, 702, 707–710
Immune complexes, circulating, plasma,
and abdominal sepsis prognosis,
716
Immune suppression/dysfunction, post-
trauma or surgery, 491–494
early events, 507–511
lymphocyte/monocyte ratio in survival,
769
monocyte-dependent Ig synthesis
suppression, 513–516
MSOF, biochemical analysis and
scoring, 661–662
T-cell mediated, polytrauma, 517–521
thymopentin for, 995–998
trauma-induced cascade of cell-mediated
immune effects, 495–505
immunorestitution, 504–505
schema, 501, 503
Immunoelectrophoresis, crossed, C3 and
IgG breakdown in Peritonitis
exudate, 529, 531
Immunoglobulin(s)
IgA, immunoglobulin profiles and PMN-
elastase in septic gas gangrene,
1009, 1011
IgG, 427–428
breakdown, peritonitis exudate, C3
and, 527–532
-deficiency substitution, and PMN-
elastase in septic gas
gangrene, 1007, 1012,
1018–1020
IgM-enriched Igs (Pentaglobin),
1031–1033, 1035, 1046, 1050
in immune suppression, post-surgical or
post-traumatic, 492
lymphocyte/monocyte ratio in
polytrauma survival, 769, 770
plasma, and abdominal sepsis prognosis,
716
Pseudomonas, protection of cultured
heart cells from effects of
Pseudomonas aeruginosa toxins,
rat, 247–249, 251
synthesis
and plasmapheresis therapy,
hemodynamic effects during
treatment for septic shock,
1025–1030
suppression after multiple trauma,
513–516
trauma-induced cascade of cell-
mediated immune effects,
496, 497, 499, 501, 502
therapeutic
phagocytosis stimulation, peritonitis,
1037–1041
prophylactic, sepsis prevention after
heart surgery, 1031–1035
Immunoglobulin profiles and PMN-elastase
in septic gas gangrene, 1007–1022
aprotinin administration, 1008, 1012,
1014–1016
IgA, 1009, 1011
IgG, 1009, 1011, 1012–1021
IgG-deficiency substitution, 1007, 1012,
1018–1020
dosage, 1018
IgM, 1009, 1011
primary cf. secondary, 1008
Immunologic determination, humans,
proteinase inhibitor complexes,
971–974
Immunomodulation
septic shock, 989–993
thymopentin (TP-5), post-burn and
postoperative sepsis, 995–998
Indomethacin, 120, 122, 131, 203, 365,
502
immune/cytotoxic processes, role in, 442
Infarction, myocardial, 910, 972, 973
Infection
DIT marker in, 711–713
lymphocyte/monocyte ratio in
polytrauma survival, 769, 770,
772
Inflammation
autodestructive, complement activation,
MSOF pathogenesis in septic
shock, dogs, 296
early, schema, 456, 457
pharmacologic intervention points,
457
overwhelming, endotoxin role, 371–375
pathways, corticosteroids, VA
comparative study of severe
sepsis, 850–851
vs. sepsis as trigger, MSOF, 413–416
in surgical trauma, 4-hydroxy-nonenal,
351–355
see also specific cell types and mediators
Inflammatory cell activation, multiple
system organ failure,
postoperative/posttrauma,
biochemical analysis and scoring,
655–661
Inhaled antigen, WEB 2086 (PAF
antagonist), anaphylactic lung
reaction, 926, 928
Injury Severity Score, 731
dopamine infusion, effect evaluation
with systolic time intervals,
1102
embolism, fat, pulmonary, 38
phospholipase A as prognostic index,
764
polytrauma, 744, 745
scintigraphic evaluation of posttraumatic
liver function, 776
Insulin, 1060–1061, 1066
infusion, kidney function in sepsis, 604
metabolic abnormalities in sepsis, 538,
547
Intensive care unit assay, validity, elastase-
α₂-antiproteinase complex,
701–705
correlation to MOF score, 704–705
correlation to physician’s classification,
703–704
ELISA, 701–702
IMAC assay, 702
γ-Interferon, 772
trauma-induced cascade of cell-mediated immune effects, 495, 497–504
Interleukin-1, 11, 13, 114, 368, 428, 432, 443, 467, 479, 486, 536, 850
Ig synthesis suppression after multiple trauma, 513
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568, 569
pulmonary vascular permeability, 305
serum, and sepsis, prognosis/prognostic indices, 715–718
trauma-induced cascade of cell-mediated immune effects, 495, 497–503
Interleukin-2, 772, 990, 995, 996
heart dysfunction, septic shock, human, 197
Ig synthesis suppression after multiple trauma, 513, 515
immune/cytotoxic processes, role in, 442
trauma-induced cascade of cell-mediated immune effects, 496–503
Interleukin-2 receptors
immune suppression, post-surgical or post-traumatic, 492, 494
multiple trauma, early events, 508, 509
trauma-induced cascade of cell-mediated immune effects, 496, 501, 502
Interleukin-4 (BCGF), trauma-induced cascade of cell-mediated immune effects, 497
Intestinal transit velocity, WEB 2086 (PAF antagonist), 919–922
Intima. See Vascular intima in endotoxin shock
Intraglobin, 1047, 1050
Intra-tracheal pressure, lung injury in E. coli endotoxemia, 360, 361, 365
Inverse ratio ventilation
early ventilatory support, 788, 789
nifedipine for ARDS, 1087, 1090
IP3, hepatocytes, protein kinase C and diacylglycerol accumulation, endotoxemia, 575
Iron-dependent lipid peroxidation in cardiopulmonary arrest, 895
Ischemia, myocardial
acute, dynamics of prostacyclin and thromboxane, 907–911
arrhythmias, 907
Ischemia and circulatory system in MSOF, 1075–1083
ARDS, 1076, 1078, 1081, 1083
pulmonary hypertension, 1078
catecholamines, 1077
central mechanisms, 1075–1079
cardiac output, 1076–1077, 1080, 1082
myocardial depressant factor, 1076, 1077
myocardium, reperfused, 1077
oxygen delivery, 1075–1083
peripheral mechanisms, 1079–1082
capillary surface area reduction, 1082
oxygen extraction, 1079–1083
regional blood flow, 1080–1081, 1083
see also Calcium antagonists in shock/ischemia
Isoprinosine, 502
Kadsurenone, 428, 485
Kalikrein, 738, 741, 983
circulation, peripheral, septic shock, 171
despoxoxin interactions with plasma contact system factors, 401–404
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 479
Kalikrein-kinin system, 318
in ARDS after polytrauma, 737–742
endotoxin, 389, 390, 392, 393
pulmonary vascular permeability, 305–307
Ketanserin, 362
Kidney
complement activation, MSOF pathogenesis in septic shock, dogs, 294–296
and dopamine, 1097–1099
plasma flow, 1098
failure, postoperative, 133–136
metabolism in E. coli sepsis, 601–605
ATP MgCl2, 602, 605
glucose concentrations, 602, 604
Index / 1125

glucose-insulin-potassium infusions, 604
lactate or fructose infusion, 603
TAN concentrations, 601, 602, 604
microthrombosis, endotoxin-induced, 916
PAF antagonist inhibition of induced shock, 429
RES stimulation to protect against DIC, 1002, 1003
Kininase II, 941
Kininogen, 983, 986
Kinin, 986–987
cascade, lung microvascular bed, cell interactions in septic shock, 115
see also Kallikrein-kinin system
Kupffer cells, 78, 81, 294, 779, 1002, 1004
endotoxin, dose-related effects on RES, 408
liver dysfunction in MSOF, altered cell-cell interactions, 563, 564, 566–571
zymosan-induced MSOF, entotoxin plays no key role, 422
L-652,731, 426, 428, 442, 485
L-653,150, 428
Lactate
or fructose infusion, kidney metabolism in E. coli sepsis, 603
hypovolemic-traumatic shock, dogs, 346–349
metabolism, liver, 744
polytrauma, 743, 745, 747
Lactate dehydrogenase, lung, endotoxin-induced microvascular endothelial injury, 93, 96
Lactoferrin, pulmonary vascular permeability, 307, 308
Laser Doppler flowmetry, RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
Lavage therapy, C3 and IgG breakdown in peritonitis exudate, 530, 531
Leukocyte(s)
count
methylprednisolone pretreatment, endotoxemia, 875, 876
recombinant human SOD in endotoxemia, 914, 915, 917
total, 699, 700
-induced injury with zymosan, lung, 73–76
phagocytic activity in sepsis/infection, diiodotyrosine (DIT) as marker for, 711–713
and TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 470, 475–477, 480
see also specific types
Leukocyte neutral proteinase inhibitor, 945–950
Leukopenia, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926
Leukostasis
alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 325, 326
lipid peroxidation in hypovolemic shock, 349–350
lung in shock, 4–5, 7–8
TNF, induction of organ changes in chronic lymph fistula, sheep, 473, 474, 480
Leukotrienes, 70, 351
cardio pulmonary response to endotoxin, eicosanoids in, sheep, 203, 204
complement activation, pulmonary hypertension and vascular leakage, 286
early ventilatory support, 785
LTB4, sepsis, 535, 536
LTC4, 432
lung injury in E. coli endotoxemia, 362
synthesis, RA642 effects on cerebrocortical perfusion, acute hemorrhagic shock, 1094
Lipid A. See Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting
Lipid peroxidation, 662, 663
hypovolemic-traumatic shock, dogs, 345–350
inhibition in cardiopulmonary arrest, dogs, 891–895
see also Oxygen radicals
Lipocortin, 123
Lipoxygenase inhibition, AA-861, 131
Lipopolysaccharide, S. abortus equi, 119, 121; see also Antibodies, anti-LPS
Lipid A, determination with immunoblotting
Lipoprotein, high-density, 81
Lipoprotein lipase suppression, TNF, 464
Liver complement activation, MSOF pathogenesis in septic shock, dogs, 293–294, 296
enzymes, serum, scintigraphic evaluation of posttraumatic liver function, 776–779
failure, complement activation and endotoxin role, sepsis, 277
lactate metabolism, 744
leukostasis, TNF induction of organ changes in chronic lymph fistula, 473, 474, 480
perfused, sepsis effect on metabolism, 589–592
scintigraphic evaluation of posttraumatic function, 775–780
SGOT, TNF induction of changes in chronic lymph fistula, sheep, 469, 474, 475, 480
sinusoidal macrophages, endotoxin, dose-related effects on RES, 408
see also Hepatocytes; Kupffer cells
Liver dysfunction in MSOF, altered cell-cell interactions, 563–571
glucose metabolism, 563–565
hemodynamics, 565
hepatocytes, 563, 567, 568
interleukin-1, 564, 568, 569
Kupffer cells, 563, 564, 566–571
paracrine amplification, 563, 569
polyunsaturated fatty acids, 569–571
prostaglandins, 564, 568, 569
protein metabolism, 565, 567, 568
thromboxane, 569
TNF, 564, 568–570
Low-flow states, respiratory quotient (CO₂/O₂ exchange ratio) in shock, 615, 616
Luminol-dependent chemiluminescence, 339–344
cf. zymosan-activated, 341
Lung(s), 3–10
anaphylactic rection, WEB 2086 (PAF antagonist), 925–929
endothelial swelling, 8, 9, 11
endotoxin-induced microvascular endothelial injury, 91–97
Escherichia coli hemolysin injury, septicemia in, 67–70
transmembrane pores, 69
injury, PMA, SOD after, 945–949
isolated, pulmonary vascular permeability, 309–311
leukocyte-induced injury with zymosan, 73–76
leukostasis, 4–5, 7–8
microvascular bed, cell interactions in septic shock, 113–118
organ failure, 10–14; see also ARDS
PAF antagonist inhibition of induced shock, 429
perfusion, decreased, 5–6
platelet activation, 6, 7
zymosan-induced MSOF, endotoxin plays no key role, 421–423
Lung edema. See Pulmonary edema in shock
Lung epithelial lining fluid, 792, 793
Lung injury in E. coli endotoxemia, 357–368
cats, vagotomized, 361
intra-tracheal pressure, 360, 361, 365
mediators, 358, 362–366
pulmonary artery pressure, 360, 364, 365, 368
pulmonary compliance, 358–361, 367
pulmonary resistance, 358, 359
transpulmonary pressure, 358–361
Lung lymph flow
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202–204
free radical scavengers and cardiopulmonary response to endotoxin, 885
hydroxyethyl starch, volume replacement in ovine endotoxemia, 817, 818
PAF antagonists in endotoxin shock, 933–935
PAF effects in sheep, 447, 450
permeability, pulmonary vascular, mediators, 308
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 473, 475, 479
Lung water, extravascular. See Extravascular lung water (EVLW)

Lupus erythematosides cells, 52, 53

Lymph fistula. See TNF, induction of organ changes in chronic lymph fistula, sheep

Lymphocyte(s)
- counts, immune suppression, postsurgical or post-traumatic, 492
- /monocyte ratio in polytrauma survival, prognosis/prognostic indices, 769–772

see also B cell(s); T cell(s)

Lysolecithin acyl-transferase (LAT), 122, 123, 455

α2-Macroglobulin, plasma, and abdominal sepsis prognosis, 716, 717, 720

Macrophage(s)
- activation/induction
 - elastase-α1-PI complex and neopterin, plasma levels, 687
 - and TNF productin in shock, PAF, 485–488
- alveolar, chemotactic factors, 20
- ARDS, posttraumatic, prognosis, 679
- hepatic. See Kupffer cells
- multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 657, 659, 660
- origins of, lung, microvascular bed, cell interactions in septic shock, 113–114, 118
- phospholipase A source, 757, 763, 767
- pulmonary intravascular endotoxin-induced microvascular endothelial injury, 92
- endotoxin shock, 78, 80, 81
- vascular intima in endotoxin shock, 78, 80, 81

Macrophage-activating factor, trauma-induced cascade of cell-mediated immune effects, 497

Magnesium and calcium antagonists in shock/ischemia, 1072

Magnesium chloride, ATP-, kidney function in sepsis, 602, 605

Major basic protein, 432, 488

Malondialdehyde, 662, 663, 910

leukocyte-induced lung injury, 74, 75

lipid peroxidation, hypovolemic-traumatic shock, dogs, 346–348

Mannheim Peritonitis Index, 723

Mast cell chymase, 937, 941, 942

Meclophenamate, 203

Meconium aspiration, elastase-α1-PI as early indicator, 690, 691

Membrane protective action, intraoperative histamine liberation, aprotinin, 959–963

Meningitis
 - elastase-α1-PI as early indicator, 690–692
 - fulminant meningococcal, activated C3 in DIC in septic shock, 271–274

Mepacrine, 120

Mepyramine, 362, 926

α-Mercaptopyrrole glycine, hemorrhagic shock, 897–903

Mesenteric blood flow, burns, enteric translocation of microorganisms, 377–380

Metabolic abnormalities in sepsis, 535–542, 545–559

ARDS, 535, 537, 538

branched-chain amino acids, 539, 540, 617

carbon dioxide, arterial, 537, 538
dichloracetic acid therapy, 540, 541

glucose turnover, 547–552

mediators, 552–557

hyperthermia, 547

insulin, 538, 547

LTB4, 535, 536

mitochondrial pyruvate dehydrogenase, 538–540, 549, 550

MOSF, 535–542

oxidation of glucose cf. fats, 536–539, 545

PGF2α/PGE2 ratio, 535, 536

proteolysis, excessive, 540–542

rat experimental model, 546–547

superoxides, 535, 536

TPN, 537, 538

Metabolic imbalance, multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 663–664
Metabolic rate, septic shock, heart overperformance in, 260–262
Methylmethacrylate cement, 879, 880
Methylprednisolone, pretreatment effects in porcine *E. coli* endotoxemia, 873–877
coaulation, 873
fibrinolysis, 873, 877
hemodynamics, 874, 876–877
PVR, 874, 876–877
proteolysis cascades, 873, 877
VA study, 873
Methylprednisolone for septic shock with ARDS, 861–863
with gentamicin, dogs, *E. coli* shock, animal model development for shock, 836–837
adrenal gland role, 838–839
cf. baboons, 836–840
rationale, 837–838
Methysergide, 362
Microangiopathy, diabetic, 1009
Microatelectasis, early ventilatory support, 787
\(\alpha_2 \)-Microglobulin
immune suppression, post-surgical or post-traumatic, 492
kallikrein-kinin system components in ARDS after polytrauma, 738, 739, 742
Microvascular integrity, extravascular lung water, altered fluid regimen, advanced septic shock with acute respiratory failure, 806
Microvascular permeability. See under Permeability
Milano Sepsis Score, 634–636
complement activation, endotoxin role in sepsis, 278–280
Minimal pulmonary dysfunction, 52
Mitochondrial function
calcium antagonists in shock/ischemia, 1066
pyruvate dehydrogenase, metabolic abnormalities in sepsis, 538–540, 549, 550
Monocyte(s), 989, 991, 993
count, multiple trauma, early events, 508, 509
\(\alpha_2 \)-dependent Ig synthesis suppression after multiple trauma, immune suppression/dysfunction, 513–516
lymphocyte ratio as prognostic factor, polytrauma, 769–772
synthesis, \(\alpha_1 \)-protease inhibitor, 948
see also Macrophage(s)
Monokine synthesis factor, 499
Monolayer-filter membrane system, endothelium permeability and, 128–131
MPP
pulmonary vascular resistance, ARDS in septicemia, 175–178
pulmonary venous hemodynamics and gas exchange disturbances, *E. coli* septicemia, Goettingen pig, 185, 186
MTDQ-DA antioxidant, myocardial ischemia, 907–911
Mucosal integrity, burns, enteric translocation of microorganisms, 377–380
Multiple system organ failure (MOF, MOSF, MSOF)
in acute pancreatitis, C3a and C5a, 265–268
terminal complement complexes, 266, 267
ARDS, septic, 57–60
prognosis, 59
C3a, 880
ceruloplasmin changes, 331–337
C-reactive protein, 335, 336
number of organs involved, 333, 334, 336
complement activation in, septic shock, 291–296
elastase-\(\alpha_1 \)-PI complex and neopterin, plasma levels, 683–687
endotoxin and proteases, septicemia, 315–321
diagnostic criteria for MSOF, 316
PFI index, 317–321
epidemiology, 783–784
Goris score, 1026, 1027, 1029
ischemia and circulatory system in, 1075–1083
liver dysfunction, 563–571
lymphocyte/monocyte ratio in polytrauma survival, 769, 770
metabolic abnormalities in sepsis, 535–542
muscle P0 role, critically ill patients, 138–140
phospholipase A as prognostic index, 766
prevention, zymosan-induced peritonitis, decontamination, GI tract, 827–832
prognostic indices, 643–647
sepsis vs. inflammation as trigger, polytrauma, 413–416
ventilatory support, early, 784–789
zymosan-induced, no endotoxin role, 419–423
Multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 649–665
coagulation cascade, fibrinolysis, and kallikrein system, 652–654
complement cascade, 650–651
endotoxin, 654–655
immune suppression/dysfunction, 661–662
inflammatory cell activation, 655–661
metabolic imbalance, 663–664
organ function parameters, 664–665 stages, 649
target structure degradation, 662–663
Multiple trauma. See Polytrauma; Trauma
Muscle
P0 role, critically ill patients, MOF, 137–142
MOF scores, 138–140
survival, 139, 141
skeletal, diltiazem and endotoxin-induced intracellular \(\text{Ca}^{2+} \) overload, 1054–1061
smooth, spasm, calcium antagonists in shock/ischemia, 1066
Mycostatin, 378
Mycotoxin-induced shock, PAF antagonist inhibition of induced shock, 431
Myeloperoxidase, pulmonary vascular permeability, 307, 308
Myocardial contractility, depressed, dopamine infusion effect evaluation with systolic time intervals, 1101
Myocardial depressant factor, 253, 261, 262, 431, 1068
heart dysfunction, septic shock, human, 194–196
ischemia and circulatory system in MSOF, 1076, 1077
Myocardial infarction, 910, 972, 973
Myocardial ischemia acute, dynamics of prostacyclin and thromboxane, 907–911
arrhythmias, 907
Myocardium, reperfused, ischemia and circulatory system in MSOF, 1077
Negative chronotropic effect, \(\alpha \)-mercaptopropionylglycine in hemorrhagic shock, 902
Neonatal respiratory distress syndrome, exogenous surfactant, 797
Neopterin, 477, 657, 659, 660
ARDS, posttraumatic, prognosis, 674–679
and elastase-\(\alpha _1 \)-PI complex, plasma levels in MSOF, 683–687
immune suppression, post-surgical or post-traumatic, 492–494
polytrauma, 745, 747
Neuroleptics, 755
Neurologic function and lipid peroxidation inhibition in cardiopulmonary arrest, 891–895
Neutrophils. See PMN entries
Nicardipine, endotoxin shock, 1071
Nifedipine, 1060
ARDS, 1087–1090
endotoxin shock, 1070, 1071
Nimodipine, traumatic shock, 1067, 1068
Nine Rule, total burn surface estimation, 1102, 1103
Nitrogen mustard, 887
Nivadipine, endotoxin shock, 1070
NK cells, 989, 991
PAF antagonist effects, 443–444
Noradrenaline/norepinephrine hemorrhagic shock, phase-related vascular reactivity, cats, 146
metabolic abnormalities in sepsis, 547, 548

ONO, 6240, 428, 931

Opsonins, C3 and IgG breakdown in peritonitis exudate, 527–532

Organ failure, multiple. See Multiple system organ failure (MOF, MOSF, MSOF)

Organ failure, postoperative, tissue oxygen debt (VO\textsubscript{2} deficit) as determinant, 133–136

survivors cf. nonsurvivors, 136

Osmotic pressure. See Plasma colloid osmotic pressure

Oxidation of glucose cf. fats, metabolic abnormalities in sepsis, 536–539, 545

Oxygen arterial tension, endotoxin effect, 391–392
delivery endotoxin, inotropic effect in isolated rabbit heart, 227
ischemia and circulatory system in MSOF, 1075–1083

extraction ischemia and circulatory system in MSOF, 1079–1083
peripheral, septic shock, heart overperformance in, 260–262
see also Respiratory quotient (CO\textsubscript{2}/O\textsubscript{2} exchange ratio) in shock
hypoxia, early ventilatory support, 784–787
and leukocyte-induced lung injury, 74, 75
skeletal muscle pO\textsubscript{2} and multiple organ failure, 137–142

supply peripheral, pulmonary vascular resistance, ARDS in septicemia, 175, 177, 179
-uptake relationship, septic shock, 181–183
tissue oxygen debt (VO\textsubscript{2}) deficit and postoperative organ failure, 133–136

survivors cf. nonsurvivors, 136

utilization, circulation, peripheral, septic shock, 163, 167–169
Oxygen, hyperbaric, 1008, 1010, 1013, 1020

Oxygen radicals ARDS, exogenous surfactant, 791, 793
ceruloplasmin changes in MSOF and ARDS, 331–332, 337
endotoxemia, 886–888
hemorrhagic shock, phase-related vascular reactivity, cats, 144, 148, 149
leukocyte-induced lung injury, 73, 75, 76
lungs endotoxin-induced microvascular endothelial injury, 95
microvascular bed, cell interactions in septic shock, 114
multiple organ failure, postoperative/posttrauma, biochemical analysis and scoring, 656, 661
permeability, pulmonary vascular, mediators, 305–306, 311, 312
PMN activation, 850
scavenging. See Free radical scavengers
TNF, induction of organ changes in chronic lymph fistula, sheep, 470, 476, 477

see also Lipid peroxidation; specific types

Pancreatic cysts, C-reactive protein as prognostic index, 726

Pancreatitis
C3a and C5a in MSOF, 265–268
terminal complement complexes, 266, 267
C-reactive protein as prognostic index, 725–728
extravascular lung water, large volume replacement with crystalloids, 809

Papillary muscle, guinea pig, 231–233
Papio ursinus, septic shock, heart function changes, 207–215, 217–222

Paracrine amplification, liver dysfunction in MSOF, altered cell-cell interactions, 563, 569

Parietal cells, gastric mucosa ulceration,
ultrastructure after septic shock, rat, 152, 153
Passive sensitization, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Pediatric systemic infection, elastase-α₁-PI as early indicator, 689–693
PEEP
 nifedipine for ARDS, 1087, 1090
 ventilatory support, early, 788–789
Pelvis fracture and pulmonary fat embolism, 39–41
Pentaglobin, 1031–1033, 1035, 1046, 1050
Perfusion, decreased, lung in shock, 5–6
Perfusion circuit, endotoxin, inotropic effect in isolated rabbit heart, 226, 227
Peripheral circulation. See Circulation, peripheral, septic shock
Peripheral resistance, total
 hemofiltration and survival time, porcine acute endotoxic shock, 822, 825
 septic shock, heart overperformance in, 260, 262
Peritoneal exudate cells, therapeutic IgG, phagocytosis stimulation in peritonitis, 1038
Peritonitis
 C-reactive protein as prognostic index, 725–728
 endotoxin and overwhelming inflammatory response of early sepsis, 372–374
 exudate, C3 and, immunoglobulin G breakdown, 527–532
 therapeutic IgG stimulation of phagocytosis, exudate cells, 1038
 zymosan-induced, decontamination, GI tract, 827–832
Peritonitis Index, 643
Permeability
 alveolar
 cf. capillary permeability, 323, 328–329
 gamma-scintillation with DTPA, detection, 324–327
 PMA-stimulated neutrophils, rabbit ARDS, 323–329
 capillary
 endothelial cells, 157, 159
and postcapillary, hemorrhagic shock, phase-related vascular reactivity, cats, 143
complement and pulmonary hypertension, 283–286
endothelial, bacterial toxins and calcium effects, 127–131
microvascular, 92–93, 96
 circulation, peripheral, septic shock, 167
 free radical scavengers and cardiopulmonary response to endotoxin, 885, 886, 888
 TNF, induction of organ changes in chronic lymph fistula, sheep, 472, 473, 479–481
Permeability, pulmonary vascular, mediators, 305–312
 E. coli hemolysin injury, septicemia, 67, 69–70
eicosanoids/arachidonic acid cascade, 305, 306, 308, 312
 lung lymph flow, 308
 thromboxane, 310
granulocytes (PMNs) and macrophages as source, 307–311
 isolated rabbit lung, 309–311
 oxygen radicals, 305–306, 311, 312
 PAF effects, sheep, 447, 451
 PMN-elastase-α₁-protease inhibitor, 308–310
 proteases, 306, 309, 312
 inhibitor Eglin C, 311
PFI index, 317–321, 653, 731–735
pH
 isolated heart, effect of LMW plasma fraction in hypovolemia traumatic shock, 234
 respiratory quotient (CO₂/O₂ exchange ratio) in shock, 608, 609, 615–617
Phagocytic index, RES stimulation to protect against DIC, 1004
Phagocytosis assay, 508, 510
Phagocytosis stimulation, peritonitis, therapeutic immunoglobulins, 1037–1041
 IgG, 1041
 IgM, 1039, 1041
Phentolamine, 553, 555, 557, 558
Phenylephrine, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 579–581
Phorbol esters, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 576, 578, 579, 582, 586
Phorbol myristate acetate, 123
lung injury, superoxide dismutase, 945–949
-stimulated neutrophils, rabbit ARDS, permeability, alveolar, 323–329
Phosphatidate phosphohydrolyase, 576
Phosphatidylcholine and phosphatidyl glycerol, exogenous Surfactant, 792
Phospholipase A
lethality correlation, 759–761, 764, 765
severely ill patients, prognosis/prognostic indices, 757–761, 763–768
sources, 757, 763, 767
Phospholipase A₂, 123, 432
C, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 575, 576
calcium antagonists in shock/ischemia, 1066, 1071
PMN activatin, 850, 851, 855
Phospholipid reacylation, burns, PAF inhibitor effect, scalded pig, 455, 459, 461
Pia arterioles, RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1093
PIP₂, hepatocytes, protein kinase C and diacylglycerol accumulation, endotoxemia, 575
Plasma colloid osmotic pressure and extravascular lung water altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
large volume replacement with crystalloids, 810–812
hydroxyethyl starch, volume replacement in ovine endotoxemia, 816–819
Plasma contact system factors, in vitro interactions, endotoxin, 401–405
Plasma flow, renal, dopamine and renal function, 1098
Plasma fraction, LMW, effect on isolated heart, hypovolemic traumatic shock, dog, 231–234
LV systolic pressure, 233, 234
negative inotropism, shock plasma ultrafiltrates, 231–234
Plasmapheresis, 1025–1030
Plasma proteins, abdominal sepsis, prognosis/prognostic indices, 719–724
Plasma substitution in septic shock, humans, antithrombin III, 965–968
Plasma suppressive activity, thymopentin (TP-5) in post-burn and postoperative sepsis and immunodeficiency syndrome, 996–998
Plasmin, methylprednisolone pretreatment, endotoxemia, 874, 875
Plasmin-α₂-antiplasmin complex, immunologic determination, humans, 971
Plasminogen consumption, aprotinin membrane protective action, intraoperative histamine liberation, 961, 962
kallikrein-kinin system components in ARDS after polytrauma, 738, 740
Plasminogen activator, 654
inhibitor, and fibrinolysis, 383–386, 395–399
urokinase-type, neutrophils, thrombin-induced adhesion with endothelial cells, 109
Plasminogen activator, tissue (tPA), 576, 578, 579, 582, 586, 938
binding sites, hepatocytes, 583–584
endotoxic shock, fibrinolytic function determinations, pig, 395–399
fibrinolysis, 383–386
neutrophils, thrombin-induced adhesion with endothelial cells, 109
Platelet(s)
activation, lung in shock, 6, 7
aggregation, calcium antagonists in shock/ischemia, 1066
aprotinin membrane protective action, intraoperative histamine liberation, 960, 961
count
methyprednisolone pretreatment,
endotoxemia, 875, 876
RES stimulation to protect against
DIC, 1002, 1005
endotoxin-induced DIC, AT III-heparin
complex therapy, 980
β-glucuronidase, activated C3 in DIC in
septic shock, fulminant
meningococcal meningitis, 272, 273
5-HT, activated C3 in DIC in septic
shock, fulminant meningococcal
meningitis, 272, 273
recombinant human SOD in
endotoxemia, 914–915, 917
Platelet activating factor (PAF), 13, 14,
481, 660
antagonists, inhibition of induced shock,
427–433
C5a and, 366
calcium, 366
chronically instrumented sheep, effect
on, 447–451
generation during shock, 426–427
glucose turnover in sepsis, 556–558
immune/cytotoxic processes, role in,
441–443
infusion in animals, cf. shock,
425–426
lung injury in E. coli endotoxemia, 358,
366–368
macrophage/monocyte induction and
TNF production in shock,
485–488
PAF antagonist effects, 485, 486
neutrophil aggregation, 108, 109, 367
Platelet activating factor antagonists
burns, 455–461
cytotoxic processes, effects, 443–444
endotoxic shock, 931–935
inhibition of induced shock, inhibition of
PAF-generated feedback cycles,
432–433
neutrophils, thrombin-induced adhesion
with endothelial cells, 108
ONO-6240, 428, 931
see also BN 52021; WEB 2086 (PAF
antagonist); specific antagonists
Platelet-derived growth factor, neutrophils,
thrombin-induced adhesion with
endothelial cells, 109
PMN(s) (neutrophils, granulocytes), 20–22,
972
activation, 21, 850
and leukostasis, lipid peroxidation,
hypovolemic-traumatic shock,
dogs, 349–350
see also specific activation products
aggregation, PAF, 367
ARDS, 18–20, 31–33
posttraumatic, prognosis, 673, 674,
678, 679
ceruloplasmin changes in MSOF and
ARDS, 331
complement, 20
MSOF pathogenesis in septic shock,
dogs, 293, 296
pulmonary hypertension and vascular
leakage, 283, 284
eyearly ventilatory support, 784
eyglin C ineffectiveness in endotoxin
shock, 954–956
endothelial cell adherence, 157, 159
bacterial endotoxin role, 123–124
proadherent factor, 106–107, 109
thrombin-induced, 101–109
generation, chemiluminescence-inducing
radicals, porcine septic shock,
339, 341
hemorrhagic shock, phase-related
vascular reactivity, cats, 148, 149
4-hydroxy-nonenal, 351–355
Igs, therapeutic, phagocytosis
stimulation in peritonitis,
1039–1041
lung injury, 11–12, 74, 75
MSOF
polytrauma, 414
postoperative/posttrauma,
biochemical analysis and
scoring, 653, 655, 657–660
multiple trauma, early events, 507, 508,
510, 511
phospholipase A source, 757, 763, 767
and pulmonary vascular permeability,
307–311
superoxide radical production by,
recombinant human SOD in
endotoxemia, 913, 917
zymosan-induced MSOF, endotoxin plays no key role, 422
see also Elastase-α1-antiproteinase complex; Oxygen radicals; PMN elastase
PMN elastase, 331, 731–735, 937, 941, 942
ARDS, post-traumatic, prognosis, 674–679
eglin C ineffectiveness in endotoxin shock, 953–957
porcine shock, proteinase inhibitor, leukocyte neutral, 945–950
eglin C in septic shock, 945–948
PMA lung injury, SOD after, 945–949
prognostic index in sepsis, 634, 635
see also Elastase-α1-antiproteinase complex; Immunoglobulin profiles and PMN-elastase in septic gas gangrene
PMN elastase-α1-antitrypsin complex, antithrombin III and plasma substitution in septic shock, 966–968
Pneumocytes, type II, 52, 53
Pneumonia
Ig prophylactic therapy after cardiac surgery, 1034
pediatric, elastase-α1-PI as early indicator, 690–692
phospholipase A as prognostic index, 765–768
Polyphloretin, 363
Polytrauma
ARDS, kallikrein-kinin system, 737–742
biochemical and hormonal parameters, 743–745, 746–749
monocyte/lymphocyte ratio as prognostic factor, 769–772
PFI index, 731–735
phospholipase A as prognostic index, 763–768
Polytrauma Score, T-cell-mediated immune suppression after polytrauma, 517
Polyunsaturated fatty acids, liver dysfunction in MSOF, altered cell-cell interactions, 569–571
Positive inotropic factor as myocardial stimulant, ion exchange chromatography, 254–255
Potassium
and cardiac function, Pseudomonas aeruginosa toxins, 247–249
infusion, kidney, function in sepsis, 604
PR 1501, 443
PR 1502, 443
Prealbumin, plasma, and abdominal sepsis prognosis, 720, 722
Predictors. See Prognosis/prognostic indices
Prednisone, 377
Preallikrein, 986
in ARDS after polytrauma, 737, 738
and endotoxin interactions with plasma contact system factors, 402–404
and overwhelming inflammatory response of early sepsis, 372
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 475, 479
Pressure/volume loop, heart performance during septic shock, awake sheep, 238, 244
Proadherent factor, neutrophils, thrombin-induced adhesion with endothelial cells, 106–107, 109
Proenzyme Functional Inhibition (PFI) Index, 317–321, 653, 731–735
Progesterone, 122
Prognosis/prognostic indices
ARDS, posttraumatic, plasma levels of mediators, 673–679
macrophages, 679
cf. non-ARDS, 676, 677, 679
C-reactive protein in pancreatitis and peritonitis, 725–728
elastase-α1-PI, early indicator of pediatric systemic infection, 689–693
interleukin-1, serum, and sepsis, 715–718
lymphocyte/monocyte ratio in polytrauma survival, 769–772
MSOF, logistic regression analysis, 643–647
PFI index, polytrauma, 731–735
cf. elastase, 731–735
phospholipase A in severely ill patients, 757–761, 763–768
plasma proteins, abdominal sepsis, 719–724
scintigraphic evaluation of posttraumatic liver function, 775–780
sepsis, 633–636
TNF, serum, 715–718
Prolactin, sepsis, 751, 753, 754, 756
Promethazine, 1070
Properdin factor B, plasma, and abdominal sepsis prognosis, 720
Propranolol, 553, 555, 557, 558
Prostacyclin (PGI₂), 119–123
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202, 203
circulation, peripheral, septic shock, 168
complement activation, pulmonary hypertension and vascular leakage, 285–286
liver dysfunction in MSOF, altered cell-cell interactions, 589
lung injury, endotoxin-induced, 366
microvascular endothelium, 92–94, 96, 97
myocardial ischemia, 907–911
neutrophils, thrombin-induced adhesion with endothelial cells, 109
Prostaglandin(s), 380, 660–661
burns, PAF inhibitor effect, scalded pig, 455, 459, 460
D₂, lung injury in E. coli endotoxemia, 362, 365, 366
E₂, 429, 661, 662
Ig synthesis suppression after multiple trauma, 513, 515
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568, 569
lung, endotoxin-induced injury, 92–94, 96, 97, 359, 363
trauma-induced cascade of cell-mediated immune effects, 497–504
F₂α
lung injury in E. coli endotoxemia, 359, 362–366
/PGE₂ ratio, metabolic abnormalities in sepsis, 535, 536
glucose turnover in sepsis, 552
H₂, 122
6-keto-PGF₆α, hemofiltration and survival time, porcine acute endotoxin shock, 823, 825
Prostaglandin endoperoxide synthetase, 910
Prostaglandin synthetase, 1071
Protease(s)
in MSOF due to septicemia, endotoxin, 315–321
permeability, pulmonary vascular, mediators, 306, 309, 312
inhibitor Eglin C, 311
see also specific proteases
α₁-Protease inhibitor, 331, 725–726
ARDS, posttraumatic, prognosis, 674, 676
kallikrein-kinin system components in ARDS after polytrauma, 738, 740
monocyte synthesis, 948
and PAF antagonist in induced shock, 431–432
Proteinase inhibitor complexes immunologic determination, humans, 971–974
leukocyte neutral, ELISA, 945–946
PMN elastase complex, porcine shock, 945–950
PMN-derived, eglin C ineffectiveness in endotoxin shock, 954–956
see also Elastase-α₁-antiproteinase complex; specific proteinase inhibitors
Proteinase/protease inhibitor therapy, hirudin/eglin C, recombinant, endotoxin shock, 937–942
Protein C, 654
Protein kinase C, 122, 123
and diacylglycerol accumulation, endotoxemia, rat hepatocytes, 575–586
in situ receptor autoradiography, 579, 583–584, 586
phorbol ester binding sites, 583–584
Protein metabolism, liver
dysfunction in MSOF, altered cell-cell interactions, 565, 567, 568
perfused, sepsis effect on metabolism, 589–592
Proteolysis
cascades, methylprednisolone, pretreatment effects in porcine E. coli endotoxemia, 873, 877
excessive, metabolic abnormalities in sepsis, 540–542
Prothrombin, 319
methylprednisolone pretreatment, endotoxemia, 874, 875
Providencia pettgeh, 420
Pseudomonas, 831
aeruginosa
cytotoxin, 68, 119, 120, 128, 129
cytotoxin, effect on cultured heart cells, rat, 247–251
protection by Pseudomonas Igs, 247–249, 251
septic shock, chemiluminescence-inducing radicals, pig, 339–334
immunoglobulin and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1025–1029
oxygen supply-uptake relationship, septic shock, 182
Pulmonary. See also Cardiopulmonary entries; Lung entries
Pulmonary artery, sheep, neutrophils, thrombin-induced adhesion with endothelial cells, 102
Pulmonary artery pressure
cf. blood flow, pulmonary vascular resistance, ARDS in septicemia, 175–179
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202
extravascular lung water, altered fluid regimen, advanced septic shock with acute respiratory failure, 804
hydroxyethyl starch, volume replacement in ovine endotoxemia, 816, 817
lung injury in E. coli endotoxemia, 360, 364, 365, 368
TNF, induction of organ changes in chronic lymph fistula, sheep, 471
Pulmonary artery wedge pressure and extravascular lung water
altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
large volume replacement with crystalloids, 809–812
Pulmonary capillary pressure, pulmonary venous hemodynamics and gas exchange disturbances, E. coli septicemia, Goettingen pig, 185, 186
Pulmonary capillary wedge pressure, heart function changes, septic shock, chacma baboon (Papio ursinus), 217, 219–222
Pulmonary circulation, ARDS C3a and alveoli in, post-trauma, 45
Pulmonary contusion, ARDS, C3a and alveoli in, post-trauma, 46, 47
Pulmonary dysfunction, minimal, 52
Pulmonary edema in shock, 9, 28–29, 31
arachidonic acid cascade in ARDS, 306–307, 309–311
capillary pressure, 28
see also Extravascular lung water; Permeability
Pulmonary failure prediction, elastase-α-Pl complex and neopterin, plasma levels, 683, 684, 687
Pulmonary function, muscle pO2 role, critically ill patients, 139
Pulmonary hypertension. See Hypertension, pulmonary
Pulmonary resistance, lung injury in E. coli endotoxemia, 358, 359
Pulmonary vascular pressure, nifedipine for ARDS, 1089
Pulmonary vascular resistance
ARDS in septicemia, 175–179
CI, 175–179
MPP, 175–178
oxygen supply, peripheral, 175, 177, 179
pulmonary artery pressure cf. blood flow, 175–179
endotoxin response, 390
α-mercaptopropionylglycine in hemorrhagic shock, 901, 902
recombinant hirudin/eglin C, endotoxin shock, 939, 941
Pulmonary venous hemodynamics and gas exchange disturbances, E. coli septicemia, Goettingen pig, 185–188
atrial pressure, left, 185, 186
CI, 185, 186
hemodynamic parameters, 186
MPP, 185, 186
pulmonary capillary pressure, 185, 186
Quin 2, 1055–1056
RA642, acute hemorrhagic shock, rats,
cerebrocortical perfusion, 1091–1904
Radicals, chemiluminescence-inducing,
septic shock, pigs, 339–344; see also
Oxygen radicals
Reanimation, MSOF prognostic indices,
logistic regression analysis, 644, 646
Receptor autoradiography, in situ,
hepatocyte protein kinase C and
diacylglycerol accumulation,
endotoxemia, 579, 583–584, 586
Red blood cell acetylcholinesterase,
activated C3 in DIC in septic shock,
fulminant meningococcal meningitis,
272, 274
Regional blood flow, ischemia and
circulatory system in MSOF,
1080–1081, 1083
Relaxing factors, endothelium-derived, 157
Respiratory distress, nebulized
corticosteroid, 867–871
Respiratory distress syndrome, neonatal,
exogenous surfactant, 797; see also
ARDS
Respiratory failure
early ventilatory support, 784–789
embolism, fat, pulmonary, 37, 41
extravascular lung water, altered fluid
regimen, 803–808
Respiratory quotient (CO₂/O₂ exchange
ratio) in shock, 607–610, 613–617,
619–621
amino acid metabolism, 619–621
base excess, 613, 614, 619
expired minute volume, 613, 614,
619–621
fat metabolism, 619–621
glucose metabolism, 619–621
hemoglobin, 608
hyperventilation, 615, 619–621
low-flow states, 615, 616
pH, 608, 609, 615–617
RRE, 613–617
TBRE, 613–617
Reticuloendothelial system
detoxin, dose-related effects, 407–411
liver clearance, scintigraphic evaluation
of posttraumatic function,
775–780
stimulation to protect against DIC,
1001–1005
Rhematoid arthritis, 332
C3a, 299
Right ventricle, heart dysfunction, septic
shock, human 194
RO-193,430, 704
Ronipamil, traumatic shock, 1067, 1068
Salmonella
abortus equi, 408
antibodies, anti-LPS and anti-lipid A,
determination with immunoblotting, 1044, 1046
LPS, 119, 121
enteritidis, 426–428, 430, 1054
minnesota, antibodies, anti-LPS and
anti-lipid A, determination with
immunoblotting, 1044–1049
typhimurium, 428
Sanarelli-Schwartzman reaction, 1003, 1005
SAPS scoring system, 626–628, 1026,
1027, 1029
dopamine infusion, effect evaluation
with systolic time intervals, 1102
Scintigraphic evaluation of posttraumatic
liver function, prognosis/prognostic
indices, 775–780
Scoring systems
cardiogenic/septic shock, 625–630
CI and SVR, 625, 626
elastase α,-PI complex and neopterin,
plasma levels in MSOF, 683–687
prognostic value of antithrombin III and
detoxin in sepsis, 637
lethality, 639, 640
thrombocyte counts, 637–641
see also Multiple system organ failure,
postoperative/posttrauma,
biochemical analysis and scoring;
Prognosis/prognostic indices;
specific systems
S-creatinine, MSOF prognostic indices,
logistic regression analysis, 644, 645
SDZ 63-441, 429
Secretin, 380
Sensitization, passive, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Sensorium, altered, corticosteroids in severe sepsis, 841, 843, 853–855
Sephadex inflammation model, rats, 4-hydroxy-nonenal, 351–355
Sepsis
DIT marker in, 711–713
early, overwhelming inflammatory response, endotoxin role, 371–375
elastase-α-PI as early indicator, 690–692
endocrine secretion patterns, 751–756
ADH, 751, 753, 755, 756
prolactin, 751, 753–754, 756
thyroid hormones, 751–756
endotoxin in complement activation, 277–281
kidney metabolism in, 601–605
metabolic abnormalities, See Metabolic abnormalities in sepsis
multiple organ system failure, 413–416
ARDS, 61–65
prognostic indexes, 633–636
IL-1, 715–718
plasma proteins, 719–724
proteinase inhibitor complex, immunologic determination, humans, 972–974
scintigraphic evaluation of posttraumatic function, liver, 775–780
severe, corticosteroids in, 840–844, 847–855
see also Immunoglobulin profiles and PMN-elastase in septic gas gangrene
Septicemia
antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1048–1050
ARDS, pulmonary vascular resistance, 175–179
coagulation cascade, 383–387
E. coli hemolysin injury to lung, 67–70 transmembrane pores, 69 fibrinolysis, 383–387
gas exchange, disturbed, 185–188
MSOF and, endotoxin and proteases in, 315–321
T cell changes, 989, 990
Septic shock
antithrombin III and plasma substitution, 965–968
ARDS, 30–33
corticosteroids in, 857, 860–864
PMN migration, 30–31
cardiac work, 260–262
chemiluminescence-inducing radicals, pig, 339–344
complement activation in MSOF, 291–296
DIC in, and C3, 271–274
dopamine infusion, effect evaluation with systolic time intervals, 1101–1105
eglin C, 945–948
extravascular lung water
altered fluid regimen, 803–808
large volume replacement with crystalloids, 809–813
immunoglobulin therapy after cardiac surgery, 1034
and plasmapheresis, 1025–1030
immunomodulation, 989–993
lung microvascular bed, cell interactions, 113–118
metabolic rate, 260–262
oxygen extraction, peripheral, 260–262
oxygen supply-uptake relationship, 181–183
peripheral circulation, 163–171
peripheral resistance, total, 260, 262
scoring systems, 625–630
CI and SVR, 625, 626
TNF, 463–465
Septic syndrome, definition, 857–860
Serotonin. See 5-HT (serotonin)
Serratia marcescens, anti-LPS and anti-lipid A antibodies, determination with immunoblotting, 1044–1048
SGOT, liver, TNF induction of organ changes in chronic lymph fistula, 469, 474, 475, 479
SH-groups, \(\alpha\)-mercaptopropionylglycine in hemorrhagic shock, 897, 902, 903

Silver sulfadiazine, 378

Simplified Acute Physiologic Score, 280, 635

c-sis, neutrophils, thrombin-induced adhesion with endothelial cells, 109

Small intestine, complement activation, MSOF pathogenesis in septic shock, dogs, 293–294, 296

Sodium excretion, dopamine and renal function, 1097–1099

Sodium polyanethol sulfonate-induced shock, 1001–1005

Somatomedin C, polytrauma, 743, 745, 747

Somatostatin, glucose turnover in sepsis, 553, 556

Sonomicrometer LV dimension, heart performance during septic shock, awake sheep, 237–243

Spleen, zymosan-induced MSOF, endotoxin plays no key role, 421

SRI 63-072, 428, 485

SRI 63-441, 368, 428, 485

SRI 63-675, 557

SSS scoring system, 626–628, 664, 1026, 1027, 1029

dopamine infusion, effect evaluation with systolic time intervals, 1102

polytrauma, 744–746

\textit{Staphylococcus aureus}, 420, 868

alpha toxin, 68, 69, 119, 120, 123, 124, 127–130, 286

\textit{xlyosus}, 420

Streptomycin, GI tract decontamination, MOF prevention, 828–832

Stress ulcer diseases, correlation with, gastric mucosa ulceration, ultrastructure after septic shock, rat, 151

Stroke volume

heart function changes, septic shock, chama baboon (\textit{Papio ursinus}), 207, 210–214, 219, 221–222

\(\alpha\)-mercaptopropionylglycine in hemorrhagic shock, 900, 902

RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1094

septic shock, human, 193, 196, 197

Superoxide anion, 886

generation, PAF and, 488

4-hydroxy-nonenal, 354, 355

lipid peroxidation, hypovolemic-traumatic shock, dogs, 346

metabolic abnormalities in sepsis, 535, 536

PMN production
corticosteroid, nebulized, in experimental respiratory distress, 869, 870

recombinant human SOD in endotoxemia, 913, 917

Superoxide dismutase, 887

PMA lung injury, 945–949

recombinant human, in \textit{E. coli} endotoxemia, rat, 913–917

Surface epithelial cells, gastric mucosa ulceration, ultrastructure after septic shock, rat, 153, 154

Surfactant, ARDS C3a and alveoli in, post-trauma, 44, 45

Surfactant, exogenous

acute high-permeability lung edema, 791–795

ARDS, 29

cf. neonatal RDS, 797

aspiration trauma, experimental, rabbit, 797–800

phosphatidylcholine and phosphatidylglycerol, 792, 798

porcine, 798

Surfactometer, bubble, 792

Systemic lupus erythematosus, C3a, 299

Systemic vascular resistance, 625, 626

and heart function changes, septic shock, chama baboon (\textit{Papio ursinus}), 219, 220

immunoglobulin and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1026–1029

\(\alpha\)-mercaptopropionylglycine in hemorrhagic shock, 900–902

septic shock, 163–166, 168, 170

Tachycardia and cardiac volume, heart
function changes, septic shock, chacma baboon *(Papio ursinus)*, 214–215, 217–222
TAN concentrations, kidney metabolism in *E. coli* sepsis, 601, 602, 604
Target structure degradation, multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 662–663

T cell(s)
immune suppression/dysfunction, polytrauma, 517–521
multiple trauma, early events, 507, 508
septicemia/septic shock, 989, 990
subsets, 508, 510, 518–520
Ig synthesis suppression after multiple trauma, 513–514, 516
MSOF, postoperative/posttrauma, biochemical analysis and scoring, 661
PAF and, 442
in septic shock, 989, 991, 993
thymopentin (TP-5), post-burn and postoperative sepsis and immunodeficiency syndrome, 995, 998
trauma-induced cascade of cell-mediated immune effects, 496–505

T-cell replacing factor, 497
Tebonin, effect in burns, 455–461
Terminal complement complex
acute pancreatitis, 266, 267
pulmonary hypertension and vascular leakage, 283–286

Theophylline, 755
Thiobarbituric acid reactive material, lipid peroxidation, hypovolemic-traumatic shock, dogs, 345, 346
Thiol groups, α-mercaptopropionylglycine in hemorrhagic shock, 897, 902, 903
Thrombin, 367, 937, 941, 942
MSOF, postoperative/posttrauma, 653
Thrombin-antithrombin III complex
antithrombin III and plasma substitution in septic shock, 966–968
immunologic determination in humans, 971–974
Thrombin-induced adhesion with endothelial cells, neutrophils, 101–109
Thrombocyte counts, prognostic value in sepsis, 637–641
Thromboplastin, aprotinin membrane protective action, intraoperative histamine liberation, 961, 962
Thromboxane, 429
alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 328
burns
enteric translocation of microorganisms, 379
PAF inhibitor effect, scalded pig, 455, 459, 460
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 201–204
circulation, peripheral, septic shock, 168
complement activation, pulmonary hypertension and vascular leakage, 285
early ventilatory support, 786
eglin C ineffectiveness in endotoxin shock, 955
hemofiltration and survival time, porcine acute endotoxic shock, 823–825
liver dysfunction in MSOF, altered cell-cell interactions, 569
lung, endotoxin-induced microvascular endothelial injury, 92
lung injury in *E. coli* endotoxemia, 359, 362–367
and hypertension, 67, 70
myocardial ischemia, 907–911
PAF antagonists in endotoxin shock, 935
permeability, pulmonary vascular, mediators, 310
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 475, 479
Thromboxane receptor blockade, lung injury in *E. coli* endotoxemia, 366, 367
Thromboxane synthetase inhibition, lung injury in *E. coli* endotoxemia, 365–366
Thymopentin (TP-5) immunomodulation, post-burn and postoperative sepsis and immunodeficiency syndrome, 995–998
Thymostimulin (TP-1), immunodulation in septic shock, 990–993

Thyroid hormones
and leukocyte phagocytic activity, DIT and
T₃, 712
T₄, 711–712
polytrauma, 743, 745
T₃, 745, 748
T₄, 744, 745, 748
TBG, 744, 745, 749
TSH, 744, 745, 749
sepsis, 751–756
T₃, 751–756
T₄, 752–754
TSH, 752, 753, 755
TISS, 643, 645
Tissue oxygen debt (VO₂ deficit) as determinant, organ failure, postoperative, 133–136
survivors cf. nonsurvivors, 136
Total parenteral nutrition, 377
metabolic abnormalities in sepsis, 537, 538
Transfer factor, immunomodulation in septic shock, 990–993
Transferrin, plasma, and abdominal sepsis prognosis, 720, 721
Transpulmonary pressure, lung injury in E. coli endotoxemia, 358–361
Trauma
endotoxin and overwhelming inflammatory response of early sepsis, 372–374
-induced cascade of cell-mediated immune effects, immune suppression/dysfunction, 495–505
immunorestoration, 504–505
schema, 501, 503
cf. multiple system organ failure, 58–60
see also Multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring;
Polytrauma
Trauma score, 643
Traumatic shock
calcium antagonists in shock/ischemia, 1067–1068
hypovolemic, 228, 229

PAF antagonist inhibition of induced shock, 431
Trifluoperazine, 120, 122, 1070
Trimethoprim, GI tract decontamination, MOF prevention, 828–832
Tumor necrosis factor (TNF, cachectin), 13, 14, 114, 368, 432, 444, 536, 661, 850, 851
administration, metabolic abnormalities in sepsis, 550, 551
circulation, peripheral, septic shock, 169
discovery, 463
endotoxin as stimulus, 463, 464
glucose turnover in sepsis, 555
heart dysfunction, septic shock, human, 197
lipoprotein lipase suppression, 464
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568–570
lung injury, endotoxin-induced microvascular endothelial, 91, 95–96
production and macrophage/monocyte induction in shock, PAF, 485–488
PAF antagonist effects, 485, 486
pulmonary vascular permeability, 305
in septic shock, 463–465
serum, and sepsis, prognosis/prognostic indices, 715–718
WEB 2086 (PAF antagonist), 919–921
window phenomenon with PAF, 921–922
Tumor necrosis factor, induction of organ changes in chronic lymph fistula, sheep, 467–481
disseminated intravascular coagulation, 479, 480
elastase-a₁-anti-proteinase complex, 470, 477–478, 480
hemodynamics, 472, 479
cf. human, 470, 477
cf. in vitro, 470, 477
kallikrein, 469, 474, 479
leucocyte role, 469, 470, 475–477, 480
leucostasis, liver, 473, 474, 480
liver SGOT, 469, 474, 475, 480
lung lymph, 469, 473, 475, 479
oxygen radicals, 470, 476, 477
permeability, microvascular, 472, 473, 479–481
prekallikrein, 469, 474, 475, 479
pulmonary artery pressure, 471
thromboxane, 469, 474, 475, 479
Typhoid fever, 852
Tyrosine, amino acid concentrations, serum, experimental endotoxin shock, 598
•U46619, 362, 368
U74006F, 891–895
Ulceration, gastric mucosa
ultrastructure after septic shock, 151–155
and stress ulcer disease, 151
and WEB 2086 (PAF antagonist), 919
Ultraviolet-absorption spectra, positive inotropic factor as myocardial stimulant, 255, 256
Urea, MSOF prognostic indices, logistic regression analysis, 644–646
Urokinase-type plasminogen activator, neutrophils, thrombin-induced adhesion with endothelial cells, 109
U.S. Veterans Administration, sepsis studies, corticosteroids, 840–844, 847–855, 873
Vascular intima in endotoxin shock, 77–87
cell origins and replacement, 78–80
endothelial injury, grading, 84–85
endothxin transport and elimination, 81
generalized inflammation, 85–87
aorta, 85, 86
non-endothelial cells, 77–78
macrophages, 78, 80, 81
ultrastructural alterations, early, 82–84
Vascular permeability. See Permeability
Vascular tone, hemorrhagic shock, phase-related vascular reactivity, cats, 143
Vasopressin (antidiuretic hormone), 379
hepatocytes, protein kinase C and diacylglycerol accumulation in endotoxemia, 576, 579–581, 584–586
sepsis, 751, 753, 755, 756
Ventilatory support, early
inversed ratio ventilation, 788, 789
multiple organ failure with acute respiratory failure, 784–789
PEEP, 788–789
Ventricular pressure cf. perfusion flows, endotoxin, inotropic effect in isolated rabbit heart, 227, 228
Ventriculography, radionuclide, heart function changes in septic shock, chacma baboon (Papio ursinus), 209–210, 218, 219
Verapamil, 1060
endotoxin shock, 1068, 1069
pretreatment, calcium antagonists in shock/ischemia, 1067
Virchow's triad, 851
Vitamin E
leukocyte-induced lung injury, 74–76
lipid peroxidation inhibition in cardiopulmonary arrest, 893–895
W7, 120
WEB 2086 (PAF antagonist), 426, 428, 429, 442, 485
anaphylactic lung reaction, guinea pig, 925–929
endotoxin shock effects, 931–933, 935
gastrointestinal tract damage, endotoxin-induced, 919–922
hetrazepine, 925
WEB 2170, 928
Weibel-Palade bodies, 83
White blood cell count, 725, 728
Wilhelmy tensiometer, 800
Xanthine-oxidase, 349
Zymosan
induced peritonitis, decontamination, GI tract, 827–832
leukocyte-induced lung injury 73–76