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Summary
Background Impaired insulin sensitivity could be an intermediate step that links exposure to air pollution to the 
development of type 2 diabetes. However, longitudinal associations of air pollution with insulin sensitivity remain 
unclear. Our study investigated the associations of long-term air pollution exposure with the degree and rate of change 
of insulin sensitivity.

Methods In this longitudinal study, we analysed data from the Cooperative Health Research in the Region of Augsburg 
(KORA) cohort from Augsburg, Germany, which recruited participants aged 25–74 years in the survey between 
1999 and 2001 (KORA S4), with two follow-up examinations in 2006–08 (KORA F4) and 2013–14 (KORA FF4). Serum 
concentrations of fasting insulin and glucose, and homoeostasis model assessment of insulin resistance (HOMA-IR, 
a surrogate measure of insulin sensitivity) and β-cell function (HOMA-B, a surrogate marker for fasting insulin 
secretion) were assessed at up to three visits between 1999 and 2014. Annual average air pollutant concentrations at 
the residence were estimated by land-use regression models. We examined the associations of air pollution with 
repeatedly assessed biomarker levels using mixed-effects models, and we assessed the associations with the annual 
rate of change in biomarkers using quantile regression models.

Findings Among 9620 observations from 4261 participants in the KORA cohort, we included 6008 (62·5%) observations 
from 3297 (77·4%) participants in our analyses. Per IQR increment in annual average air pollutant concentrations, 
HOMA-IR significantly increased by 2∙5% (95% CI 0∙3 to 4∙7) for coarse particulate matter, by 3∙1% (0∙9 to 5∙3) 
for PM2·5, by 3∙6% (1∙0 to 6∙3) for PM2·5absorbance, and by 3∙2% (0∙6 to 5∙8) for nitrogen dioxide, and borderline 
significantly increased by 2∙2% (–0∙1 to 4∙5) for ozone, whereas it did not significantly increase for the whole range 
of ultrafine particles. Similar positive associations in slightly smaller magnitude were observed for HOMA-B and 
fasting insulin levels. In addition, air pollutant concentrations were positively associated with the annual rate of 
change in HOMA-IR, HOMA-B, and fasting insulin. Neither the level nor the rate of change of fasting glucose were 
associated with air pollution exposure.

Interpretation Our study indicates that long-term air pollution exposure could contribute to the development of 
insulin resistance, which is one of the key factors in the pathogenesis of type 2 diabetes.
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Introduction
Increasing prevalence of type 2 diabetes in the past 
decades has contributed to a rising global burden of 
mortality and disability.1 Besides traditional risk factors, 
such as being overweight and having sedentary life
styles, cumulative evidence is pointing to an association 
between ambient air pollution and a higher risk for 
type 2 diabetes.2–5 It was estimated that in 2016, around 
3∙2 million incident diabetes cases and more than 
0∙2 million deaths from diabetes worldwide were 
attributable to exposure to PM2∙5.6

Although the association is established, the underlying 
mechanisms through which air pollution increases 
the risk for type 2 diabetes remain unclear. Insulin 
resis tance is a key factor in the pathogenesis of type 2 
diabetes.7 Recent studies have shown that longterm 

air pollution exposure was associated with decreased 
insulin sensitivity among the general population of adults 
and youth,8–10 patients with diabetes,11 and individ uals 
prone to type 2 diabetes,12–14 suggesting impaired insulin 
sensitivity could be an important intermediate step linking 
air pollution to the development of type 2 diabetes. 
Although most existing evidence is from crosssectional 
studies, the longitudinal association between air pollution 
and insulin sensitivity has not been fully investigated.14,15

In addition, decreasing insulin sensitivity over time has 
been identified as a predictor of incident hyperglycaemia 
and type 2 diabetes, independent of baseline metabolic 
measures in prospective studies.16,17 However, the effects of 
air pollution on the change of insulin sensitivity over time 
have rarely been reported in populationbased studies 
to date. A cohort study14 on Latino children who were 
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overweight or obese showed that longterm exposure to 
elevated PM2∙5 and nitrogen dioxide (NO2) was associated 
with a faster decrease in insulin sensitivity during a mean 
followup of 3∙4 years (SD 3∙1). Such associations are yet 
to be assessed in the general adult population.

In this study, we examined longitudinal associations of 
air pollution with the repeatedly assessed homoeostasis 
model assessment of insulin resistance (HOMAIR), as a 
surrogate marker of insulin sensitivity, and the homoeo
stasis model assessment of βcell function (HOMAB), 
as a surrogate marker of fasting insulin secretion, as well 
as fasting insulin and glucose. We also investigated 
whether air pollution was associated with a change in 
those biomarkers over time, and we explored individual 
characteristics potentially related to the susceptibility to 
air pollution effects. We hypothesised that air pollution 
would be positively associated with the level and the rate of 
change of all investigated biomarkers, especially among 
more susceptible subgroups, such as older adults.

Methods
Study design and participants
In this longitudinal study, we analysed data from the 
Cooperative Health Research in the Region of Augsburg 

(KORA) cohort, which was done in the city of Augsburg, 
Germany, and two adjacent counties.18 Between 1999 
and 2001, 4261 participants aged 25–74 years with German 
citizenship were recruited in the fourth crosssectional 
health survey of the KORA cohort (KORA S4), with 
examinations between Oct 25, 1999, and April 28, 2001. 
Two followup examinations were carried out: the first 
followup, KORA F4, consisted of 3080 participants with 
examinations between Oct 9, 2006, and May 31, 2008; and 
the second followup, KORA FF4, consisted of 2279 par
ticipants with examinations between June 3, 2013, and 
Sept 27, 2014. Participants were invited to the KORA study 
centre, Augsburg, Germany, and completed a computer
assisted personal interview, a selfadministered question
naire, and physical examinations at each visit. Individual 
characteristics relevant in the current study are defined in 
the appendix (p 2).

The KORA study was approved by the ethics com 
mittee of the Bavarian Chamber of Physicians (Munich, 
Germany); all participants gave written informed consent.

Procedures and outcomes
Blood samples were drawn between 0700 h and 1100 h 
after fasting for at least 8 h for the measure ments of 

Research in context

Evidence before this study
We searched PubMed and Google Scholar for studies on air 
pollution and insulin sensitivity published before June 1, 2020, 
using a combination of search terms concerning air pollution 
(“air pollution” OR “air pollutant*” OR “particulate matter” OR 
“PM” OR “ultrafine particles” OR “PNC” OR “soot” OR “black 
carbon” OR “nitrogen dioxide” OR “NO2” OR “ozone” OR “O3”) 
and insulin sensitivity (“insulin resistance” OR “insulin 
sensitivity” OR “insulin” OR “glucose” OR “HOMA-IR”). Studies 
were selected if they were population-based cohort studies that 
could potentially assess longitudinal associations, if they 
assessed long-term air pollution exposure (exposure window 
≥1 year), and if they had insulin sensitivity or resistance as the 
outcome. We identified seven studies, and only one examined 
longitudinal associations of air pollution with both the level 
and the rate of change of insulin sensitivity-related biomarkers 
among Latino children who were overweight or obese. 
One study analysed repeated measurements of biomarkers and 
assessed the association of air pollution with only the degree of 
insulin sensitivity. The remaining five studies did cross-sectional 
analyses on data collected at a single examination in cohorts, 
including two studies of German children and adolescents, 
one on German adults, one on Mexican Americans at high risk 
for diabetes, and one on African-American and Latino youth in 
Los Angeles who were overweight or obese. A meta-analysis 
done in 2018, which included five of the aforementioned 
studies, reported cross-sectional associations of insulin 
sensitivity with particulate matter with an aerodynamic 
diameter of 10 µm and nitrogen dioxide, but not with PM2∙5. 

Overall, little is known about the longitudinal association 
between ambient air pollution and insulin sensitivity, especially 
in the general adult population.

Added value of this study
To the best of our knowledge, this is the first epidemiological 
study on the longitudinal association between ambient air 
pollution and insulin sensitivity in the general adult population. 
Our study found that long-term exposure to air pollution was 
positively associated with the level and the rate of change of 
the homoeostasis model assessment of insulin resistance and 
fasting insulin, suggesting associations of air pollution with 
impaired insulin sensitivity and a more pronounced 
deterioration (or less pronounced improvement) of insulin 
sensitivity over time. In addition, our study found similar 
changes for the homoeostasis model assessment of β-cell 
function, in line with a compensatory increase in insulin 
secretion. Participants who were older, male, unemployed, 
had prediabetes or diabetes, or were physically inactive were 
potentially more susceptible to the adverse air pollution effects 
on insulin sensitivity.

Implications of all the available evidence
Together with the evidence from previous studies, our study 
helps understand the mechanisms through which air pollution 
might be associated with the development of type 2 diabetes. 
Such findings imply an urgent need for air quality improvement 
to mitigate the adverse health effects of air pollution. In addition, 
reducing air pollution exposure could be considered as a 
prevention strategy for type 2 diabetes at the population level.

See Online for appendix
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fasting insulin and glucose concentrations. Blood 
samples were kept on ice after withdrawal and 
transported at 4°C to the laboratories for analysis (to 
the German Diabetes Center laboratory, Düsseldorf, in 
KORA S4, and to the central laboratory in Augsburg in 
KORA F4 and KORA FF4). Detailed information about 
the standard operating procedure, assays of serum 
concentrations of fasting insulin and glucose, and the 
comparability and calibration of diff erent assays is in 
the appendix (p 3). Fasting insulin and glucose in 
KORA S4 were only measured in participants older than 
54 years (n=1357). HOMAIR was calculated as fasting 
insulin (µIU/mL) × fasting glucose (mmol/L) / 22∙5. 
HOMAB was calculated as 20 × fasting insulin 
(µIU/mL) / (fasting glucose [mmol/L] – 3∙5). A higher 
HOMAIR indicates reduced insulin sensitivity, and a 
lower HOMAB indicates decreased fasting insulin 
secretion. For the validity of the assessment, we excluded 
observations by the timepoint of which glucoselowering 
medication (Anatomical Therapeutic Chemical code 
A10) had been used.

Annual average concentrations of ultrafine particles 
(particles ≤100 nm in aerodynamic diameter, represented 
by particle number concentration [PNC]), particulate 
matter with an aerodynamic diameter of 2∙5–10 µm 
(PMcoarse), PM2∙5, PM2∙5 absorbance (PM2∙5abs, a proxy of 
elemental carbon related to traffic exhaust), NO2, and 
ozone (O3) were estimated using landuse regression 
(LUR) models. In brief, we carried out three 2week 
measurements at 20 locations within the KORA study 
area between March 6, 2014, and April 7, 2015, covering 
the warm, cold, and intermediate seasons, and we 
calculated annual average air pollutant concentrations at 
those sites. We built LUR models by regressing the 
measured annual average concentrations in 2014–15 
against geographic information systembased spatial 
predictors, and we applied the fitted models to 
participants’ home addresses to determine residential 
exposure levels. The adjusted modelexplained variance 
(R²) ranged from 0∙68 (PMcoarse) to 0∙94 (NO2), and the 
adjusted leaveoneout crossvalidation R²s were between 
0∙55 (PMcoarse) and 0∙89 (NO2), indicating good model fit. 
Further information about this approach is given 
elsewhere.19 For participants who moved house during 
the study period, the updated residential addresses were 
used for exposure assignment; otherwise, the same 
exposure levels were assigned across different visits.

To control for potential confounding effects of road 
traffic noise and greenspace, we assigned annual average 
day–night sound level and normalised difference vegeta
tion index (NDVI) in a 300 m buffer (as a surrogate 
for surrounding greenness) to participants’ residential 
addresses. Assessments of noise and NDVI are in the 
appendix (p 4).

The outcome variables were HOMAIR, HOMAB, 
fasting insulin, and fasting glucose. Participant obser
vations were excluded from analysis if the residential 

address was unavailable, there was no data on fasting 
insulin and glucose, they were taking glucoselowering 
medication, the blood sample was drawn after 1100 h, or 
there were missing values in the covariates of the main 
model.

Statistical analysis
We applied linear mixedeffects models with random 
intercepts for participants to examine associations of air 
pollution with repeatedly assessed HOMAIR, HOMAB, 
fasting insulin, and fasting glucose levels. All outcome 
values were natural logtransformed to increase the con
formity to normal distributions of residuals. Covariates 
in models were selected a priori on the basis of the 
disjunctive cause criterion,20 the covariate being the cause 
of either the exposure or the outcome, or both, but not in 
the potential causal pathway linking exposure to the 
outcome. Minimum models were adjusted for age, sex, 
bodymass index (BMI), visits (KORA S4, KORA F4, or 
KORA FF4), and the yearly season of blood withdrawal. 
Main models additionally included educational attain
ment, occupational status, smoking status and packyears, 
alcohol consumption, and physical activity. Extended 
models were further controlled for waist–hip ratio, high
density lipoprotein, and total cholesterol. To assess the 
potential confounding effect of residential road traffic 
noise and greenspace, we built a second extended model 
by adding noise and NDVI to the main model. Annual 
average air pollutant concentrations were included 
separately in each model as a linear term. Effect estimates 
are presented as percent changes with 95% CIs in the 
geometric mean of the repeatedly assessed biomarker 
per IQR increase in air pollutant concentrations. We 
examined the linearity of the exposure–response 
relationship using a penalised spline of the air pollutant 
with degrees of freedom chosen by generalised cross 
validation.

For participants with biomarkers measured at more 
than one visit, we calculated the annual rate of change in 
HOMAIR, HOMAB, fasting insulin, and fasting glucose 
as the slope coefficient of a linear regression of bio
marker levels regressed against years since baseline 
(KORA S4 or KORA F4, whichever the first measurement 
occurred in). Because the rate values were not normally 
distributed and the logtransformation was not applicable 
to negative values, we assessed associations between air 
pollution and the annual rate of change in biomarkers 
(original scale) using quantile regression models, which 
do not make assumptions about the residual distribution 
and are more robust to outliers in the outcome. To 
reduce the selection bias introduced by the selection of 
individuals with more than one measurement, we first 
estimated the weight for the included participants using 
the inverse probability weighting approach.21 Specifically, 
we modelled the probability of being included in the rate 
of change analysis among all participants in KORA S4 via 
logistic regression, using individual characteristics in the 
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main mixedeffects model as predictors. The inverse of 
the predicted probability derived from the regression 
model was used as the weight in the quantile regression 
model, aiming to upweight participants who were 
underrepresented in the rate of change analysis. The 
quantile regression model was adjusted for baseline 
covariates including age, sex, BMI, educational attain
ment, occupational status, smoking status and pack
years, alcohol consumption, physical activity, and 

baseline levels of the investigated biomarker, as well as 
annual rates of change in BMI and smoking packyears, 
and an indicator for the visits used in the calculation of 
the rate of change. Results are presented as absolute 
changes (with 95% CIs) in the annual rate of change at 
deciles of the distribution of rate values per IQR increase 
in air pollutant concentrations.

Effect modification was investigated by including an 
interaction term between the air pollutant and the 
potential effect modifier, which was assessed at each 
visit for the mixedeffects models and at the first visit for 
the quantile regression models. The examined modifiers 
included age (<60 years vs ≥60 years), sex (male vs 
female), educational attainment (high vs low), occupa
tional status (employed vs not employed), smoking 
status (current vs former smoker or never), physical 
activity (low vs medium or high), obesity (BMI <30 kg/m² 
vs ≥30 kg/m²), and diabetes status (normal glucose 
tolerance vs prediabetes or diabetes).

In sensitivity analyses, we first built twopollutant 
models by simultaneously including two pollutants 
that were not strongly correlated (r <0∙7). Second, we 
excluded observations with fasting insulin higher than 
the 90th percentile in KORA S4, to generate a similar 
distribution across the three visits. Third, we excluded 
participants who moved during the study period to 
reduce exposure misclassification. Fourth, we excluded 
observations without a documented time of blood 
withdrawal. Moreover, we did the following sensitivity 
analyses for only the repeated measurements (mixed
effects model). We excluded outliers in outcomes 
defined as natural logtransformed values less than 
Q1 – 1∙5 × IQR or more than Q3 + 1∙5 × IQR (appendix 
p 11). Additionally, we adjusted for fasting insulin or 
fasting glucose in models of HOMAIR and HOMAB, 
and we used backextrapolated annual average air 
pollutant concentra tions in the year of each visit 
instead of the LURestimated annual average in 2014–15, 
which further took into account the temporal variation 
in exposure. A detailed description of the backextra
polation approach is in the appendix (pp 4–5). For the 
annual rate of change analysis, we fitted models without 
control for the annual rate of change in BMI and 
smoking packyears to examine the effect of time
varying adjustment, and models with control for road 
traffic noise and NDVI.

All statistical analyses were done with R (version 3.6.2), 
and the significance level was set at twosided p value of 
less than 0∙05.

Role of the funding source
The funder of the study had no role in study design, 
data collection, data analysis, or data interpretation, the 
writing of the report, or the decision to submit the paper 
for publication. All authors had full access to all the data 
in the study, and the corresponding author had final 
responsibility for the decision to submit for publication.

KORA S4 
examination 
(n=1312)*†

KORA F4 
examination 
(n=2704)†

KORA FF4 
examination 
(n=1992)†

HOMA-IR 3∙7 (5∙1); 
median 2∙5

2∙6 (2∙1); 
median 2∙0

2∙7 (2∙1); 
median 2∙1

HOMA-B 137∙8 (202∙9); 
median 99∙0

120∙0 (66∙4); 
median 104∙9

109∙6 (62∙1); 
median 95∙1

Fasting insulin, µIU/mL 14∙1 (19∙5); 
median 10∙1

10∙6 (7∙2); 
median 8∙7

10∙6 (6∙9); 
median 8∙9

Fasting glucose, mg/dL 102∙4 (17∙2); 
median 99∙0

95∙8 (14∙3); 
median 93∙0

98∙9 (14∙0); 
median 97∙0

Age, years 63∙9 (5∙5) 55∙2 (12∙9) 59∙6 (12∙3)

Sex

Female 635 (48%) 1407 (52%) 1041 (52%)

Male 677 (52%) 1297 (48%) 951 (48%)

Body-mass index (kg/m²) 28∙4 (4∙2) 27∙4 (4∙6) 27∙5 (4∙9)

Occupation (employed) 313 (24%) 1581 (58%) 1165 (58%)

Education (high) 1049 (80%) 2492 (92%) 1867 (94%)

Smoking pack-years 14∙2 (23∙1) 11∙9 (18∙8) 11∙4 (18∙0)

Smoking status

Current smoker 183 (14%) 505 (19%) 320 (16%)

Former smoker 493 (38%) 1037 (38%) 803 (40%)

Never 636 (48%) 1162 (43%) 869 (44%)

Alcohol consumption

No 338 (26%) 790 (29%) 526 (26%)

Moderate 702 (54%) 1430 (53%) 1093 (55%)

High 272 (21%) 484 (18%) 373 (19%)

Physical activity

Low 534 (41%) 830 (31%) 529 (27%)

Medium 540 (41%) 1191 (44%) 931 (47%)

High 238 (18%) 683 (25%) 532 (27%)

Diabetes status‡

Normal glucose tolerance 596 (46%) 1690 (64%) 1045 (54%)

Prediabetes 588 (45%) 812 (31%) 751 (39%) 

Diabetes 124 (9%) 156 (6%) 137 (7%)

Waist–hip ratio‡ 0∙90 (0∙08) 0∙88 (0∙09) 0∙90 (0∙09)

Cholesterol, mg/dL‡ 243∙3 (41∙8) 217∙1 (39∙4) 217∙9 (39∙2)

HDL, mg/dL‡ 58∙3 (16∙4) 56∙2 (14∙4) 66∙3 (18∙8)

Data are mean (SD) or n (%), unless otherwise indicated. KORA=Cooperative Health Research in the Region of 
Augsburg. S4=fourth cross-sectional health survey of the KORA cohort. F4=first follow-up examination of KORA S4. 
FF4=second follow-up examination of KORA S4. HOMA-IR=homeostasis model assessment of insulin 
resistance. HOMA-B=homeostasis model assessment of β-cell function. HDL=high-density lipoproteins. *Participants 
in KORA S4 were restricted to individuals older than 54 years. †Medians of some outcomes were reported due to their 
skewed distributions. ‡Diabetes status was missing for four (<0∙5%) participants in in KORA S4, 46 (2%) in KORA F4, 
and 59 (3%) in KORA FF4; waist–hip ratio was missing for one (<0∙5%) participant in KORA FF4; cholesterol was 
missing for one (<0∙5%) participant in KORA S4; and HDL was missing for two (<0∙5%) participants in KORA S4.

Table 1: Descriptive statistics of participant characteristics at each examination
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Results
Among 9620 observations from 4261 partici pants in the 
KORA cohort, we included 6008 (62·5%) observations 
from 3297 (77·4%) participants in our ana lyses. The 
exclusion process is detailed in the appendix (p 12). 
Altogether, 466 (14·1%) of 3297 participants com pleted all 
three examinations, 1776 (53·9%) completed two, and the 
remaining 1055 (32·0%) completed one examination, 
giving a total of 1312 participants in KORA S4, 2704 in 
KORA F4, and 1992 in KORA FF4. In general, the dis
tributions of fasting insulin and glucose concentrations 
were similar across KORA S4, KORA F4, and KORA FF4 
among participants of the same age range, except that 
the 90th percentile of fasting insulin in KORA S4 was 
higher than that in KORA F4 and KORA FF4. In addition, 
these concentration dis tributions did not show substantial 
diurnal variations between 0700 h and 1100 h (appendix 
p 10).

Due to the age restriction in KORA S4 (fasting insulin 
and glucose were only measured in participants aged 
>54 years), only 1366 (32·1%) of 4261 participants con
tributed data on HOMAIR, HOMAB, fasting insulin, 
and fasting glucose, and thus, KORA S4 participants 
were on average older and had higher mean concen
trations of these biomarkers than KORA F4 and 
KORA FF4 participants (table 1). We observed moderate 
to strong positive correlations between these biomarkers, 
except for a weak negative correlation between HOMAB 
and fasting glucose (appendix p 13). Compared with 
all KORA par ticipants, participants included in the 
analysis of repeated measurements had generally similar 
characteristics, whereas participants in the rate of 
change analysis had lower BMI and smoke exposure, and 
higher educational attainment, alcohol consumption, 
and physical activity at recruitment (appendix p 6).

The annual rate of change in HOMAIR ranged 
from –6∙20 to 3∙96 units per year, with a median of 
0∙03 (IQR –0∙05 to 0∙12) units per year (appendix p 7). 
Participants with increasing HOMAIR (n=1336) were 
more likely to have normal glucose tolerance and 
lower HOMAIR, HOMAB, fasting insulin, and fasting 
glucose at the first visit than were participants with 
unchanged (n=12) or decreasing (n=894) HOMAIR over 
time; this pattern was reversed for the last visit (appendix 
p 8). Although BMI was similar between the two sub
groups with increasing or unchanged and decreasing 
HOMAIR at the first visit, it tended to be higher among 
participants with increasing HOMAIR at the last visit.

Annual average concentrations of PM2∙5 and NO2 at 
participants’ residences were well below the EU air 
quality standards values of 25 µg/m³ for PM2·5 and 
40 µg/m³ for NO2, although the PM2∙5 level exceeded the 
WHO guideline value of 10 µg/m³ (table 2). Correlations 
between air pollutants were moderate to strong, except 
for weak correlations with O3 (appendix p 13).

Concerning repeated measurements of biomarkers, 
elevated PMcoarse, PM2∙5, PM2∙5abs, NO2, and, to a lesser 

extent, O3, were linearly associated with increases in 
HOMAIR, HOMAB, and fasting insulin (table 3). We 
did not find associations between air pollution and 
fasting glucose. The results were robust to the adjustment 
for additional covariates in the extended models; only 
PM2∙5abs and NO2 effects on HOMAIR and fasting insulin 
slightly increased with further control for noise and 
NDVI (appendix p 14). Exposure–response relationships 
did not substantially deviate from linearity except for 
PNC with HOMAIR, HOMAB, and fasting insulin 
(appendix p 15). When restricting our analyses to the 
linear section of the relationship (PNC <12∙7 × 10³/cm³), 
we observed positive associations of PNC with HOMAIR, 
HOMAB, and fasting insulin.

Mean (SD) Range Median (IQR)

PNC, ×10³/cm³ 7∙3 (1∙8) 3∙2–15∙7 7∙3 (6∙2–8∙2)

PMcoarse, μg/m³ 5∙0 (1∙0) 2∙5–9∙2 5∙0 (4∙3–5∙7)

PM2∙5, μg/m³ 11∙8 (1∙0) 8∙3–14∙8 11∙9 (11∙1–12∙5)

PM2∙5abs, 10–⁵/m 1∙2 (0∙2) 0∙8–1∙9 1∙2 (1∙1–1∙4)

NO2, μg/m³ 14∙4 (4∙5) 6∙9–28∙2 14∙0 (10∙8–17∙9)

O3, μg/m³ 39∙0 (2∙4) 31∙3–46∙2 39∙0 (37∙2–40∙7)

Road traffic noise, dB 54∙8 (6∙6) 22∙3–75∙4 53∙9 (50∙6–58∙6)

NDVI 0∙1 (0∙1) 0∙0–0∙3 0∙1 (0∙0–0∙1)

Exposure levels were estimated at participants’ residences in KORA S4 in this 
descriptive analysis. For 19 participants whose residential information was missing 
in the KORA S4 survey, residential addresses in KORA F4 were used. 
NDVI=normalised difference vegetation index. NO2=nitrogen dioxide. O3=ozone. 
PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. 
PM2∙5abs=PM2∙5 absorbance. PNC=particle number concentration. KORA=Cooperative 
Health Research in the Region of Augsburg. S4=fourth cross-sectional health 
survey of the KORA cohort. F4=first follow-up examination of KORA S4. 

Table 2: Distribution of annual average air pollutant concentrations, 
road traffic noise, and NDVI at residences (n=3297)

HOMA-IR HOMA-B Fasting insulin Fasting glucose

PNC 0∙7 (–1∙0 to 2∙4) 0∙8 (–0∙8 to 2∙4) 0∙7 (–0∙8 to 2∙3) –0∙1 (–0∙4 to 0∙3)

PNC (linear)* 2∙1 (0∙2 to 4∙0) 2∙3 (0∙5 to 4∙1) 2∙1 (0∙4 to 3∙9) 0∙0 (–0∙5 to 0∙4)

PMcoarse 2∙5 (0∙3 to 4∙7) 2∙0 (–0∙1 to 4∙0) 2∙4 (0∙4 to 4∙4) 0∙1 (–0∙4 to 0∙6)

PM2∙5 3∙1 (0∙9 to 5∙3) 2∙7 (0∙6 to 4∙7) 3∙0 (1∙0 to 5∙0) 0∙1 (–0∙4 to 0∙6)

PM2∙5abs 3∙6 (1∙0 to 6∙3) 2∙7 (0∙2 to 5∙2) 3∙4 (1∙0 to 5∙9) 0∙2 (–0∙4 to 0∙8)

NO2 3∙2 (0∙6 to 5∙8) 2∙5 (0∙1 to 4∙9) 3∙1 (0∙7 to 5∙4) 0∙2 (–0∙4 to 0∙7)

O3 2∙2 (–0∙1 to 4∙5) 1∙0 (–1∙1 to 3∙2) 1∙9 (–0∙2 to 4∙0) 0∙3 (–0∙3 to 0∙8)

Mixed-effects models for repeated measurements of biomarkers were adjusted for age, sex, BMI, visits, season, 
educational attainment, occupational status, smoking status and pack-years, alcohol consumption, and physical activity. 
Outcome variables were natural log-transformed in analyses, and the effect estimates are presented as the percentage 
changes in the geometric mean of repeatedly assessed biomarkers. The geometric mean was 2∙2 for HOMA-IR, 102∙3 for 
HOMA-B, 9∙4 µIU/mL for fasting insulin, and 97∙3 mg/dL for fasting glucose. An IQR increase was 2∙0 × 10³/cm³ for PNC, 
1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. 
HOMA-IR=homeostasis model assessment of insulin resistance. HOMA-B=homeostasis model assessment of β-cell 
function. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. 
PM2∙5abs=PM2∙5 absorbance. NO2=nitrogen dioxide. O3=ozone. *Exposure–response relationships between the whole range 
of PNC and repeated measurements of HOMA-IR, HOMA-B, and fasting insulin were not linear. We restricted the analyses 
to PNC <12∙7 × 10³/cm³ (cutoff values suggested by the exposure–response curve; n=5927) to assess the linear 
relationship. The association between PNC and fasting glucose was also investigated in the reduced PNC range.

Table 3: Percentage changes (95% CIs) in the repeated measurements (n=6008) of biomarkers per IQR 
increase in air pollutant concentrations
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The annual rate of change in HOMAIR was positively 
associated with PNC, PM2∙5abs, and NO2 at the 10th to 
70th percentiles of the rate value distribution (ie, rate of 
change ≤0∙10 units per year), with PMcoarse at all deciles, 
with PM2∙5 at lower percentiles, and with O3 at higher 
percentiles (figure 1; appendix p 9). Positive associations at 
rate values above zero (ie, the 40th to 90th percentiles) 
indicate air pollutionrelated greater decline in insulin 
sensitivity over time, whereas positive associations at rate 

values below zero indicate that air pollution attenuated 
improvement in insulin sensitivity. Particles and NO2 were 
positively associated with the annual rate of change in 
HOMAB and fasting insulin, with exceptions at the lowest 
or highest end, or both, for PM2∙5, PM2∙5abs, and NO2 (figure 2; 
appendix pp 9, 16). Associations of O3 with HOMAB and 
fasting insulin were similar to those with HOMAIR. No 
consistent associations were observed for the annual rate of 
change in fasting glucose (appendix pp 9, 17).

Figure 1: Absolute changes (95% CIs) in the annual rate of change in HOMA-IR at deciles of the distribution per IQR increase in air pollutant concentrations
Quantile regression models for the annual rate of change were adjusted for baseline levels of the investigated biomarker, age (baseline), sex, BMI (baseline), 
annual rate of change in BMI, educational attainment (baseline), occupational status (baseline), smoking status and pack-years (baseline), annual rate of change in 
smoking pack-years, physical activity (baseline), and an indicator for the visits used in the calculation of the rate of change. Area on the left side of the dashed line 
indicates increasing insulin sensitivity over years (annual rate of change below zero); area on the right side of the dashed line indicates decreasing insulin sensitivity 
over years (annual rate of change above zero). Values (ie, 0∙1–0∙9) above the error bars indicate deciles of the distribution of the annual rate of change. An IQR increase 
was 2∙0 × 10³/cm³ for PNC, 1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. HOMA-IR=homeostasis model 
assessment of insulin resistance. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. PM2.5abs=PM2∙5 absorbance. 
NO2=nitrogen dioxide. O3=ozone.
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The associations of particles and NO2 with repeated 
measurements of HOMAIR, HOMAB, and fasting 
insulin were significantly stronger among participants 
who were older than 60 years, male, or not employed, 
and suggestively stronger among physically inactive 
individuals (appendix pp 18–19). Males also showed 
higher susceptibility to air pollution effects on fasting 
glucose. For the annual rate of change, we observed 
stronger associations of particles and NO2 with 

HOMAIR, fasting insulin, and fasting glucose (rate 
values above zero) among older adults, and with 
HOMAIR, HOMAB, and fasting insulin among males 
and participants with prediabetes or diabetes (examples 
in the appendix pp 20–21). No effect modification was 
found for other potential modifiers (data not shown).

In terms of sensitivity analysis, the associations of 
particles and NO2 with repeated measurements of 
biomarkers were robust to additional adjustment for O3, 

Figure 2: Absolute changes (95% CIs) in the annual rate of change in HOMA-B at deciles of the distribution per IQR increase in air pollutant concentrations
Quantile regression models for the annual rate of change were adjusted for baseline levels of the investigated biomarker, age (baseline), sex, BMI (baseline), annual 
rate of change in BMI, educational attainment (baseline), occupational status (baseline), smoking status and pack-years (baseline), annual rate of change in smoking 
pack-years, physical activity (baseline), and an indicator for the visits used in the calculation of the rate of change. Area on the left side of the dashed line indicates 
decreasing insulin secretion over years (annual rate of change below zero); area on the right side of the dashed line indicates increasing insulin secretion over years 
(annual rate of change above zero). Values (ie, 0∙1–0∙9) above the error bars indicate deciles of the distribution of the annual rate of change. An IQR increase was 
2∙0 × 10³/cm³ for PNC, 1∙4 μg/m³ for PMcoarse, 1∙4 μg/m³ for PM2∙5, 0∙3 × 10–⁵/m for PM2∙5abs, 7∙1 μg/m³ for NO2, and 3∙5 μg/m³ for O3. HOMA-B=homeostasis model 
assessment of β-cell function. PNC=particle number concentration. PMcoarse=particulate matter with an aerodynamic diameter of 2∙5–10 µm. PM2.5abs=PM2∙5 absorbance. 
NO2=nitrogen dioxide. O3=ozone.
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and vice versa (appendix p 22). Adjustment for PM2∙5 
attenuated the effect estimates of other particles, and 
the effect estimates of PM2∙5 slightly decreased after 
including PMcoarse and PM2∙5abs. For the annual rate of 
change, the effect estimates of PM2∙5 were attenuated 
by adjustment for PNC, PMcoarse, and PM2∙5abs. The other 
associations remained stable in twopollutant models 
(appendix pp 23–26).

Associations between air pollution and biomarkers 
were generally robust in sensitivity analyses (appendix 
pp 27, 29–32). However, air pollution effects on repeated 
measurements of HOMAIR and HOMAB substantially 
decreased when controlled for fasting insulin (appendix 
p 28). Additionally, further adjustment for road traffic 
noise and NDVI increased the effects of air pollution 
on the annual rate of change in HOMAIR, fasting 
insulin, and fasting glucose. Excluding observations 
with fasting insulin in KORA S4 that were higher than 
the 90th percentile attenuated effects on the annual rate 
of change in fasting insulin at specific percentiles.

Discussion
In this longitudinal study with biomarkers measured up 
to three times, participants exposed to elevated particulate 
matter, NO2, and O3 had higher levels of HOMAIR, 
HOMAB, and fasting insulin. Moreover, we observed 
positive associations between air pollution and the 
annual rate of change in HOMAIR, HOMAB, and 
fasting insulin over time. No significant associations 
were found between air pollution and fasting glucose in 
the whole study population. Participants who were older 
than 60 years, male, not employed, physically inactive, 
or who had prediabetes or diabetes were potentially 
more susceptible to the effects of air pollution on the 
investigated biomarkers.

Insulin resistance is characterised by a lower response 
of tissues to insulin stimulation and is usually measured 
as impaired insulinstimulated skeletal muscle glucose 
uptake and glycogen synthase activity.22 It has an important 
role in the development of type 2 diabetes and is also 
associated with higher incident cardiovascular disease.23 
Our finding of positive associations between air pollution 
and HOMAIR and fasting insulin levels suggest an air 
pollutionrelated decrease in insulin sensitivity. Consistent 
findings were reported in our previous crosssectional 
analyses10 on data from KORA F4, as well as among 
children and adolescents in two German birth cohorts8,9 
and a US childhood obesity study,12 and among Mexican
American adults with higher risks of type 2 diabetes.13 
However, other longterm exposure studies did not find 
significant associations between air pollution and insulin 
sensitivity, including the Framingham Heart Study15 and 
the MetaAIR study.24 The mixed results could be partly 
due to different population susceptibility. Studies have 
shown that children are more susceptible to adverse 
health effects of air pollution because of their higher 
minute ventila tion, higher levels of physical activity, and 

dynamic developmental physiology.25 Individuals with 
higher genetic risk of type 2 diabetes were also shown to 
be more susceptible to the effects of particulate matter 
on diabetes.26 Moreover, effects on insulin sensitivity could 
vary across different air pollutants; for example, stronger 
effects have been observed for trafficrelated exposure 
metrics than for PM2∙5.15

In addition, we observed positive associations of air 
pollution with the annual rate of change in HOMAIR 
and fasting insulin, suggesting a faster deterioration of 
insulin sensitivity related to air pollution exposure. In 
the subgroup with increasing insulin sensitivity over 
time (annual rate of change below zero), which might be 
attributable to beneficial lifestyle changes, weight loss, or 
both, such positive associations indicate that elevated 
air pollution exposure could slow down the process of 
improvement. So far, air pollution effects on the 
change in insulin sensitivity were assessed only among 
314 Latino children (8–15 years) in Los Angeles who were 
over weight or obese, showing that longterm exposure 
to PM2∙5 and NO2 was associated with an increased 
decline in insulin sensitivity.14 Our study replicated these 
findings among the general adult population, and further 
provided evidence for the heterogeneity of air pollutant 
effects across different degrees of change in insulin 
sensitivity.

Our study did not find associations between air 
pollution and fasting glucose, and the air pollution 
effects on HOMAIR were attenuated only by further 
adjustment for fasting insulin. These findings indicate 
that the positive associations between air pollution and 
HOMAIR are mainly driven by the air pollutionrelated 
increase in fasting insulin rather than fasting glucose. 
This conclusion is supported by the theory that impaired 
insulin sensitivity might first lead to an increase in 
insulin secretion to compensate for reduced insulin 
signalling and maintain normal glucose tolerance.27 
Therefore, our positive associations between air pollution 
and HOMAB indicate increased fasting βcell insulin 
secretion in response to impaired insulin sensitivity, 
rather than improved βcell function.

Several mechanisms have been proposed whereby air 
pollution could potentially affect insulin sensitivity. For 
example, air pollution exposure has been shown to 
increase systemic levels of proinflammatory cytokines, 
such as tumour necrosis factorα and interleukin1. 
These cytokines could contribute to the development of 
insulin resistance by activating cJun Nterminal kinase, 
which inhibits insulin signalling through serine 
phosphorylation of insulin receptor substrate proteins.28 
In addition, PM2∙5 exposure was shown to induce 
pulmonary oxidative stress, thereby decreasing AKT 
and endothelial nitric oxide synthase phosphorylation, 
and impairing insulin signalling via the PI3kinase–
AKT pathway.29,30 Moreover, air pollutionmediated over
activity of the sympathetic nervous system could further 
exacerbate insulin resistance.31
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Our study identified subgroups with stronger responses 
to the effect of air pollution on insulin sensitivity. 
Such predisposition is determined by both intrinsic and 
external factors. The greater susceptibility of older adults 
has been frequently reported, which could be explained 
by declines in physiological processes (eg, reduced 
clearance of particulate matter) and a higher prevalence 
of preexisting diseases that might confer increased risks 
for adverse health effects.32 The sexrelated difference in 
the effects of air pollution is potentially associated with 
sexspecific biological, social, or behavioural traits that 
could affect the deposition rate of pollutants and expo sure 
patterns. Given the currently mixed evidence regarding 
effect modification by sex,33 further investigation is 
needed to elucidate possible mechanisms. Stronger 
associations in participants with prediabetes or diabetes 
could be related to their chronic inflammatory state,34 
which might enhance the inflammatory response to air 
pollution.26,35 Additionally, these participants might have 
a higher genetic risk of type 2 diabetes and thus be 
more susceptible to air pollution effects than individuals 
without diabetes.26 The interpretation of effect modifica
tion should also consider the potential nondifferential 
exposure misclassification, which has been proved to 
underestimate the effects of air pollution assessed at a 
residence. In our study, employed participants who 
commuted to their workplaces had a greater risk of 
exposure misclassification than participants who were 
not employed and were likely to spend more time around 
their residences, and thus smaller effect estimates were 
expected in employed individuals.

Our study used HOMAIR rather than direct measures 
of insulin sensitivity, such as the glucose clamp technique 
and the minimal model assessment, in consideration of 
convenience and cost savings. Of note, HOMAIR reflects 
fastingstate insulin sensitivity, whereas the dynamic 
tests reflect postprandial insulin stimulated conditions. 
The limitations of HOMAIR have been previously 
documented. For instance, Bergman and colleagues36 
reported that HOMAIR did not measure the same 
genetic contribution to insulin resistance as is reflected 
in minimal modelbased insulin sensitivity, but that 
it captured more in terms of environmental factors. 
Furthermore, differences related to ethnicity and sex 
have been found in the ability of HOMAIR to predict 
insulin sensitivity.37 However, several studies have shown 
a strong correlation between HOMAIR and insulin 
sensitivity as determined by the glucose clamp in various 
populations (r=–0∙82; p<0∙0001 in one study;38 r=–0∙71; 
p<0∙01 in another;39 and Rs=0∙88; p<0∙0001 in a third 
study40). HOMAIR has also been recently validated 
against the hyperinsulinaemic clamp in a German cohort 
and both tests identified groups of diabetes clusters.41 
In sum, HOMAIR has developed as a reliable and 
practical measure of insulin sensitivity in comparable 
cohorts. In addition, it should be noted that HOMAB 
only assesses fasting insulin secretion, and data for 

dynamic measures of insulin secretion, such as the 
insulinogenic index, were not available in our study.

The KORA cohort is a well characterised study with a 
standardised and comprehensive collection of individual 
information, which enhanced the reliability of our 
results. The longitudinal study design with repeated 
measurements of biomarkers strengthened statistical 
power and reduced potential residual confounding from 
unmeasured factors. In addition, the design enabled 
examination of the change of insulin sensitivity over 
time, which provided a better understanding of the 
longitudinal air pollution effects on the development of 
type 2 diabetes. Furthermore, the residential air pollutant 
concentrations, which were estimated using well defined 
LUR models, captured the spatial variation in exposure 
and enabled us to draw conclusions from consistent 
patterns across various air pollutants, reducing the risk 
of chance findings. The finding of associations between 
PNC and insulin sensitivity provide evidence for the 
adverse longterm health effect of ultrafine particles, 
which has been understudied so far.

One limitation of our study is that the air pollutant 
concentrations were estimated using spatial models 
for 2014–15. Although we believe that these exposure 
estimates are valid for the historical spatial contrasts, 
because previous studies have shown that the spatial 
variation in exposure remained stable over time,42 we did 
not take into account the temporal variation in exposure. 
By applying backextrapolated air pollution concentra
tions, we assessed the potential effect of temporal 
variation, and the robust results validated our exposure 
assessment approach. Second, we assigned air pollution 
concentrations to residential addresses and did not allow 
for the mobility of participants. This nondifferential 
exposure misclassification might have biased the effect 
estimates towards the null. Third, we did not adjust for 
timevarying covariates other than BMI and smoking 
packyears in the rate of change analysis, which might 
have resulted in residual confounding. Additionally, 
there could also be residual confounding by unmeasured 
factors.

In conclusion, our study suggests that longterm 
exposure to elevated air pollution was associated with 
decreased insulin sensitivity and a more pronounced 
deterioration (or less pronounced improvement) of 
insulin sensitivity over time, with compensatory increased 
insulin secretion. These findings support one underlying 
mechanism of the effects of air pollution on the develop
ment of type 2 diabetes in the general adult population. 
From a public health perspective, our study indicates that 
it would be beneficial to reduce air pollution exposure, in 
addition to making lifestyle interventions, to mitigate the 
health burden of type 2 diabetes.
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