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Abstract Due to the staggering complexity of the brain and its neural circuitry, neuro-
scientists rely on the analysis of mathematical models to elucidate its function. From Hodgkin
and Huxley’s detailed description of the action potential in 1952 to today, new theories
and increasing computational power have opened up novel avenues to study how neural
circuits implement the computations that underlie behaviour. Computational neuroscientists
have developed many models of neural circuits that differ in complexity, biological realism or
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emergent network properties. With recent advances in experimental techniques for detailed
anatomical reconstructions or large-scale activity recordings, rich biological data have become
more available. The challenge when building network models is to reflect experimental results,
either through a high level of detail or by finding an appropriate level of abstraction. Meanwhile,
machine learning has facilitated the development of artificial neural networks, which are trained
to perform specific tasks.While they have proven successful at achieving task-oriented behaviour,
they are often abstract constructs that differ inmany features from the physiology of brain circuits.
Thus, it is unclear whether the mechanisms underlying computation in biological circuits can
be investigated by analysing artificial networks that accomplish the same function but differ in
their mechanisms. Here, we argue that building biologically realistic network models is crucial
to establishing causal relationships between neurons, synapses, circuits and behaviour. More
specifically, we advocate for network models that consider the connectivity structure and the
recorded activity dynamics while evaluating task performance.

(Received 22 April 2022; accepted after revision 24 August 2022; first published online 7 September 2022)
Corresponding author T. Tchumatchenko: Institute of Experimental Epileptology and Cognition Research, University
of Bonn Medical Centre, Bonn, Germany. Email: tatjana.tchumatchenko@uni-mainz.de

Abstract figure legend Neural networks execute the transformation of inputs into the neural activity that enables the
execution of a task. Thus, they have the potential to establish causal relationships between the input, elements of a circuit,
network activity and eventually behaviour. When the purpose of building a model is to understand the mechanisms that
enable behaviour in biological circuits, the design of networkmodels should be guided by three principles: (1) biological
constraints are necessary (e.g. connectivity), (2) the network activity should match the recorded activity, and (3) the
network should be able to perform the task of interest. Machine-learning-based training can help accomplish these
goals.

Introduction

Seventy years ago, in 1952, Alan Hodgkin and Andrew
Huxley concluded a series of papers about the flow
of electric current through the membrane of a squid
giant axon with the publication of a mathematical model
describing the temporal shape of the action potential
(Hodgkin & Huxley, 1952). At the time, this model
constituted the first quantitative description of the ion
channel activation underlying the action potential (or
‘spike’) generation in neurons. Yet, the Hodgkin and
Huxley model was not the first model to describe a neuro-
nal action potential in mathematical terms. A wealth
of more abstract mathematical models that simulated
the timing of neuronal spikes and the action potential
spread across a network of neurons had been proposed
long before Hodgkin and Huxley’s work. These included
the work by Lapicque in 1907 in the form of an
integrate-and-fire model (Abbott, 1999), McCulloch and
Pitts in 1943, who modelled the activation of a neuron
using a Boolean threshold function (McCulloch & Pitts,
1943), and Donald Hebb in 1949, who introduced the
concept of synaptic plasticity as a regulator of spiking
activity in his seminal book The Organization of Behavior
(Hebb, 2005). These more abstract representations of
neuronal activity equally became essential tools in
studying complex networks in neuroscience.

Still today, the level of mathematical abstraction which
is necessary and sufficient to understand the brain at
the level of circuit computations and behaviour is a
matter of debate (Gerstner & Naud, 2009; Pfeiffer &
Pfeil, 2018). Overall, cognitive functions arise from the
combination of multiple phenomena which occur at
different spatial and temporal scales, ranging from ion
channel dynamics to the activation of brain regions.
Due to the complexity and interdependence of these
phenomena, computational approaches in neuroscience
often follow two complementary avenues: bottom-up
and top-down. The ‘bottom-up’ approach starts from
the observation of biophysical characteristics of neurons
and synapses to build up mechanistically grounded
models of the circuit activity following the premise
that function will be an emergent property of the
system. But what is the appropriate level of detail?
For instance, how do the intricacies of ion channel
dynamics put forward by Hodgkin and Huxley affect
circuit-level phenomena? When can we abstract the
ion channel kinetics and consider only the approximate
time of a spike for all subsequent circuit-level analyses?
Analogously, at the synaptic level, when is it crucial to
detail the physiological processes governing short-term
or long-term plasticity, and how can we capture the
fundamental transformations in simpler mathematical

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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terms? Alternatively, the ‘top-down’ approach focuses on
high-level cognitive functions or activity properties to
reverse-engineer their underlying mechanisms and infer
their physical implementation. Representative examples
of this type of model are trained artificial neural
networks (ANNs). Today, some of the trained ANNs that
outperform humans on specific tasks (Silver et al. 2018;
2017) do not consider any detailed ion channel dynamics
underlying a neural spike, nor do they learn according to
the biologically reported local laws of synaptic plasticity.
In general, these models bypass mechanistic descriptions
of synaptic physiology (Abbott & Nelson, 2000; Tsodyks
& Markram, 1997) and do not incorporate observed
features of the dense recurrent cortical connectivity to
reduce synaptic interactions to a set of machine learning
optimization rules (Payeur et al. 2021; Rumelhart et al.
1986). At the neuronal level, these networks build only
on concepts introduced before Hodgkin and Huxley’s
1952 model. Still, they are capable of learning complex
tasks performed by different brain networks as well as
producing neural dynamics that are similar to those
recorded in experiments (Kar et al. 2019; Rajan et al.
2016; Sussillo et al. 2015). Thus, the question remains of
when the detailed descriptions of neuronal and synaptic
components can contribute novel aspects to our under-
standing of brain functions – both in bottom-up and
top-down modelling efforts.

While acknowledging the power of more abstract
models, we want to stress the importance of biological
realism in understanding the mechanistic relationships
between neurons, synapses, circuits and behaviour – in
line with Hodgkin and Huxley’s core idea. A series of
works comprising theory and experiments have illustrated
impressively this idea by revealing, among others, the role
of inhibition in stabilizing network activity (Tsodyks et al.
1997), the importance of recurrent connections in core
object recognition (Kar & DiCarlo, 2021; Kar et al. 2019),
or the synaptic mechanisms leading to the generation
of sequential firing activity during decision-making
(Rajan et al. 2016). We, therefore, believe that building
biologically realistic neural circuit models that (1) capture
experimentally reported circuit connectivity, (2) capture
experimentally recorded neuronal and circuit activity,
and (3) perform the behavioural task of interest is
an important ongoing goal for computational neuro-
science. But this comes at a price: the need for tractable
theories that incorporate these elements and allowmaking
testable hypotheses on the causal relationship between the
building blocks of a neural circuit. In this review, we first
provide an overview of the diversity of neural network
models. We then illustrate the importance of linking
the experimentally recorded connectivity and activity
through network models. Finally, we review machine
learning approaches and argue that training network
models under realistic biological constraints can provide

insights into how biological neural networks can execute
a function.

The essential building blocks of a neuronal network
model

Network models represent abstractions of the physiology
of biological neural circuits. They integrate the description
of neurons and their connections through synapses in
frameworks that allow studying the activity and function
of neural circuits. Besides, network models enable us to
establish causal relationships that are difficult to explore
experimentally, infer mechanisms, dissect the role of
specific circuit elements, or make experimentally testable
hypotheses.
A neural network model of a brain circuit requires

multiple building blocks (Fig. 1). Each of these elements
can be modelled with varying degrees of abstraction.
In general, the number of parameters and the model
complexity increase asmore biological details are included
(Fig. 1, left to right). A complex model comes at the
expense of mathematical tractability and computational
efficiency. The modeller should therefore balance the
benefit of a more biologically realistic model with the cost
of a less tractable analysis. The choice of more abstract or
detailed models depends on the scientific question to be
answered, as different network features are known to be
necessary for the emergence of specific properties. Thus,
the modeller should decide which network properties
are relevant for the study and which would obscure
the mechanism of interest. This has been a challenge
for generations of neuroscientists over the last decades
(Almog &Korngreen, 2016; Pfeiffer & Pfeil, 2018) and has
led to a wealth of models that compromise on different
aspects of biological realism, recorded neural activity, or
computational task performance.
A crucial element of a network model is the neuron

(Fig. 1, Neuron). The most abstract model only
distinguishes between two states, silent or active. Despite
their simplicity, these so-called binary neurons can
support the formation of network memory (Hopfield,
1982; McCulloch & Pitts, 1943). Neurons can also be
modelled using continuous functions of the instantaneous
state of their synaptic inputs. This is the case for the
rectifier linear (ReLU) type of neuron (Hahnloser, 1998)
or the sigmoidal neuron (Wilson & Cowan, 1972).
These neuronal models are often used in ANNs and
machine learning applications (Fukushima & Miyake,
1982; Minsky & Papert, 1969) as they suffice to
support the network training in complex behavioural
tasks (Mante et al. 2013). Next in complexity are
integrate-and-fire models, where the neuronal activity
depends on the recent synaptic input history and
not only on its instantaneous state. The well-known

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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leaky integrate-and-fire (LIF) (Burkitt, 2006; Knight,
1972) and exponential integrate-and-fire (EIF) neurons
(Fourcaud-Trocmé et al. 2003) belong to this type. In these
models, the focus is on the spike time, so the shape of the
action potential is not modelled. That is why LIF and EIF
neurons are widely used in spiking network simulations
that explore temporal features of the spiking activity,
including the generation of network synchronous and
asynchronous firing (Brunel, 2000; Renart et al. 2010). In
contrast, when the scientific question requires capturing
not only the spike time but also the temporal shape of the
action potential, modelling ion channel kinetics and their
conductance becomes necessary. Conductance-based
neuronal models such as Hodgkin and Huxley’s (1952)
provide a description of ion channel dynamics and
their interplay with the membrane potential. Network
simulations of Hodgkin–Huxley neurons show that the
action potential shape can have profound implications on
the network dynamics, for instance, on de-synchronizing
networks (Hesse et al. 2017). Often, these detailed
conductance-based models require many parameters to
describe ion channel physiology, which can mask the
interpretation of the network simulation. To overcome
this limitation, the FitzHugh–Nagumo model (FitzHugh,
1961) and the Izhikevichmodel (Izhikevich, 2003) provide
a simplified phenomenological spiking implementation of
the complex conductance-basedmodels. Finally, themore
detailed types of model consider the intricate neuronal
morphologies by dividing the neuron into smaller inter-
connected components (Edwards Jr & Mulloney, 1984;
Hendrickson et al. 2011; Rall et al. 1992). These types of
models have been successful at characterizing the spatial
distribution of synaptic inputs and their consequences,
which include the non-linear summation and temporal
filtering of synaptic inputs at dendrites (Chavlis & Poirazi,
2021; Gidon et al. 2020; London & Haeusser, 2005;
Oberlaender et al. 2011).

In models, neurons that share common properties
(i.e. the same type of synapses, similar receptive fields,
among others) are often grouped into populations
(Fig. 1, Populations). In the simplest case, all neurons
are identical and make up a single population (Amit
& Brunel, 1997; Brunel & Wang, 2003). However,
single-population models of excitatory neurons are
uncommon because it is impossible to stabilize the
network activity to realistic, spontaneous firing rates
(Amit & Brunel, 1997). Plus, brain circuits consistently
contain both excitatory and inhibitory neurons, which
cannot be assumed to be a single population since
their activation leads to opposite effects (Douglas &
Martin, 2004). Therefore, the study of neural network
dynamics nowadays typically assumes two populations,
one excitatory and one inhibitory (Brunel, 2000; Renart
et al. 2010; van Vreeswijk & Sompolinsky, 1998; Wilson
& Cowan, 1972). These excitatory–inhibitory network
models can achieve physiological firing rates thanks
to stabilization through recurrent inhibition (Amit
& Brunel, 1997; Sadeh & Clopath, 2021; Tsodyks et al.
1997). Each of these excitatory and inhibitory populations
can be broken down into subpopulations. One way
to do so is by considering different cell types (Park
& Geffen, 2020). Examples of these include networks
with distinct inhibitory interneuron types (Del Molino
et al. 2017; Litwin-Kumar et al. 2016; Mahrach et al.
2020). This type of model allows for dissecting the
role of specific cell types in particular computations
(Dipoppa et al. 2018; Keller et al. 2020; Litwin-Kumar
et al. 2016). Furthermore, the inclusion of additional
neural populations allows for a richer range of network
dynamics (Hertäg & Sprekeler, 2019; Strogatz, 2018).
Another way to increase the heterogeneity of a population
is to imprint a distribution of receptive fields such as
orientation selectivity (Chariker et al. 2016; Hennequin
et al. 2018; Timón et al. 2022). In this case, defining a

Figure 1. The essential building blocks
of a neural network model ordered by
degree of complexity
A network model representing the
physiology of a neural circuit is
characterized by its neuronal description,
the categorization of neuronal properties
into populations, the connectivity between
neurons, the type of synapses and plasticity
governing the synaptic strength, and the
input that stimulates neurons. Each of these
items can be modelled in different ways,
with varying degrees of complexity.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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single population with a continuum of neuronal features
can suffice.

Another fundamental property of neural networks is
their connectivity (Fig. 1, Connectivity). How neurons
are connected within a network determines the network
function and dynamics (Mastrogiuseppe & Ostojic, 2018;
Ocker et al. 2017). In the simplest case, all neurons are
connected to all. In such scenarios, all neurons share
the same recurrent input, which promotes synchronicity
(Brunel & Hansel, 2006; Wang & Buzsáki, 1996). More
commonly used are the so-called randomly connected
Erdös–Rényi networks (Brunel, 2000; Erdos & Rényi,
1959), in which pairs of neurons are connected with a
certain fixed probability (Renart et al. 2010). These types
of networks generate asynchronous states of activity,
which can be described by low spiking correlations
despite their neurons sharing considerable amounts of
input (Renart et al. 2010). More realistic connectivity
rules impose a higher connection probability for pairs
of neurons that are closer topologically (Rosenbaum
& Doiron, 2014) or in some feature space (Chariker
et al. 2016; Timón et al. 2022), in line with experimental
studies (Ko et al. 2011). This connectivity type leads to
a strong correlation in the activity of similarly tuned
neurons (Rosenbaum et al. 2017) and promotes the
selective activation of clusters of neurons receptive
to a given stimulus (Rosenbaum & Doiron, 2014).
Structural connectivity can also be modelled using
low-rank connectivity matrices, which are composed of a
randomplus aminimally structured part (Mastrogiuseppe
& Ostojic, 2018). Studies have shown that such
low-rank connectivity structures lead to low-dimensional
dynamics (Mastrogiuseppe & Ostojic, 2018), in line with
experimentally reported network activity (Mante et al.
2013). Finally, in cases in which the precise connectivity
of the network is known from experiments, a detailed
connectivity matrix can be incorporated in a model
(Kunert et al. 2014; Varshney et al. 2011).

The next important characteristic of a neural network
is its synapses. Synapses propagate the activity from
spiking neurons to other neurons through complex
chemical or electrical pathways. The result of this process
is the depolarization or hyperpolarization of the post-
synaptic neuron, depending on the type of presynaptic
neuron. There are different ways to model the induced
postsynaptic potential after a presynaptic spike (Fig. 1,
Synapses). One important aspect of the synaptic current
is its time course. In the simplest case, the membrane
potential of the postsynaptic neuron is updated at a single
time point, which can be modelled as a Dirac delta
function (Brunel, 2000; Sanzeni Akitake et al. 2020; van
Vreeswijk & Sompolinsky, 1998). On the other hand,
the synaptic transmission can follow a more complex
temporal profile where the synaptic input is distributed
in time (Brunel & Wang, 2003; Renart et al. 2010). The

temporal properties of synaptic signals can affect the
dynamical properties of the network activity, such as its
rhythmicity (Brunel & Wang, 2003). Another essential
property of the synapse is the effect that its activation
induces on the postsynaptic neuron. Unlike current-based
synaptic models, which treat synaptic transmission as
a direct change in membrane potential to the post-
synaptic neuron, a biophysical description of the ion
channel physiology is included in conductance-based
models (Cavallari et al. 2014). Thesemodels reproduce the
change in conductance of the postsynaptic ion channels
upon a presynaptic spike, which can lead to a non-linear
summation of inputs since the current flow depends on
the membrane potential of the neuron (Kuhn et al. 2004).
The third fundamental property of the synapse is its
capacity to change its connection strength. Dynamic or
activity-dependent synaptic weights are used to model
the ubiquitous phenomenon of synaptic plasticity (Fig. 1,
Synaptic plasticity). In networkmodels, synaptic plasticity
leads to profound changes in the functional connectivity
and allows networks to store memory (Mongillo et al.
2008) or adapt to perform certain tasks (Rajan et al.
2016). Classic examples of synaptic plasticity include
calcium-mediated short-term plasticity (Tsodyks et al.
1998), spike-timing-dependent plasticity (Bi & Poo, 1998;
Gerstner et al. 1996; Gjorgjieva et al. 2011; Kempter
et al. 1999), or calcium and voltage-dependent synaptic
plasticity (Bienenstock et al. 1982; Graupner & Brunel,
2012). It is worth noting that, even if the effect of these
plasticity rules is local, i.e. they regulate the strength of
a synapse based on the properties of the pre- and post-
synaptic neurons, their impact manifests in the shape of
different non-linearities at the network level (Mongillo
et al. 2012; Timón et al. 2022; Zenke et al. 2015).
Similarly, in the case of heterosynaptic plasticity, the
strength of a synapse can be updated upon activation
of other synapses of the same neuron. The inclusion of
heterosynaptic plasticity rules has been linked to a homeo-
static stabilization of the network activity (Chistiakova
et al. 2015). A different class of plasticity includes
the so-called non-local learning rules. These adapt the
strength of synapses based on a global optimization
target, which can be a behavioural output or a particular
computational task (Kar et al. 2019; Mastrogiuseppe &
Ostojic, 2018; Rajalingham et al. 2018; Sussillo et al. 2015).
Examples of these include the backpropagation of error
signals (Sacramento et al. 2018) or reward-driven learning
(Foster et al. 2000; Frémaux et al. 2013; Seung, 2003;
Soltani et al. 2006; Song et al. 2017). These global plasticity
rules are common abstractions used in machine learning
applications with great success at enabling networks to
learn to execute a particular task. However, it is not clear
how the information about the target or the global state
of the circuit would be accessible to individual neurons
and synapses in real biological circuits. Thus, translating

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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non-local into local synaptic learning rules that consider
only the pre–post spike timing at a pair of neurons is
now an active area of research showing promising findings
(Payeur et al. 2021).
The last element of a neural network is the input

(Fig. 1, Input). Besides the recurrent input from other
neurons within the same circuit, neurons receive feed-
forward input that originates from outside the modelled
network. In biological circuits, the external input carries
sensory-driven or otherwise processed information
originating from other brain areas. The features of the
modelled input should replicate the nature of such
signals. The simplest type of external stimulation is
a constant input, which resembles a sustained source
of sensory stimulation and can be deterministic or
stochastic (Brunel & Hansel, 2006; Wang & Buzsáki,
1996). More complex input models are temporally
dynamic to simulate a time-varying signal and are used to
examine the dynamical properties of the network activity
(Hahn et al. 2014; Roach et al. 2018). The external input
can also be structured such that neurons with different
receptive fields receive different inputs (Rosenbaum
et al. 2017). Regardless of the specifics of the input, it is
important to consider that its properties (i.e. statistics,
temporal and spatial correlations) will be reflected in the
activity of the modelled network. Indeed, the interplay
between the recurrent and feed-forward inputs along the
network hierarchy is key to understanding the generation
of patterns of activity such as sequence generation (Long
et al. 2010; Rajan et al. 2016), rhythmic activity (Brunel
& Hakim, 1999; Brunel & Wang, 2003; Hesse et al. 2017),
or network stability (Brunel, 2000; Mastrogiuseppe &
Ostojic, 2018; van Vreeswijk & Sompolinsky, 1998).
All in all, the choice of the building blocks used in

a network model requires a trade-off between a really
detailed description of neural systems and a tractable
model which can be easily manipulated to highlight
its mechanisms (Fig. 1, complexity axis). In the limit
of the most abstract network models, the system can
be studied analytically without the need to simulate
the network. These analytical descriptions are rate
models that use a mean-field approximation to pre-
dict the average firing rate of neurons. This approach
has been especially effective at identifying parameter
regimes for the emergence of specific network states
such as stable fixed points or chaos (van Vreeswijk
& Sompolinsky, 1998), rhythmicity (Brunel, 2000),
or various non-linearities (Ahmadian et al. 2013;
Bienenstock et al. 1982; Kraynyukova & Tchumatchenko,
2018; Sanzeni Akitake et al. 2020). Regardless of the choice
of model, the neural network operates a transformation
from a given input into an output activity. This activity
can be characterized by its mean firing rate, the precise
timing of the emitted spikes, or the correlations between
spike trains of different neurons. In the next section,

we discuss particular examples illustrating how network
models can be used to infer the properties of a biological
circuit from the recorded activity and how experimental
connectomics data can constrain network model design.

Relating neural circuit activity and synaptic
connectivity in models and experiments

Modern experimental techniques generate a steady stream
of functional activity datasets, while progress in electron
microscopy and automated image analysis provide pre-
viously inaccessible insights into the circuit connectome.
These rapidly advancing connectivity datasets (Fig. 2A)
can be related via neural network models of different
complexity (Fig. 2B) to the recorded network activity
(Fig. 2C). As a critical link between structure and
function, network models can help make sense of
complex experimental datasets and decipher the working
principles of neural circuits.Here,we review achievements
and challenges in modelling realistic neural networks
aiming to bridge the growing number of activity and
connectivity datasets.
During the last decades, neural activity recordings have

made impressive progress. Calcium imaging techniques
allow the monitoring of the activity of thousands of
cells simultaneously (Pachitariu et al. 2017; Rose et al.
2014; Stringer et al. 2019) and even enable whole-brain
activity recordings in freelymoving animals (Nguyen et al.
2016) (Fig. 2C, middle). Similarly, high-density electrode
arrays provide simultaneous recordings from hundreds
of cells in deep brain areas (Jun et al. 2017; Steinmetz
et al. 2021) (Fig. 2C, bottom). Both calcium imaging
and electrophysiology techniques enable recordings of
neural tuning curves in response to sensory stimuli or
during behaviour, providing access to the functional role
of neurons in the network (Fig. 2C, top). In addition,
genetic markers can be used to classify the cell types in the
recorded activity datasets (Fig. 2C, top). To reconstruct the
circuit connectivity, multipatch-clamp recordings allow
the estimation of the connection probability and synaptic
strengths between specific cell types (Allen Institute for
Brain Science, 2019; Cossell et al. 2015; Hofer et al.
2011; Jiang et al. 2015; Ko et al. 2011; Morgan et al.
2016; Seeman et al. 2018) (Fig. 2A, top). Calcium
imaging in vivo preceding multipatch-clamp recordings
or electron microscopy in vitro helps to identify neuro-
nal response selectivity in the corresponding connectivity
datasets (Bock et al. 2011; Cossell et al. 2015; Hofer
et al. 2011; Ko et al. 2011; Microns Consortium, 2021)
(Fig. 2A, middle). At the anatomical level, progress in
electron microscopy and automated image analysis now
provides detailed reconstructions of neuronal connections
within a constrained volume of brain tissue (Helmstaedter
et al. 2013; Oberlaender et al. 2012; Turner et al.
2022) (Fig. 2A, bottom), putting the first whole-brain

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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mammalian connectomes within reach (Abbott et al.
2020) (Fig. 2A, bottom). These newly acquired and
growing experimental insights need to become a part of
neural networkmodels. At the same time, they call for pre-
viously developed network models to be reviewed.

Different studies have illustrated that neural network
models can explain circuit mechanisms, provided
their outcomes reproduce experimentally observed
activity features. A prominent example demonstrating
how activity recordings can be used to infer circuit
properties concerns the study of the ‘paradoxical response’
using network models. The paradoxical response – a
phenomenon observed across cortices – refers to the
decrease in PV+ neurons’ activity after the stimulation
of the PV+ population. The paradoxical response has
been explained through inhibitory stabilization (Tsodyks
et al. 1997), a regime which is well-understood in two
population neural network models (Sadeh & Clopath,

2021; Sanzeni, Histed et al. 2020). Indeed, analyses of
two population network models revealed connectivity
regimes that relate the paradoxical response, the strength
of recurrent connectivity between excitatory neurons, and
inhibitory stabilization, providing a critical link between
the circuit structure and function. Yet, since sensory
cortices consist of multiple excitatory and inhibitory
populations, the paradoxical response requires a better
theoretical understanding of the rate and spiking network
models with more than two neuronal populations
(Fig. 2B). Recent theoretical studies on paradoxical
effects in networks with multiple inhibitory subtypes in
mouse V1 suggested that the stabilization of the circuit
is primarily under the control of PV+ neurons. On the
contrary, somatostatin and vasoactive intestinal peptide
positive cells do not seem to impact the circuit’s stability
significantly (Palmigiano et al. 2020; Sanzeni, Histed et al.
2020).

Figure 2. How to bridge network activity and connectivity using network models
A, different levels of detail are available in the network connectivity reconstruction. Connection probability and
strength (top, left) between neuronal populations enter the connectivity matrix of a neural network model.
Neurons’ preferred orientation determined during in vivo calcium imaging recordings (middle, left) can be
re-identified in subsequent multipatch-clamp recordings (middle, right) or automated electron microscopy (EM)
image analyses (bottom), providing information on functional network connectivity. Connectomics methods
now provide reconstructions of a cubic millimetre cortical volume containing tens of thousands of functionally
identified neurons with hundreds of millions of synapses and include morphological details of individual cells in
nanometre-scale resolution. B, neural network models can capture different levels of complexity in connectivity
reconstructions and activity. Population rate models combine cells based on their genetic type or response
properties (top). Spiking and rate networks containing individual neurons can capture heterogeneity in neuronal
response properties or connectivity between individual neurons (middle). More detailed network models can reflect
global network geometry and neuronal morphology. C, population activity (top) can be extracted from calcium
imaging recordings of thousands of neurons on a small depth of the cortical surface (middle) or deep inter-layered
recordings obtained from high-density multi-electrode arrays (bottom). A → C, inserting new detailed connectivity
reconstructions into the network models requires their reassessment to reproduce the recorded activity. C → A,
the network models can be used to infer the circuit connectivity from the recorded activity.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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Beyond the paradoxical effect, computational studies
have successfully shown how to infer neural circuit
properties by exploiting the recorded activity dynamics,
statistics and neuronal tuning curves. One elegant
example of the latter is how the property of contrast
invariance of orientation tuning (Anderson et al. 2000)
constrained the architecture of networkmodels. Imposing
this property on the outcome of neuronal activity
questioned the plausibility of a threshold linear transfer
function previously used in V1 models. Subsequent work
concluded that a neuronal power-law transfer function
is the only function consistent with contrast invariance
(Hansel & Van Vreeswijk, 2002; Miller & Troyer, 2002).
The power-law supralinear relationship between the
average neuronal membrane potential and its average
spiking output was later confirmed in experiments
(Priebe et al. 2004; Tan et al. 2011). The power-law trans-
fer function has since become a part of the so-called
stabilized supralinear network (SSN) models. The SSN
models can reproduce numerous non-linear trans-
formations observed in the visual cortex, such as surround
suppression, variability quenching after stimulus onset,
supersaturation and normalization (Ahmadian et al. 2013;
Hennequin et al. 2018; Kraynyukova & Tchumatchenko,
2018; Rubin et al. 2015). A recent study (Renner et al.
2020) showed how to use the SSN model in combination
with visual responses recorded inmouse V1 and thalamus
to infer V1 connectivity weights between the populations
of pyramidal and PV+ neurons. During the last decade,
a series of connectivity measurements (Allen Institute
for Brain Science, 2019; Hofer et al. 2011; Jiang et al.
2015; Ko et al. 2011) provided details on the connection
probability and strength of synaptic connections in
mouse V1. These studies revealed that the strength
of the same type of connection could vary by an
order of magnitude across experimental reports. The
inference of connectivity via the SSN model showed that
different connectivity configurations could approximate
the same activity recordings. In other words, the SSN
model helped in understanding that the connectivity
configuration supporting the recorded activity is not
necessarily unique, which is consistent with the variability
in connectivity observed across prior experimental
studies (Allen Institute for Brain Science, 2019; Hofer
et al. 2011; Jiang et al. 2015; Ko et al. 2011). Despite the
variability in experimentally reported connectivity, using
the SSN model also revealed a systematic relationship
among the magnitudes of the connectivity weights that
appears necessary to generate the specific features of the
recorded activity (Renner et al. 2020). Remarkably, this
relationship between the connectivityweights was fulfilled
in the individual connectivity studies. These results
demonstrated how model-based connectivity inference
could help in discovering ubiquitous connectivity motifs
in otherwise diverse experimental measurements.

Given the available connectome datasets, it is tempting
to assume that network models using bottom-up
approaches, i.e. incorporating detailed neuronal and
connectivity data Fig. 2A, will generate the recorded
activity. But can a detailed network simulation based
on state-of-the-art connectivity reconstructions directly
reproduce all desired features of the recorded network
activity? Over the last years, large-scale network
simulations have been put forward (Arkhipov et al.
2018; Billeh et al. 2020; Markram et al. 2015) to relate
detailed connectomics data to recorded activity. These
simulations revealed that additional optimization of
the connectivity weights is often required to generate
biologically plausible activity which causes the weights
to deviate from their initial biological values (Billeh
et al. 2020). Here, detailed network models relating
connectivity and recorded activity could help in under-
standing which connectivity features can vary without
changing the relevant activity regime of the circuit
and which are essential for behavioural outcomes
and therefore remain invariant across experimental
observations. In conclusion, neural network models are
powerful tools that can relate the growing activity and
connectivity datasets in an iterative process that involves
critical and systematic revision of novel experimental
insights. Past theoretical achievements demonstrate that
continuously reviewing network models to make them
consistent with updated experimental results is essential
for understanding fundamental neural mechanisms.

Machine learning and the design of network models
that can execute tasks

The ability to synthesize behaviour is a fundamental
property of biological neural circuits that network
models aim to capture. In the previous section, we
have discussed how the exploration and understanding of
fundamental neural mechanisms can be channelled via
network models that link the connectivity datasets to the
recorded activity (Fig. 2). But does recreating the recorded
activity automatically serve task-oriented behaviour in
network models? For example, would contrast-invariant
activity automatically enable neural networks to
perform contrast-invariant object recognition? From
a computational perspective, it is still unclear how the
accomplishment of a task follows from the activity
and how to incorporate this fundamental property of
brain circuits into neural network models. A promising
approach to link connectivity and activity to behaviour in
network models is to train the network parameters using
machine learning. Powerful machine-learning methods
are being increasingly used to train the connectivity of
ANNs to perform behaviourally relevant tasks (Kar et al.
2019; Silver et al. 2017). This is because machine-learning

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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provides a set of implementable algorithms that reshape
the network connectivity enabling the resulting network
to execute specific task-related commands (Marblestone
et al. 2016; Rumelhart & Zipser, 1985; Werbos, 1974). The
objective of the network training depends on the scientific
question and can focus on the optimization of the task
performance, on the reproduction of a specific activity
pattern, and many other factors (Fig. 3). Here, we review
how trained ANNs can link connectivity, activity and
behaviour from a computational perspective. Moreover,
based on recent studies, we argue that including biological
bottom-up constraints in the design of ANNs can
synergistically reveal mechanisms underlying behaviour.

The machine-learning methodology has been applied
to train abstract ANNs to execute complex tasks (Fig. 3A).
Outstanding examples include the ANN AlphaZero,
which outperforms humans in multiple two-player games
(Silver et al. 2017, 2018), AlphaFold, which yields
exceptional performance in the complex task of predicting
protein folding (Eisenstein & others, 2021), or AlexNet,
which marked a revolution in the field of computer vision
(Krizhevsky et al. 2012). These types of neural networks

are extremely valuable from an engineering standpoint
due to the high performance they achieve at executing
the task they were designed for. At the same time, their
connectivity, neuronal model or synapses differ greatly
from those of biological neural networks, there is no
guarantee that they achieve the task through mechanisms
that resemble biology, and their activity may be difficult to
interpret (Chakraborty et al. 2017). It is therefore unclear
if abstract networks that are exclusively optimized for task
performance can help understand behaviour in biological
circuits. In particular, it is to be expected that they perform
the task using functions that differ from biological trans-
formations as they do not focus on recreating the activity
dynamics recorded during behaviour.
ANNs trained as decoders can predict task outcomes

from the recorded activity (Fig. 3B). This proves that there
is information about the task encoded in the recorded
activity and that this information is accessible using
network models. For instance, recurrent ANNs trained to
decode the arm position of a monkey from the recorded
motor cortex activity (Sussillo et al. 2015) revealed that
the arms position is encoded in a low-dimensional

A

B

C

D

E

Figure 3. Diverse approaches to achieve task execution in bio-inspired network models using machine
learning
Training the parameters of neural network models using machine learning can help to connect the input, the
recorded activity, and the behavioural task of interest. The network architecture and the training can vary depending
on the focus of the model and the level of biological detail (abstract ↔ biological axis). A, ANNs can be trained
exclusively to optimize task performance. These models (e.g. AlphaZero) do not seek to understand the type of
activity that enables the execution of the task and include few to no biological constraints. B, the activity recorded
during behaviour can be fed into a neural network – decoder – to interpret behaviour. Decoders can predict
behaviour based on the recorded activity; however, decoders do not address how neural circuits generate activity.
C, the connectivity of spiking networks can be trained to generate a specific pattern of recorded activity. Once
the network is trained, it is possible to study the mechanisms that underlie the generation of the activity in the
model. But many models of this type do not address how the spiking activity relates to the task execution. D,
the activity generated by ANNs trained in a certain task can be analysed retrospectively to look for mechanistic
insights about the connectivity and activity underlying task performance. These insights can be used to guide
specific experiments. E, biological constraints (e.g. detailed connectivity, spiking mechanism) known a priori can
be included in the design of ANNs, which are then trained to execute a task. In this case, the network training on
a task is subjected to the imposed biological constraints.

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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subspace of the motor cortex activity (Mante et al.
2013). Similarly, in the visual system, decoders could pre-
dict the behaviour of macaques performing an object
categorization task from the recorded inferior temporal
(IT) cortex population response (Majaj et al. 2015). This
implies that the information contained in the activity of
the IT cortex is sufficient to forecast object categorization
behaviour in that task. In the context of navigation, it
has been shown how the goal location can be decoded
from the activity recorded in the orbitofrontal cortex of
rats (Basu et al. 2021), which demonstrates that relevant
information about the target location is encoded in
the activity of that brain region. Hence, decoders can
help elucidate from which brain structures task-related
information can be recovered. At the same time, they
provide insights into how the information is encoded, for
instance, about its dimensionality. They do not, however,
address the question of how the recorded activity is
mechanistically generated.
The mechanisms underlying activity can be studied by

dissecting artificial neural networks trained to recreate
the activity recorded during task-related behaviour
(Fig. 3C). Unlike the examples discussed before (Fig. 2),
in which mathematically tractable models are used to
reverse-engineer principles of the connectivity that under-
lies the recorded activity, here the potential connectivity
supporting activity emerges as a result of the training.
One example of training networks to study mechanisms
applies to the generation of sequential firing observed in
the posterior parietal cortex when an animal makes a left
or right choice in the expectation of a reward (Harvey
et al. 2012; Rajan et al. 2016). Training a randomly
connected network to recreate the activity recorded
during the task illustrated that only a small fraction of
the recurrent connections need to undergo training to
generate the measured sequential activation of neurons
(Rajan et al. 2016). This means that sequential firing
may be a feature of largely unstructured networks that
emerges through learning. The learning algorithm had
at least two constraints: the fraction of synapses that are
trained can be controlled, and the change in the synaptic
weight value is limited. The key message here is that
training networks to recreate recorded activity and sub-
jecting the training to certain biological constraints can
reveal causal relationships between the connectivity and
the activity. However, it is not clear what the functional
implications are of the generated activity in the context of
task execution.
One of the first attempts to build models that

simultaneously address how the activity is generated
from the connectivity and how it is related to the
execution of a task (Fig. 3D) comes from the field of
vision. These models focused on training the network
connectivity to optimize core object recognition. Object
recognition is the ability to categorize objects and

to identify them at different positions, in different
sizes, light conditions or contexts (Grill-Spector et al.
2001). An early representative example of this class
of models is a hierarchical feed-forward ANN, the
so-called ‘Neocognitron’ (Fukushima & Miyake, 1982).
The novelty of this model relied on its layered structure
that allows subsequent extraction of features of the
input (Grill-Spector et al. 2001). The Neocognitron
acquired the ability to perform core object recognition
through unsupervised learning. Interestingly, an emergent
property of the Neocognitron is that the structure of
its activity patterns shares similarities with that of the
visual system, for instance with regard to the encoding
of different features of the stimulus across cortical layers
(DiCarlo & Cox, 2007; Felleman & Van Essen, 1991;
Fukushima & Miyake, 1982; Kobatake & Tanaka, 1994).
This suggests that the separation of feature encoding
across layers may be an optimal network organization in
the context of visual perception. Since the Neocognitron,
more complex network models have been developed
which can recognize objects and at the same time generate
responses that match the recorded activity of real neurons
to newly presented stimuli (Horikawa & Kamitani, 2017;
Yamins et al. 2014). These trained models have provided
mechanistic insights into the relationship between activity
and behaviour and inspired interesting experiments
(Fig. 3D). For instance, training a hierarchical network
model on object recognition allowed inferring from the
model the pixel patterns that would activate neurons in
a particular fashion across the model layers (Bashivan
et al. 2019). This model-based prediction was validated
in monkeys, which demonstrated that groups of neurons
can be selectively activated or silenced using specifically
designed visual stimuli (Bashivan et al. 2019). There are
further examples of how these networkmodels can inspire
experiments (Kar & DiCarlo, 2021; Kar et al. 2019). In
these studies (Kar & DiCarlo, 2021; Kar et al. 2019),
the authors compared the performance of monkeys and
trained ANNs in classifying images and identified types
of images for which ANNs perform significantly worse
than monkeys (Kar et al. 2019). After measuring the
activity of neurons in the monkey brain in response to
those challenging images, they detected a latency in the
neuronal response compared to the representation of the
images that were not challenging to the model (Kar et al.
2019). A compelling hypothesis was that recurrent feed-
back, which was not a feature of the feed-forward ANNs,
was the cause of the latency. To test this hypothesis, parts
of the macaque ventrolateral prefrontal cortex, which
is a recurrent node, were inactivated. This experiment
revealed that macaques without recurrency show deficits
in object recognition tasks (Kar & DiCarlo, 2021). From
a computational perspective, it was shown that including
recurrent connections in the ANN model improved
the model performance at recognizing the images that

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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were challenging for a purely feed-forward network
(Kietzmann et al. 2019). Furthermore, recurrent models
produce neuronal responses that are more similar to
IT cortex than the previous feed-forward ANNs (Kar
et al. 2019; Liang & Hu, 2015). Overall, these results
indicate that recurrent connections are critical for efficient
object recognition. Moreover, they provide evidence that
a closed-loop dialogue between experiments and ANN
modelling can generate experimentally testable hypo-
theses and highlight the biological features that improve
the performance of neural networks.

Building upon the importance of including biological
principles, recent work has aimed at integrating
detailed biological constraints into the design of ANNs,
merging bottom-up and top-down modelling (Fig. 3E).
One example is the use of experimentally reported
connectomes of primates to constrain the connectivity
and the initial connection strengths of ANNs trained
to perform a working-memory task (Goulas et al.
2021). Compared to a randomly structured ANN,
these connectivity constraints did not compromise
task performance, which is significant as the inclusion
of biological constraints reduces the available parameter
space for training. Others have studied the functional
effects of the network topology by imposing biologically
realistic connectivities and found that modularity is
key at driving performance in a memory-encoding task
(Suárez et al. 2021). Besides the connectivity, trained
ANNs can incorporate biological insights in the form
of neuronal signalling. Unlike classical ANNs, which
consist of static neurons with a time-invariant activation
function, neurons in so-called spiking neural networks
transfer information in the form of discrete time-resolved
spikes. Theoretical work has developed effective training
algorithms which take into account the spike-timing
of individual neurons (Tavanaei et al. 2019). This is a
promising approach because it remains unclear whether
information in the brain is encoded through firing rates
or spike times (Brette, 2015). Concerning the training,
it has been recently noted that the widespread use of
gradient descent to train ANNs violates Dale’s law as
it can change the sign of the weights connecting two
neurons throughout the training process (Cornford
et al. 2021). This would imply that the same neuron can
be either excitatory or inhibitory as a function of the
training state, which is not consistent with experimental
observations. New studies have proposed novel training
algorithms to preserve these principles without sacrificing
task performance (Cornford et al. 2021). Indeed, the
inclusion of biological constraints such as the spiking
model, the connectivity and the learning rule into the
bottom-up design of ANNs is essential to ensure that,
after training, the network performs the function through
mechanisms that resemble biology. Thus, combining
bottom-up modelling with the top-down training that

enables ANNs to execute tasks is a promising approach
to elucidate the mechanism underlying function in
biological neural networks.

Conclusion

The brain is a complex biological system that processes
information through billions of neurons organized in
intricate networks. Due to this complexity, theoretical
models of neural networks are often used in order to
elucidate how it operates. Over the last decades, many
types of models have been developed to explore or mimic
the mechanisms that underpin the brain’s computational
capabilities, such as decision making, navigation, visual
perception and many more. This multitude of models
ranges from abstract and mathematically tractable
equations to highly complex multidimensional dynamical
systems that take into account detailed biological
processes on different temporal and spatial scales (Fig. 1).
Neural network models can shed light on multiple levels
of the mechanisms underlying brain functions, such as
relating the structure of a network to its activity (Fig. 2) or
providing insights into the algorithmic implementation of
complex behavioural tasks (Fig. 3). Some of these models
are built bottom-up from the observation of biophysical
features at the neuronal and synaptic levels to design
networks and study their emergent properties. Others
reverse-engineer possible network implementations
permitting known activity features or cognitive functions
in a top-down fashion. Irrespective of how abstract
or realistic these models are, they can all advance our
knowledge of brain function through their ability to
capture the key transformations in mathematical terms.
For instance, models can unveil what are the minimal
network requirements for the emergence of certain
properties (Hopfield, 1982; McCulloch & Pitts, 1943) or
can provide connectivity configurations that support the
execution of a task (Russakovsky et al. 2015; Silver et al.,
2017, 2018). Moreover, evidence shows that identifying
the shortcomings of neural network models can be
instrumental in revealing essential mechanisms of brain
function (Kar & DiCarlo, 2021; Kar et al. 2019). This
illustrates how a careful analysis of the limitations of a
model, even when it appears to underperform, can lead to
experimentally testable hypotheses and provide insights
into the principles underlying activity and behaviour.
Multiple studies have shown that biologically realistic

network models can be crucial to uncovering core
principles of brain function by mediating an effective
cross-talk between experiments, bottom-up and
top-down design (Bashivan et al. 2019; Kar et al. 2019;
Kietzmann et al. 2019; Liang & Hu, 2015; Rajan et al.
2016). We have reviewed how these principles can guide
the design of neural network models (Figs 2 and 3). In

© 2022 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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order to promote such cross-talk between these different
frameworks, research can follow different strategies.
One strategy is to impose strict biological constraints
during the network training process (Fig. 3E). This
strategy relies on the development of training algorithms
that account for spiking activity (Tavanaei et al. 2019),
that conform to Dale’s law (Cornford et al. 2021) or
that employ biologically inspired synaptic plasticity
rules. An alternative strategy is to use unconstrained
network training to highlight the network configurations
which can enable a behaviour of interest. Empirical
constraints and bottom-up modelling can then help
discriminate which implementations are biologically
feasible a posteriori. Regardless of the strategy used, a
combined framework bridging biophysical mechanisms
and cognitive functions will likely face the problem
of interpretability. Even if all parameters of a high
dimensional ANN are known, its huge number often
hinders the understanding of how these networks perform
their tasks. Another challenge to overcome in studying
biological circuits using machine learning algorithms
is that biological networks are subjected to multiple
competing considerations which ANNs typically do not
optimize for. For example, the optimal implementation
of a biological circuit for a given task would presumably
compromise task performance with other objectives
such as efficient energy consumption, wiring length,
processing speed, the ability to learn from limited data,
or robustness to noise and errors (Pallasdies et al. 2021).
In this context, using ANNs to predict the optimal
implementation of biological networks would require
defining and quantifying these competing factors. The
endeavour of bridging the bottom-up and top-down
approaches of neural network modelling is confronted
with many challenges. Yet, far from preventing scientific
progress, these challenges seem to be helping define the
right questions and encouraging computational neuro-
scientists to develop novel solutions.
To sum up, we argue that to gain a mechanistic

understanding of brain function and of emergent circuit
phenomena it is essential to equip neural network models
with biological connectivity as well as to evaluate if
the modelled activity matches recorded activity. Training
these biologically constrained networks to perform tasks
can help elucidate the mechanisms underlying behaviour
in neural circuits. This cross-talk can now be fuelled by
recent advances in connectomics, electrophysiology and
machine-learning.
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