SECOND VIENNA
SHOCK FORUM
Vienna Shock Forum Series
Series Editors: Günther Schlag and
Heinz Redl

First Vienna Shock Forum
Part A: Pathophysiological Role of Mediators and
Mediator Inhibitors in Shock

First Vienna Shock Forum
Part B: Monitoring and Treatment of Shock

Second Vienna Shock Forum
SECOND VIENNA SHOCK FORUM
Proceedings of the Second Vienna Shock Forum held May 12–14, 1988

Editors
Günther Schlag
Heinz Redl
Ludwig Boltzmann Institute
for Experimental Traumatology
Vienna, Austria
Address all Inquiries to the Publisher
Alan R. Liss, Inc., 41 East 11th Street, New York, NY 10003

Copyright © 1989 Alan R. Liss, Inc.

Printed in the United States of America

Under the conditions stated below the owner of copyright for this book hereby grants permission to users to make photocopy reproductions of any part or all of its contents for personal or internal organizational use, or for personal or internal use of specific clients. This consent is given on the condition that the copier pay the stated per-copy fee through the Copyright Clearance Center, Incorporated, 27 Congress Street, Salem, MA 01970, as listed in the most current issue of “Permissions to Photocopy” (Publisher’s Fee List, distributed by CCC, Inc.), for copying beyond that permitted by sections 107 or 108 of the US Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale.

The publication of this volume was facilitated by the authors and editors who submitted the text in a form suitable for direct reproduction without subsequent editing or proofreading by the publisher.

Library of Congress Cataloging-in-Publication Data
Vienna Shock Forum (2nd : 1988)
Second Vienna Shock Forum.
(Progress in clinical and biological research ; v. 308)
Includes bibliographies and index.
W1 PR668E v.308 / QZ 140 V662s 1988]
RB150.S5V54 1988 616'.047 89-2597
ISBN 0-8451-5158-4

Bayerische Staatsbibliothek München
Contents

Contributors .. xix
Preface
Günther Schlag and Heinz Redl .. xli

1. ORGAN FAILURE/MEDIATORS

1.1. Acute Respiratory Failure
Lung in Shock—Posttraumatic Lung Failure (Organ Failure)—MOFS
Günther Schlag and Heinz Redl .. 3

Adult Respiratory Distress Syndrome. Pathophysiology and Inflammatory Mediators in Bronchoalveolar Lavage
Jan Modig ... 17

Morphologic Features of the Lung in the Respiratory Failure Associated With Hypovolemic and Septic Shock
James C. Hogg .. 27

Pulmonary Fat Embolism—An Epiphenomenon of Shock or a Proper Mediator Mechanism?
Ulrich Bosch, Susanne Reisser, Gerd Regel, Gisela Windus, Werner J. Kleemann, and Michael L. Nerlich .. 37

The Role of C3a in Pulmonary Alveoli Following Trauma
Udo Obertacke, Theo Joka, Gertrud Zilow, Michael Kirschfink, and Klaus-Peter Schmit-Neuerburg .. 43

Cytological Changes in Alveolar Cells With ARDS
Theo Joka, Udo Obertacke, Z. Atay, E. Kreuzfelder, J. Kalotai, and L. Olivier .. 51

Septic Adult Respiratory Distress Syndrome and Multiple System Organ Failure
Jesus Villar, Miguel A. Blazquez, Santiago Lubillo, and Jose L. Manzano .. 57

Septic Shock and Acute Respiratory Failure
Jesus Villar, Miguel A. Blazquez, Santiago Lubillo, Jose Quintana, and Jose L. Manzano .. 61
Escherichia coli Hemolysin Causes Thromboxane-Mediated Hypertension and Vascular Leakage in Rabbit Lungs
Werner Seeger, Henrik Walter, Heinz Neuhof, Norbert Sutterp, and Sucharit Bhakdi ... 67

Leukocyte Induced Pulmonary Damage Using Intraperitoneal Zymosan
Osvaldo Chiara, Pier P. Giomarelli, Emma Borrelli, Sandra Betti, Pietro Padalino, and Angelo Nespoli ... 73

1.2. Endothelial Cells as Target Organ (in Shock)

Reaction of Vascular Intima to Endotoxin Shock
Nikolaus Freudenberg .. 77

Endotoxin-Induced Pulmonary Endothelial Injury
Barbara Meyrick, J.E. Johnson, and K.L. Brigham 91

Thrombin-Induced Neutrophil Adhesion
Peter J. Del Vecchio and Asrar B. Malik 101

Cellular Interactions in Sepsis Induced Organ Failure
G. Zeck-Kapp, U.N. Riede, and N. Freudenberg 113

Effects of Bacterial Exo- and Endotoxins on Endothelial Arachidonate Metabolism
Norbert Sutterp, Werner Seeger, and Heinz Neuhof 119

Effects of Bacterial Toxins and Calcium-Ionophores on Endothelial Permeability In Vitro
Norbert Sutterp, Thomas Hessz, Thomas Fuchs, Werner Seeger, Detlev Drenckhahn, and Heinz Neuhof 127

1.3. Microcirculation

Tissue Oxygen Debt as a Determinant of Postoperative Organ Failure
William C. Shoemaker, Paul L. Appel, and Harry B. Kram 133

Is Skeletal Muscle PO2 Related to the Severity of Multiple Organ Failure and Survival in Critically Ill Patients?
Gerard I.J.M. Beerthuizen, R. Jan A. Goris, and Ferdinand J.A. Kreuzer 137

Phase-Related Vascular Reactivity in Hemorrhagic Shock
Hermann August Henrich, Franz Bäumer, and Rolf Edgar Silber 143

Ultrastructural Study of the Gastric Mucosa After Septic Shock in the Rat
Katerina Kotzampassi, Efthimios Eleftheriadis, Athanasia Alvanou, Emmanouel Tzartinoglu, Chryssi Foroglou, and Homeros Aletras 151

Do Endotoxinemia and Sepsis Impair the Regulatory Functions of Capillary Endothelial Cells?
Anders Gidlöf and David H. Lewis .. 157
Contents / ix

Peripheral Circulation in Septic Shock

Pulmonary Pressure-Flow Relationship and Peripheral Oxygen Supply in ARDS Due to Bacterial Sepsis
Thomas Kloess, Ulrich Birkenhauer, and Bernd Kottler 175

The Relationship Between Oxygen Supply and Oxygen Uptake in Septic Shock: The Possible Role of Endotoxin
D. De Backer, A. Roman, and JL. Vincent ... 181

Pulmonary Venous Hemodynamics and Disturbances of Gas Exchange During E.Coli Bacteremia in the Goettingen Miniature Pig
Reinhold Fretschnner, Thomas Kloess, Heinz Guggenberger, and Bernd Wagener .. 185

1.4. Cardiovascular System

Cardiovascular Dysfunction in Human Septic Shock
Joseph E. Parrillo .. 191

Cardiopulmonary Response to Endotoxin and the Eicosanoids
Daniel L. Traber, David N. Herndon, and Lillian D. Traber 201

Cardiac Function Changes Monitored by Radionuclide Ventriculography in the Septic Shock Baboon Model
I.C. Dormehl, J.P. Pretorius, R.D. Burow, M.F. Wilson, J. Kilian, M. Maree, N. Hugo, and R. de Winter ... 207

The Influence of Tachycardia During Shock on Changes in Cardiac Volumes

Isolated Rabbit Heart Preparation to Evaluate the Inotropic Effect of Endotoxin
Peter E. Krösl, Zafar Khakpour, Martin Thurnher, Seth W.O. Hallström, and Heinrich M. Schima ... 225

Negative Inotropic and Cardiovascular Effects of a Low Molecular Plasma Fraction in Prolonged Canine Hypovolemic Traumatic Shock—Papillary Muscle and Isolated Heart Preparation
Seth Hallström, Christa Vogl, Zafar Khakpour, Martin Thurnher, Peter Krösl, Heinz Redl, and Günther Schlag ... 231

Evaluation of Heart Performance During Septic Shock in Sheep
Josef Newald, Kazu Sugi, Christa Vogl, Peter Krösl, Daniel L. Traber, and Günther Schlag ... 237

The Cultured Rat Heart Cell: A Model to Study Direct Cardiotoxic Effects of Pseudomonas Endo- and Exotoxins
Karl Werdan, S.M. Melnitzki, G. Pilz, and T. Kapsner 247
x / Contents

Chemical Characterization of a Positive Inotropic Plasma Factor in Shock
Imre Szabó, Botond Penke, József Kaszaki, and Sándor Nagy 253

Pathophysiological Correlates of Cardiac Overperformance in Sepsis and Septic Shock
Carlo Chiarla, Ivo Giovannini, Giuseppe Boldrini, and Marco Castagneto 259

1.5. Mediators Complement System

Anaphylatoxin Generation and Multisystem Organ Failure in Acute Pancreatitis
Lennart Roxvall, Anders Bengtson, and Mats Heideman 265

Is Activated C3 a Premier Factor of DIC Development in Septic Shock?
Qixia Wu, Zhenyuan Liu, Ying Dang, Li Chen, and Huacui Chen 271

Complement Activation and Endotoxin in Sepsis
P. Padalino, M. Gardinali, J. Pallavicini, O. Chiara, G. Bisiani, and A. Nespoli ... 277

In-situ Complement Activation, Pulmonary Hypertension, and Vascular Leakage in Rabbit Lungs—the Role of the Terminal Complement Complex
Werner Seeger, Ruth Hartmann, Heinz Neuhof, and Sucharit Bhakdi 283

The Role of the Complement System in the Pathogenesis of Multiple Organ Failure in Shock
T. Zimmermann, Z. Laszik, S. Nagy, J. Kaszaki, and F. Joo 291

Quantitation of C3a by Elisa Using a Monoclonal Antibody to a Neoantigenic C3a Determinant
Gertrud Zilow, Werner Naser, Arno Friedlein, Andrea Bader, and Reinhard Burger ... 299

1.5.1. Granulocytes, Proteinases, Oxygen-Radicals

Proteases as Mediators of Pulmonary Vascular Permeability
H. Neuhof, Ch. Hoffmann, W. Seeger, N. Suttorp, and H. Fritz 305

Role of Endotoxin and Proteases in Multiple Organ Failure (MOF)
Ansgar O. Aasen, Anne-Lise Rishovd, and Jan O. Stadaas 315

Neutrophil Stimulation by PMA Increases Alveolar Permeability in Rabbits
Hilmar Burchardi, Notker Graf, Hartmut Volkmann, and Heribert Luig 323

Changes of Ceruloplasmin Activity in Patients With Multiple Organ Failure
Reiner Dauberschmidt, Heinz Mrochen, Barbara Griess, Karin Kaden, Christel Dressler, Hans Grajetzki, and Manfred Meyer 331

Chemiluminescence-Inducing Radicals in Experimental Porcine Septic Shock Lung
Hubert Reichle, Ulrich Pfeiffer, Peter Wendt, and Günther Blümel 339
Contents / xi

Lipidperoxidation in a Canine Model of Hypovolemic-Traumatic Shock
Camille Lieners, Heinz Redl, Helmut Molnar, Walter Fürst, Seth Hallström, and
Günther Schlag .. 345

Detection of 4-Hydroxy-Nonenal, a Mediator of Traumatic Inflammation,
in a Patient With Surgical Trauma and in the Sephadex Inflammation Model
Mohie Sharaf El Din, Günter Dussing, Gerd Egger, Herwig P. Hofer,
Rudolf J. Schaur, and Erwin Schauenstein 351

1.5.2. Endotoxin
Mediators of Acute Lung Injury in Endotoxaemia
J.R. Parrat, N. Pacitti, and I.W. Rodger 357

The Overwhelming Inflammatory Response and the Role of Endotoxin
in Early Sepsis
Ulrich Schoeffel, Martin Lausen, Günther Ruf, Bernd-Ulrich von Specht, and
Nikolaus Freudenberg .. 371

The Effect of Mucosal Integrity and Mesenteric Blood Flow on Enteric
Translocation of Microorganisms in Cutaneous Thermal Injury
David N. Herndon, Stephen E. Morris, J. Allen Coffey, Jr., Rusty A. Milhoan,
Daniel L. Traber, and Courtney M. Townsend. 377

Endogenous Fibrinolysis in Septic Patients
Reinhard Voss, Gerhard Borkowski, Daniela Reitz, Heinrich Ditter, and
F. Reinhard Matthias .. 383

Hemodynamic and Proteolytic Responses in Relation to Plasma Endotoxin
Concentrations in Porcine Endotoxemia
Frode Naess, Olav Røise, Johan Pillgram-Larsen, Tom E. Ruud, Jan O. Stadaas,
and Ansgar O. Aasen .. 389

Functional Determination of tPA, PAI, and Fibrinogen in Endotoxin Shock
of the Pig
M. Spannagl, H. Hoffmann, M. Siebeck, H. Fritz, and W. Schramm 395

Studies on Interactions of Endotoxin With Factors of the Contact System of
Plasma
Olav Røise, Bonno N. Bouma, Jan O. Stadaas, and Ansgar O. Aasen ... 401

Dose Related Effect of Endotoxin on the Reticulo Endothelial System (RES),
the Sinusoidal Cells in the Liver, and on Hepatocytes From Rats
M.R. Karim, N. Freudenberg, M.A. Freudenberg, and C. Galanos 407

The Trigger for Posttraumatic Multiple Organ Failure: Surgical Sepsis or
Inflammation?
M.L. Nerlich ... 413

Endotoxin Does Not Play a Key Role in the Pathogenesis of Multiple Organ
Failure. An Experimental Study
Ignas P.T. van Bebber, Ron G.H. Speekenbrink, Paul H. M. Schillings, and
R. Jan A. Goris .. 419
1.5.3. Platelet Activating Factor (PAF)

The Potential Role of Platelet-Activating Factor (PAF) in Shock, Sepsis, and Adult Respiratory Distress Syndrome (ARDS)

Pierre Braquet and David Hosford .. 425

The Role of Platelet-Activating Factor (PAF) in Immune and Cytotoxic Processes

Jean Michel Mencia-Huerta, Bernadette Pignol, Monique Paubert-Braquet, and Pierre Braquet .. 441

Effect of Platelet-Activating Factor (PAF) Administration in Chronically Instrumented Sheep—Analysis of PAF in Plasma

Harald Gasser, Anna Schiesser, Heinz Redl, Martin Thurnher, Christa Vogl, Eva Paul, Sabine Krautschneider, and Günther Schlag 447

Modulation of Resynthesis of 1-Alkyl-2-Arachidonyl-Glycero-3-Phosphocholine and Phosphatidylinositols for Interception In Vivo of Free Arachidonic Acid, Lyso-PAF, Diacyl-Glycerols, and Phosphoinositides

J.A. Bauer, K. Wurster, P. Conzen, and H. Fritz 455

1.5.4. Tumor Necrotizing Factor (TNF)

The Role of Tumor Necrosis Factor/Cachectin in Septic Shock

Joop M.H. Debets, Wim A. Buurman, and Cees J. van der Linden 463

TNF-Induced Organ Changes in a Chronic Ovine Model—Possible Role of Leukocytes

Heinz Redl, Günther Schlag, Camille Lieners, Eva Paul, Anna Schiesser, Herbert Lamche, Walter Aulitzky, and Christoph Huber 467

The Involvement of Platelet-Activating Factor(PAF)-Induced Monocyte Activation and Tumor Necrosis Factor (TNF) Production in Shock

B. Bonavida, M.Paubert-Braquet, D. Hosford, and P. Braquet 485

1.6. Trauma(Sepsis)-Induced Changes of the Immune System

Graduation of Immunosuppression After Surgery or Severe Trauma

Michael W. Holch, Peter J. Grob, Walter Fierz, Werner Glinz, and Stephanos Geroulanos .. 491

Mediators and the Trauma Induced Cascade of Immunologic Defects

Eugen Faist, Wolfgang Ertel, Angelika Mewes, Theo Strasser, Alfred Walz, and Sefik Alkan .. 495

Early Deterioration of the Immune System Following Multiple Trauma

Mohammad Maghsudi, Michael L. Nerlich, Johannes A. Sturm, Michael Holch, Jochen W. Seidel, and Uwe Schmuckall 507

Monocyte Dependent Suppression of Immunoglobulin Synthesis in Patients With Major Trauma

Wolfgang Ertel and Eugen Faist .. 513
The T Lymphocyte-Mediated Immune Reaction in Polytrauma
Matthias Cebulla, Peter Kühnl, Knut Frederking, Peter Konold, and
Alfred Pannike .. 517

Serum Mediated Depression of Chemiluminescence Response of
Granulocytes in Hemorrhagic Shock
Volker Bühren, Oliver Gonschorek, Günther Sutter, and Otmar Trentz 523

Breakdown of C3 Complement and IgG in Peritonitis Exudate—
Pathophysiological Aspects and Therapeutic Approach
A. Billing, H. Kortmann, D. Fröhlich, and M. Jochum 527

1.7. Metabolic Disorders

Abnormal Metabolic Control in the Septic Multiple Organ Failure Syndrome:
Pharmacotherapy for Altered Fuel Control Mechanisms
John H. Siegel, Thomas C. Vary, Avraham Rivkind, Ron Bilik, Bill Coleman,
Ben E. Tall, and J. Glenn Morris .. 535

Alterations in the Metabolic Control of Carbohydrates in Sepsis
John J. Spitzer, Gregory J. Bagby, Diane M. Hargrove, Charles H. Lang, and
Károly Mézáros .. 545

Hepatic Dysfunction in Multiple Systems Organ Failure as a Manifestation
of Altered Cell-Cell Interaction
Frank B. Cerra, Michael West, Timothy R. Billiar, Ralph T. Holman, and
Richard Simmons ... 563

Modification of Protein Kinase C (PKC) Activity and Diacylglycerol (DAG)
Accumulation in Hepatocytes in Continuous Endotoxemia
Judy A. Spitzer, I.V. Deaciuc, E.B. Rodriguez de Turco, B.L. Roth,
J.B. Hermiller, and J.P. Mehegan .. 575

Influence of Sepsis on Perfused Rat Liver Metabolism
E. Kovats, J. Karner, A. Simmel, J. Funovics, and E. Roth 589

Changes of Serum Amino Acid Concentrations in Experimentally Induced
Endotoxic Shock. The Significance of Hyperalaninemia in the Prediction
of Lethality
Birgit Metzler, Albert W. Rettenmeier, Isolde Wodarz, and
Friedrich W. Schmahl .. 595

Metabolism and Function of Septic Kidneys
K. Kürten ... 601

Regional Respiratory Quotients in Sepsis and Shock
Ivo Giovannini, Carlo Chiarla, Giuseppe Boldrini, and Marco Castagneto 607

Analysis of the Determinants of CO2 and O2 Exchange Ratios in Shock
Ivo Giovannini, Carlo Chiarla, Giuseppe Boldrini, Carlo Iannace, and
Marco Castagneto ... 613

Hyperventilation in Trauma and Shock
Carlo Chiarla, Ivo Giovannini, Giuseppe Boldrini, and Marco Castagneto 619
2. MONITORING SCORES/BIOLOGICAL MONITORING

The Use of Scoring Systems in Patients With Cardiogenic and Septic Shock
Günter Pilz, Alexander Stäblein, Elisabeth Reuschel-Janetschek,
Gernot Autenrieth, and Karl Werdan 625

Prognostic Indices of Sepsis
Angelo Nespoli, Pietro Padalino, Claudio Marradi, Jacopo Pallavicini,
Luca Fattori, and Giuliana Bisiani 633

Efficiency of Sepsis Score, AT III- and Endotoxin Evaluation in Predicting
the Prognosis of Post-Operative Sepsis in the Intensive Care Unit
N. Kipping, R. Grundmann, M. Hornung, and C. Wesoly 637

Risk Factors of the Multiple Organ Failure
P. Lehmkuhl, A. Schultz, and J. Gebert 643

Biochemical Analysis in Posttraumatic and Postoperative Organ Failure
Heinz Redl and Günther Schlag .. 649

Posttraumatic Plasma Levels of Mediators of Organ Failure
Marianne Jochem, Alexander Dwenger, Theo Joka, and Johannes Sturm 673

Plasma Levels of Granulocyte Elastase and Neopterin in Patients With MOF
Richard Pacher, Heinz Redl, and Wolfgang Wolosczuk 683

Elastase-α1-PI: Early Indicator of Systemic Infections in Pediatric Patients
Christian P. Speer, Michaela Rethwilm, Friedrich Tegtmeier, and
Manfred Gahr .. 689

Leucocytes, Neutrophilia, and Elastase-a1-Proteinase-Inhibitor-Complex:
Marker of Different Validity for Monitoring the Perioperative Infection Risk
Peter C. Fink, Rolf Erdmann, Friedrich Schöndube, and Ivo Baca 695

Validity of the Elastase Assay in Intensive Care Medicine
Hermann Lang, Marianne Jochem, Hans Fritz, and Heinz Redl 701

An Automated Homogeneous Enzyme Immunoassay for Human PMN
Elastase
M. Dreher, G. Gunzer, R. Helger, and H. Lang 707

Diiodotyrosine (DIT): A New Marker of Leukocyte Phagocytic Activity in
Sepsis and Severe Infections
H.-J. Gramm, H. Meinhold, K. Voigt, and R. Dennhardt 711

Serum Proteins and Cytokines for Prediction of Sepsis?
A.F. Hammerle, G. Pöschl, R. Kirnbauer, F. Trautinger, M. Micksche, and
O. Mayrhofer ... 715

The Prognostic Value of Plasmaproteins in Patients With Abdominal Sepsis
Michael Rögy, Reinhold Függer, Wolfgang Graninger, Friedrich Herbst,
Michael Schemper, and Franz Schulz 719

CRP Predicts Complications in Pancreatitis and Peritonitis
Åke Lasson, Rikard Berling, and Kjell Ohlsson 725

The PFI-Index According to Aasen for Prognosis and Course of
Polytraumatized Patients
D. Nast-Kolb, Ch. Waydhas, I. Baumgartner, M. Jochem, K.-H. Duswald,
and L. Schweiberer ... 731
Components of the Kallikrein-Kinin-System in Patients With ARDS
G. Fuhrer, W. Heller, W. Junginger, O. Gröber, and K. Roth 737

Biochemical and Hormonal Parameters in Patients With Multiple Trauma
M. Brandl, E. Pscheidl, W. Amann, A. Barjasic, and Th. Pasch 743

Patterns of Endocrine Secretion During Sepsis
R. Dennhardt, H.-J. Gramm, K. Meinhold, and K. Voigt 751

Phospholipase A in Severely Ill Patients
Roland M. Schaefer, M. Teschner, and A. Heidland 757

The Clinical Significance of Serum Phospholipase A in Patients With Multiple Trauma
Ch. Waydhas, I. Baumgartner, D. Nast-Kolb, P. Lehnert, K.H. Duswald, and L. Schweiberer 763

Lymphocyte/Monocyte-Ratio Correlates With Survival From Infections and Multi-Organ Failure Following Polytrauma
Michael W. Holch, Peter J. Grob, and Werner Glinz 769

A Prospective Study to Evaluate Posttraumatic Liver Function by Scintigraphy as a Possible Predictor of Organ Failure
G. Regel, M.L. Nerlich, K.F. Gratz, H.P. Friedl, and J.A. Sturm 775

3. GENERAL THERAPY

Prophylaxis and Therapy of the Multiple Organ Failure Syndrome (MOFS): Early Ventilatory Support
Herbert Benzer, Wolfgang Koller, Christian Putensen, and Günther Putz 783

The Use of Exogenous Surfactant to Treat Patients With Acute High-Permeability Lung Edema
Roger G. Spragg, Paul Richman, Nicolas Gilliard, T.Allen Merritt, Bengt Robertson, and Tore Curstedt 791

Exogenous Surfactant in Experimental Aspiration Trauma
Wolfgang Strohmaier, Heinz Redl, and Günther Schlag 797

Effect of an Altered Fluid Regimen on Extravascular Lung Water in Advanced Septic Shock States
Ernst Zadrobilek, Vichra Evstatieva, Paul Sporn, and Karl Steinbereithner 803

Effect of Large Volume Replacement With Crystalloids on Extravascular Lung Water in Human Septic Shock Syndrome
Ernst Zadrobilek, Werner Hackl, Paul Sporn, and Karl Steinbereithner 809

Hydroxyethyl Starch and Lung Lymph Flow in an Ovine Model of Endotoxemia
Hans J. Lübbesmeyer, Jesse Basadre, Michael Möllmann, Lillian Traber, James Maguire, David N. Herndon, and Daniel L. Traber 815

Can Hemofiltration Increase Survival Time in Acute Endotoxemia—A Porcine Shock Model
Decontamination of the Gastrointestinal Tract and Prevention of Multiple Organ Failure. An Experimental Study
Ignas P.T. van Bebber, Roland M.G.H. Mollen, Joop P. Koopman, and R. Jan A. Goris .. 827

3.1. Corticosteroids

Development of Animal Models for Application to Clinical Trials in Septic Shock
Lerner B. Hinshaw ... 835

Dilemmas of the Clinical Trial; Review and Critique of VA Cooperative Study of Corticosteroid in Systemic Sepsis
Michael F. Wilson ... 847

Corticosteroids for Septic Shock and the Adult Respiratory Distress Syndrome
Roger C. Bone ... 857

Nebulized Corticosteroid in Experimental Respiratory Distress
Sten Walther, Ingvar Jansson, Björn Bäckstrand, and Sten Lennquist 867

Influence of Methylprednisolone Pretreatment on Coagulation, Fibrinolysis, Hemodynamics, and Cellular Responses in Porcine Endotoxemia
Olav Røise, Frode Naess, Johan Pillgram-Larsen, Tom E. Ruud, Jan O. Stadaas, and Ansgar O. Aasen ... 873

Prevention of Anaphylatoxin Formation by High-Dose Corticosteroids in Total Hip Arthroplasty
Wolfgang Gammer, Anders Bengtson, and Mats Heideman 879

3.2. Radical Scavengers

Free Radical Scavengers in the Cardiopulmonary Response to Endotoxin
Daniel L. Traber, David N. Herndon, and Lillian D. Traber 885

The 21-Aminosteroid U74006F Reduces Systemic Lipid Peroxidation, Improves Neurologic Function, and Reduces Mortality After Cardiopulmonary Arrest in Dogs
JoAnne E. Natale, Robert J. Schott, Edward D. Hall, J. Mark Braughler, and Louis G. D’Alecy ... 891

Alpha-Mercaptopropionylglycine in Haemorrhagic Shock
B. Weidler, B. v. Bormann, M. Kahle, and G. Hempelmann 897

Dynamics of Prostacyclin and Thromboxane During Myocardial Ischemia
Elizabeth Röth, Dezsö Keleman, Bela Török, Alexander Nagy, and Susan Pollak ... 907

Protection by Recombinant Human Superoxide Dismutase in Lethal Rat Endotoxemia
Johannes Schneider, Elmar Friderichs, and Hubert Giertz 913
3.3. PAF Antagonists

Effect of a New and Specific PAF-Antagonist, WEB 2086, on PAF and Endotoxin/Tumor Necrosis Factor Induced Changes in Mortality and Intestinal Transit Velocity
Hubert Heuer ... 919

The Pathophysiological Role of PAF in Anaphylactic Lung Reaction in the Guinea Pig and in Endotoxin Shock Evidenced by the Specific PAF-Antagonist WEB 2086
Hubert Heuer and Jorge Casals-Stenzel 925

Effect of PAF-Antagonists in Endotoxin Shock—Ovine and Rat Experiments
Soheyl Bahrami, Heinz Redl, Martin Thurnher, Christa Vogl, Eva Paul, Anna Schiesser, and Günther Schlag 931

3.4. Protease Inhibitors

Therapeutic Effects of the Combination of Two Proteinase Inhibitors in Endotoxin Shock of the Pig
M. Siebeck, H. Hoffmann, J. Weipert, and M. Spannagl 937

Leukocyte Neutral Proteinase Inhibitor of the Pig: Modification by Eglin C and Superoxide Dismutase of the Response to Shock
M. Siebeck, H. Hoffmann, R. Geiger, and L. Schweiberer 945

Reasons for the Ineffectiveness of Eglin C to Ameliorate Endotoxin Shock in Sheep
Wolfgang G. Junger, Camille Lieners, Heinz Redl, and Günther Schlag 953

Clinical Relevants of the Membrane Protective Action of Aprotinin on the Intraoperative Histamine Liberation
Henning Harke and Salah Rahman ... 959

Antithrombin III and Plasma Substitution in Septic Shock
Rainer Seitz, Martin Wolf, and Rudolf Egbring 965

Immunological Determination of Proteinase Inhibitor Complexes (PICs) and Their Behaviour During Plasma Derivate Treatment in Septic Infections
Rudolf Egbring, Rainer Seitz, Heiner Blanke, T. Menges, R. Südhoff, T. Stober, G. Kolb, and L. Lerch ... 971

Therapeutic Modalities to Ameliorate Endotoxin Induced DIC in the Rats
Soheyl Bahrami, Eva Paul, Heinz Redl, and Günther Schlag 977

Endotoxin Shock in the Rat: Reduction of Arterial Blood Pressure Fall by the Bradykinin Antagonist B4148
Joachim Weipert, Hans Hoffmann, Matthias Siebeck, and Eric T. Whalley ... 983

3.5. Immune Therapy

First Experience With Immunomodulation in Septic Shock
Ch. Josten, G. Muhr, and R. Sistermann 989
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymopentin (TP-5) in the Treatment of the Postburn and Postoperative Immunodeficiency Syndrome</td>
<td>995</td>
</tr>
<tr>
<td>Gerhard Hamilton, Gerald Zöch, Thomas Rath, and Günther Meissl</td>
<td></td>
</tr>
<tr>
<td>Protection Against the Consequences of Intravascular Coagulation by Reticuloendothelial Stimulation</td>
<td>1001</td>
</tr>
<tr>
<td>George Lázár, Jr., Elizabeth Husztik, and George Lázár</td>
<td></td>
</tr>
<tr>
<td>Behavior of Leukocyte Elastase and Immunoglobulins in Septic Toxic Multiorgan Involvement: Observations on 50 Gas Gangrene Cases</td>
<td>1007</td>
</tr>
<tr>
<td>D. Tirpitz</td>
<td></td>
</tr>
<tr>
<td>Haemodynamic Effects During Treatment of Sepsis and Septic Shock With Immunoglobulins and Plasmapheresis</td>
<td>1025</td>
</tr>
<tr>
<td>Karl Werdan, Günter Pilz, and Stefan Kääb</td>
<td></td>
</tr>
<tr>
<td>Prediction and Prevention, by Immunological Means, of Septic Complications After Elective Cardiac Surgery</td>
<td>1031</td>
</tr>
<tr>
<td>Stimulation of Phagocytosis by Immunoglobulins in Animal Experiment</td>
<td>1037</td>
</tr>
<tr>
<td>Stefan W. Frick and Rolf Hartmann</td>
<td></td>
</tr>
<tr>
<td>Determination of Antibodies Against Bacterial Lipopolysaccharides and Lipid A by Immunoblotting</td>
<td>1043</td>
</tr>
<tr>
<td>Peter C. Fink, Gert Bokelmann, and Rainer Haeckel</td>
<td></td>
</tr>
<tr>
<td>3.6. Inotropic Agents—Calcium Antagonists</td>
<td></td>
</tr>
<tr>
<td>Diltiazem Prevents Endotoxin-Induced Disturbances in Intracellular Ca^{2+} Regulation</td>
<td>1053</td>
</tr>
<tr>
<td>Mohammed M. Sayeed</td>
<td></td>
</tr>
<tr>
<td>Calcium Antagonists in Shock—A Minireview of the Evidence</td>
<td>1065</td>
</tr>
<tr>
<td>James R. Parratt</td>
<td></td>
</tr>
<tr>
<td>Circulatory Responses to the Sepsis Syndrome</td>
<td>1075</td>
</tr>
<tr>
<td>William J. Sibbald</td>
<td></td>
</tr>
<tr>
<td>Therapy of Acute Respiratory Distress Syndrome With Nifedipine</td>
<td>1087</td>
</tr>
<tr>
<td>Peter Hoffmann, Michael Imhoff, and Ralf Gahr</td>
<td></td>
</tr>
<tr>
<td>Pharmacological Effects of RA 642 on Cerebrocortical Perfusion in Acute Hemorrhagic Shock in Rats</td>
<td>1091</td>
</tr>
<tr>
<td>Stefan Hergenröder and Richard Reichl</td>
<td></td>
</tr>
<tr>
<td>Long Term Administration of Dopamine: Is There a Development of Tolerance?</td>
<td>1097</td>
</tr>
<tr>
<td>G.G. Braun, F. Bahlmann, M. Brandl, and R. Knoll</td>
<td></td>
</tr>
<tr>
<td>Use of Systolic Time Intervals to Evaluate the Effect of Dopamine Infusion in Septic and Burn Shock</td>
<td>1101</td>
</tr>
<tr>
<td>Kornél Szabó</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>1107</td>
</tr>
</tbody>
</table>
Contributors

Ansgar O. Aasen, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [315,389,401,873]

Homeros Aletras, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Sefik Alkan, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Athanasia Alvanou, Department of Histology, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

W. Amann, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

Paul L. Appel, Department of Surgery, King-Drew Medical Center, Los Angeles, CA 90059 [133]

Z. Atay, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [51]

Walter Aulitzky, Department of Internal Medicine, University of Innsbruck, Innsbruck A-6020, Austria [467]

Gernot Autenrieth, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Ivo Baca, Department für Chirurgie, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695]

Björn Bäckstrand, Department of Surgery, Regionsjukhuset, S-581 85 Linköping, Sweden [867]

Andrea Bader, Institute of Immunology, University of Heidelberg, 6900 Heidelberg, Federal Republic of Germany [299]

Gregory J. Bagby, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

F. Bahlmann, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [1097]

Soheyl Bahrami, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [931,977]

A. Barjasic, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

The numbers in brackets are the opening page numbers of the contributors' articles.
Robert E. Barrow, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Jesse Basadre, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [815]

J.A. Bauer, Chirurg. Klinik Innenstadt und Chirg. Polikl. der Universität, D-8000 München 2, Democratic Republic of Germany [455]

Franz Bäumer, Chirurgische Universitätsklinik, Experimentelle Chirurgie, D-8700 Würzburg, Federal Republic of Germany [143]

Gerard I.J.M. Beerthuizen, Department of General Surgery, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands [137]

Anders Bengtson, Department of Anesthesiology, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265,879]

Herbert Benzer, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Rikard Berling, Department of Anaesthesiology, Malmö General Hospital, University of Lund, S-214 01 Malmö, Sweden [725]

Sandra Betti, Cardiovascular Surgery, University of Siena, 53100 Siena, Italy [73]

G. Beverley, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [217]

Sucharit Bhakdi, Department of Microbiology, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,283]

Ron Bilik, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Timothy R. Billiar, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

Ulrich Birkenhauer, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175]

G. Bisiani, Department of Internal Medicine, University of Milan, 20122 Milan, Italy [277]

Giuliana Bisiani, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

Heiner Blanke, Department Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Miguel Blazquez, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

Günther Blümel, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Gert Bokelmann, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [1043]
Giuseppe Boldrini, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

B. Bonavida, Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, CA 90024 [485]

Roger C. Bone, Rush-Presbyterian-St. Luke’s Medical Center, Chicago, IL 60612 [857]

Gerhard Borkowski, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

Emma Borrelli, Cardiovascular Surgery, University of Siena, 53100 Siena, Italy [73]

Ulrich Bosch, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]

Bonno N. Bouma, Department of Hematology, University Hospital Utrecht, Utrecht, The Netherlands [401]

M. Brandl, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743,1097]

Pierre Braquet, I.H.B. Research Labs., 92350 Le Plessis-Robinson, France [425,441,485]

J. Mark Braughler, CNS Diseases Research, The Upjohn Company, Kalamazoo, MI 49001 [891]

K.L. Brigham, Department of Medicine, The Center for Lung Research, Vanderbilt University Medical Center, Nashville, TN 37232 [91]

Volker Bühren, Department Trauma Surgery, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

Hilmar Burchardi, Department of Anaesthesiology, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Reinhard Burger, Robert Koch Institute, 1000 Berlin, Federal Republic of Germany [299]

R.D. Burrow, Department of Medicine, University of Oklahoma City, Oklahoma, OK 73104 [207]

Wim A. Buurman, Department of General Surgery, University of Limburg, Biomedical Center, 6200 MD Maastricht, The Netherlands [463]

Jorge Casals-Stenzel, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim, Federal Republic of Germany [925]

Marco Castagneto, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

Matthias Cebulla, Department of Surgery, University Hospital Frankfurt/ M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

Frank B. Cerra, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

Huacui Chen, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Li Chen, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Osvaldo Chiara, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [73,277]
Contributors

Carlo Chiarla, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

J. Allen Coffey, Jr., Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Bill Coleman, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Tore Curstedt, Department of Clinical Chemistry, Karolinska Hospital, Stockholm, Sweden [791]

Louis G. D’Alecy, Departments of Physiology and Surgery, The University of Michigan Medical School, Ann Arbor, MI 48109 [891]

Ying Dang, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Reiner Dauberschmidt, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

I.V. Deaciuc, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [575]

D. De Backer, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]

Joop M.H. Debets, Department of General Surgery, University of Limburg, Biomedical Center, 6200 MD Maastricht, The Netherlands [463]

Peter J. Del Vecchio, Departments of Ophthalmology and Physiology, The Albany Medical College, Albany, NY 12208 [101]

R. Dennhardt, Klinik für Anästhesiologie, Krankenhaus Nordwest, 6000 Frankfurt 90, Federal Republic of Germany [711,751]

E.B. Rodriguez de Turco, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [575]

R. de Winter, Medical Center Veterans Administration, Oklahoma City, OK 73104 [207]

Heinrich Ditter, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

I.C. Dormehl, AEC Institute for Life Sciences, University of Pretoria, Pretoria, South Africa [207,217]

M. Dreher, Diagnostica Forschung, E. Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

Detlev Drenckhahn, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Christel Dressler, Department of Anaesthesiology, Friedrichshain Hospital of Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

Günter Dussing, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]

K.H. Duswald, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2, Federal Republic of Germany [731,763]

Alexander Dwenger, Klinische Biochemie, Medizinischen Hochschule Hannover, D-3000 Hannover 61, Federal Republic of Germany [673]
Rudolf Egbring, Division of Internal Medicine, Department of Hematology, Philipps-University, D-3550 Marburg, Federal Republic of Germany [965,971]

Gerd Egger, Institute of Functional Pathology, University of Graz, A-8010 Graz, Austria [351]

Efthimios Eleftheriadis, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

O. Elert, Department of Thoracic and Cardiovascular Surgery, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

W. Engelhardt, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Rolf Erdmann, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695]

Wolfgang Ertel, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 München 70, Federal Republic of Germany [495,513]

Vichra Evstatieva, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, A-1090 Vienna, Austria [803]

Eugen Faist, Department of Surgery, LMU Munich, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [495,513]

Luca Fattori, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

Walter Fierz, Section of Clinical Immunology, Department of Medicine, University Hospital Zurich, CH-8091 Zurich, Switzerland [491]

Peter C. Fink, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [695,1043]

Chryssi Foroglou, Department of Histology, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Knut Frederking, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

Reinhold Fretschner, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [185]

M.A. Freudenberg, Max-Planck-Institut für Immunbiologie, Freiburg/Br., Federal Republic of Germany [407]

Nikolaus Freudenberg, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [77,113,371,407]

Stefan W. Frick, Surgical University Clinic Marienhospital Ruhr-University of Bochum, D-4690 Herne 1, Federal Republic of Germany [1037]

Elmar Friderichs, Department of Pharmacology, Grüenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

H.P. Friedl, Department of Traumatology, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [775]

Arno Friedlein, Progen Biotechnik, 6900 Heidelberg, Federal Republic of Germany [299]

Hans Fritz, Department of Surgery, Division of Clinical Chemistry and Clinical Biochemistry, University of Munich, D-8000 Munich 2, Federal Republic of Germany [305,395,455,701]
D. Fröhlich, Chirurg. Klinik und Poliklinik der Universität München, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [527]

Thomas Fuchs, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Reinhold Függer, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

G. Fuhrer, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

J. Funovics, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Walter Fürst, Ludwig Boltzmann Institute for Experimental Traumatology, Vienna A-1200, Austria [345]

Manfred Gahr, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

Ralf Gahr, Unfallchirurgische Klinik, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

C. Galanos, Max-Planck-Institut für Immunobiologie, Freiburg/Br., Federal Republic of Germany [407]

Wolfgang Gammer, Department of Orthopaedic Surgery, Ludvika Hospital, 771 00 Ludvika, Sweden [879]

M. Cardinali, Department of Internal Medicine, University of Milan, 20122 Milan, Italy [277]

Harald Gasser, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447]

J. Gebert, Zentrum für Anästhesie der Medizinischen, Hochschule Hannover, 3000 Hannover 51, Federal Republic of Germany [643]

Stephanos Geroulanos, Department of Surgery, University Hospital Zurich, CH-8091 Zurich, Switzerland [491]

Anders Gidlöf, Clinical Research Center, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden [157]

Hubert Giertz, Department of Pharmacology, Grünenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

Nicolas Gilliard, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

Pier P. Giomarelli, Cardiovascular Surgery, University of Siena, 53100 Siena, Italy [73]

Ivo Giovannini, Centro di Studio per Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [259,607,613,619]

Werner Glinz, Section of Clinical Immunology, Department of Surgery, University Hospital, CH-8091 Zurich, Switzerland [491,769]

Oliver Gonschorek, Department of Trauma Surgery, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

R. Jan A. Goris, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [137,419,827]
Contributors / xxv

Notker Graf, Department of Anaesthesiology, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Hans Grajetzki, Central Resuscitation and Intensive Care Unit, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

H.-J. Gramm, Klinik für Anästhesiologie und operative Intensivmedizin, Klinikum Steglitz der Freien Universität Berlin, D-1000 Berlin 45, Federal Republic of Germany [711,751]

Wolfgang Graninger, Department of Chemotherapy, University of Vienna Medical School, A-1090 Vienna, Austria [719]

K.F. Gratz, Department of Nuclear Medicine, Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [775]

Barbara Griess, Research Department of Intensive Care Medicine, Friedrichshain Hospital of Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

Peter J. Grob, Section of Clinical Immunology, Department of Medicine, University Hospital, CH-8091 Zurich, Switzerland [491,769]

O. Gröber, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

A.B.J. Groeneveld, Medical Intensive Care Unit, Free University Hospital, Amsterdam [163]

R. Grundmann, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

Heinz Guggenberger, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tübingen, D-7400 Tübingen, Federal Republic of Germany [185]

G. Gunzer, Diagnostica Forschung, E.Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

C.E. Hack, Central Laboratory of the Netherlands Red Cross Bloodtransfusion Service and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, Amsterdam [163]

Werner Hackl, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [809]

Rainer Haeckel, Institut für Laboratoriumsmedizin-Zentrallabor, Zentralkrankenhaus, D-2800 Bremen 1, Federal Republic of Germany [1043]

Edward D. Hall, CNS Diseases Research, The Upjohn Company, Kalamazoo, MI 49001 [891]

Seth W.O. Hallström, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231,345]

Gerhard Hamilton, Experimental Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

A.F. Hammerle, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

Diane M. Hargrove, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]
Henning Harke, Department of Anaesthesia, General Hospital of Krefeld, D-4150 Krefeld, Federal Republic of Germany [959]

Rolf Hartmann, Surgical University Clinic Marienhospital Ruhr-University of Bochum, D-4690 Herne 1, Federal Republic of Germany [1037]

Ruth Hartmann, Department of Internal Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [283]

Mats Heideman, Department of Surgery, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265,879]

A. Heidland, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]

R. Helger, Diagnostica Forschung, E. Merck, D-6100 Darmstadt, Federal Republic of Germany [707]

W. Heller, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

G. Hempelmann, Department of Anaesthesia and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]

Hermann August Henrich, Chirurgische Universitätsklinik, Experimentelle Chirurgie, D-8700 Würzburg, Federal Republic of Germany [143]

Friedrich Herbst, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]

Stefan Hegenröder, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim/Rhein, Federal Republic of Germany [1091]

J.B. Hermiller, Naval Medical Research Institute, Bethesda, MD 20814 [575]

David N. Herndon, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [201,377,815,885]

Thomas Hessz, Department of Anatomy and Cell Biology (DD), Phillips University, D-3550 Marburg, Federal Republic of Germany [127]

Hubert Heuer, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim, Federal Republic of Germany [919,925]

Lerner B. Hinshaw, Oklahoma Medical Research Foundation, and University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 [835]

Herwig P. Hofer, Surgical Clinic, University of Graz, A-8010 Graz, Austria [351]

Ch. Hoffmann, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [305]

Peter Hoffmann, Abteilung für Anästhesiologie, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

James C. Hogg, Pulmonary Research Laboratory, University of British Columbia, St. Paul's Hospital, Vancouver, Canada V6Z 1Y6 [27]
Contributors / xxvii

G. Hohlbach, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Michael Holch, Department of Trauma Surgery, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]

Michael W. Holch, Section of Clinical Immunology, Department of Medicine, University Hospital, CH-8091 Zurich, Switzerland [491,769]

Ralph T. Holman, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

M. Hornung, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

David Hosford, I.H.B. Research Labs., 92350 Le Plessis-Robinson, France [425,485]

Christoph Huber, Department of Internal Medicine, University of Innsbruck, A-6020 Innsbruck, Austria [467]

N. Hugo, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [207,217]

Elizabeth Husztik, Institute of Medical Biology, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

Carlo Iannace, Centro di Studio per la Fisiopatologia dello Shock, CNR, Istituto di Clinica Chirurgica, Università Cattolica, Roma, Italy [613]

Michael Imhoff, Chirurgische Klinik, Städtische Kliniken Dortmund, D-4600 Dortmund 1, Federal Republic of Germany [1087]

Ingvar Jansson, Department of Surgery, Regionsjukhuset, S-581 85 Linköping, Sweden [867]

Marianne Jochum, Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Universität München, D-8000 München 2, Federal Republic of Germany [527,673,701,731]

J.E. Johnson, Department of Pathology, The Center for Lung Research, Vanderbilt University Medical Center, Nashville, TN 37232 [91]

Theo Joka, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43,51,673]

F. Joo, Biological Research Center of the Academy of Science of Hungary, Hungary [291]

Ch. Josten, Department of Surgery, Berufsgenossenschaftliche Krankenanstalten “Bergmannsheil”, 4630 Bochum, Federal Republic of Germany [989]

Wolfgang G. Junger, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [953]

W. Junginger, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]

Stefan Kääb, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [1025]

Karin Kaden, Paediatric Clinic, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

M. Kahle, Department of General and Thoracic Surgery, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]
xxviii / Contributors

J. Kalotai, Department of Traumatology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

T. Kapsner, Department of Medicine I, Klinikum Grosshadern, University of Munich, 8000 Munich 70, Federal Republic of Germany [247]

J. Karner, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

József Kaszaki, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6720 Szeged, Hungary [253,291]

Dezsö Kelemen, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

Zafar Khakpour, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231]

J.G. Kilian, Department of Medicine, University of Pretoria, Pretoria, South Africa [207,217]

N. Kipping, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

R. Kirnbauer, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

Michael Kirschfink, Department of Immunology, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [43]

Werner J. Kleeman, Department of Forensic Medicine, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]

Thomas Kloess, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175,185]

R. Knoll, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [1097]

G. Kolb, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Wolfgang Koller, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Peter Konold, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

A. Kooistra, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Joop P. Koopman, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [827]

H. Kortmann, Chirurg. Klinik und Poliklinik der Universität München, Klinikum Grosshadern, 8000 München 70, Federal Republic of Germany [527]

Bernd Kottler, Klinik für Anaesthesiologie und Transfusionsmedizin der Universitaet Tuebingen, D-7400 Tuebingen, Federal Republic of Germany [175]
Katerina Kotzampassi, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

E. Kovats, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]

Harry B. Kram, Department of Surgery, King-Drew Medical Center, Los Angeles, CA 90059 [133]

Sabine Krautschneider, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447]

H.G. Kress, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Ferdinand J.A. Kreuzer, Department of Physiology, University Hospital Nijmegen, 6500 HB Nijmegen, The Netherlands [137]

E. Kreuzfelder, Institute of Virology and Immunology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

Peter E. Krösl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225,231,237]

Peter Kühnl, Institute of Immunohematology, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [278]

K. Kürten, Chirurgische Universitätsklinik Köln, 5000 Köln 41, Federal Republic of Germany [601]

Herbert Lamche, Ernst Boehringer Institute, A-1120 Vienna, Austria [467]

Charles H. Lang, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Hermann Lang, Diagnostic Research, E. Merck Darmstadt, D-6100 Darmstadt, Federal Republic of Germany [701,707]

Åke Lasson, Departments of Surgery and Surgical Pathophysiology, Malmö General Hospital, University of Lund, S-214 01 Malmö, Sweden [725]

Z. Laszik, Institute of Pathology, Medical University of Szeged, Szeged, Hungary [291]

Martin Lausen, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

George Lázár, Institute of Pathophysiology, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

George Lázár, Jr., Department of Surgery, Albert Szent-Györgyi Medical University, Szeged, Hungary [1001]

P. Lehmkuhl, Zentrum für Anästhesie der Medizinischen Hochschule Hannover, 3000 Hanover 51, Federal Republic of Germany [643]

Sten Lennquist, Department of Surgery, Regionsjukhuset, S-581 85 Linköping, Sweden [867]

L. Lerch, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

David H. Lewis, Clinical Research Center, Faculty of Health Sciences, University Hospital, S-581 85 Linköping, Sweden [157]

Camille Lieners, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [345,467,953]

Zhenyuan Liu, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]
Hans J. Lübbesmeyer, Department of Anesthesiology and Operative Intensive Care, Westfaelian Wilhelms University, D-4400 Münster, Federal Republic of Germany [815]

Santiago Lubillo, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

Heribert Luig, Department of Nuclear Medicine, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Mohammad Maghsudi, Department of Trauma Surgery, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]

James Maguire, Department of Anesthesiology and Surgery, The University of Texas Medical Branch and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [815]

Asrar B. Malik, Department of Physiology, The Albany Medical College, Albany, NY 12208 [101]

Jose L. Manzano, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [57,61]

M. Maree, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [207,217]

Claudio Marradi, Department of Emergency Surgery, University of Milan, Milan 20122, Italy [633]

F. Reinhard Matthias, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

O. Mayrhofer, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

J.P. Mehegan, Naval Medical Research Institute, Bethesda, MD 20814 [575]

Günther Meissl, 1. Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

S.M. Melnitzki, Department of Medicine I, Klinikum Grosshadern, University of Munich, 8000 Munich 70, Federal Republic of Germany [247]

Jean Michel Mencia-Huerta, I.H.B. Research Labs., 91952 Les Ulis, France [441]

T. Menges, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

T. Allen Merritt, Department of Pediatrics, University of California, San Diego, CA 92103 [791]

Károly Mészáros, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Birgit Metzler, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Angelika Mewes, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Manfred Meyer, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]
Barbara Meyrick, Department of Pathology, The Center for Lung Research, Vanderbilt University, Nashville, TN 37232 [91]

M. Micksche, Institute for Applied and Experimental Oncology, University of Vienna, A-1090 Vienna, Austria [715]

Rusty A. Milhoan, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Jan Modig, Department of Anesthesiology and Intensive Care, University Hospital of Uppsala, S-751 85 Uppsala, Sweden [17]

Roland M.G.H. Mollen, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [827]

Michael Möllmann, Department of Anesthesiology and Operative Intensive Care, Westfaelian Wilhelms University, D-4400 Münster, Federal Republic of Germany [815]

Helmut Molnar, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [345]

Glenn Morris, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Stephen E. Morris, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Heinz Mrochen, Research Department of Intensive Care Medicine, Friedrichshain Hospital Berlin, DDR-1017 Berlin, Democratic Republic of Germany [331]

G. Muhr, Department of Surgery, Berufgenossenschaftliche Krankenanstalten “Bergmannsheil”, 4630 Bochum, Federal Republic of Germany [989]

Frode Naess, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [389,873]

Sándor Nagy, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253,291,907]

Werner Naser, Progen Biotechnik, 6900 Heidelberg, Federal Republic of Germany [299]

D. Nast-Kolb, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2, Federal Republic of Germany [731,763]

JoAnne E. Natale, Department of Physiology, The University of Michigan Medical School, Ann Arbor, MI 48109 [891]

Michael L. Nerlich, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37,413,507,775]

Angelo Nespoli, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [73,277,633]

Heinz Neuhof, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,119,127,283,305]

Josef Newald, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [237]
J.H. Nuyens, Central Laboratory of the Netherlands Red Cross Bloodtransfusion Service and Laboratory for Experimental and Clinical Immunology, University of Amsterdam, Amsterdam [163]

Udo Obertacke, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43,51]

Kjell Ohlsson, Departments of Surgery and Surgical Pathophysiology, Malmö General Hospital, S-214 01 Malmö, Sweden [725]

L. Olivier, Department of Traumatology, University of Essen, 4300 Essen 1, Federal Republic of Germany [51]

Richard Pacher, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [683]

N. Pacitti, Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G1 1XW, Scotland [357]

Pietro Padalino, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [73,277,633]

Jacopo Pallavicini, Department of Emergency Surgery, University of Milan, 20122 Milan, Italy [277,633]

Alfred Pannike, Department of Surgery, University Hospital Frankfurt/M., D-6000 Frankfurt/M. 70, Federal Republic of Germany [517]

James R. Parratt, Department of Physiology and Pharmacology, Royal College, University of Strathclyde, Glasgow G1 1XW, Scotland [357,1065]

Joseph E. Parrillo, Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892 [191]

Th. Pasch, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]

Monique Paubert-Braquet, Centre de Traitement des Brûlés, Hôpital Percy, 92140 Clamart, France [441,485]

Eva Paul, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [477,467,931,977]

Botond Penke, Institute of Medical Chemistry, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253]

Ulrich Pfeiffer, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Bernadette Pignol, I.H.B. Research Labs., 91952 Les Ulis, France [441]

Johan Pillgram-Larsen, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, 0407 Oslo 4, Norway [389,874]

Günter Pilz, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [247,625,1025]

Susan Pollak, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

G. Pöschl, Department of Anaesthesiology and General Intensive Care, University of Vienna, A-1090 Vienna, Austria [715]

J.P. Pretorius, AEC Institute for Life Sciences, University of Pretoria, Pretoria, South Africa [207,217]

E. Pscheidl, Institute of Anaesthesiology of the FAU Erlangen-Nürnberg, 8520 Erlangen, Federal Republic of Germany [743]
Christian Putensen, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Günther Putz, Clinic for Anaesthesia and General Intensive Care Medicine, A-6020 Innsbruck, Austria [783]

Jose Quintana, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain [61]

Salah Rahman, Department of Anaesthesia, General Hospital of Krefeld, D-4150 Krefeld, Federal Republic of Germany [959]

Thomas Rath, I. Surgery, University Clinic, Burn Care Unit, A-1090 Vienna, Austria [995]

H.-G. Rau, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Heinz Redl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [xli,3,231,345,447,467,649,683,701,797,931,953,977]

Gerd Regel, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37,775]

Richard Reichl, Department of Pharmacology, Boehringer Ingelheim KG, D-6507 Ingelheim/Rhein, Federal Republic of Germany [1091]

Hubert Reichle, Department of Anaesthesiology, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Susanne Reisser, Department of Traumasurgery, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]

Daniela Reitz, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

Michaela Rethwilm, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

Albert W. Rettenmeier, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Elisabeth Reuschel-Janetschek, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Paul Richman, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

U.N. Riede, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [113]

Anne-Lise Rishovd, Department of Surgery and Institute for Experimental Medical Research, Ullevaal Hospital, University of Oslo, Oslo 4, Norway [315]

Avraham Rivkind, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

Bengt Robertson, Departments of Pediatrics and Pediatric Pathology, St. Goran’s Children’s Hospital, Stockholm, Sweden [791]

I.W. Rodger, Department of Physiology and Pharmacology, University of Strathclyde, Glasgow G1 1XW, Scotland [357]

Michael Rogy, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]
Olav Roise, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [389,401,873]
A. Roman, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]
B.L. Roth, Naval Medical Research Institute, Bethesda, MD 20814 [575]
E. Roth, First Surgical University Clinic, Metabolic Research Laboratory, University Vienna, A-1090 Vienna, Austria [589]
Elizabeth Röth, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]
K. Roth, Department of Cardiovascular Surgery, University of Tübingen, D-7400 Tübingen, Federal Republic of Germany [737]
Lennart Roxvall, Department of Surgery, Sahlgren Hospital, University of Göteborg, 41345 Göteborg, Sweden [265]
Günther Ruf, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]
Tom E. Ruud, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [389,873]
Mohammed M. Sayeed, Department of Physiology, Loyola University, Stritch School of Medicine, Maywood, IL 60153 [1053]
Roland M. Schaefer, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]
H.-M. Schardely, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]
Erwin Schauenstein, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]
Rudolf J. Schaur, Institute of Biochemistry, University of Graz, A-8010 Graz, Austria [351]
C. Scheidewig, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]
Michael Schemper, Department of Surgery 1, University of Vienna Medical School, A-1090 Vienna, Austria [719]
Anna Schiesser, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [447,467,931]
F.W. Schildberg, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]
Paul H.M. Schillings, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegan, The Netherlands [419]
Heinrich M. Schima, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225]
Günther Schlag, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [xli,3,231,237,345,447,467,649,797,931,953,977]
Friedrich W. Schmahl, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]
Klaus-Peter Schmit-Neuerburg, Department of Traumatology, University of Essen, D-4300 Essen 1, Federal Republic of Germany [43]
Uwe Schmuckall, Department of Immunology, Medical School Hannover, 3000 Hannover 61, Federal Republic of Germany [507]
Johannes Schneider, Department of Pharmacology, Grüenthal GmbH, 5100 Aachen, Federal Republic of Germany [913]

Ulrich Schoeffel, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

Robert J. Schott, Department of Surgery. The University of Michigan Medical School. Ann Arbor, MI 48109 [891]

A. Schultz, Zentrum für Anästhesie der Medizinischen, Hochschule Hannover. 3000 Hannover 51. Federal Republic of Germany [643]

Franz Schulz, Department of Surgery 1, University of Vienna Medical School. A-1090 Vienna. Austria [719]

Jochen W. Seidel, Department of Immunology. Medical School Hannover. 3000 Hannover 61. Federal Republic of Germany [507]

Mohie Sharaf El Din, Institute of Biochemistry. University of Graz, A-8010 Graz, Austria [351]

William C. Shoemaker, Department of Surgery. King-Drew Medical Center. Los Angeles, CA 90059 [133]

William J. Sibbald, Critical Care Trauma Centre. The Victoria Hospital Corporation, and the University of Western Ontario, London, Ontario N6A 4G5. Canada [1075]

A. Simmel, First Surgical University Clinic. Metabolic Research Laboratory. University Vienna. A-1090 Vienna. Austria [589]

Richard Simmons, Departments of Surgery and Biochemistry. University of Minnesota Medical School. Minneapolis. MN 55455 [563]

Ron G.H. Speekenbrink, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [419]

Christian P. Speer, Department of Pediatrics, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [689]

John J. Spitzer, Department of Physiology, Louisiana State University Medical Center, New Orleans, LA 70112 [545]

Judy A. Spitzer, Department of Physiology, Louisiana State University Medical School, New Orleans, LA 70112 [575]

Paul Sporn, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

Roger G. Spragg, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, CA 92103 [791]

Alexander Stäblein, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [625]

Jan O. Stadaas, Department of Surgery and Institute for Experimental Medical Research, Ulleval Hospital, University of Oslo, 0407 Oslo 4, Norway [315, 389,401,873]

Karl H. Staubach, Department of Surgery, University of Luebeck, 2400 Luebeck, Federal Republic of Germany [821]

Karl Steinbereithner, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

T. Stober, Department of Hematology/Oncology, Philips-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Theo Strasser, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Wolfgang Strohmaier, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [797]

Johannes Sturm, Unfallchirurgische Klinik, Medizinischen Hochschule Hannover, D-3000 Hannover 61, Federal Republic of Germany [507,673,775]

R. Südhoff, Department of Hematology/Oncology, Philipps-University, D-3550 Marburg/Lahn, Federal Republic of Germany [971]

Kazuro Sugi, The University of Texas Medical Branch and Shriners Burns Institute, Galveston, TX 77550 [237]

Günther Sutter, Department of Trauma, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

Norbert Suttrop, Department of Internal Medicine, Division of Clinical Pathophysiology and Experimental Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67,119,127,305]

Imre Szabó, Institute of Experimental Surgery, Szent-Györgyi Albert Medical University, H-6701 Szeged, Hungary [253]

Kornél Szabó, Burn Center of Central Hospital H.P.A., 1553 Budapest, Pf 1, Hungary [1101]

Ben E. Tall, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]
Friedrich Tegtmeyer, Department of Pediatrics, Medical School of Lübeck, D-2400 Lübeck 1, Federal Republic of Germany [689]

M. Teschner, Department of Medicine, University of Wuerzburg, D-8700 Wuerzburg, Federal Republic of Germany [757]

L.G. Thijs, Medical Intensive Care Unit, Free University Hospital, Amsterdam [163]

Martin Thurnher, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [225, 231, 447, 931]

D. Tirpitz, Department of Surgery I and Center for Hyperbaric Medicine, St. Joseph-Hospital, D-4100 Duisburg 12, Federal Republic of Germany [1007]

Bela Török, Department of Experimental Surgery, University of Medicine, Pécs, Hungary H-7643 [907]

Courtney M. Townsend, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [377]

Daniel L. Traber, Shriners Burns Institute and the Departments of Surgery and Anesthesiology, The University of Texas Medical Branch, Galveston, TX 77550 [201, 237, 377, 815, 885]

Lillian Traber, Department of Anesthesiology and Surgery, The University of Texas Medical Branch, and Division of Anesthesia Research, Shriners Burns Institute, Galveston, TX 77550 [201, 815, 885]

F. Trautinger, Institute for Applied and Experimental Oncology, University of Vienna, A-1090 Vienna, Austria [715]

Otmar Trentz, Department of Trauma Surgery, University of Saarland, D-6650 Homburg/Saar, Federal Republic of Germany [523]

Emmanouel Tzartingoglou, Department of Surgery, University of Thessaloniki, AHEPA Hospital, Thessaloniki GR-54006, Greece [151]

Ignas P.T. van Bebber, Department of General Surgery, St. Radboud University Hospital, 6500-HB Nijmegen, The Netherlands [419, 827]

Cees J. van der Linden, Department of General Surgery, University of Limburg, Biomedical Center, 6200 MD Maastricht, The Netherlands [463]

Thomas C. Vary, Departments of Surgery, Physiology, and Medicine, University of Maryland, Baltimore, MD 21201 [535]

B. v. Borman, Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]

G. Vermaak, The HA Grové Research Center of the University of Pretoria, Pretoria, South Africa [217]

Jesus Villar, Intensive Care Unit, Hospital N.S. del Pino, Las Palmas, Canary Islands, Spain; present address: Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada [57, 61]

JL. Vincent, Department of Intensive Care, Erasme Hospital, Free University of Brussels, 1070 Brussels, Belgium [181]

Christa Vogl, Ludwig Boltzmann Institute for Experimental Traumatology, A-1200 Vienna, Austria [231, 237, 447, 931]

K. Voigt, Institut für Normale und Pathologische Physiologie, Marburg, Federal Republic of Germany [711]

Hartmut Volkmann, Department of Anaesthesiology, University of Göttingen, D-3400 Göttingen, Federal Republic of Germany [323]

Bernd-Ulrich von Specht, Department of Surgery, University of Freiburg, 7800 Freiburg, Federal Republic of Germany [371]

Reinhard Voss, Department of Internal Medicine, University of Giessen, 6300 Giessen, Federal Republic of Germany [383]

Bernd Wagener, Klinik für Anaesthesiologie und Transfusionsmedizin der Universität Tübingen, D-7400 Tübingen, Federal Republic of Germany [185]

H. Wallasch, Institute of Anaesthesiology, University Hospital, D-8700 Würzburg, Federal Republic of Germany [1031]

Henrik Walter, Department of Internal Medicine, Justus-Liebig University, D-6300 Giessen, Federal Republic of Germany [67]

Sten Walther, Department of Anaesthesia and Intensive Care, Lasarettet, S-601 82 Norrköping, Sweden [867]

Alfred Walz, Department of Surgery, LMU Munich, Klinikum Grosshadern, D-8000 Munich 70, Federal Republic of Germany [495]

Ch. Waydhas, Chirurgische Klinik Innenstadt, Universität München, 8000 München 2, Federal Republic of Germany [731,763]

B. Weidler, Department of Anaesthesiology and Intensive Care Medicine, Justus-Liebig Universität, D-6300 Giessen, Federal Republic of Germany [897]

Peter Wendt, Department of Experimental Surgery, Technical University, 8000 Munich 80, Federal Republic of Germany [339]

Karl Werdan, Department of Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany [247,625,1025]

C. Wesoly, Chirurgische Universitätsklinik Köln-Lindenthal, D-5000 Köln 41, Federal Republic of Germany [637]

Michael West, Departments of Surgery and Biochemistry, University of Minnesota Medical School, Minneapolis, MN 55455 [563]

Eric T. Whalley, Department of Physiological Sciences, University of Manchester, Manchester, England [983]

Michael F. Wilson, Research Service, VA Medical Center and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 [207,217,847]

Gisela Windus, Department of Forensic Medicine, University of Hannover Medical School, 3000 Hannover 61, Federal Republic of Germany [37]
Isolde Wodarz, Department of Occupational and Social Medicine, University of Tübingen, 7400 Tübingen, Federal Republic of Germany [595]

Martin Wolf, Division of Internal Medicine, Department of Hematology, Philipps-University, D-3550 Marburg, Federal Republic of Germany [965]

Wolfgang Wołoszczyk, Ludwig Boltzmann Institute for Clinical Endocrinology, A-1090 Vienna, Austria [683]

Qixia Wu, Department of Pathophysiology, Peking Union Medical College, Beijing 100700, China [271]

Ernst Zadroblek, Ludwig Boltzmann Institute, Department of Anaesthesia and Intensive Care, Vienna University School of Medicine, A-1090 Vienna, Austria [803,809]

G. Zeck-Kapp, Department of Pathology, University of Freiburg, D-7800 Freiburg, Federal Republic of Germany [113]

Gertrud Zilow, Department of Immunology, University of Heidelberg, D-6900 Heidelberg, Federal Republic of Germany [43,299]

T. Zimmermann, Surgical Department of the Medical College Dresden, Dresden, German Democratic Republic [291]

Gerald Zöch, I. Surgery, University Clinic, Burn Care Clinic, A-1090 Vienna, Austria [995]
BREAKDOWN OF C3 COMPLEMENT AND IgG IN PERITONITIS EXUDATE - PATHOPHYSIOLOGICAL ASPECTS AND THERAPEUTIC APPROACH

A. Billinga, H. Kortmanna, D. Fröhlicha, M. Jochumb

a) Chirurg. Klinik und Poliklinik der Universität München, Klinikum Großhadern, Marchioninistr. 15, 8000 München 70, FRG.
b) Institut für Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Universität München.

INTRODUCTION

The breakdown of local defense mechanisms in peritonitis is one of the major causes of systemic complications - sepsis and multiple organ failure. In peritonitis exudate we could demonstrate a marked dysfunction of particle opsonisation and strong proteolytic activity (Billing et al., 1988). The underlying pathomechanisms for these findings were investigated. The current therapy for patients with diffuse purulent peritonitis includes surgical elimination of the source of peritonitis and a lavage procedure of the abdominal cavity (Guenther et al., 1987). If the local source of peritonitis cannot be cured for technical reasons chances for survival of the patient are poor (Weiser et al., 1986). Even in patients with primarily successful surgical treatment abscess formation and recurrent abdominal sepsis occur frequently. For the latter group postoperative support of local intraabdominal defense mechanisms might be crucial. We investigated the effect of intraperitoneal application of normal serum at the end of the peritonitis operation. Thereby intact opsonins should be substituted, scavengers of free radicals supplied and a broad spectrum of proteinase inhibitors provided. Moreover, serum being bactericidal by itself can liberate anaphylatoxins thus inducing phagocyte invasion.
MATERIALS AND METHODS

Exudates and blood samples were drawn simultaneously during operations for diffuse peritonitis. Exudates collected with disposable plastic syringes were divided and one part was cleared of cells and debris by immediate centrifugation. Blood samples were processed to serum or EDTA-plasma. Opsonic activity was determined by a chemiluminescence assay and C3 and IgG levels were measured by radial immunodiffusion as described previously (Billing et al., 1988). C3- and IgG-splitting was demonstrated by crossed immunoelectrophoresis (Ganroth 1972) employing the same C3c and IgG antibodies as used in the immunodiffusion assay. Protein content was determined by the Biuret method. Serum and exudate protein distribution patterns were studied by electrophoresis according to Grabner et al. For in vitro investigation of serum application samples of native peritonitis exudate or cell free exudate supernatants were incubated with different amounts of normal donor serum for two hours at 37°C. For in vivo serum substitution one bloodbank-serum-unit (300 ml) was applied intrabdominally at the end of the peritonitis operation. Drainage fluid was collected and pooled from 0-2 hrs. and from 2-2.5 hrs. after operation and studied for opsonin levels and opsonic activity.

RESULTS

1. Opsonin dysfunction

To quantify the peritoneal permeability for larger proteins, e.g. opsonins, the protein distribution patterns were determined in serum and exudate from 11 patients (Tab.1). In the same group opsonin levels and opsonic activity were evaluated (Tab.2).

TABLE 1. Amount and electrophoretic pattern of proteins in peritonitis serum and exudate (n=11, mean ± standard deviation)

<table>
<thead>
<tr>
<th>Protein amount (g/l)</th>
<th>Serum</th>
<th>Exudate</th>
<th>(= % of patient serum value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albumin (rel.%)</td>
<td>53 ± 7.0</td>
<td>35 ± 7.0</td>
<td>66</td>
</tr>
<tr>
<td>(rel.%)</td>
<td>57.6 ± 8.2</td>
<td>53.9 ± 8.5</td>
<td>93</td>
</tr>
<tr>
<td>(rel.%)</td>
<td>4.7 ± 1.3</td>
<td>6.3 ± 3.1</td>
<td>134</td>
</tr>
<tr>
<td>(rel.%)</td>
<td>8.6 ± 1.7</td>
<td>9.7 ± 3.6</td>
<td>113</td>
</tr>
<tr>
<td>(rel.%)</td>
<td>7.7 ± 1.6</td>
<td>8.7 ± 2.5</td>
<td>113</td>
</tr>
<tr>
<td>(rel.%)</td>
<td>21.3 ± 7.9</td>
<td>21.5 ± 7.6</td>
<td>100</td>
</tr>
</tbody>
</table>
TABLE 2. Opsonin levels and opsonic activity (OA) in acute peritonitis (mean ± standard deviation, % of normal serum, n=13)

<table>
<thead>
<tr>
<th></th>
<th>patient serum</th>
<th>exudate</th>
<th>(=% of patient's serum value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>62.8 ± 29.3</td>
<td>43.9 ± 21.3</td>
<td>69.9</td>
</tr>
<tr>
<td>C3</td>
<td>65.3 ± 23.1</td>
<td>35.8 ± 27.8</td>
<td>54.8</td>
</tr>
<tr>
<td>OA</td>
<td>85.8 ± 33.5</td>
<td>8.4 ± 4.3</td>
<td>9.7</td>
</tr>
</tbody>
</table>

For further investigation of the apparent dysfunction of opsonins in peritonitis exudates the immunological integrity of IgG and C3 was studied by crossed immunoelectrophoresis (Fig.1).

Figure 3. Crossed immunoelectrophoresis for IgG and C3
a) patient's serum
b) moderate peritonitis exudate
c) severe purulent peritonitis exudate
The peaks to the right reveal split products of lower molecular weight.
2. Serum substitution

Case report 1 (64 yrs male patient with colon perforation).

In vitro incubation of increasing amounts of normal serum (N.S.) with the patient's exudate or exudate supernatant (SN) resulted in increasing amounts of immunologically measurable C3- and IgG-levels. In the mixtures containing cell free exudate SN the opsonic capacity (OC) recovered according to the rising opsonin concentration. When the incubation was performed with crude exudate, however, much higher serum concentrations were required to improve opsonisation (Fig.2).

Figure 2. In vitro incubation of peritonitis exudate with normal serum (N.S.) = opsonin levels, OL (C3 + IgG) in the mixtures, □ = opsonic capacity (OC) in exudate supernatant dilution, \(\equiv \) = OC in crude exudate dilution.

In two patients with gastric perforation the same incubation procedure was performed. In these mixtures OC increased according to the increase of OL both in exudate/serum dilution and in exudate-SN/serum dilution.
Case report 2 (71 yrs male pat., colon perforation)

In vivo serum application was performed as described above at the end of the operation. Peritonitis exudate's OC was 6 % of NS. Serum treatment resulted in a marked increase of OL and OC. In the second effluate sample (2-2.5 hrs.) OC still exceeded the preoperative activity up to 3.5-fold (Fig.3).

So far 6 patients have been treated with serum application. In all of them exudate OC was definitely enhanced and the procedure was well tolerated.

DISCUSSION

The above pattern of protein amount and distribution in patients' blood and exudate indicated the pronounced increase of peritoneal permeability in peritonitis giving way even for the passage of larger proteins, e.g. opsonins. The local (intraabdominal) concentration of IgG and C3 was in accordance with this finding. Although about 60 % of each protein was found in the exudates, the functional activity of both factors was almost abolished.
Immunoelectrophoresis demonstrated a marked breakdown of these proteins. Similar results have been published in other infected exudates (Waldvogel et al., 1984) and were assigned to proteolytic destruction. As to the C3 splitting the above results might partly be due to physiological activation with release of C3a, whereas the destruction of IgG gives evidence for unspecific proteolysis.

The incubation experiment in patient 1 reveals ongoing destruction of supplied opsonins still in vitro. Addition of specific proteinase inhibitors to such mixtures might be helpful to differentiate the underlying mechanisms. The results of intraabdominal serum substitution demonstrate the general possibility of therapeutic improvement of local opsonisation.

The proper recognition and labelling of foreign particles is generally understood as a main prerequisite for sufficient phagocytosis. The postoperative support of the impaired intraabdominal opsonisation deserves further investigation as it might be a key factor to prevent recurrent abdominal sepsis or abscess formation.

ACKNOWLEDGEMENT

We thank Dip.-Ing. B. Schmidt from the Nephrology Research Lab. (Med. Klinik I der Universität München) for the performance of the crossed immunoelectrophoresis.

REFERENCES

Index

A23187, 121
endothelium permeability and, 129, 131
AA-861, 131
Aasen index (PFI), polytrauma, 731–735
Acetylcholine, bradykinin antagonist B4148 administration with, 983, 984
Acetylcholinesterase, red blood cell, activated C3 in DIC, fulminant meningococcal meningitis, 272, 274
Acetylsalicylic acid, 131, 457, 459, 461
α1-Acid glycoprotein, plasma, and sepsis prognosis, 634, 635, 716, 717
ACTH, sepsis, 753, 755
Acute phase reactants, 337
ADH. See Vasopressin (antidiuretic hormone)
Adherence, granulocyte-endothelial cell, bacterial endotoxin role, 123–124
ADP
-P-induced platelet aggregation, 367
ribosylation, Pseudomonas endotoxin A, elongation factor-2, 250
Adrenal glands, animal models for shock, 838–839
Age, antithrombin III and plasma substitution in septic shock, 966, 968
AH 23848, 366
Albumin, plasma, and abdominal sepsis prognosis, 720, 721
Allopurinol, 350
Alveolar
and C3a in ARDS, 43–47, 52
cell cytological changes, ARDS, 51–54
permeability, 323–329
see also under Permeability
Alveolo capillary interface
ARDS, 27–28
corticosteroid, nebulized, in experimental respiratory distress, 867
membrane permeability, cell interactions in septic shock, 116–117
Ambiquitous enzymes, 576
Amino acid clearance, prognostic index in sepsis, 634, 635
Amino acid concentrations, serum, experimental endotoxin shock, 595–599
gabexate mesilate administration, 596, 597
glutamine and glutamic acid, 598
hyperalminemia and lethality, 595, 597–599
tyrosine, 598
Amino acid metabolism, respiratory quotient (CO2/O2 exchange ratio) in shock, 619–621
Amino acid release, perfused liver, sepsis effect on metabolism, 590–592
21-Aminosteroid U74006F, 891–895
Anaphylactic lung reaction, guinea pig, WEB 2086 (PAF antagonist), 925–929
Anaphylatoxins. See C3a; C5a
Angiopathy, diabetic, 1008, 1009
Angiotensin, 379
Animal model development for shock, 835–840, 843–844, 851
application to humans, 839–840, 843–844
endotoxin shock, history, 836
methyprednisolone with gentamicin, dogs, *E. coli* shock, 836–837
adrenal gland role, 838–839
cf. baboons, 836–840
rationale, 837–838
Anipamil, traumatic shock, 1067, 1068
Antibiotics
burns, enteric translocation of microorganisms, 377, 378
and calcium antagonists in endotoxin shock, 1070
Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1043–1050
Antichymotrypsin cf. C-reactive protein as prognostic index, 725–727
Antigen, inhaled, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Antigen-presenting cells, trauma-induced cascade of CMI effects, 495, 496
Antioxidant, MTDQ-DA, myocardial ischemia, 907–911; see also Free radical scavengers; Oxygen radicals
Antiplasmin
kallikrein-kinin system components in ARDS after polytrauma, 738, 741
methyprednisolone pretreatment, endotoxemia, 874, 875
α2-Antiplasmin
aprotinin membrane protective action, intraoperative histamine liberation, 961, 963
plasma, and abdominal sepsis prognosis, 720, 721
Anti-protease. See Protease inhibitor entries
Antithrombin III, 319, 384, 386, 940
endotoxin and overwhelming inflammatory response of early sepsis, 372
kallikrein-kinin system components in ARDS after polytrauma, 738, 740–742
methyprednisolone pretreatment, endotoxemia, 874, 875
multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 652
neutrophils, thrombin-induced adhesion with endothelial cells, 103
plasma
and abdominal sepsis prognosis, 720
corticosteroid, nebulized, in experimental respiratory distress, 869–871
endotoxin-induced DIC, AT III-heparin complex therapy, 979
plasma substitution in septic shock, humans, 965–968
prognostic value in sepsis, 637
lethality, 639, 640
thrombocyte counts, 637–641
scintigraphic evaluation of posttraumatic liver function, 776, 777
Antithrombin III-heparin complex, DIC, endotoxin-induced, 977–981
α1-Antitrypsin
immune suppression, post-surgical or post-traumatic, 492
lymphocyte/monocyte ratio in polytrauma survival, 769
plasma, and abdominal sepsis prognosis, 716, 717, 720, 721
Aorta, vascular intima in endotoxin shock, 85, 86
Apache II scoring system, 280, 384, 386, 626–630, 635, 643, 645, 664, 716, 1026–1030
Aprotinin
immunoglobulin profiles and PMN-elastase in septic gas gangrene, 1008, 1012, 1014–1016
membrane protective action, intraoperative histamine liberation, 959–963
Arachidonate/arachidonic acid metabolism, 21, 351
in ARDS, pulmonary edema, 306–307, 309–311
burns, PAF inhibitor effect, scalded pig, 455, 461
cyclooxygenase metabolites, lung injury in *E. coli* endotoxemia, 358, 362–364
early ventilatory support, 785
diuretic effects, endothelium, 119–121, 121–123
Bacterioides fragilis, 538

Base excess, respiratory quotient (CO₂/O₂ exchange ratio) in shock, 613, 614, 619

B cells(s)
 Ig synthesis suppression after multiple trauma, 513–515
 maturation, trauma-induced cascade of cell-mediated immune effects, 496, 497, 499, 501, 502
 multiple trauma, early events, 507–509

B-cell growth factor (IL-4), trauma-induced cascade of cell-mediated immune effects, 497

Becnometasondipropionate (BDP), nebulized corticosteroid, in experimental respiratory distress, 867, 868, 870, 871

Bilirubin
 ARDS, posttraumatic, prognosis, 675, 676, 678
 polytrauma, 743, 745
 lymphocyte/monocyte ratio in survival, 769

Biologically active site, C3a, 299

Biological response modifiers. See Immunomodulation

Blood flow redistribution, septic shock, 164

Blood volume redistribution, septic shock, 164–165

BM 13, 177, 366, 367
BN 56, 020, 428
BN 52, 021, 426–433, 442–444, 485–488
 endotoxin shock effects, 931–935
 PAF effects in sheep, 448
BN 52, 022, 428
BN 56, 203, 429
Bombesin, 378–380

Bone, long, fracture, and pulmonary fat embolism, 39–41

Bradykinin antagonist B4148, blood pressure maintenance, endotoxin shock, 983–987

Brain, PAF antagonist inhibition of induced shock, 430

Branched chain amino acids, 617
 amino acid concentrations, serum, experimental endotoxin shock, 595, 598
 metabolic abnormalities in sepsis, 539, 540

Bronchoalveolar lavage, ARDS, 13, 19, 20, 22, 23, 44

exogenous surfactant, 795

Bronchoconstriction, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 925, 926, 928

Burimamide, 362

Burn(s)
 dopamine infusion, effect evaluation with systolic time intervals, 1101–1105
 total burn surface estimation with Nine Rule, 1102–1103
 endotoxin and overwhelming inflammatory response of early sepsis, 372–374
 enteric translocation of microorganisms, 377–380
 scalded rats, 379
 sheep, 378
 PAF antagonist inhibition of induced shock, 431
 scalded pig, 455–461
 sepsis after, TP-5 immunomodulation, 995–998

Butyrophenones, 755

BW 755C, glucose turnover in sepsis, 552, 553

C3
 activated, DIC in septic shock, 271–274
 IgG breakdown in peritonitis exudate, 527–532
 lymphocyte/monocyte ratio in plasma, and abdominal sepsis prognosis, 720, 721

C3a, 7, 204
 activation
 endotoxin role in sepsis, 278–280
 MSOF pathogenesis in septic shock, dogs, 296
 pulmonary hypertension and vascular leakage, 283
 alveoli in, post-trauma, 43–47, 52
 ARDS, 299, 880
 biologically active site, 299
 circulation, peripheral, septic shock, 170
corticosteroids to prevent formation, total hip arthroplasty, 879–882
ELISA quantitation with monoclonal antibodies, 299–303
cf. C3, 300–303
endotoxin and overwhelming inflammatory response of early sepsis, 372, 373
in MSOF, 296, 880
acute pancreatitis, 265–268
polytrauma, 414
postoperative/posttrauma, biochemical analysis and scoring, 650, 651
prognostic index in sepsis, 635
rheumatoid arthritis, 299
systemic lupus erythematosus, 299
C3c, complement activation, MSOF pathogenesis in septic shock, dogs, 292, 294–296
C4 complement activation, endotoxin role in sepsis, 279, 280
lymphocyte/monocyte ratio in polytrauma survival, 769, 770
plasma, and abdominal sepsis prognosis, 720, 721
C5a, 7, 13, 43, 44, 46, 115, 116, 204, 825
activation
endotoxin role in sepsis, 278–280
MSOF pathogenesis in septic shock, dogs, 292, 296
pulmonary hypertension and vascular leakage, 283, 284
corticosteroids to prevent formation, total hip arthroplasty, 879–882
MSOF in acute pancreatitis, 265–268
terminal complement complexes, 266, 267
and PAF, 366
C5b9, 266
Cachectin. See Tumor necrosis factor (TNF, cachectin) entries
Calcium
capillary endothelial cells, 159
endothelium permeability effects, 127–131
endotoxin-induced intracellular overload, 1053–1061
hepatocytes, protein kinase C and diacylglycerol accumulation, endotoxemia, 575, 578, 584
isolated heart, effect of LMW plasma fraction in hypovolemic traumatic shock, 234
overload in ischemic cell death, 1065–1066
and PAF, 366
rapid influx and toxic action, 68
Calcium antagonists in shock/ischemia, 1060, 1065–1073
ATPase, 1065, 1066
calcium overload in ischemic cell death, 1065–1066
endotoxin shock, 1068–1071
glucose deficiency, 1066
hemorrhagic shock, 1067
mechanisms of action, 1072
magnesium, 1072
mitochondrial function, 1066
muscle spasm, smooth, 1066
phospholipase, 1066, 1071
platelet aggregation, 1066
traumatic shock, 1067–1068
see also specific agents
Calcium gates, 119, 120
Calmodulin, 120
Calvin, John, 850
Cancer patients, 493–494
Candida tropicalis, in vitro phagocytosis assay, 508, 510
Candidiasis, systemic, 378
Capillary endothelium
contractile elements, 157–160
endotoxemia and shock, impaired regulation, 157–160
lung, complement activation, MSOF pathogenesis in septic shock, dogs, 292, 294–296
Capillary permeability. See under Permeability
Capillary pressure, lung edema, 28
Capillary surface area reduction, ischemia and circulatory system in MSOF, 1082
Carbon dioxide, arterial, metabolic abnormalities in sepsis, 537, 538; see also Respiratory quotient (CO₂/O₂ exchange ratio) in shock
Carbon monoxide, α-
mercaptopropionylglycine in hemorrhagic shock, 899, 900, 902

Cardiac function
heart cells, cultured, effects of *Pseudomonas aeruginosa* toxins, rat, 247–251
muscle pO₂ role, critically ill patients, 139

see also Heart entries

Cardiac index, 625, 626
extravascular lung water
altered fluid regimen, advanced septic shock with acute respiratory failure, 804–806
large volume replacement with crystalloids, 810, 811
hydroxyethyl starch, volume replacement in ovine endotoxemia, 818, 819
immunoglobulin and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1026, 1027
pulmonary vascular resistance, ARDS in septicemia, 175–179
pulmonary venous hemodynamics and gas exchange disturbances, *E. coli* septicemia, Goettingen pig, 185, 186

Cardiac output
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202
circulation, peripheral, septic shock, 163–166
hemofiltration and survival time, porcine acute endotoxic shock, 822, 825
ischemia and circulatory system in MSOF, 1076–1077, 1080, 1082
oxygen supply-uptake relationship, septic shock, 183
PAF effects in sheep, 448–449

Cardiac work, septic shock, heart overperformance in, 260–262
Cardiogenic shock, scoring systems, 625–630
CI and SVR, 625, 626
Cardiopulmonary arrest, lipid peroxidation inhibition, 891–895
Cardiopulmonary response to endotoxin eicosanoids in, sheep, 201–204
free radical scavengers, 885–888
Catalase, 201–202, 887
Catecholamines, 755, 756
 glucose turnover in sepsis, 552–553, 557, 559
 ischemia and circulatory system in MSOF, 1077
see also specific catecholamines
Cathepsin D, 431, 168
Cathepsin G, 937, 941, 942
Cement, methylmethacrylate, 879, 880
Cerebrocortical perfusion, RA642 effects, hemorrhagic shock, 1091–1094
Ceruloplasmin, changes in MSOF and ARDS, 331–337
C-reactive protein, 335, 336
 number of organs involved, 333, 334, 336
C₁-esterase inhibitor
circulation, peripheral, septic shock, 170–171
 complement activation, endotoxin role in sepsis, 278, 280
 lymphocyte/monocyte ratio in plasma, and abdominal sepsis prognosis, 769
Chemiluminescence-inducing radicals, 339–344; see also Oxygen radicals
Chemotactic factors, alveolar macrophages, 20
Chemotaxis, 4-hydroxy-nonenal, 351
Chloramphenicol, 852
Cholecystectomy, 493
Cholecystokinin, 380
Cholinesterase, scintigraphic evaluation of posttraumatic liver function, 777
Chromatography
 HPLC, PAF effects in sheep, 448–451
 ion exchange, positive inotropic factor as myocardial stimulant, 254–255
Chronotropic effect, negative, α-mercaptopropionylglycine in hemorrhagic shock, 902
Chymase, mast cell, 937, 941, 942
Cimetidine, 755
Circulating immune complexes, and abdominal sepsis prognosis, 716
Circulation, peripheral, septic shock, 163–171
blood flow redistribution, 164
blood volume redistribution, 164–165
cardiac output, 163–166
oxygen utilization, 163, 167–169
pathogenesis, 169–171
peripheral vascular failure, 165–167
permeability, microvascular, 167
systemic vascular resistance, 163–166, 168, 170

Clostridium, 1008, 1020
sordelli, 1018

Clotting factor infusion, MSOF prognostic indices, logistic regression analysis, 644

Coagulation cascade, 31, 318–319
fibrinolysis, and kallikrein system, MSOF, postoperative/posttrauma, biochemical analysis and scoring, 652–654

lung, 6
microvascular bed, cell interactions in septic shock, 115
methylprednisolone pretreatment effects in porcine E. coli endotoxemia, 873
pulmonary vascular permeability, 305–307
septic patients, 383–387

see also Disseminated intravascular coagulation; specific components

Collagen III propeptide, 665
ARDS, posttraumatic, prognosis, 674–679

Colloid osmotic pressure, plasma, extravascular lung water, large volume replacement with colloids, 810–812
Compensated shock, hemorrhagic shock, phase-related vascular reactivity, cats, 144–148

Complement, 31
ARDS, 43
cascade
lung, microvascular bed, cell interactions in septic shock, 115, 116
MSOF, postoperative/posttrauma, biochemical analysis and scoring, 650–651
and endotoxin role in sepsis, 277–281

Igs, therapeutic, phagocytosis stimulation, peritonitis, 1039, 1041
and immune suppression, post-surgical or post-traumatic, 492
lung in shock, 4, 5, 7, 13
hypertension and vascular leakage, rabbit, 283–286
vascular permeability, 305, 306
MSOF pathogenesis, septic shock, dogs, 291–296
pathway, classical cf. alternative, MSOF pathogenesis in septic shock, dogs, 293
PMNs, 20
prognostic index in sepsis, 633, 634
septic shock, 169–170

see also specific components

Complement complexes, terminal acute pancreatitis, 266, 267
pulmonary hypertension and vascular leakage, 283–286
Contractile elements, capillary endothelial cells, 157–160
Contractility and cardiac function, Pseudomonas aeruginosa toxins, 247, 248
heart performance during septic shock, awake sheep, 238
Coronary artery disease, 1079, 1080
Corticosteroid(s)
nebulized, in experimental respiratory distress, 867–871
aveolo-capillary interface, 867
antithrombin III, plasma, 869–871
beclometasondipropionate (BDP), 867, 868, 870, 871
crystalloid infusion, 868
Superoxide, PMN production, 869, 870
for septic shock with ARDS, 857, 860–864
dexamethasone, 861
methylprednisolone, 861–863
severity of underlying disease, 858
VA comparative study of severe sepsis, 840–844, 847–855, 862–863
encephalopathy, 841, 843, 853–855
entry criteria, 853
inflammation pathways, 850–851
mortality, 842
cf. previous trials, 852
rationale of therapy, 851, 852
sepsis criteria, 841
trial design, 852–853
see also specific drugs
Cortisol, sepsis, 753, 755
C reactive protein, 665
ceruloplasmin changes in MSOF and ARDS, 335, 336
immune suppression, post-surgical or post-traumatic, 492
lymphocyte/monocyte ratio in polytrauma survival, 769
plasma, and abdominal sepsis prognosis, 716, 717
Creatinine
dopamine and renal function, 1098
polytrauma, 743, 745
Crossed immunoelectrophoresis, C3 and IgG breakdown in peritonitis exudate, 529, 531
Cystoids
corticosteroid, nebulized, in experimental respiratory distress, 868
cf. hydroxyethyl starch, volume replacement in ovine endotoxemia, 815–819
large volume replacement with, EVLW in septic shock, 809–813
c-sis, neutrophils, thrombin-induced adhesion with endothelial cells, 109
CTP:phosphocholine citidyl transferase, 576
Cutaneous thermal injury. See Burn(s)
CV-3988, 428, 430, 442, 485
CV-6209, 426
Cyclic nucleotides, lung, endotoxin-induced microvascular endothelial injury, 95, 97
Cycloheximide, 122
liver, perfused, sepsis effect on metabolism, 590, 591
Cyclooxygenase inhibition cardiopulmonary response to endotoxin, eicosanoids in, 202, 203
lung injury in E. coli endotoxemia, 365–366
Cysts, honeycomb, 29, 32
Cytotoxic processes, effects, platelet activating factor antagonists, 443–444
Cytoxan, 377
Dazoxiben, 365
D-Dimer, fibrinolysis, 383–386
Decompensated shock, hemorrhagic shock, phase-related vascular reactivity, cats, 145–148
Decontamination, GI tract, multiple organ failure prevention, zymosan-induced peritonitis, 827–832
Delayed-type hypersensitivity
Ig prophylactic therapy after cardiac surgery, 1031–1033, 1035
T-cell-mediated immune suppression after polytrauma, 518, 519
2-Deoxyglucose tracer, metabolic abnormalities in sepsis, 549–551
Dexamethasone, 121, 122
corticosteroids for septic shock with ARDS, 861
Dextran sulfate, 653
Diabetic angiopathy, 1008, 1009
Diabetic microangiopathy, 1009
Diacylglycerol accumulation, hepatocytes, endotoxemia, rats, 575–586
in situ receptor autoradiography, 579, 583–584, 586
phorbol ester binding sites, 583–584
Dialysis, MSOF prognostic indices, logistic regression analysis, 644, 645
Dichloroacetic acid therapy, metabolic abnormalities in sepsis, 540, 541
Diodotyrosine (DIT), sepsis, 752–754, 756
leucocyte phagocytic activity, marker for, 711–713
Diisofluorophosphate-α-thrombin, neutrophils, cf. thrombin-induced adhesion with endothelial cells, 103, 104
Diltiazem and endotoxin-induced intracellular Ca2+ overload, 1053–1061
epinephrine, 1057–1059
hepatocytes, cytosolic Ca2+ in, 1055–1060
muscle, skeletal, 1054–1061
Dimethylthiourea, 887
Dipyrimadole (RA8), effects on
cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
Disseminated intravascular coagulation, 383, 386
endotoxin, dose-related effects on RES, 410
endotoxin-induced, antithrombin III-heparin complex, 977–981
fibrinolysis syndrome, 971, 972, 974
reticuloendothelial stimulation to protect against, 1001–1005
septic ARDS, 59
and multiple system organ failure, 62, 63
in septic shock, activated C3, 271–274
TNF, induction of organ changes in chronic lymph fistula, sheep, 479, 480
Dopamine
kidney function, 1097–1099
long-term administration and tolerance, 1097–1099
hemodynamics, 1098
cf. RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
sepsis, 755
systolic time interval evaluation, 1101–1105
Doppler flowmetry, laser RA642 effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
DPPC:egg PG, surfactant, exogenous, 798
DPPC in surfactant, C3a and alveoli in, post-trauma ARDS, 44, 45
DTPA and gamma-scintillation, alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 324–327
Edema, lung. See Pulmonary edema
Eglin C
endotoxin shock, ineffectiveness in, 953–957
pulmonary vascular permeability, 311
septic shock, 945–948
Eglin C/hirudin, recombinant, proteinase/protease inhibitor therapy, 937–942
Eicosanoids

cardiopulmonary response to endotoxin, sheep, 201–204
pulmonary vascular permeability, mediators, 305, 306, 308, 312
see also Arachidonate/arachidonic acid metabolism; specific eicosanoids
Elastase-α,-antiproteinase complex, 7, 8 with antithrombin (EAT), humans, 971–974
early indicator of pediatric systemic infection, 689–693
endotoxin and overwhelming inflammatory response of early sepsis, 372, 373
immunoassay, automated homogenous enzyme immunoassay, 707–710
cf. coated tube ELISA, 708–710
intensive care unit assay, validity, 701–705
correlation to MOF score, 704–705
correlation to physician's classification, 703–704
ELISA, 701–702
IMAC assay, 702
kallikrein-kinin system components in ARDS after polytrauma, 737, 738, 741, 742
marker for perioperative infection risk monitoring, validity of ELISA, 695–700
total leukocyte counts, 699, 700
mediation of pulmonary vascular permeability, 308–310
MSOF, polytrauma, 414, 656–659
and neopterin, plasma levels in MSOF, 683–687
and prognostic index in sepsis, 634
TNF, induction of organ changes in chronic lymph fistula, sheep, 470, 477–478, 480
see also PMN elastase
Elebute and Stoner Sepsis Score, 626–630, 638, 664, 1026, 1027, 1029
Electrical stimulation, efferent, isolated intestinal vascular bed, hemorrhagic shock, phase-related vascular reactivity, cats, 145
ELISA, 695–700
coated-tube, 708–710
proteinase inhibitor, leukocyte neutral, 945–946
quantitation with monoclonal antibodies, C3a, 299–303
cf. C3, 300–303
Elongation factor-2, ADP ribosylation, Pseudomonas endotoxin A, 250
Embolism, fat, pulmonary, 10, 37–41
Hannover Polytrauma Score, 38
histologic appearance, 40
Injury Severity Score, 38
long-bone or pelvis fracture, 39–41
respiratory failure, 37, 41
Encephalopathy, corticosteroids
(glucocorticoid), VA comparative study of severe sepsis, 841, 843, 853–855
Endobulin, 1048, 1050
Endocrine secretion patterns, sepsis, 751–756
ADH, 751, 753, 755, 756
prolactin, 751, 753–754, 756
thyroid hormones, 751–756
Endothelial cells, thrombin-induced
adhesion with neutrophils, 101–109
Endothelial injury, endotoxin-induced, 91–97
grading, 84–85
Endothelial proliferation inhibiting capacity, endotoxin and overwhelming
inflammatory response of early sepsis, 373, 374
Endothelial swelling, lung in shock, 8, 9, 11
Endothelium
arachidonate/arachidonic acid
metabolism, 119–123
permeability in vitro, bacterial toxins and calcium effects, 127–131
see also Vascular intima in endotoxin shock
Endothelium-derived relaxing factors, 157
Endotoxia
HES volume replacement, 815–819
lung injury in, 357–368
failure, 12
phases I-III, 885–888
oxygen free radicals, 886–888
recombinant human SOD in, 913–917
and shock, impaired regulation, capillary endothelial cells, 157–160
Endotoxin, 850
antithrombin III-heparin complex, DIC, 977–981
arachidonate/arachidonic acid metabolism, 119–123
complement activation, 277–281
MSOF pathogenesis in septic shock, dogs, 291
effect, healthy volunteers, heart
dysfunction cf. septic shock, 196–197
free radical scavengers and
cardiopulmonary response, 885–888
granulocyte effects, lung, microvascular bed, cell interactions in septic
shock, 114–116, 118
granulocyte-endothelial cell adherence, 123–124
heart cells, cultured, effects of Pseudomonas aeruginosa toxins, rat, 247–251
inflammatory reaction, GI tract
decomposition, MOF prevention, 832
inotropic effect in isolated rabbit heart, 225–230
oxygen delivery, 227
perfusion circuit, 226, 227
ventricular pressure cf. perfusion
flows, 227, 228
metabolic abnormalities in sepsis, 550
microvascular endothelial injury, 91–97
MSOF, postoperative/posttrauma, biochemical analysis and scoring, 654–655
antibody levels, 645–655
no role in MSOF, 419–423
and overwhelming inflammatory
response of early sepsis, 371–375
endothelial proliferation inhibiting
capacity, 373, 374
oxygen supply-uptake relationship,
septic shock, 181–183
plasma concentrations related to
responses, pig, 389–393
plasma contact system factors, in vitro interactions, 401–405
arterial \(\text{O}_2 \) tension, 391–392
hemodynamics, 390–391
kallikrein-kinin system, 389, 390, 392, 393
prognostic value in sepsis, 634, 635, 637
lethality, 639, 640
thrombocyte counts, 637–641
proteases in MSOF due to septicemia, 315–321
renal microthrombosis, 916
reticuloendothelial system, dose-related effects, 407–411
structure and biological activity, 79–81
and TNF, 463, 464
see also Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting; specific bacteria
Endotoxin shock
amino acid concentrations, serum, 595–599
animal model development for shock, 836
calcium antagonists in shock/ischemia, 1068–1071
eglin C ineffectiveness, 953–957
fibrinolytic functional determinants, pig, 395–399
hemofiltration and survival time, 821–826
hirudin/eglnc, recombinant, 937–942
PAF antagonists, 428–429, 931–935
proteinase/protease inhibitor therapy, 937–942
cf. traumatic shock, 941
vascular intima in, 77–87
WEB 2086 (PAF antagonist), cf. in anaphylactic lung reaction, 925, 927, 928
Enteric translocation of microorganisms, burns, 377–380
scalded rats, 379
sheep, 378
Enterobacteriaceae, 827–832
Eosinophil cationic protein, 22
Epidermal growth factor, 380
Epinephrine
diltiazem and endotoxin-induced intracellular \(\text{Ca}^{2+} \) overload, 1057–1059
metabolic abnormalities in sepsis, 54, 548
Epithelial lining fluid, ARDS, C3a and alveoli in, post-trauma, 44
Escherichia coli, 420, 426, 429, 538, 539, 546, 547, 551, 557, 561, 723, 881, 940
animal models for shock, 836–837
antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1043–1049
endotoxin, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 271, 273
hemolysin injury, septicemia in, lung, 67–70
transmembrane pores, 69
sepsis, kidney metabolism in, 601–605
see also Endotoxemia; Septicemia; Septic shock
Expired minute volume, respiratory quotient \((\text{CO}_2/\text{O}_2 \text{ exchange ratio})\) in shock, 613, 614, 619–621
Extravascular lung water (EVLW)
altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
cardiac index, 804–806
microvascular integrity, 806
plasma colloid osmotic pressure, 803–808
pulmonary artery pressure, mean, 804
pulmonary artery wedge pressure, 803–808
ARDS, posttraumatic, prognosis, 675
and chemiluminescence-inducing radicals, porcine septic shock, 340, 342
hemofiltration and survival time, porcine acute endotoxic shock, 822, 823, 825
large volume replacement with crystalloids, septic shock, 809–813
Factor XII (Hageman factor), 384
and endotoxin
interactions with plasma contact
system factors, 402, 404
overwhelming inflammatory response
of early sepsis, 372
kallikrein-kinin system components in
ARDS after polytrauma, 737, 738, 741
Factor XIIa, circulation, peripheral, septic
shock, 171
Fat embolism after bone fracture, 10, 37–41
Fat metabolism
respiratory quotient (CO₂/O₂ exchange
ratio) in shock, 619–621
in sepsis, 536–539, 545
Fentanyl, 755
Fibrin
endotoxin shock, fibrinolytic functional
determinations, pig, 395, 399
lung organ failure, 10, 11
Fibrinogen
consumption, recombinant hirudin/eglin
C, endotoxin shock, 937–942
endotoxin shock, fibrinolytic functional
determinations, pig, 395–399
plasma
endotoxin-induced DIC, AT III-
heparin complex therapy, 979, 980
recombinant human SOD in
endotoxemia, 915, 917
RES stimulation to protect against DIC,
1002, 1005
scintigraphic evaluation of posttraumatic
liver function, 776
Fibrinolysis
aprotinin membrane protective action,
intraperative histamine
liberation, 961
cascade, 318
lung, microvascular bed, cell
interactions in septic shock, 115
functional determinants, pig, endotoxin
shock, 395–399
kallikrein-kinin system components in
ARDS after polytrauma, 737
methylprednisolone pretreatment effects
in porcine E. coli endotoxemia, 873, 877
pulmonary vascular permeability,
305–307
septic patients, 383–387
syndrome, DIC, 971, 972, 974
tests for, 383–386
Fibrinopeptide A, endotoxin and
overwhelming inflammatory response
of early sepsis, 372, 373
Fibrinopeptides, specific, and proteinase
inhibitor complex, immunologic
determination, humans, 971, 972, 974
Fibrin split products, 395, 654
Fibronectin, 886
capillary endothelial cells, 158
endotoxin and overwhelming
inflammatory response of early
sepsis, 372
plasma, and abdominal sepsis prognosis,
716, 720, 722, 723
Fluid substitution, hemorrhagic shock,
phase-related vascular reactivity,
cats, 147–148
Fluorescent products, lipid peroxidation,
hypovolemic-traumatic shock, dogs,
345–349
Flurbiprofen, 365
FMLP, 508, 510
Free radical scavengers
C₃ and IgG breakdown in peritonitis
exudate, 527
cardiopulmonary response to endotoxin,
sheep, 885–888
α-mercaptotripropionyl glycine in
hemorrhagsh shock, 897–903
Fructose infusion, kidney function in sepsis,
603
Gabexate mesilate, 309
amino acid concentrations, serum,
experimental endotoxin shock, 596, 597
D-Galactosamine, 1070, 1071
Gamma-scintillation with DTPA, alveolar
permeability, 324–327
Index / 1119

Gangrene, gas. See Immunoglobulin profiles and PMN-elastase in septic gas gangrene

Gas exchange
- alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 326, 327
- hemofiltration and survival time, porcine acute endotoxic shock, 823, 825 septicemia (E. coli), Goettingen pig, 185–188

Gas gangrene. See Immunoglobulin profiles and PMN-elastase in septic gas gangrene

Gastric mucosa ulceration
- ultrastructure after septic shock, rat, 151–155
- irreversible changes, 154–155
- parietal cells, 152, 153
- stress ulcer diseases, correlation with, 151
- surface epithelial cells, 153, 154
- WEB 2086 (PAF antagonist) and, 919

Gastrin, 380

Gastrointestinal tract
- decontamination, 827–832
- endotoxin-induced damage, and WEB 2086 (PAF antagonist), 919–922
- PAF antagonist inhibition of induced shock, 430

Gel filtration, positive inotropic factor as myocardial stimulant, 254

Gentamicin and methylprednisolone, animal models for shock, 836–840

Glasgow Coma Scale, 644–646

Global Index, Polytrauma, 744–746

Glucagon, glucose turnover in sepsis, 552–553, 556, 559

Glucocorticoids, glucose turnover in sepsis, 552–553, 559

Glucose
- concentrations, kidney metabolism in E. coli sepsis, 602, 604
- deficiency, calcium antagonists in shock/ischemia, 1066
- metabolism
 - liver dysfunction in MSOF, altered cell-cell interactions, 563–565
 - polytrauma, 744
 - respiratory quotient (CO2/O2 exchange ratio) in shock, 619–621
- oxidation, metabolic abnormalities in sepsis, 536–539, 545
- turnover, metabolic abnormalities in sepsis, 547–552
- mediators, 552–557

Glucose-insulin-potassium infusions, kidney metabolism in E. coli sepsis, 604

β-Glucuronidase, platelet, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 272, 273

Glutamate pyruvate transaminase activity, endotoxin, dose-related effects on RES, 408, 410, 411

Glutamine and glutamic acid concentrations, serum, experimental endotoxin shock, 598

alpha1-acid Glycoprotein, prognostic index in sepsis, 634, 635, 716, 717

Goris multiple organ failure score, 626–628, 1026, 1027, 1029

Granulocytes. See PMN entries

Growth hormone, 380

Gut decontamination, early ventilatory support, 786

H7, 122

HA 1004, 122

Hageman factor. See Factor XII (Hageman factor)

Haldane effect, 615

Hannover Polytrauma Score, 38

Haptoglobin, and abdominal sepsis prognosis, 716

Heart
- inotropic plasma factor
 - positive, hypovolemic shock, 253–257
- isolated, effect of LMW plasma fraction, hypovolemic traumatic shock, dog, 231–234
- LV systolic pressure, 233, 234
- negative inotropism, shock plasma ultrafiltrates, 231–234
- isolated, rabbit, endotoxin inotropic effects, 225–230
- overperformance in septic shock, 259–263
in septic shock, awake sheep, 237–245
artifact rejection, 239–242
contractility, 238
hemodynamic parameters, respiratory influence, 243
pressure/volume loop, 238, 244
sonomicrometer LV dimension, 237–243
see also Cardiac entries; Myocardial entries
Heart cells, cultured, effects of *Pseudomonas aeruginosa* toxins, rat, 247–251
and cardiac function, 247–251
endotoxins, 247, 249
type A, 247–251
immunoglobulins, *Pseudomonas*, protection, 247–249, 251
Heart dysfunction, septic shock, human, 191–197
cf. dog, 196
end diastolic volume index, 193, 194, 197
cf. endotoxin effect on healthy volunteers, 196–197
hemodynamic profiles, 192–193
interleukin-2, 197
left ventricular ejection fraction, 193–196
mechanisms, 194–196
myocardial depressant substance/factor, 194–196
right ventricle, 194
stroke volume index, 193, 194, 196, 197
TNF, 197
Heart function changes, septic shock, chacma baboon (*Papio ursinus*), 207–215, 217–222
cardiac output, 207, 210–215, 219–222
heart rate, 208, 210–215
tachycardia and cardiac volume, 214–215, 217–222
left ventricular compliance, 221, 222
left ventricular ejection fraction, 207, 210, 211, 213–215
left ventricular end diastolic volume, 207, 209–214, 217, 219–222
left ventricular end systolic volume, 207, 209–214, 219–222
pulmonary capillary wedge pressure, 217, 219–222
stroke volume, 207, 210–214, 219, 221–222
systemic vascular resistance, 219, 220
ventriculography, radionuclide, 209–210, 218, 219
Heart rate
heart function changes, septic shock, chacma baboon (*Papio ursinus*), 208, 210–215, 217–222
α-mercapto propionylglycine in hemorrhagic shock, 899, 900
RA 642 effects on, acute hemorrhagic shock, 1094
Hematocrit, recombinant human SOD in endotoxemia, 914–916
Hemodynamics
dopamine infusion, effect evaluation with systolic time intervals, 1104–1105
endotoxin, 390–391
liver dysfunction in MSOF, altered cell-cell interactions, 565
methylprednisolone pretreatment effects in porcine *E. coli* endotoxemia, 874, 876–877
PVR, 874, 876–877
PAF antagonists in endotoxin shock, 933, 935
PAF effects in sheep, 448–449
septic shock/septicemia, 192–193
immunoglobulin and plasmapheresis therapy, 1025–1030
pulmonary venous hemodynamics and gas exchange disturbances, Goettingen pig, 186
respiratory influence, awake sheep, 243
TNF, induction of organ changes in chronic lymph fistula, sheep, 472, 479
see also specific parameters
Hemofiltration and survival time, porcine acute endotoxic shock, 821–826
arachidonic acid metabolites, 823–825
cardiac output, 822, 825
extravascular lung water, 822, 823, 825
gas exchange, 823, 825
6-keto-PGF\sub{1,\alpha}, 823, 825
peripheral resistance, total, 822, 825
thromboxane, 823–825
Hemoglobin, respiratory quotient (CO\sub{2}/O\sub{2}
exchange ratio) in shock, 608
Hemolysin, Escherichia coli, 67–70
Hemorrhagic shock
calcium antagonists in shock/ischemia, 1067
cerebrocortical perfusion, RA642
effects, 1091–1094
\alpha-mercaptopropionylglycine, 897–903
Hemorrhagic shock, phase-related vascular
reactivity, cats, 143–149
autoregulation, 147, 148
compensated shock, 144–148
decompensated shock, 145–148
electrical stimulation, efferent, isolated
intestinal vascular bed, 145
fluid substitution, 147–148
noradrenaline, 146
oxygen free radicals, 144, 148, 149
permeability, capillary and postcapillary, 143
PMNs, 148, 149
vascular tone, 143
Heparin, 940
Hepatocytes
cystolic Ca\sup{2+} in, diltiazem and
endotoxin-induced intracellular
Ca\sup{2+} overload, 1055–1060
endotoxin, dose-related effects on RES,
408, 411
liver dysfunction in MSOF, altered cell-
cell interactions, 563, 567, 568
phorbol ester binding sites, 583–584
protein kinase C and diacylglycerol
accumulation, entodoxemia, rats,
575–586
in situ receptor autoradiography,
579, 583–584, 586
phorbol ester binding sites, 583–584
see also Liver entries
Hepatotoxin D-galactosamine, 1070, 1071
Hernioraphy, 493
Herniotomy, 1018, 1020
HETE, cardiopulmonary response to
endotoxin, eicosanoids in, sheep, 203
5-HETE, 351
15-HETE, 351
Hetrazepine, WEB 2086 (PAF antagonist),
925, 928
High-density lipoproteins, 81
Hip arthroplasty, total, high-dose
corticosteroids to prevent C3a and
C5a formation, 879–882
Hirudin, neutrophils, thrombin-induced
adhesion with endothelial cells, 103
Hirudin/eglin C, recombinant, endotoxin
shock, protease inhibitor
therapy, 937–942
Hirudo medicinalis, 937
HIS scoring system, 626–628, 645, 1026,
1027, 1029
Histamine, 941
intraoperative liberation, aprotinin
membrane protective action,
959–963
WEB 2086 (PAF antagonist),
anaphylactic lung reaction, 926,
927
Histologic appearance, pulmonary fat
embolism, 40
Honeycomb cysts, 29, 32
5-HT (serotonin)
lung injury in E. coli endotoxemia, 362,
368
platelet, activated C3 in DIC in septic
shock, fulminant meningococcal
meningitis, 272, 273
Hyaline membrane disease, 29
elastase-\alpha\sub{1}-PI as early indicator, 690,
691
Hydrocortisone, 121, 122
Hydrogen peroxide, 886, 888, 950
eglin C ineffectiveness in endotoxin
shock, 954–956
lipid peroxidation, hypovolemic-
traumatic shock, dogs, 346
Hydroxyethyl starch, volume replacement in
ovine endotoxemia, 815–819
cardiac index, 818, 819
cf. crystalloids, 815–819
lung lymph, 817, 818
plasma colloid osmotic pressure,
816–819
pulmonary artery pressure, main, 816,
817
Hydroxyl radical, 887, 950
 alveolar permeability increased by PMA-
 stimulated neutrophils, rabbits, ARDS, 328
eglin C ineffectiveness in endotoxin
 shock, 954–956
4-Hydroxynonenal (HNE), 662, 663
 inflammation in surgical trauma, human, 351–355
 lipid peroxidation, hypovolemic-
 traumatic shock, dogs, 345–348
PMNs in Sephadex inflammation model,
 rats, 351–355
 chemotaxis, 351
 superoxide anion production, 354,
 355
Hydroxyurea, 887, 888
Hyperalaninemia and lethality, endotoxin
 shock, 595, 597–599
Hyperbaric oxygenation, 1008, 1010, 1013,
 1020
Hypersensitivity, delayed-type. See
 Delayed type hypersensitivity
Hypertension, pulmonary
 PAF effects in sheep, 450, 451
 thromboxane-mediated, E. coli
 hemolysin injury to, septicemia,
 67, 70
 vascular leakage, and complement
 activation, 283–286
 cf. pore-forming, Staphylococcus
 alpha-toxin, 286
Hyperthermia, metabolic abnormalities in
 sepsis, 547
Hyperventilation, respiratory quotient
 (CO\textsubscript{2}/O\textsubscript{2} exchange ratio) in shock,
 615, 619–621
Hypovolemic shock
 ARDS, 32, 33
 positive inotropic factor as myocardial
 stimulant, 253–257
Hypovolemic traumatic shock, 228, 229
 lipid peroxidation, dogs, 345–350
 plasma fraction, LMW, effect on
 isolated heart, 231–234
 LV systolic pressure, 233, 234
 negative inotropism, shock plasma
 ultrafiltrates, 231–234
Hypoxanthine levels, lipid peroxidation,
IgM-enriched Igs (Pentaglobin), 1031–1033, 1035, 1046, 1050
in immune suppression, post-surgical or post-traumatic, 492
lymphocyte/monocyte ratio in polytrauma survival, 769, 770
plasma, and abdominal sepsis prognosis, 716
Pseudomonas, protection of cultured heart cells from effects of Pseudomonas aeruginosa toxins, rat, 247–249, 251
synthesis and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1025–1030
suppression after multiple trauma, 513–516
trauma-induced cascade of cell-mediated immune effects, 496, 497, 499, 501, 502
therapeutic phagocytosis stimulation, peritonitis, 1037–1041
prophylactic, sepsis prevention after cardiac surgery, 1031–1035
Immunoglobulin profiles and PMN-elastase in septic gas gangrene, 1007–1022
aprotinin administration, 1008, 1012, 1014–1016
IgA, 1009, 1011
IgG, 1009, 1011, 1012–1021
IgG-deficiency substitution, 1007, 1012, 1018–1020
dosage, 1018
IgM, 1009, 1011
primary cf. secondary, 1008
Immunologic determination, humans, proteinase inhibitor complexes, 971–974
Immunomodulation
septic shock, 989–993
thymopentin (TP-5), post-burn and postoperative sepsis, 995–998
Indomethacin, 120, 122, 131, 203, 365, 502
immune/cytotoxic processes, role in, 442
Infarction, myocardial, 910, 972, 973
Infection
DIT marker in, 711–713
lymphocyte/monocyte ratio in polytrauma survival, 769, 770, 772
Inflammation
autodestructive, complement activation, MSOF pathogenesis in septic shock, dogs, 296
early, schema, 456, 457
pharmacologic intervention points, 457
overwhelming, endotoxin role, 371–375
pathways, corticosteroids, VA comparative study of severe sepsis, 850–851
vs. sepsis as trigger, MSOF, 413–416
in surgical trauma, 4-hydroxy-nonenal, 351–355
see also specific cell types and mediators
Inflammatory cell activation, multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 655–661
Inhaled antigen, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Injury Severity Score, 731
dopamine infusion, effect evaluation with systolic time intervals, 1102
embolism, fat, pulmonary, 38
phospholipase A as prognostic index, 764
polytrauma, 744, 745
scintigraphic evaluation of posttraumatic liver function, 776
Insulin, 1060–1061, 1066
infusion, kidney function in sepsis, 604
metabolic abnormalities in sepsis, 538, 547
Intensive care unit assay, validity, elastase-α1-antiproteinase complex, 701–705
correlation to MOF score, 704–705
correlation to physician’s classification, 703–704
ELISA, 701–702
IMAC assay, 702
γ-Interferon, 772
trauma-induced cascade of cell-mediated immune effects, 495, 497–504
Interleukin-1, 11, 13, 114, 368, 428, 432, 443, 467, 479, 486, 536, 850
Ig synthesis suppression after multiple trauma, 513
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568, 569
pulmonary vascular permeability, serum, and sepsis, prognosis/prognostic indices, 715–718
trauma-induced cascade of cell-mediated immune effects, 495, 497–503
Interleukin-2, 772, 990, 995, 996
heart dysfunction, septic shock, human, 197
Ig synthesis suppression after multiple trauma, 513, 515
immune/cytotoxic processes, role in, 442
trauma-induced cascade of cell-mediated immune effects, 496–503
Interleukin-2 receptors
immune suppression, post-surgical or post-traumatic, 492, 494
multiple trauma, early events, 508, 509
trauma-induced cascade of cell-mediated immune effects, 496, 501, 502
Interleukin-4 (BCGF), trauma-induced cascade of cell-mediated immune effects, 497
Intestinal transit velocity, WEB 2086 (PAF antagonist), 919–922
Intima. See Vascular intima in endotoxin shock
Intraglobin, 1047, 1050
Intra-tracheal pressure, lung injury in E. coli endotoxemia, 360, 361, 365
Inverse ratio ventilation
early ventilatory support, 788, 789
nifedipine for ARDS, 1087, 1090
IP₃, hepatocytes, protein kinase C and diacylglycerol accumulation, endotoxemia, 575
Iron-dependent lipid peroxidation in cardiopulmonary arrest, 895
Ischemia, myocardial acute, dynamics of prostacyclin and thromboxane, 907–911
arrhythmias, 907
Ischemia and circulatory system in MSOF, 1075–1083
ARDS, 1076, 1078, 1081, 1083
pulmonary hypertension, 1078
catecholamines, 1077
central mechanisms, 1075–1079
cardiac output, 1076–1077, 1080, 1082
myocardial depressant factor, 1076, 1077
myocardium, reperfused, 1077
oxygen delivery, 1075–1083
peripheral mechanisms, 1079–1082
capillary surface area reduction, 1082
oxygen extraction, 1079–1083
regional blood flow, 1080–1081, 1083
see also Calcium antagonists in shock/ischemia
Isoprinosine, 502
Kadsurenone, 428, 485
Kallikrein, 738, 741, 983
circulation, peripheral, septic shock, 171
endotoxin interactions with plasma contact system factors, 401–404
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 479
Kallikrein-kinin system, 318
in ARDS after polytrauma, 737–742
endotoxin, 389, 390, 392, 393
pulmonary vascular permeability, 305–307
Ketanserin, 362
Kidney
complement activation, MSOF pathogenesis in septic shock, dogs, 294–296
and dopamine, 1097–1099
plasma flow, 1098
failure, postoperative, 133–136
metabolism in E. coli sepsis, 601–605
ATP MgCl₂, 602, 605
glucose concentrations, 602, 604
glucose-insulin-potassium infusions, 604
lactate or fructose infusion, 603
TAN concentrations, 601, 602, 604
microthrombosis, endotoxin-induced, 916
PAF antagonist inhibition of induced shock, 429
RES stimulation to protect against DIC, 1002, 1003
Kininase II, 941
Kinins, 983, 986
Kininase II, 941
Kinins, 986–987
cascade, lung microvascular bed, cell interactions in septic shock, 115
see also Kallikrein-kinin system
Kupffer cells, 78, 81, 294, 779, 1002, 1004
endotoxin, dose-related effects on RES, 408
liver dysfunction in MSOF, altered cell-cell interactions, 563, 564, 566–571
zymosan-induced MSOF, endotoxin plays no key role, 422
L-652,731, 426, 428, 442, 485
L-653,150, 428
Lactate or fructose infusion, kidney metabolism in E. coli sepsis, 603
hypovolemic-traumatic shock, dogs, 346–349
metabolism, liver, 744
polytrauma, 743, 745, 747
Lactate dehydrogenase, lung, endotoxin-induced microvascular endothelial injury, 93, 96
Lactoferrin, pulmonary vascular permeability, 307, 308
Laser Doppler flowmetry, RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1091–1094
Lavage therapy, C3 and IgG breakdown in peritonitis exudate, 530, 531
Leukocyte(s)
count methylprednisolone pretreatment, endotoxemia, 875, 876
recombinant human SOD in endotoxemia, 914, 915, 917
total, 699, 700
- induced injury with zymosan, lung, 73–76
phagocytic activity in sepsis/infection, diiodotyrosine (DIT) as marker for, 711–713
and TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 470, 475–477, 480
see also specific types
Leukocyte neutral proteinase inhibitor, 945–950
Leukopenia, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926
Leukostasis
alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 325, 326
lipid peroxidation in hypovolemic shock, 349–350
lung in shock, 4–5, 7–8
TNF, induction of organ changes in chronic lymph fistula, sheep, 473, 474, 480
Leukotrienes, 70, 351
cardio pulmonary response to endotoxin, eicosanoids in, sheep, 203, 204
complement activation, pulmonary hypertension and vascular leakage, 286
early ventilatory support, 785
LTB4, sepsis, 535, 536
LTC4, 432
lung injury in E. coli endotoxemia, 362
synthesis, RA642 effects on cerebrocortical perfusion, acute hemorrhagic shock, 1094
Lipid A. See Antibodies, anti-LPS and anti-lipid A, determination with immunoblotting
Lipid peroxidation, 662, 663
hypovolemic-traumatic shock, dogs, 345–350
inhibition in cardiopulmonary arrest, dogs, 891–895
see also Oxygen radicals
Lipocortin, 123
Lipoxygenase inhibition, AA-861, 131
Lipopolysaccharide, S. abortus equi, 119, 121; see also Antibodies, anti-LPS
and anti-lipid A, determination with immunoblotting
Lipoprotein, high-density, 81
Lipoprotein lipase suppression, TNF, 464
Liver
 complement activation, MSOF
 pathogenesis in septic shock, dogs, 293–294, 296
 enzymes, serum, scintigraphic evaluation of posttraumatic liver function, 776–779
 failure, complement activation and endotoxin role, sepsis, 277
 lactate metabolism, 744
 leukostasis, TNF induction of organ changes in chronic lymph fistula, 473, 474, 480
 perfused, sepsis effect on metabolism, 589–592
 scintigraphic evaluation of posttraumatic function, 775–780
SGOT, TNF induction of changes in chronic lymph fistula, sheep, 469, 474, 475, 480
 sinusoidal macrophages, endotoxin, dose-related effects on RES, 408
 see also Hepatocytes; Kupffer cells
Liver dysfunction in MSOF, altered cell-cell interactions, 563–571
 glucose metabolism, 563–565
 hemodynamics, 565
 hepatocytes, 563, 567, 568
 interleukin-1, 564, 566, 569
 Kupffer cells, 563, 564, 566–571
 paracrine amplification, 563, 569
 polyunsaturated fatty acids, 569–571
 prostaglandins, 564, 568, 569
 protein metabolism, 565, 567, 568
 thromboxane, 569
 TNF, 564, 568–570
Low-flow states, respiratory quotient (CO$_2$/O$_2$ exchange ratio) in shock, 615, 616
Luminol-dependent chemiluminescence, 339–344
 cf. zymosan-activated, 341
Lung(s), 3–10
 anaphylactic reaction, WEB 2086 (PAF antagonist), 925–929
 endothelial swelling, 8, 9, 11
 endotoxin-induced microvascular endothelial injury, 91–97
 Escherichia coli hemolysin injury, septicemia in, 67–70
 transmembrane pores, 69
 injury, PMA, SOD after, 945–949
 isolated, pulmonary vascular permeability, 309–311
 leukocyte-induced injury with zymosan, 73–76
 leukostasis, 4–5, 7–8
 microvascular bed, cell interactions in septic shock, 113–118
 organ failure, 10–14; see also ARDS
 PAF antagonist inhibition of induced shock, 429
 perfusion, decreased, 5–6
 platelet activation, 6, 7
 zymosan-induced MSOF, endotoxin plays no key role, 421–423
Lung edema. See Pulmonary edema in shock
Lung injury in *E. coli* endotoxemia, 357–368
 cats, vagotomized, 361
 intra-tracheal pressure, 360, 361, 365
 mediators, 358, 362–366
 pulmonary artery pressure, 360, 364, 365, 368
 pulmonary compliance, 358–361, 367
 pulmonary resistance, 358, 359
 transpulmonary pressure, 358–361
Lung lymph flow
 cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202–204
 free radical scavengers and cardiopulmonary response to endotoxin, 885
 hydroxyethyl starch, volume replacement in ovine endotoxemia, 817, 818
 PAF antagonists in endotoxin shock, 933–935
 PAF effects in endotoxin shock, 447, 450
 permeability, pulmonary vascular, mediators, 308
 TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 473, 475, 479
Lung water, extravascular. See Extravascular lung water (EVLW)

Lupus erythematoses cells, 52, 53

Lymph fistula. See TNF, induction of organ changes in chronic lymph fistula, sheep

Lymphocyte(s) counts, immune suppression, postsurgical or post-traumatic, 492/monocyte ratio in polytrauma survival, prognosis/prognostic indices, 769–772

see also B cell(s); T cell(s)

Lysolecithin acyl-transferase (LAT), 122, 123, 455

α₂-Macroglobulin, plasma, and abdominal sepsis prognosis, 716, 717, 720

Macrophage(s) activation/induction elastase-α₁-PI complex and neopterin, plasma levels, 687 and TNF productin in shock, PAF, 485–488 alveolar, chemotactic factors, 20 ARDS, posttraumatic, prognosis, 679 hepatic. See Kupffer cells multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 657, 659, 660 origins of, lung, microvascular bed, cell interactions in septic shock, 113–114, 118 phospholipase A source, 757, 763, 767 pulmonary intravascular endotoxin-induced microvascular endothelial injury, 92 endotoxin shock, 78, 80, 81 vascular intima in endotoxin shock, 78, 80, 81 Macrophage-activating factor, trauma-induced cascade of cell-mediated immune effects, 497 Magnesium and calcium antagonists in shock/ischemia, 1072 Magnesium chloride, ATP-, kidney function in sepsis, 602, 605 Major basic protein, 432, 488 Malondialdehyde, 662, 663, 910

leukocyte-induced lung injury, 74, 75 lipid peroxidation, hypovolemic-traumatic shock, dogs, 346–348

Mannheim Peritonitis Index, 723

Mast cell chymase, 937, 941, 942

Meclophenamate, 203

Meconium aspiration, elastase-α₁-PI as early indicator, 690, 691

Membrane protective action, intraoperative histamine liberation, aprotinin, 959–963

Meningitis elastase-α₁-PI as early indicator, 690–692 fulminant meningococcal, activated C3 in DIC in septic shock, 271–274

Mepacrine, 120

Mepyramine, 362, 926

α-Mercaptopropionyl glycine, hemorrhagic shock, 897–903

Mesenteric blood flow, burns, enteric translocation of microorganisms, 377–380

Metabolic imbalance, multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 663–664
Metabolic rate, septic shock, heart overperformance in, 260–262
Methylmethacrylate cement, 879, 880
Methylprednisolone, pretreatment effects in porcine *E. coli* endotoxemia, 873–877
 coagulation, 873
 fibrinolysis, 873, 877
 hemodynamics, 874, 876–877
 PVR, 874, 876–877
 proteolysis cascades, 873, 877
VA study, 873
Methylprednisolone for septic shock with ARDS, 861–863
 with gentamicin, dogs, *E. coli* shock, animal model development for shock, 836–837
 adrenal gland role, 838–839
 cf. baboons, 836–840
 rationale, 837–838
Methysergide, 362
Microangiopathy, diabetic, 1009
Microatelectasis, early ventilatory support, 787
α₂-Microglobulin
 immune suppression, post-surgical or post-traumatic, 492
 kallikrein-kinin system components in ARDS after polytrauma, 738, 739, 742
Microvascular integrity, extravascular lung water, altered fluid regimen, advanced septic shock with acute respiratory failure, 806
Microvascular permeability. See under Permeability
Milano Sepsis Score, 634–636
 complement activation, endotoxin role in sepsis, 278–280
Minimal pulmonary dysfunction, 52
Mitochondrial function
 calcium antagonists in shock/ischemia, 1066
 pyruvate dehydrogenase, metabolic abnormalities in sepsis, 538–540, 549, 550
Monocyte(s), 989, 991, 993
 count, multiple trauma, early events, 508, 509
 -dependent Ig synthesis suppression after multiple trauma, immune suppression/dysfunction, 513–516
 /lymphocyte ratio as prognostic factor, polytrauma, 769–772
 synthesis, *α₁*-protease inhibitor, 948
 see also Macrophage(s)
Monokine synthesis factor, 499
Monolayer-filter membrane system, endothelium permeability and, 128–131
MPP
 pulmonary vascular resistance, ARDS in septicemia, 175–178
 pulmonary venous hemodynamics and gas exchange disturbances, *E. coli* septicemia, Goettingen pig, 185, 186
MTDQ-DA antioxidant, myocardial ischemia, 907–911
Mucosal integrity, burns, enteric translocation of microorganisms, 377–380
Multiple system organ failure (MOF, MOSF, MSOF)
 in acute pancreatitis, C3a and C5a, 265–268
 terminal complement complexes, 266, 267
ARDS, septic, 57–60
 prognosis, 59
C3a, 880
 ceruloplasmin changes, 331–337
 C-reactive protein, 335, 336
 number of organs involved, 333, 334, 336
 complement activation in, septic shock, 291–296
 elastase-*α₁*-PI complex and neopterin, plasma levels, 683–687
endotoxin and proteases, septicemia, 315–321
 diagnostic criteria for MSOF, 316
 PFI index, 317–321
epidemiology, 783–784
Goris score, 1026, 1027, 1029
 ischemia and circulatory system in, 1075–1083
liver dysfunction, 563–571
lymphocyte-monocyte ratio in polytrauma survival, 769, 770
metabolic abnormalities in sepsis, 535–542
muscle pO2 role, critically ill patients, 138–140
phospholipase A as prognostic index, 766
prevention, zymosan-induced peritonitis, decontamination, GI tract, 827–832
prognostic indices, 643–647
sepsis vs. inflammation as trigger, polytrauma, 413–416
ventilatory support, early, 784–789
zymosan-induced, no endotoxin role, 419–423
Multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 649–665
coagulation cascade, fibrinolysis, and kallikrein system, 652–654
complement cascade, 650–651
endotoxin, 654–655
immune suppression/dysfunction, 661–662
inflammatory cell activation, 655–661
metabolic imbalance, 663–664
organ function parameters, 664–665
stages, 649
target structure degradation, 662–663
Multiple trauma. See Polytrauma; Trauma
Muscle
pO2 role, critically ill patients, MOF, 137–142
MOF scores, 138–140
survival, 139, 141
skeletal, diltiazem and endotoxin-induced intracellular Ca2+ overload, 1054–1061
smooth, spasm, calcium antagonists in shock/ischemia, 1066
Mycostatin, 378
Mycotoxin-induced shock, PAF antagonist inhibition of induced shock, 431
Myeloperoxidase, pulmonary vascular permeability, 307, 308
Myocardial contractility, depressed, dopamine infusion effect evaluation with systolic time intervals, 1101
Myocardial depressant factor, 253, 261, 262, 431, 1068
heart dysfunction, septic shock, human, 194–196
ischemia and circulatory system in MSOF, 1076, 1077
Myocardial infarction, 910, 972, 973
Myocardial ischemia acute, dynamics of prostacyclin and thromboxane, 907–911
arrhythmias, 907
Myocardium, reperfused, ischemia and circulatory system in MSOF, 1077
Negative chronotropic effect, α-mercaptopropionylglycine in hemorrhagic shock, 902
Neonatal respiratory distress syndrome, exogenous surfactant, 797
Neopterin, 477, 657, 659, 660
ARDS, posttraumatic, prognosis, 674–679
and elastase-α1-PI complex, plasma levels in MSOF, 683–687
immune suppression, post-surgical or post-traumatic, 492–494
polytrauma, 745, 747
Neuroleptics, 755
Neurologic function and lipid peroxidation inhibition in cardiopulmonary arrest, 891–895
Neutrophils. See PMN entries
Nicardipine, endotoxin shock, 1071
Nifedipine, 1060
ARDS, 1087–1090
endotoxin shock, 1070, 1071
Nimodipine, traumatic shock, 1067, 1068
Nine Rule, total burn surface estimation, 1102, 1103
Nitrogen mustard, 887
Nivadipine, endotoxin shock, 1070
NK cells, 989, 991
PAF antagonist effects, 443–444
Noradrenaline/norepinephrine hemorrhagic shock, phase-related vascular reactivity, cats, 146
metabolic abnormalities in sepsis, 547, 548

ONO, 6240, 428, 931

Opsonins, C3 and IgG breakdown in peritonitis exudate, 527–532

Organ failure, multiple. See Multiple system organ failure (MOF, MOSF, MSOF)

Organ failure, postoperative, tissue oxygen debt (VO₂ deficit) as determinant, 133–136

survivors cf. nonsurvivors, 136

Osmotic pressure. See Plasma colloid osmotic pressure

Oxidation of glucose cf. fats, metabolic abnormalities in sepsis, 536–539, 545

Oxygen

arterial tension, endotoxin effect, 391–392
delivery
endotoxin, inotropic effect in isolated rabbit heart, 227
ischemia and circulatory system in MSOF, 1075–1083

extraction
ischemia and circulatory system in MSOF, 1079–1083
peripheral, septic shock, heart overperformance in, 260–262
see also Respiratory quotient (CO₂/O₂ exchange ratio) in shock
hypoxia, early ventilatory support, 784–787
and leukocyte-induced lung injury, 74, 75
skeletal muscle pO₂ and multiple organ failure, 137–142
supply
peripheral, pulmonary vascular resistance, ARDS in septicemia, 175, 177, 179
-uptake relationship, septic shock, 181–183
tissue oxygen debt (VO₂) deficit and postoperative organ failure, 133–136
survivors cf. nonsurvivors, 136

utilization, circulation, peripheral, septic shock, 163, 167–169

Oxygen, hyperbaric, 1008, 1010, 1013, 1020

Oxygen radicals

ARDS, exogenous surfactant, 791, 793
ceruloplasmin changes in MSOF and ARDS, 331–332, 337
endotoxemia, 886–888
hemorrhagic shock, phase-related vascular reactivity, cats, 144, 148, 149
leukocyte-induced lung injury, 73, 75, 76
lung
endotoxin-induced microvascular endothelial injury, 95
microvascular bed, cell interactions in septic shock, 114
multiple organ failure,
postoperative/posttrauma, biochemical analysis and scoring, 656, 661
permeability, pulmonary vascular, mediators, 305–306, 311, 312
PMN activation, 850
scavenging. See Free radical scavengers
TNF, induction of organ changes in chronic lymph fistula, sheep, 470, 476, 477
see also Lipid peroxidation; specific types

Pancreatic cysts, C-reactive protein as prognostic index, 726

Pancreatitis
C3a and C5a in MSOF, 265–268
terminal complement complexes, 266, 267
C-reactive protein as prognostic index, 725–728
extravascular lung water, large volume replacement with crystalloids, 809

Papillary muscle, guinea pig, 231–233

Pancreatitis
C3a and C5a in MSOF, 265–268
terminal complement complexes, 266, 267
C-reactive protein as prognostic index, 725–728
extravascular lung water, large volume replacement with crystalloids, 809

Paracrine amplification, liver dysfunction in MSOF, altered cell-cell interactions, 563, 569

Parietal cells, gastric mucosa ulceration,
ultrastructure after septic shock, rat, 152, 153
Passive sensitization, WEB 2086 (PAF antagonist), anaphylactic lung reaction, 926, 928
Pediatric systemic infection, elastase-α₁-PI as early indictor, 689–693
PEEP
 nifedipine for ARDS, 1087, 1090
ventilatory support, early, 788–789
Pelvis fracture and pulmonary fat embolism, 39–41
Pentaglobin, 1031–1033, 1035, 1046, 1050
Perfusion, decreased, lung in shock, 5–6
Perfusion circuit, endotoxin, inotropic effect in isolated rabbit heart, 226, 227
Peripheral circulation. See Circulation, peripheral, septic shock
Peripheral resistance, total
hemofiltration and survival time, porcine acute endotoxic shock, 822, 825
septic shock, heart overperformance in, 260, 262
Peritoneal exudate cells, therapeutic IgGs, phagocytosis stimulation in peritonitis, 1038
Peritonitis
C-reactive protein as prognostic index, 725–728
endotoxin and overwhelming inflammatory response of early sepsis, 372–374
exudate, C3 and, immunoglobulin G breakdown, 527–532
therapeutic IgG stimulation of phagocytosis, exudate cells, 1038
zymosan-induced, decontamination, GI tract, 827–832
Peritonitis Index, 643
Permeability
alveolar
cf. capillary permeability, 323, 328–329
gamma-scintillation with DTPA, detection, 324–327
PMA-stimulated neutrophils, rabbit ARDS, 323–329
capillary endothelial cells, 157, 159
and postcapillary, hemorrhagic shock, phase-related vascular reactivity, cats, 143
complement and pulmonary hypertension, 283–286
endothelial, bacterial toxins and calcium effects, 127–131
microvascular, 92–93, 96
circulation, peripheral, septic shock, 167
free radical scavengers and cardiopulmonary response to endotoxin, 885, 886, 888
TNF, induction of organ changes in chronic lymph fistula, sheep, 472, 473, 479–481
Permeability, pulmonary vascular, mediators, 305–312
E. coli hemolysin injury, septicemia, 67, 69–70
eicosanoids/arachidonic acid cascade, 305, 306, 308, 312
lung lymph flow, 308
thromboxane, 310
granulocytes (PMNs) and macrophages as source, 307–311
isolated rabbit lung, 309–311
oxygen radicals, 305–306, 311, 312
PAF effects, sheep, 447, 451
PMN-elastase-α₁-protease inhibitor, 308–310
proteases, 306, 309, 312
inhibitor Eglin C, 311
PFI index, 317–321, 653, 731–735
pH
isolated heart, effect of LMW plasma fraction in hypovolemia traumatic shock, 234
respiratory quotient (CO₂/O₂ exchange ratio) in shock, 608, 609, 615–617
Phagocytic index, RES stimulation to protect against DIC, 1004
Phagocytosis assay, 508, 510
Phagocytosis stimulation, peritonitis, therapeutic immunoglobulins, 1037–1041
IgG, 1041
IgM, 1039, 1041
Phentolamine, 553, 555, 557, 558
Phenylephrine, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 579–581
Phorbol esters, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 576, 578, 579, 582, 586
Phorbol myristate acetate, 123
lung injury, superoxide dismutase, 945–949
- stimulated neutrophils, rabbit ARDS, permeability, alveolar, 323–329
Phosphatidate phosphohydrolyase, 576
Phosphatidylcholine and phosphatidyl glycerol, exogenous Surfactant, 792
Phospholipase A
lethality correlation, 759–761, 764, 765
severely ill patients, prognosis/prognostic indices, 757–761, 763–768
sources, 757, 763, 767
Phospholipase A₂, 123, 432
C, protein kinase C and diacylglycerol accumulation in hepatocytes, endotoxemia, 575, 576
calcium antagonists in shock/ischemia, 1066, 1071
PMN activation, 850, 851, 855
Phospholipid reacylation, burns, PAF inhibitor effect, scalded pig, 455, 459, 461
Pia arterioles, RA642, effects on cerebrocortical perfusion, acute hemorrhagic shock, 1093
PIP₂, hepatocytes, protein kinase C and diacylglycerol accumulation, endotoxemia, 575
Plasma colloid osmotic pressure and extravascular lung water altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
large volume replacement with crystalloids, 810–812
hydroxyethyl starch, volume replacement in ovine endotoxemia, 816–819
Plasma contact system factors, in vitro interactions, endotoxin, 401–405
Plasma flow, renal, dopamine and renal function, 1098
Plasma fraction, LMW, effect on isolated heart, hypovolemic traumatic shock, dog, 231–234
LV systolic pressure, 233, 234
negative inotropism, shock plasma ultrafiltrates, 231–234
Plasmapheresis, 1025–1030
Plasma proteins, abdominal sepsis, prognosis/prognostic indices, 719–724
Plasma substitution in septic shock, humans, antithrombin III, 965–968
Plasma suppressive activity, thymopentin (TP-5) in post-burn and postoperative sepsis and immunodeficiency syndrome, 996–998
Plasmin, methylprednisolone pretreatment, endotoxemia, 874, 875
Plasmin-α₂-antiplasmin complex, immunologic determination, humans, 971
Plasminogen consumption, aprotinin membrane protective action, intraoperative histamine liberation, 961, 962
kallikrein-kinin system components in ARDS after polytrauma, 738, 740
Plasminogen activator, 654
inhibitor, and fibrinolysis, 383–386, 395–399
urokinase-type, neutrophils, thrombin-induced adhesion with endothelial cells, 109
Plasminogen activator, tissue (tPA), 576, 578, 579, 582, 586, 938
binding sites, hepatocytes, 583–584
endotoxic shock, fibrinolytic function determinations, pig, 395–399
fibrinolysis, 383–386
neutrophils, thrombin-induced adhesion with endothelial cells, 109
Platelet(s)
activation, lung in shock, 6, 7
aggregation, calcium antagonists in shock/ischemia, 1066
aprotinin membrane protective action, intraoperative histamine liberation, 960, 961
count
methylprednisolone pretreatment, endotoxemia, 875, 876
RES stimulation to protect against DIC, 1002, 1005
endotoxin-induced DIC, AT III-heparin complex therapy, 980
β-glucuronidase, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 272, 273
5-HT, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 272, 273
recombinant human SOD in endotoxemia, 914–915, 917
Platelet activating factor (PAF), 13, 14, 481, 660
antagonists, inhibition of induced shock, 427–433
C5a and, 366
calcium, 366
chronically instrumented sheep, effect on, 447–451
generation during shock, 426–427
glucose turnover in sepsis, 556–558
immune/cytotoxic processes, role in, 441–443
infusion in animals, cf. shock, 425–426
lung injury in E. coli endotoxemia, 358, 366–368
macrophage/monocyte induction and TNF production in shock, 485–488
PAF antagonist effects, 485, 486
neutrophil aggregation, 108, 109, 367
Platelet activating factor antagonists
burns, 455–461
cytotoxic processes, effects, 443–444
endotoxic shock, 931–935
inhibition of induced shock, inhibition of PAF-generated feedback cycles, 432–433
neutrophils, thrombin-induced adhesion with endothelial cells, 108
ONO-6240, 428, 931
see also BN 52021; WEB 2086 (PAF antagonist); specific antagonists
Platelet-derived growth factor, neutrophils,

thrombin-induced adhesion with endothelial cells, 109
PMN(s) (neutrophils, granulocytes), 20–22, 972
activation, 21, 850
and leukostasis, lipid peroxidation, hypovolemic-traumatic shock, dogs, 349–350
see also specific activation products
aggregation, PAF, 367
ARDS, 18–20, 31–33
posttraumatic, prognosis, 673, 674, 678, 679
ceruloplasmin changes in MSOF and ARDS, 331
complement, 20
MSOF pathogenesis in septic shock, dogs, 293, 296
pulmonary hypertension and vascular leakage, 283, 284
early ventilatory support, 784
eglin C ineffectiveness in endotoxin shock, 954–956
endothelial cell adherence, 157, 159
bacterial endotoxin role, 123–124
proadherent factor, 106–107, 109
thrombin-induced, 101–109
generation, chemiluminescence-inducing radicals, porcine septic shock, 339, 341
hemorrhagic shock, phase-related vascular reactivity, cats, 148, 149
4-hydroxy-nonenal, 351–355
Igs, therapeutic, phagocytosis stimulation in peritonitis, 1039–1041
lung injury, 11–12, 74, 75
MSOF
polytrauma, 414
postoperative/posttrauma, biochemical analysis and scoring, 653, 655, 657–660
multiple trauma, early events, 507, 508, 510, 511
phospholipase A source, 757, 763, 767
and pulmonary vascular permeability, 307–311
superoxide radical production by, recombinant human SOD in endotoxemia, 913, 917
zymosan-induced MSOF, endotoxin plays no key role, 422
see also Elastase-α₁-antiproteinase complex; Oxygen radicals; PMN elastase
PMN elastase, 331, 731–735, 937, 941, 942
ARDS, post-traumatic, prognosis, 674–679
eglin C ineffectiveness in endotoxin shock, 953–957
porcine shock, proteinase inhibitor, leukocyte neutral, 945–950
eglin C in septic shock, 945–948
PMA lung injury, SOD after, 945–949
prognostic index in sepsis, 634, 635
see also Elastase-α₁-antiproteinase complex; Immunoglobulin profiles and PMN-elastase in septic gas gangrene
PMN elastase-α₁-antitrypsin complex, antithrombin III and plasma substitution in septic shock, 966–968
Pneumocytes, type II, 52, 53
Pneumonia
Ig prophylactic therapy after cardiac surgery, 1034
pediatric, elastase-α₁-PI as early indicator, 690–692
phospholipase A as prognostic index, 765–768
Polyphloretin, 363
Polytrauma
ARDS, kallikrein-kinin system, 737–742
biochemical and hormonal parameters, 743–745, 746–749
monocyte/lymphocyte ratio as prognostic factor, 769–772
PFI index, 731–735
phospholipase A as prognostic index, 763–768
Polytrauma Score, T-cell-mediated immune suppression after polytrauma, 517
Polyunsaturated fatty acids, liver dysfunction in MSOF, altered cell-cell interactions, 569–571
Positive inotropic factor as myocardial stimulant, ion exchange chromatography, 254–255
Potassium and cardiac function, Pseudomonas aeruginosa toxins, 247–249
infection, kidney, function in sepsis, 604
PR 1501, 443
PR 1502, 443
Prealbumin, plasma, and abdominal sepsis prognosis, 720, 722
Predictors. See Prognosis/prognostic indices
Prednisone, 377
Prekallikrein, 986
in ARDS after polytrauma, 737, 738 and endotoxin interactions with plasma contact system factors, 402–404 and overwhelming inflammatory response of early sepsis, 372
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 475, 479
Pressure/volume loop, heart performance during septic shock, awake sheep, 238, 244
Proadherent factor, neutrophils, thrombin-induced adhesion with endothelial cells, 106–107, 109
Proenzyme Functional Inhibition (PFI) Index, 317–321, 653, 731–735
Progesterone, 122
Prognosis/prognostic indices
ARDS, posttraumatic, plasma levels of mediators, 673–679 macrophages, 679
cf. non-ARDS, 676, 677, 679
C-reactive protein in pancreatitis and peritonitis, 725–728 elastase-α₁-PI, early indicator of pediatric systemic infection, 689–693 interleukin-1, serum, and sepsis, 715–718
lymphocyte/monocyte ratio in polytrauma survival, 769–772
MSOF, logistic regression analysis, 643–647
PFI index, polytrauma, 731–735
cf. elastase, 731–735
phospholipase A in severely ill patients, 757–761, 763–768
plasma proteins, abdominal sepsis, 719–724
scintigraphic evaluation of posttraumatic liver function, 775–780
sepsis, 633–636
 TNF, serum, 715–718
Prolactin, sepsis, 751, 753, 754, 756
Promethazine, 1070
Properdin factor B, plasma, and abdominal sepsis prognosis, 720
Propranolol, 553, 555, 557, 558
Prostaglandin (PGI₂), 119–123
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202, 203
circulation, peripheral, septic shock, 168
complement activation, pulmonary hypertension and vascular leakage, 285–286
liver dysfunction in MSOF, altered cell-cell interactions, 589
lung injury, endotoxin-induced, 366
microvascular endothelium, 92–94, 96, 97
myocardial ischemia, 907–911
neutrophils, thrombin-induced adhesion with endothelial cells, 109
Prostaglandin(s), 380, 660–661
burns, PAF inhibitor effect, scalded pig, 455, 459, 460
D₂, lung injury in E. coli endotoxemia, 362, 365, 366
E₂, 429, 661, 662
Ig synthesis suppression after multiple trauma, 513, 515
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568, 569
lung, endotoxin-induced injury, 92–94, 96, 97, 359, 363
trauma-induced cascade of cell-mediated immune effects, 497–504
F₂a
 lung injury in E. coli endotoxemia, 359, 362–366
/PGE₂ ratio, metabolic abnormalities in sepsis, 535, 536
glucose turnover in sepsis, 552
H₂, 122
6-keto-PGF₁α, hemofiltration and survival time, porcine acute endotoxin shock, 823, 825
Prostaglandin endoperoxide synthetase, 910
Prostaglandin synthetase, 1071
Protease(s)
in MSOF due to septicemia, endotoxin, 315–321
permeability, pulmonary vascular mediators, 306, 309, 312
inhibitor Eglin C, 311
see also specific proteases
α₁-Protease inhibitor, 331, 725–726
ARDS, posttraumatic, prognosis, 674, 676
kallikrein-kinin system components in ARDS after polytrauma, 738, 740
monocyte synthesis, 948
and PAF antagonist in induced shock, 431–432
Proteinase inhibitor complexes
immunologic determination, humans, 971–974
leukocyte neutral, ELISA, 945–946
PMN elastase complex, porcine shock, 945–950
PMN-derived, eglin C ineffectiveness in endotoxin shock, 954–956
see also Elastase-α₁-antiproteinase complex; specific proteinase inhibitors
Proteinase/protease inhibitor therapy, hirudin/eglin C, recombinant, endotoxin shock, 937–942
Protein C, 654
Protein kinase C, 122, 123
and diacylglycerol accumulation, endotoxemia, rat hepatocytes, 575–586
in situ receptor autoradiography, 579, 583–584, 586
phorbol ester binding sites, 583–584
Protein metabolism, liver dysfunction in MSOF, altered cell-cell interactions, 565, 567, 568
perfused, sepsis effect on metabolism, 589–592
Proteolysis
cascades, methylprednisolone, pretreatment effects in porcine E. coli endotoxemia, 873, 877
excessive, metabolic abnormalities in sepsis, 540–542
Prothrombin, 319
methylprednisolone pretreatment, endotoxemia, 874, 875
Providencia pettigi, 420
Pseudomonas, 831
aeruginosa
cytotoxin, 68, 119, 120, 128, 129
cytotoxin, effect on cultured heart cells, rat, 247–251
protection by Pseudomonas Igs, 247–249, 251
septic shock, chemiluminescence-inducing radicals, pig, 339–334
immunoglobulin and plasmapheresis therapy, hemodynamic effects during treatment for septic shock, 1025–1029
oxygen supply-uptake relationship, septic shock, 182
Pulmonary. See also Cardiopulmonary entries; Lung entries
Pulmonary artery, sheep, neutrophils, thrombin-induced adhesion with endothelial cells, 102
Pulmonary artery pressure
cf. blood flow, pulmonary vascular resistance, ARDS in septicemia, 175–179
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 202
extravascular lung water, altered fluid regimen, advanced septic shock with acute respiratory failure, 804
hydroxyethyl starch, volume replacement in ovine endotoxemia, 816, 817
lung injury in E. coli endotoxemia, 360, 364, 365, 368
TNF, induction of organ changes in chronic lymph fistula, sheep, 471
Pulmonary artery wedge pressure and extravascular lung water
altered fluid regimen, advanced septic shock with acute respiratory failure, 803–808
large volume replacement with crystalloids, 809–812
Pulmonary capillary pressure, pulmonary venous hemodynamics and gas exchange disturbances, E. coli septicemia, Goettingen pig, 185, 186
Pulmonary capillary wedge pressure, heart function changes, septic shock, chacma baboon (Papio ursinus), 217, 219–222
Pulmonary circulation, ARDS C3a and alveoli in, post-trauma, 45
Pulmonary contusion, ARDS, C3a and alveoli in, post-trauma, 46, 47
Pulmonary dysfunction, minimal, 52
Pulmonary edema in shock, 9, 28–29, 31
arachidonic acid cascade in ARDS, 306–307, 309–311
capillary pressure, 28
see also Extravascular lung water; Permeability
Pulmonary failure prediction, elastase-α1-PI complex and neopterin, plasma levels, 683, 684, 687
Pulmonary function, muscle pH2 role, critically ill patients, 139
Pulmonary hypertension. See Hypertension, pulmonary
Pulmonary resistance, lung injury in E. coli endotoxemia, 358, 359
Pulmonary vascular pressure, nifedipine for ARDS, 1089
Pulmonary vascular resistance
ARDS in septicemia, 175–179
CI, 175–179
MPP, 175–178
oxygen supply, peripheral, 175, 177, 179
pulmonary artery pressure cf. blood flow, 175–179
endotoxin response, 390
α-mercaptopropionylglycine in hemorrhagic shock, 901, 902
recombinant hirudin/eglin C, endotoxin shock, 939, 941
Pulmonary venous hemodynamics and gas exchange disturbances, E. coli septicemia, Goettingen pig, 185–188
atrial pressure, left, 185, 186
CI, 185, 186
hemodynamic parameters, 186
MPP, 185, 186
pulmonary capillary pressure, 185, 186
Quin 2, 1055–1056
RA642, acute hemorrhagic shock, rats, cerebrocortical perfusion, 1091–1904
Radicals, chemiluminescence-inducing, septic shock, pigs, 339–344; see also Oxygen radicals
Reanimation, MSOF prognostic indices, logistic regression analysis, 644, 646
Receptor autoradiography, in situ, hepatocyte protein kinase C and diacylglycerol accumulation, endotoxemia, 579, 583–584, 586
Red blood cell acetylcholinesterase, activated C3 in DIC in septic shock, fulminant meningococcal meningitis, 272, 274
Regional blood flow, ischemia and circulatory system in MSOF, 1080–1081, 1083
Relaxing factors, endothelium-derived, 157
Respiratory distress, nebulized corticosteroid, 867–871
Respiratory distress syndrome, neonatal, exogenous surfactant, 797; see also ARDS
Respiratory failure
early ventilatory support, 784–789
embolism, fat, pulmonary, 37, 41
extravascular lung water, altered fluid regimen, 803–808
Respiratory quotient (CO₂/O₂ exchange ratio) in shock, 607–610, 613–617, 619–621
amino acid metabolism, 619–621
base excess, 613, 614, 619
expired minute volume, 613, 614, 619–621
fat metabolism, 619–621
glucose metabolism, 619–621
hemoglobin, 608
hyperventilation, 615, 619–621
low-flow states, 615, 616
pH, 608, 609, 615–617
RRE, 613–617
TBRE, 613–617
Reticuloendothelial system
endotoxin, dose-related effects, 407–411
liver clearance, scintigraphic evaluation of posttraumatic function, 775–780
stimulation to protect against DIC, 1001–1005
Rhematoid arthritis, 332
C3a, 299
Right ventricle, heart dysfunction, septic shock, human 194
RO-193,430, 704
Ronipamil, traumatic shock, 1067, 1068
Salmonella
abortus equi, 408
antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1044, 1046
LPS, 119, 121
enteriditis, 426–428, 430, 1054
minnesota, antibodies, anti-LPS and anti-lipid A, determination with immunoblotting, 1044–1049
typhimurium, 428
Sanarelli-Schwartzman reaction, 1003, 1005
SAPS scoring system, 626–628, 1026, 1027, 1029
dopamine infusion, effect evaluation with systolic time intervals, 1102
Scintigraphic evaluation of posttraumatic liver function, prognosis/prognostic indices, 775–780
Scoring systems
cardiogenic/septic shock, 625–630
CI and SVR, 625, 626
elastase α₁-PI complex and neopterin, plasma levels in MSOF, 683–687
prognostic value of antithrombin III and endotoxin in sepsis, 637
lethality, 639, 640
thrombocyte counts, 637–641
see also Multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring; Prognosis/prognostic indices; specific systems
S-creatinine, MSOF prognostic indices, logistic regression analysis, 644, 645
SDZ 63-441, 429
Secretin, 380
Sensitization, passive, WEB 2086 (PAF
antagonist), anaphylactic lung
reaction, 926, 928
Sensorium, altered, corticosteroids in severe
sepsis, 841, 843, 853–855
Sephadex inflammation model, rats,
4-hydroxy-nonenal, 351–355
Sepsis
DIT marker in, 711–713
early, overwhelming inflammatory
response, endotoxin role,
371–375
elastase-α1-PI as early indicator,
690–692
endocrine secretion patterns, 751–756
ADH, 751, 753, 755, 756
prolactin, 751, 753–754, 756
thyroid hormones, 751–756
endotoxin in complement activation,
277–281
kidney metabolism in, 601–605
metabolic abnormalities, See Metabolic
abnormalities in sepsis
multiple organ system failure, 413–416
ARDS, 61–65
prognostic indexes, 633–636
IL-1, 715–718
plasma proteins, 719–724
proteinase inhibitor complex,
immunologic determination,
humans, 972–974
scintigraphic evaluation of posttraumatic
function, liver, 775–780
severe, corticosteroids in, 840–844,
847–855
see also Immunoglobulin profiles and
PMN-elastase in septic gas
gangrene
Septicemia
antibodies, anti-LPS and anti-lipid A,
determination with
immunoblotting, 1048–1050
ARDS, pulmonary vascular resistance,
175–179
coaulation cascade, 383–387
E. coli hemolysin injury to lung, 67–70
transmembrane pores, 69
fibrinolysis, 383–387
gas exchange, disturbed, 185–188
MSOF and, endotoxin and proteases in,
315–321
T cell changes, 989, 990
Septic shock
antithrombin III and plasma substitution,
965–968
ARDS, 30–33
corticosteroids in, 857, 860–864
PMN migration, 30–31
cardiac dysfunction, 191–197, 207–215,
cardiac work, 260–262
chemiluminescence-inducing radicals,
pig, 339–344
complement activation in MSOF,
291–296
DIC in, and C3, 271–274
dopamine infusion, effect evaluation
with systolic time intervals,
1101–1105
eglin C, 945–948
extravascular lung water
altered fluid regimen, 803–808
large volume replacement with
crystalloids, 809–813
immunoglobulin therapy
after cardiac surgery, 1034
and plasmapheresis, 1025–1030
immunomodulation, 989–993
lung microvascular bed, cell
interactions, 113–118
metabolic rate, 260–262
oxygen extraction, peripheral,
260–262
oxygen supply-uptake relationship,
181–183
peripheral circulation, 163–171
peripheral resistance, total, 260, 262
scoring systems, 625–630
CI and SVR, 625, 626
TNF, 463–465
Septic syndrome, definition, 857–860
Serotonin. See 5-HT (serotonin)
Serratia marcescens, anti-LPS and anti-lipid
A antibodies, determination with
immunoblotting, 1044–1048
SGOT, liver, TNF induction of organ
changes in chronic lymph fistula,
469, 474, 475, 479
SH-groups, α-mercaptopropionylglycine in hemorrhagic shock, 897, 902, 903
Silver sulfadiazine, 378
Simplified Acute Physiologic Score, 280, 635
c-sis, neutrophils, thrombin-induced
adhesion with endothelial cells, 109
Small intestine, complement activation,
MSOF pathogenesis in septic shock,
dogs, 293–294, 296
Sodium excretion, dopamine and renal
function, 1097–1099
Sodium polyanethol sulfonate-induced
shock, 1001–1005
Somatomedin C, polytrauma, 743, 745, 747
Somatostatin, glucose turnover in sepsis,
553, 556
Sonomicrometer LV dimension, heart
performance during septic shock,
awake sheep, 237–243
Spleen, zymosan-induced MSOF, endotoxin
plays no key role, 421
SRI 63-072, 428, 485
SRI 63-441, 368, 428, 485
SRI 63-675, 557
SSS scoring system, 626–628, 664, 1026,
1027, 1029
dopamine infusion, effect evaluation
with systolic time intervals, 1102
polytrauma, 744–746
Staphylococcus
aureus, 420, 868
alpha toxin, 68, 69, 119, 120, 123,
124, 127–130, 286
xlyosus, 420
Streptococcus, 831
Streptomycin, GI tract decontamination,
MOF prevention, 828–832
Stress ulcer diseases, correlation with,
gastric mucosa ulceration,
ultrastructure after septic shock, rat,
151
Stroke volume
heart function changes, septic shock,
chacma baboon (Papio ursinus),
207, 210–214, 219, 221–222
α-mercaptopropionylglycine in
hemorrhagic shock, 900, 902
RA642, effects on cerebrocortical
perfusion, acute hemorrhagic
shock, 1094
septic shock, human, 193, 196, 197
Superoxide anion, 886
generation, PAF and, 488
4-hydroxy-nonenal, 354, 355
lipid peroxidation, hypovolemic-
traumatic shock, dogs, 346
metabolic abnormalities in sepsis, 535,
536
PMN production
corticosteroid, nebulized, in
experimental respiratory
distress, 869, 870
recombinant human SOD in
endotoxemia, 913, 917
Superoxide dismutase, 887
PMA lung injury, 945–949
recombinant human, in E. coli
endotoxemia, rat, 913–917
Surface epithelial cells, gastric mucosa
ulceration, ultrastructure after septic
shock, rat, 153, 154
Surfactant, ARDS C3a and alveoli in, post-
trauma, 44, 45
Surfactant, exogenous
acute high-permeability lung edema,
791–795
ARDS, 29
cf. neonatal RDS, 797
aspiration trauma, experimental, rabbit,
797–800
phosphatidylcholine and phosphatidyl
glycerol, 792, 798
porcine, 798
Surfactometer, bubble, 792
Systemic lupus erythematosus, C3a, 299
Systemic vascular resistance, 625, 626
and heart function changes, septic
shock, chacma baboon (Papio
ursinus), 219, 220
immunoglobulin and plasmapheresis
therapy, hemodynamic effects
during treatment for septic shock,
1026–1029
α-mercaptopropionylglycine in
hemorrhagic shock, 900–902
septic shock, 163–166, 168, 170
Tachycardia and cardiac volume, heart
function changes, septic shock, chacma baboon (*Papio ursinus*), 214–215, 217–222
TAN concentrations, kidney metabolism in *E. coli* sepsis, 601, 602, 604
Target structure degradation, multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring, 662–663
T cell(s)
 immune suppression/dysfunction, polytrauma, 517–521
 multiple trauma, early events, 507, 508
 septicemia/septic shock, 989, 990
 subsets, 508, 510, 518–520
 Ig synthesis suppression after multiple trauma, 513–514, 516
 MSOF, postoperative/posttrauma, biochemical analysis and scoring, 661
 PAF and, 442
 in septic shock, 989, 991, 993
 thymopentin (TP-5), post-burn and postoperative sepsis and immunodeficiency syndrome, 995, 998
 trauma-induced cascade of cell-mediated immune effects, 496–505
T-cell replacing factor, 497
Tebonin, effect in burns, 455–461
Terminal complement complex
 acute pancreatitis, 266, 267
 pulmonary hypertension and vascular leakage, 283–286
Theophylline, 755
Thiobarbituric acid reactive material, lipid peroxidation, hypovolemic-traumatic shock, dogs, 345, 346
Thiol groups, α-mercaptopropionylglycine in hemorrhagic shock, 897, 902, 903
Thrombin, 367, 937, 941, 942
 MSOF, postoperative/posttrauma, 653
Thrombin-antithrombin III complex
 antithrombin III and plasma substitution in septic shock, 966–968
 immunologic determination in humans, 971–974
Thrombin-induced adhesion with endothelial cells, neutrophils, 101–109
Thrombocyte counts, prognostic value in sepsis, 637–641
Thromboplastin, aprotinin membrane protective action, intraoperative histamine liberation, 961, 962
Thromboxane, 429
 alveolar permeability increased by PMA-stimulated neutrophils, rabbits, ARDS, 328
burns
 enteric translocation of microorganisms, 379
 PAF inhibitor effect, scalded pig, 455, 459, 460
cardiopulmonary response to endotoxin, eicosanoids in, sheep, 201–204
circulation, peripheral, septic shock, 168
 complement activation, pulmonary hypertension and vascular leakage, 285
 early ventilatory support, 786
eglin C ineffectiveness in endotoxin shock, 955
hemofiltration and survival time, porcine acute endotoxic shock, 823–825
liver dysfunction in MSOF, altered cell-cell interactions, 569
lung, endotoxin-induced microvascular endothelial injury, 92
lung injury in *E. coli* endotoxemia, 359, 362–367
 and hypertension, 67, 70
myocardial ischemia, 907–911
PAF antagonists in endotoxin shock, 935
permeability, pulmonary vascular, mediators, 310
TNF, induction of organ changes in chronic lymph fistula, sheep, 469, 474, 475, 479
Thromboxane receptor blockade, lung injury in *E. coli* endotoxemia, 366, 367
Thromboxane synthetase inhibition, lung injury in *E. coli* endotoxemia, 365–366
Thymopentin (TP-5) immunomodulation, post-burn and postoperative sepsis and immunodeficiency syndrome, 995–998
Thymostimulin (TP-1), immunodulation in septic shock, 990–993
Thyroid hormones
 and leukocyte phagocytic activity, DIT and
 T_3, 712
 T_4, 711–712
polytrauma, 743, 745
T_3, 745, 748
T_4, 744, 745, 748
TBG, 744, 745, 749
TSH, 744, 745, 749
sepsis, 751–756
T_3, 751–756
T_4, 752–754
TSH, 752, 753, 755
TISS, 643, 645
Tissue oxygen debt (VO_2 deficit) as determinant, organ failure, postoperative, 133–136
survivors cf. nonsurvivors, 136
Total parenteral nutrition, 377
 metabolic abnormalities in sepsis, 537, 538
Transfer factor, immunomodulation in septic shock, 990–993
Transferrin, plasma, and abdominal sepsis prognosis, 720, 721
Transpulmonary pressure, lung injury in *E. coli* endotoxemia, 358–361
Trauma
 endotoxin and overwhelming inflammatory response of early sepsis, 372–374
 -induced cascade of cell-mediated immune effects, immune suppression/dysfunction, 495–505
 immunorestitution, 504–505
 schema, 501, 503
cf. multiple system organ failure, 58–60
 see also Multiple system organ failure, postoperative/posttrauma, biochemical analysis and scoring;
 Polytrauma
Trauma score, 643
Traumatic shock
 calcium antagonists in shock/ischemia, 1067–1068
 hypovolemic, 228, 229
 PAF antagonist inhibition of induced shock, 431
Trifluoroperazine, 120, 122, 1070
Trimethoprim, GI tract decontamination, MOF prevention, 828–832
Tumor necrosis factor (TNF, cachectin), 13, 14, 114, 368, 432, 444, 536, 661, 850, 851
administration, metabolic abnormalities in sepsis, 550, 551
circulation, peripheral, septic shock, 169
discovery, 463
endotoxin as stimulus, 463, 464
glucose turnover in sepsis, 555
heart dysfunction, septic shock, human, 197
lipoprotein lipase suppression, 464
liver dysfunction in MSOF, altered cell-cell interactions, 564, 568–570
lung injury, endotoxin-induced microvascular endothelial, 91, 95–96
production and macrophage/monocyte induction in shock, PAF, 485–488
PAF antagonist effects, 485, 486
pulmonary vascular permeability, 305
in septic shock, 463–465
serum, and sepsis, prognosis/prognostic indices, 715–718
WEB 2086 (PAF antagonist), 919–921
window phenomenon with PAF, 921–922
Tumor necrosis factor, induction of organ changes in chronic lymph fistula, sheep, 467–481
disseminated intravascular coagulation, 479, 480
elastase-a1-anti-proteinase complex, 470, 477–478, 480
hemodynamics, 472, 479
cf. human, 470, 477
cf. in vitro, 470, 477
kallikrein, 469, 474, 479
leucocyte role, 469, 470, 475–477, 480
leucostasis, liver, 473, 474, 480
liver SGOT, 469, 474, 475, 480
lung lymph, 469, 473, 475, 479
oxygen radicals, 470, 476, 477
permeability, microvascular, 472, 473, 479–481
prekallikrein, 469, 474, 475, 479
pulmonary artery pressure, 471
thromboxane, 469, 474, 475, 479
Typhoid fever, 852
Tyrosine, amino acid concentrations, serum, experimental endotoxin shock, 598

•U46619, 362, 368
U74006F, 891–895

Ulcera tion, gastric mucosa
ultrastructure after septic shock, 151–155
and stress ulcer disease, 151
and WEB 2086 (PAF antagonist), 919

Ultraviolet-absorption spectra, positive inotropic factor as myocardial stimulant, 255, 256
Urea, MSOF prognostic indices, logistic regression analysis, 644–646
Urokinase-type plasminogen activator, neutrophils, thrombin-induced adhesion with endothelial cells, 109
U.S. Veterans Administration, sepsis studies, corticosteroids, 840–844, 847–855, 873

Vascular intima in endotoxin shock, 77–87
cell origins and replacement, 78–80
endothelial injury, grading, 84–85
endothoxin transport and elimination, 81
generalized inflammation, 85–87
aorta, 85, 86
non-endothelial cells, 77–78
macrophages, 78, 80, 81
ultrastructural alterations, early, 82–84
Vascular permeability. See Permeability
Vascular tone, hemorrhagic shock, phase-related vascular reactivity, cats, 143
Vasopressin (antiuretic hormone), 379
hepatocytes, protein kinase C and diacylglycerol accumulation in endotoxemia, 576, 579–581, 584–586
sepsis, 751, 753, 755, 756
Ventilatory support, early
inversed ratio ventilation, 788, 789
multiple organ failure with acute respiratory failure, 784–789
PEEP, 788–789
Ventricular pressure cf. perfusion flows, endotoxin, inotropic effect in isolated rabbit heart, 227, 228
Ventriculography, radionuclide, heart function changes in septic shock, chacma baboon (Papio ursinus), 209–210, 218, 219
Verapamil, 1060
endotoxin shock, 1068, 1069
pretreatment, calcium antagonists in shock/ischemia, 1067
Virchow’s triad, 851
Vitamin E
leukocyte-induced lung injury, 74–76
lipid peroxidation inhibition in cardiopulmonary arrest, 893–895

W7, 120
WEB 2086 (PAF antagonist), 426, 428, 429, 442, 485
anaphylactic lung reaction, guinea pig, 925–929
endotoxin shock effects, 931–933, 935
gastrointestinal tract damage, endotoxin-induced, 919–922
hetrazepine, 925
WEB 2170, 928
Weibel-Palade bodies, 83
White blood cell count, 725, 728
Wilhelmy tensiometer, 800
Xanthine-oxidase, 349
Zymosan
- induced peritonitis, decontamination, GI tract, 827–832
leukocyte-induced lung injury 73–76