
Received: 14 January 2020 Revised: 8 February 2021 Accepted: 28 February 2021

DOI: 10.1002/sim.8951

R E S E A R C H A R T I C L E

Simulating the dynamics of atherosclerosis to the incidence
of myocardial infarction, applied to the KORA population

Cristoforo Simonetto1 Susanne Rospleszcz2,3,4 Margit Heier2,5

Christa Meisinger6,7,8 Annette Peters2,3,4 Jan Christian Kaiser1

1Institute of Radiation Medicine,
Helmholtz Zentrum München German
Research Center for Environmental
Health (GmbH), Munich, Germany
2Institute of Epidemiology, Helmholtz
Zentrum München German Research
Center for Environmental Health
(GmbH), Munich, Germany
3Institute for Medical Information
Processing, Biometry and Epidemiology,
Ludwig-Maximilians-Universität,
Munich, Germany
4German Center for Cardiovascular
Disease (DZHK), Partner Site Munich
Heart Alliance, Munich, Germany
5KORA Study Centre, University Hospital
of Augsburg, Augsburg, Germany
6MONICA/KORA Myocardial Infarction
Registry, University Hospital of Augsburg,
Augsburg, Germany
7Chair of Epidemiology,
Ludwig-Maximilians-Universität
München, UNIKA-T, Munich, Germany
8Independent Research Group Clinical
Epidemiology, Helmholtz Zentrum
München German Research Center for
Environmental Health (GmbH), Munich,
Germany

Correspondence
Cristoforo Simonetto, Institute of
Radiation Medicine, Helmholtz Zentrum
München German Research Center for
Environmental Health (GmbH),

Analyzing epidemiological data with simplified mathematical models of dis-
ease development provides a link between the time-course of incidence and
the underlying biological processes. Here we point out that considerable mod-
eling flexibility is gained if the model is solved by simulation only. To this
aim, a model of atherosclerosis is proposed: a Markov Chain with contin-
uous state space which represents the coronary artery intimal surface area
involved with atherosclerotic lesions of increasing severity. Myocardial infarc-
tion rates are assumed to be proportional to the area of most severe lesions. The
model can be fitted simultaneously to infarction incidence rates observed in the
KORA registry, and to the age-dependent prevalence and extent of atheroscle-
rotic lesions in the PDAY study. Moreover, the simulation approach allows
for non-linear transition rates, and to consider at the same time randomness
and inter-individual heterogeneity. Interestingly, the fit revealed significant age
dependence of parameters in females around the age of menopause, quali-
tatively reproducing the known vascular effects of female sex hormones. For
males, the incidence curve flattens for higher ages. According to the model,
frailty explains this flattening only partially, and saturation of the disease pro-
cess plays also an important role. This study shows the feasibility of simulating
subclinical and epidemiological data with the same mathematical model. The
approach is very general and may be extended to investigate the effects of risk
factors or interventions. Moreover, it offers an interface to integrate quantitative
individual health data as assessed, for example, by imaging.
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1 INTRODUCTION

Multi-state models can be applied to describe individual health by a stochastic succession of, typically a few, possible
states.1,2 In cancer epidemiology, they have long tradition3 and constitute a mainstay of radiation epidemiology.4 In mod-
eling carcinogenesis, cells are assumed to evolve independently of each other. This simplification allows for analytical
solution of the involved stochastic differential equations and facilitates model fitting to epidemiological data.5,6 Also for
the distribution of pre-cancerous cells, analytical expressions have been derived7 but there is still no experimental data
for direct verification of the predicted evolution of cells.

Despite the virtues of an analytical solution, here we aim to demonstrate that analytical solvability is not a necessary
requirement, and abandoning it allows for versatile modeling possibilities which can only be started to be explored in the
present study. To make the case, a model of atherosclerosis and subsequent myocardial infarction is presented. Compared
to cancer, we believe there is an even greater potential for process oriented disease and risk modeling for cardiovascular
diseases. One important reason is the possibility of directly observing the disease development at various stages. More-
over, process oriented modeling may help to better evaluate the potentially individually different short- and long-term
benefits of the manifold options of prevention. Still, little effort has been put so far into the modeling of atherosclerosis
development and its relation to incidence data,8,9 which may partially be caused by model limitations.

Our model is solved by computer simulation. This allows to include more complex interactions, to apply a contin-
uous state space, and to easily take into account inter-individual heterogeneity as an important source of variability of
individual cardiovascular risk. Higher modeling flexibility can only be exploited with appropriate data on the modeled
processes. Here, the simulation approach is advantageous by easing the inclusion of additional, subclinical data in model
development and fitting. This ensures a quantitatively realistic model behavior for early, subclinical disease development
even though the complex disease interactions cannot be fully represented by any model.

2 MATERIALS AND METHODS

2.1 The model

Atherosclerosis is characterized by the progressive accumulation of lipids and fibrous elements in the walls of large arter-
ies. Lipid deposition starts at preferred sites and results in atherosclerotic lesions.10 With time, the area involved with
lesions increases and lesion appearance progresses. Therefore, sophisticated classification schemes of atherosclerotic
lesions were developed.11 Guided by the data used for the fit (see below),12 lesions are classified into only three categories
in the present study: fatty streaks as very early lesions, fibrous plaques, and, finally, complicated lesions.
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F I G U R E 1 Schematic model representation. Percentages of the coronary artery intimal surface area involved with lesions of at least
type k are denoted by Fk. This means k= 1 refers to all lesions, k= 2 to fibrous plaques or complicated lesions, and k= 3 to complicated
lesions only. Existing lesions grow with rate 𝜸k. New lesions of type k emerge from Fk−1 according to a Poisson process with rate 𝜈k and with
size s. Analogously, complicated lesions give rise to myocardial infarction with rate 𝜈h
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F I G U R E 2 Sketch of possible early plaque development in the model. A first fatty streak appears after time Δa0 with area F1 = s.
Subsequently it expands with growth rate 𝛾1. At the last depicted time point, part of the fatty streak has become a fibrous plaque, with area
F2 = s. The intimal surface area involved with fatty streaks (and more advanced lesions), F1, results from further growth of the first fatty
streak and from the origin of a second fatty streak [Colour figure can be viewed at wileyonlinelibrary.com]

Main variables in the model are the percentages Fk of the coronary artery intimal surface area involved with lesions.
The index k indicates the minimal severity of lesions contributing to Fk. The total percentage of the intimal surface area
involved with any type of atherosclerotic lesions is denoted by F1. The percentage involved with raised lesions, defined
as fibrous plaques or more advanced lesions, is called F2. Finally, F3 relates to the most advanced, complicated lesions.
Correspondingly, F0 refers to the total, healthy or affected, intimal area of the artery wall. Due to the applied normalization
it holds F0 = 1. Plaque area is a strong predictor of infarction.13 Complicated lesions are supposed to be most closely
related to the risk of wall ruptures and resulting thrombosis and infarction.14 Risk of myocardial infarction was thus
modeled to be proportional to the area involved with complicated lesions F3, with a proportionality factor 𝜈h. A schematic
model representation is presented in Figure 1 and an exemplary sequence sketched in Figure 2.

The percentages Fk are supposed to increase by two processes: formation of new lesions and growth of existing ones.
For simplicity, lesion growth is modeled as a deterministic process. As long as the lesion area is small, exponential growth
is assumed with a growth rate 𝜸k (cf. the first term in braces in Equation (1)). On the other hand, initiation of new
lesions is assumed to be associated with the permeability or adhesiveness of individual endothelial cells and thus modeled
stochastically by a random variable T, see below. The probability of formation of a new lesion of stage k is assumed to be
proportional to Fk−1. The proportionality factor is called 𝜈k and the initial area of new lesions is s (cf. the second term in
braces in Equation (1)). When Fk approaches the area involved with lesions of lower grade Fk−1 by either process, growth
is saturated (cf. the last term in Equation (1)). To summarize, growth of lesion area in the time span from age a to age
a + Δa is described by the formula:

Fk(a + Δa) = Fk(a) +
{
𝜸kFk(a)Δa + sT[𝜈kFk−1(a)Δa]

} Fk−1(a) − Fk(a)
Fk−1(a)

(1)

Here T[r] denotes a random variable that is close to 1 with probability r and close to 0 otherwise. Therefore, a new
lesion of type k emerges with probability 𝜈kFk−1(a)Δa. Values between 0 and 1 were allowed in order to avoid discontinu-
ities in the deviance for small changes in the parameters because discontinuities complicate parameter optimization in
the fitting procedure. This implicates that new lesions are not strictly generated with probability r and of size s but there
is also some probability for generation of smaller sized lesions. The random variable T[r] was implemented by sampling
x uniformly in the interval from 0 to 1 and evaluating

t(x, r) = 1
2

(
1 − tanh 5(x − r)

r

)
(2)

Bold symbols in Equation (1) denote quantities that vary between simulated individuals. In particular, the
inter-individual variability, which is associated with heterogeneity of risk factors in the population, is reflected in the
model by a distribution of the growth parameters 𝜸k. The parameters 𝜸k are assumed to be normally distributed around 𝛾k
and with relative standard deviation 𝜎𝛾 , that is, 𝜸k ∼  (𝛾k, 𝜎𝛾𝛾k) but with the constraint that negative values were shifted
to zero. No major differences were observed in preliminary analyses whether taking fully positively correlated or uncor-
related 𝜸1, 𝜸2, and 𝜸3, and the former was chosen for simplicity. Moreover, the parameters 𝜈k were tested for a log-normal
distribution in preliminary analysis but there was no improvement of fit compared to a model with identical value of 𝜈k
for all simulations. Therefore, there are two sources of heterogeneity for disease development in the model: chance as
mediated by the random variable T, and inter-individual diversity of risk factors as described by the distribution of 𝜸k.
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F I G U R E 3 Simulated and observed age-dependent lesion spread in males. Solid boxes and error bars show the median and 2.5% and
97.5% percentiles of all simulated runs. Orange corresponds to white, black to black men. Open squares represent data derived from 109 to
168 autopsy cases.12 Shown are the prevalence of lesions (in %), the prevalence of lesions that involve at least 5% of the coronary artery (in %),
and the mean and standard deviation of the intimal surface area of the coronary artery involved with lesions (in % of the total intimal surface
area) [Colour figure can be viewed at wileyonlinelibrary.com]

2.2 Data

2.2.1 Subclinical data

Two data sources were used for construction of the model. The first is the large US American pathology study PDAY for
which arteries from 1532 persons were collected during the years 1987 to 1990.12 Arteries were retrieved from persons
who had died from external causes between age 15 to 34 years. Thoracic and abdominal aorta, and the right coronary
artery were investigated. Motivated by myocardial infarction as the final endpoint in this study, only data for the right
coronary artery are considered here. The types of lesions were quantified as well as their extent, measured as the total
percentage of intimal surface area involved. Data were evaluated in 5-year age categories separately for male and female
sex, and for white and black ethnicity. Prevalence of lesions, prevalence of significant lesions, defined to cover at least 5%
of the intimal surface area, mean area (in percent of the total intimal surface area) and their standard deviations were
presented for all lesions and for raised lesions. For complicated lesions only the prevalence was presented. These data are
displayed as open squares in Figures 3 and 4 together with simulation results as referred to from the Results section.

2.2.2 Epidemiological data

The second data source is the KORA myocardial infarction registry15,16 which records myocardial infarction within the
region of Augsburg, Germany. This study is based on the age interval 25 to 79 and relates to the years 2009 to 2016. On
average, 221 745 males and 225 950 females have lived in this region in the relevant age range. Based on accurate case
ascertainment, 5310 first incidences of myocardial infarction were registered for males, and 2322 for females. Person-years
at risk were estimated from the local population register as outlined in Appendix A.

 10970258, 2021, 14, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.8951 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [28/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


SIMONETTO et al. 3303

0

10

20

30

st
an

da
rd

de
vi

at
io

n

15-19 20-24 25-29 30-34
age

0

10

20

m
ea

n 
ar

ea

0

20

40

60

pr
ev

al
en

ce
ar

ea
 >

 5
%

0

20

40

60

80
pr

ev
al

en
ce

Lesions of any grade

0

10

20

15-19 20-24 25-29 30-34
age

0

5

10
0

10

20

30

0

20

40

Raised lesions

0

1

2

3

Complicated lesions

15-19 20-24 25-29 30-34
age

F I G U R E 4 Simulated and observed age-dependent lesion spread in females. Solid boxes and error bars show the median and 2.5% and
97.5% percentiles of all simulated runs. Orange corresponds to white, black to black women. Open squares represent data derived from 30 to
53 autopsy cases.12 Shown are the prevalence of lesions (in %), the prevalence of lesions that involve at least 5% of the coronary artery (in %),
and the mean and standard deviation of the intimal surface area of the coronary artery involved with lesions (in % of the total intimal surface
area) [Colour figure can be viewed at wileyonlinelibrary.com]

2.3 Model implementation and fitting procedure

The model was implemented in C++ and can be downloaded from.17 Time steps Δa of one year were applied.
Analysis was performed separately for the different sexes. Data from white and black persons were fitted together,
with a relative difference in parameters: 𝜈w

k = 𝜈k for white, and 𝜈b
k = 𝜈k exp(𝜂𝜈k ) for black persons and like-

wise for 𝜎𝛾 , 𝛾k, and s. The relative difference was constrained not to exceed a factor of two. Beyond that,
possible shifts of parameter values during menopause were investigated for females. The age dependence was
tested with the functional form 𝜈k(a) = 𝜈k[1 + 𝜔𝜈k t(a, 50)], and analogous for other parameters, with t(a, 50) being
defined in Equation (2). The function t(a, 50) is close to 1 at young age and decreases almost to 0 above
age 50.

As a measure of goodness-of-fit we apply the deviance. It is given by twice the negative logarithm of the likelihood.
To calculate the deviance, 10 000 simulation “runs” were performed. The number of individual model simulations per
run was adjusted to the number of observations in the subclinical PDAY data.12 This led to at least 1 000 000 individual
model simulations for the evaluation of the deviance, which took about two seconds on an eight-core desktop com-
puter. The total deviance is given by the sum of the deviance related to the subclinical PDAY and the deviance related
to KORA incidence data,15 see Appendices B and C for details. Therefore, minimizing the total deviance, the model
is fitted simultaneously to both data sets. Minimization was performed with MINUIT2 (version 5.28.0). Parameters for
ethnicity and menopause were added sequentially, starting with the parameter with highest deviance improvement.
For inclusion of parameters and calculation of 95% confidence intervals, the cut point of 3.84 was applied from the
𝜒2-distribution.
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3 RESULTS

3.1 Stability of the fit to simulated data

As model results are obtained by simulation, residual uncertainty remains due to the finite number of simulation runs.
The influence of this uncertainty on the total deviance was estimated by repeated model fits. For this purpose, data were
applied for males only with no distinction between ethnic groups.

The results from repeated model fitting exhibited a standard deviation of 0.3 in the deviance. Therefore, model
selection and parameter estimation are possible accepting some additional uncertainty due to the finite number of
simulations.

3.2 Fit with age-constant parameters

Parameters were added to describe the difference between white and black men in any of the parameters 𝛾k, 𝜎𝛾 , 𝜈k, s.
The optimal deviance reduction was obtained for ethnicity-dependent 𝛾1 with a highly statistical improvement of 16.7
(p< 0.001). Allowing in addition for ethnicity-dependent 𝛾2 reduced the deviance further by 10.2 (p= 0.001), yielding a
total deviance of 869.9. The deviances of this stepwise model adjustment can be found in Table 1. Ethnicity-dependent
𝜈2 led to a similar improvement as did 𝛾2 but when taking into account dependence of 𝛾2 on ethnic group, there was no
other significant dependence. Maximum likelihood estimates of the parameters and confidence intervals can be found in
Table 2. Notably, growth dynamics of fatty streaks was rather low, governed by an increase of 𝛾1 = 11% per year. Once a

Model description Males Females

Initial model 896.8 909.1

+ ethnicity dependent 𝛾1 880.1 889.8

+ ethnicity dependent 𝛾2 869.9 880.3

+ variation of 𝛾3 during menopause 868.6

+ variation of 𝜈h during menopause 859.3

T A B L E 1 Deviance for model variants successively adding
new parameters

Males Females Females

constant rates constant rates considering menopause

s 0.85 (0.67; 1.1) 0.71 (0.43; 1.1) 0.82 (0.48; 1.2)

log 𝜈1 −3.1 (−3.2; −3.0) −3.4 (−3.5; −3.2) −3.3 (−3.5; −3.1)

𝛾1 0.11 (0.09; 0.13) 0.13 (0.10; 0.16) 0.11 (0.07; 0.15)

𝜎𝛾 0.56 (0.42; 0.80) 0.42 (0.27; 0.60) 0.60 (0.33; 1.1)

log 𝜈2 0.27 (0.03; 0.50) −0.33 (−0.79; 0.10) −0.38 (−0.85; 0.07)

𝛾2 0.35 (0.23; 0.53) 0.47 (0.28; 0.80) 0.37 (0.19; 0.70)

log 𝜈3 −3.9 (−5.2; −3.2) −2.4 (−3.2; −1.4) −2.9 (−4.2; −0.93)

𝛾3 0.31 (0.11; NA) 0.05 (0.04; 0.07) 0.09 (0.04; 0.24)

log 𝜈h −1.0 (−3.6; −0.3) −1.6 (−2.5; −0.69) −1.8 (−3.9; 0.20)

𝜂𝛾1
0.19 (0.12; 0.26) 0.32 (0.21; 0.45) 0.35 (0.22; 0.49)

𝜂𝛾2
−0.53 (−0.69; −0.20) −0.69 (−0.69; −0.32) −0.69 (−0.69; −0.22)

𝜔𝛾3
−0.63 (−1.0; −0.25)

𝜔𝜈h
2.0 (0.27; NA)

Rates (𝛾k, 𝜈k, 𝜈h) are given per year, and s is given as percentage of the coronary artery intimal surface area.
Parameters 𝜂𝛾1

, 𝜂𝛾2
denote the logarithm of the relative difference between white and black persons. Parameters

𝜔𝛾3
, 𝜔𝜈h

denote the relative parameter increment for young ages normalized to the time after menopause.

T A B L E 2 Maximum likelihood
estimates and 95% confidence
intervals from the likelihood profile
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F I G U R E 5 Simulated and fitted myocardial infarction incidence rates. Solid black lines show the best fit with a descriptive model,
solid colored lines the simulated mechanistic model (almost masked by the black line for males). Dashed lines illustrate the simulated
inter-individual variability. Dotted lines show the mean simulated incidence rate, if the drop out of individuals after myocardial infarction
was ignored. Therefore, dotted lines correspond to the average risk expectation of a young individual which is above the age-dependent
population mean due to selection effects. For details see the Discussion section. Boxes denote observed rates in the KORA study, and crosses
those ages without any observed case during follow up. Data points have been corrected for calendar and birth year dependence [Colour
figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Deviance related to
the fit to the KORA incidence data

Mechanistic model Mechanistic model

Descriptive model constant rates considering menopause

Males 453.2 450.2

Females 461.2 477.6 457.7

raised lesion is formed in the model, it expands much faster, by 𝛾2 = 35% per year, and typically dominates after about
one decade. Moreover, formation of raised lesions is rather frequent (large 𝜈2) but formation of complicated lesions is not
(small 𝜈3). Parameters differed substantially between black and white men. The growth rate 𝛾1 was larger for black men by
a factor exp(0.19) = 1.21 and was smaller for 𝛾2 by a factor exp(−0.53) = 0.59. The modeled course of lesion development
is plotted in Figure 3 and the incidence rate in Figure 5.

For females we start again with constant parameters and no distinction between black and white women. Differences
between ethnic groups could again be traced back to 𝛾1 and 𝛾2. Taking into account ethnicity in these parameters led
to a 19.4 (p< 0.001) and 9.5 (p= 0.002) point deviance improvement, yielding finally a total deviance of 880.3. Again,
maximum likelihood estimates of the parameters can be found in Table 2. Most maximum likelihood estimates are similar
between sexes. Differences exist in the formation rates of advanced lesions: While the early lesions form with lower
rates 𝜈1, 𝜈2 in females, the formation rate of complicated lesions 𝜈3 was higher for females compared to males. Another
important difference lies in the growth rate of complicated lesions 𝛾3 which was much smaller for females.

3.3 Comparison to a descriptive model

A peculiar property of the mechanistic model is its ability to fit simultaneously data on lesion development and myocardial
infarction incidence. In fact, it is not meaningful to fit the lesion data without a model that relates the different stages.
The incidence data, however, can also be fitted with standard descriptive parametric models. Applying the descriptive
model set out in Appendix A, a deviance of 453.2 is achieved for males and 461.2 for females.
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The mechanistic model with constant parameters yielded a total deviance of 869.9 for males and 880.3 for females.
For comparison, only the part of the total deviance related to the fit to the KORA incidence data is relevant. It is shown in
Table 3. For males it evaluated to 450.2, somewhat superior to the descriptive model. On the other hand, it evaluated to
477.6 for females, thus not reaching the same goodness-of-fit as the descriptive model. In this regard, it should be noted
that the only purpose of the descriptive model is to yield a good fit to the incidence data, and only three parameters were
necessary to achieve this goal. In contrast, the mechanistic model simultaneously fits other data and was compiled to
describe a disease evolution. Therefore, it is necessarily much more complex (nine parameters relevant to white women)
and this difference may easily account for a few points in the deviance difference in either direction. However, a deviance
difference of 16.4 points as observed for females indicates some process not being well described by the mechanistic
model. Indeed, constant parameters were used so far for both sexes despite the well-known protective hormonal effects
before menopause.

3.4 Including age dependencies due to menopause

Possible shifts of the parameters 𝜈k, 𝜈h, and 𝛾k during menopause were investigated. Notation was chosen such that 𝜈k, 𝜈h,
𝛾k denote the parameter values after menopause while values before menopause were denoted by products 𝜈k(1 + 𝜔𝜈k ) etc.

Significant improvements in the deviance were observed only for 𝛾3 and 𝜈h, that is, for the late stages of disease devel-
opment. An improvement of 11.7 (p< 0.001) was achieved when 𝜔𝛾3 = −1. Even lower values would mean a general
regression of complicated lesions before the age of menopause and were not allowed in the model fit. For 𝜈h, the deviance
improved by 10.9 (p= 0.001) points with a best fit value 𝜔𝜈h = 1.1. When allowing both parameters to be age dependent,
effect size was strengthened in 𝜈h and weakened in 𝛾3. The combined deviance improvement was 21.0 points, yielding a
total deviance of 859.3, see Table 1. The part of the deviance related to the fit to the KORA incidence data evaluated to
457.7 which is 3.5 points lower than the one from the descriptive model.

Maximum likelihood estimates and confidence intervals can be found in Table 2. Compared to the fit with constant
parameters, maximum likelihood estimates for 𝜈3 and 𝛾3 somewhat converged to the values for males though 𝛾3 remained
to be significantly smaller for females. The modeled course of lesion development is plotted in Figure 4 and the incidence
rate in Figure 5. Despite rather similar parameter values, there are striking differences in incidence curves between males
and females: A strong increase in risk until middle age followed by a pronounced flattening is only observed in men.
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The flattening is related to the size distribution of complicated lesions as explained in more detail in the Discussion
section. The simulated size distribution of complicated lesions is shown in Figure 6. For the examples presented, the
majority of simulated persons do not show any complicated lesion. However, for females the frequency of occurrence
drops much faster with the size of lesions than for males. For more than 0.1% of (simulated) males at age 50, complicated
lesions involve areas larger than 80% of the intimal surface area. On the other hand, for females this fraction is much
lower even at age 70 although myocardial infarction risk is higher for females at age 70 compared to males at age 50 (see
Figure 5).

4 DISCUSSION

The aim of mechanistic modeling of epidemiological data is to relate the age-incidence curve to subclinical disease devel-
opment. This involves both a top down approach, as inference is made from the incidence curve about the dynamics of
disease development, and a bottom up approach, as information on biological processes is taken into account for risk esti-
mation. For the first time, a mechanistic model was built from a combined fit to subclinical and incidence data. Several
stages of subclinical evolution were modeled. Not only the average evolution but also the variation in the study cohort
were reproduced very well (see Figures 3 to 5 and Table 3). This was achieved by appropriate complexity of the model,
which was solved by simulation. Nevertheless, stable maxima of the likelihood could be found with similar parameter
best estimates between genders (Table 2), demonstrating the technical feasibility of the approach.

Properties of the resulting model parameters can be compared to observation. For example, the growth rate of early
lesions is higher for black ethnicity in our model, see Table 2. On the other hand, black ethnicity is associated with a
lower growth rate of raised lesions. This is consistent with results of an ultrasound study, part of the Multi-Ethnic Study
of Atherosclerosis: black ethnicity was positively related to carotid intima media thickness, which is an imaging marker
of early atherosclerosis, and it was inversely related to the formation of plaques.18 Gender differences can be discussed
accordingly. In the model, rates of formation and growth of early lesions are very similar for the different genders, see
Table 2. Formation of raised lesions, however, occurs at a lower rate for females. Indeed, lesions in women exhibit less
lipid cores, the main characteristic of raised lesions.19-22 Finally, while formation of complicated lesions may be at a higher
rate in the model for females, their growth is markedly slower. This may be understood by different complicated lesion
phenotypes prevailing in males and females: Lesions in women appear to be more stable, they show less ruptures but
more erosions.19-21

To achieve a good fit for females, it was necessary to allow for age dependence in model parameters. This, however,
was to be expected as cardiovascular function is altered in females around the age of menopause,23,24 probably caused by
higher female hormone levels before menopause. In the preferred fit two parameters were age dependent: The growth rate
of complicated lesions was reduced before menopause but the risk of rupture of established complicated lesions enhanced.
Indeed, increasing female hormone levels by postmenopausal hormone replacement therapy has been observed to inhibit
atherosclerosis progression but to promote plaque instability.25 These opposing mechanisms make plausible why hor-
mone replacement therapy is most effective when started immediately after menopause:25 at this age there are essentially
no plaques yet that could become unstable. Notably, the two opposing effects were revealed by the model fit despite the
fact that subclinical data were available only up to age 34. Therefore, this can be viewed as an example for the incidence
curve harboring information on disease dynamics which can be unraveled with mechanistic modeling.

After age at menopause, the incidence curve for females is close to an exponential increase (see right panel of Figure 5).
In contrast, for males there is a sharp increase of risk at younger ages followed by a pronounced flattening that finally
yields little sex difference in the risk for very old ages. This disparity can be observed also in other data.26 In the model,
the flattening is explained by two mechanisms. The first is saturation of advanced lesion growth. The second mecha-
nisms relates to what is usually called frailty in the statistical literature27 and occurs generically also for other multi-stage
models.28 Those individuals with highest risk are most likely to experience an infarction and to be thus excluded from
the incidence cohort. This effect reduces the average risk in the remaining cohort. Mathematically, this effect is taken
into account by the exponential terms in Equation (B1) in Appendix B. Ignoring this effect, thus assuming the incidence
rate h to be given just by 𝜈hF3, would yield considerably higher values, as depicted in Figure 5 by the dotted lines. Dis-
crimination between the different mechanisms has practical implications: Individual risks do not follow the population
hazard. Saturation of advanced lesion growth implies that the risk increase is attenuated in persons with almost maxi-
mal lesions. In contrast to that, frailty effects imply that individual risks may increase without any damping even if there
is a flattening of the population hazard. While frailty is always there, it would require a huge spread in individual risks
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if it was the only mechanism leading to the flattening. Although there is considerable variation in individual risk in our
model (see Figure 6 noting that in the model risk is proportional to the intimal surface area involved with complicated
lesions), saturation, too, plays a role in the flattening. In the model, variation in risk follows from the observed extent of
lesion variation. Therefore our results add to the evidence that despite the relevance of frailty on the simulated population
hazard, there is still also flattening of individual risks.

Variation in risk is illustrated in Figure 5 by the dashed lines. The upper (lower) dashed line corresponds to the hazard
of the more (less) predisposed half of the population. In the model this corresponds to individual lesion growth rates
above (below) the population median, defined at young age. Interestingly, only up to an age of about 50 years variability
increases with age. At higher ages, simulated variability remains rather constant for females and decreases for males.
In real life cohorts, variability in risk may change due to age-dependent prevalence and biological effectiveness of risk
factors. These may be the main reasons why at advanced age the effect size of risk factors tends to decrease.26,29 However,
our model results show that some damping in the divergence of individual risks can be expected even with permanent
risk factors.

Obviously our simple model can not capture any detail. First, a single risk factor typically acts only on some stage of
disease development, which may lead to a peculiar age- and time dependent risk. In contrast, the simulated variability is
based on a single, overall measure of individual susceptibility that affects all stages of disease development. Second, while
our analysis shows that several dynamical features can be explained even without or with very simplistic age dependence
of the parameters, this does not preclude the existence of biological alterations of the development of atherosclerosis
with age. More generally, the necessary simplification of the true disease development is an inevitable limitation of any
mechanistic study. Especially relevant points may include here that spatial distribution of lesions is ignored, lesions are
characterized only by few stages, dynamics are limited to a simple saturating growth model, and that there is no feedback
from late-stage to early-stage lesions. Finally, model results in this study are subject to some numerical uncertainty due
to limitations in the number of simulations.

Despite these limitations, some relations of age incidence patterns and underlying mechanisms could be discussed
with the model. In the future the model may be extended to describe the dynamics of risk after short-term or protracted
exposure to risk factors. This is in analogy to cancer for which mechanistic models have been applied to many cohorts.4
However, it also goes well beyond that. Importantly, cardiovascular disease development is directly accessible to obser-
vation. In this study, this has been exploited by taking into account subclinical data from an autopsy study. The autopsy
study obtained a level of detail that is not achievable with imaging, thus allowing to model early lesion development. On
the other hand, longitudinal information could clearly advance modeling of lesion growth and rupture. Indeed, a first step
in this direction is planned: to model personalized cardiovascular risks from radiotherapy in females with breast cancer.
This study group is special as radiation treatment poses a well quantifiable risk factor and as the extent of atherosclerotic
lesions can be inferred from the treatment planning CTs. Another interesting point in cardiovascular disease modeling is
to study not only the effect of risk factors but also of various treatment measures, to improve the assessment of individual
long-term benefits. Finally, it should be noted, that the approach of simulating epidemiological data based on subclinical
pre-stages is a very general approach that may provide a new tool for understanding of long-term dynamics of various
diseases.

5 CONCLUSION

Mechanistic modeling of epidemiological data allows to draw connections between features in the age-incidence curve
and the biological disease development. In order to model the development of atherosclerosis and subsequent myocardial
infarction, we applied a simulation approach for the first time. Waiving analytical solvability allows for more complex
models and for taking into account simultaneously randomness and individual variability in the disease development.
Moreover, in order to ensure a realistic model behavior for early, subclinical disease development, we fitted the model
not only to epidemiological but also to pathological data. This new approach can readily be extended to explore the
implications of more detailed biological processes, or can be applied to other diseases. In particular, fascinating options
are the inclusion of imaging data and personalized model predictions.
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APPENDIX A. DETAILS TO THE FIT TO POPULATION INCIDENCE DATA

Two technical issues arose when fitting to the KORA incidence data.15 As the data were obtained from a population
register, only the number of cases and person years within the study region are known. However, to obtain the person
years under risk for first incidence, the share of persons with previous myocardial infarction is also necessary. Therefore
we estimated this number using calendar-year averaged myocardial infarction incidence and death rates. At age 25, it
was assumed that there is no person with prevalent myocardial infarction. For each further year of age, the estimated
number of persons with prior myocardial infarction was obtained by first adding the corresponding myocardial infarction
incidence rate, second subtracting the corresponding mortality rate, and, third, relative reduction by general survival. The
total survival is not registered in the KORA cohort and German survival rates30 were used instead. Variation of this rate
had practically no impact on our results.

Another issue was the existence of trends in calendar year and birth year. As those trends are not in the
focus of the present study, they were accounted for by correction factors that were derived by fitting of a
descriptive model. The following mathematical function was applied to fit the age dependence of the incidence
hazard:

exp
[
𝛽0 + 𝛽1 log(a) + 𝛽2log2(a)

]
(A1)
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Calendar and birth year dependence were best described by the factors

exp
[
𝛽y(y − 2010)

]
× exp [𝛽b(1940 + a − y)Θ(1940 + a − y)] (A2)

Here y denotes calendar year and the function Θ equals 1 for birth years y− a before 1940 and 0 otherwise. Best
estimates for 𝛽y and 𝛽b were −0.010 and 0.040 for males and −0.021 and 0.050 for females. The same factor, Equation (A2)
was also applied to the mechanistic model and used to correct the data points in Figure 5. Re-fitting of the parameters 𝛽y,
𝛽b with the mechanistic model had practically no impact on the final results.

APPENDIX B. THE LIKELIHOOD RELATED TO POPULATION INCIDENCE DATA

The likelihood related to the KORA incidence data15,16 is given by the product of the likelihoods for each cell of the
data characterized by sex, age, and calendar year. For each cell the standard Poisson likelihood was applied, given by
en−𝜆 (𝜆∕n)n with n the number of observed myocardial infarctions in the data cell and 𝜆 the number expected from the
model. The number of expected infarctions is the product of person years under risk for the data cell, and the respective
incidence rate h obtained from the simulation. A direct estimate of myocardial infarction rates could be obtained by
simulating infarction incidence with rate 𝜈hF3, see Figure 1. Then the incidence rate was obtained by the number of
simulated infarctions at some age a, divided by the number of simulated persons without infarction prior to age a. An
equivalent but numerically more stable solution is given by:

h(a) =
∑[

𝜈hF3 exp
(
− ∫ a

0 𝜈hF3 dt
)]

∑⎡⎢⎢⎣exp
⎛⎜⎜⎝−

a

∫
0

𝜈hF3 dt
⎞⎟⎟⎠
⎤⎥⎥⎦

(B1)

Here the sums run over all 10 000 times 159 individual model simulations for males and 10 000 times 53 for females,
see below. The exponential factor in the nominator equals the probability of a (simulated) person not yet to have suffered
from myocardial infarction, that is, still to be at risk at age a. Analogously, the denominator corresponds to the number
of simulated persons without myocardial infarction prior to age a.

APPENDIX C. THE LIKELIHOOD RELATED TO SUBCLINICAL DATA

In each run of the simulation, the lesion development is simulated for 159 white and 168 black males or for 53
white and 47 black females. This corresponds each to the maximal number of observations in a single age cate-
gory of the PDAY data.12 The same measures of lesion spread were calculated from each simulation run that were
also presented in the data: prevalence, prevalence of significant lesions, mean lesion area, and standard deviation of
the lesion area. By matching the number of individual model simulations used for these calculations to the respec-
tive number of observations in the data the statistical uncertainty is the same in a single simulation run and in
the data.

Distributions of the simulated results were obtained by performing 10 000 runs. The likelihood of the simu-
lated model given the data is taken as the probability of the data under these distributions. These distributions
were approximated by log-normal distributions based on the respective geometric mean and standard deviation of
the 10 000 results. The geometric mean is real valued only on a set of positive numbers. Therefore, if for any run
a measure of lesion spread was below 0.05, it was substituted by 0.05, half the accuracy of the results stated in
the data.12

The log-normal distribution is not a good approximation close to zero. Therefore, another approach was cho-
sen for prevalence data with less than three cases in the data. To avoid discontinuities, we defined the indi-
vidual probability pi for the existence of a lesion of type k by the smooth function 1 − t(Fk, s) and, accord-
ingly, for the existence of a significant lesion by 1 − t(Fk, 5%). The function t is defined in Equation (2) in the
main text. The probability of a run to conform to the data is then

∏
i(1 − pi) if there is no lesion observed in

the data,
∑

j
∏

i≠jpj(1 − pi) for one person with a lesion, and
∑

k
∑

j≠k
∏

i≠j,i≠kpkpj(1 − pi) for exactly two persons
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with a lesion. Here indices i, j, k run over individual model simulations within a run. The likelihood of
the model regarding this prevalence data point was evaluated as the mean of the above probabilities over all
10 000 runs.

Finally, the likelihood related to all subclinical PDAY data is the product of the likelihoods for each calculated measure
of lesion spread, lesion type, and category in ethnic group and age. (“One likelihood for each box in Figures 3 and 4 of the
main text.”) Normalization of the likelihood is arbitrary.
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