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Abstract 

Background:  Analysis of circulating free DNA (cfDNA) is a promising tool for personalized management of colorectal 
cancer (CRC) patients. Untargeted cfDNA analysis using whole-genome sequencing (WGS) does not need a priori 
knowledge of the patient´s mutation profile.

Methods:  Here we established LIquid biopsy Fragmentation, Epigenetic signature and Copy Number Alteration 
analysis (LIFE-CNA) using WGS with ~ 6× coverage for detection of circulating tumor DNA (ctDNA) in CRC patients as a 
marker for CRC detection and monitoring.

Results:  We describe the analytical validity and a clinical proof-of-concept of LIFE-CNA using a total of 259 plasma 
samples collected from 50 patients with stage I-IV CRC and 61 healthy controls. To reliably distinguish CRC patients 
from healthy controls, we determined cutoffs for the detection of ctDNA based on global and regional cfDNA frag‑
mentation patterns, transcriptionally active chromatin sites, and somatic copy number alterations. We further com‑
bined global and regional fragmentation pattern into a machine learning (ML) classifier to accurately predict ctDNA 
for cancer detection. By following individual patients throughout their course of disease, we show that LIFE-CNA 
enables the reliable prediction of response or resistance to treatment up to 3.5 months before commonly used CEA.

Conclusion:  In summary, we developed and validated a sensitive and cost-effective method for untargeted ctDNA 
detection at diagnosis as well as for treatment monitoring of all CRC patients based on genetic as well as non-genetic 
tumor-specific cfDNA features. Thus, once sensitivity and specificity have been externally validated, LIFE-CNA has the 
potential to be implemented into clinical practice. To the best of our knowledge, this is the first study to consider 
multiple genetic and non-genetic cfDNA features in combination with ML classifiers and to evaluate their potential in 
both cancer detection and treatment monitoring.

Trial registration DRKS00012890.
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Background
Liquid biopsy (LB) is a highly promising tool for per-
sonalized patient management [1–5]. An important LB 
marker is circulating tumor DNA (ctDNA), which rep-
resents the fraction of circulating free DNA (cfDNA) 
released by tumor cells [6]. A major challenge in ctDNA 
analysis is the very low fractions of ctDNA in total 
cfDNA (commonly < 5%) [6, 7]. Therefore, methods with 
high analytical sensitivity and specificity are required 
[8–10], but to date, mainly methods targeting frequent 
hotspot variants have been validated [11–14]. However, 
this approach limits the application of LB to patients with 
known genetic tumor profiles. To extend the advantages 
of LB to all cancer patients, highly sensitive untargeted 
methods are required.

A commonly used approach for untargeted ctDNA 
detection is shallow whole-genome sequencing (WGS) 
(i.e., < 1× coverage) to identify genome-wide somatic 
copy number alterations (SCNAs) [15] However, this 
approach requires ctDNA fractions of at least 5% to 10% 
that may be present in a subset of CRC samples only 
[15–17]. Various studies suggest that enrichment of the 
ctDNA fraction in cfDNA by size selection, tumor-spe-
cific fragmentation patterns, and epigenetic signatures 
can enhance ctDNA detection [18–21].

In this study, we developed LIquid biopsy Fragmenta-
tion, Epigenetic signature and Copy Number Alteration 
analysis (LIFE-CNA) as an untargeted approach to detect 
ctDNA with high sensitivity in plasma samples of colo-
rectal cancer (CRC) patients as a diagnostic, predictive 
and prognostic marker. To enable detection of ctDNA 
fractions < 5%, we increased coverage from shallow WGS 
to ~ 6× and combined the Illumina DRAGEN CNV (copy 
number variation) workflow with the Plasma-Seq pipe-
line for copy number profiling [15, 22], a fragmentation 
pipeline, and LIQUORICE, a tool for the identification 
of coverage in open-chromatin regions [20]. With this 
workflow, we integrated detection of multiple cfDNA fea-
tures, including focal SCNAs, cfDNA fragmentation pat-
terns and chromatin signatures, and established machine 
learning (ML) classifiers for the highly sensitive detec-
tion of ctDNA. Using LIFE-CNA, we aimed to establish 
cutoffs for ctDNA detection to facilitate translation of 
untargeted LB analysis into clinical practice. We further 
evaluated whether ctDNA analysis using LIFE-CNA is 
able to predict response or resistance to treatment. For 
analytical validation and a clinical proof-of-concept of 
LIFE-CNA, 259 cfDNA samples from 50 patients with 
stage I-IV CRC and 61 healthy controls were analyzed. To 
the best of our knowledge, this is the first study combin-
ing SCNA and fragmentation profiles for disease moni-
toring and providing a complete analytically validated 
workflow showing a clinical proof-of-concept that can be 

easily implemented into clinical practice to support CRC 
patient management.

Methods
Study design and participants
A total of 259 plasma samples were collected from 50 
patients with UICC stage I-IV CRC (7 stage I, 14 stage 
II, 11 stage III, 18 stage IV) and 61 healthy individuals 
aged 20 to 88  years from March 2018 until April 2022 
(Additional file  1: Table  S1, Figure S1; Additional file  2: 
Table S2) [23]. 55 healthy controls were included in the 
reference set. Six healthy controls were used for exter-
nal validation of LIFE-CNA. 198 plasma samples from 
50 CRC patients were collected at diagnosis and during 
follow-up. These samples were categorized according to 
the time of sample collection during the course of disease 
(Additional file 1: Methods, Table S1). The course of dis-
ease was monitored by colonoscopies and imaging dur-
ing routinely scheduled follow-up examinations. 134 of 
the 198 plasma samples from CRC patients collected dur-
ing the course of disease with clinically diagnosed tumor 
burden served as positive controls. To identify molecular 
residual disease (MRD) following surgery, baseline blood 
samples were collected up to eight days pre-surgery and 
follow-up samples were collected one day up to six weeks 
post-surgery in 33 patients. For treatment monitoring, 
plasma samples from 15 patients were collected at several 
time points throughout the course of disease.

The study was approved by the ethics commission of 
the Bavarian Medical Association (No. 17059) and is reg-
istered with the German registry for clinical trials (trial 
registration ID: DRKS00012890). Neither clinicians nor 
patients were informed about the results. All participants 
provided informed written consent prior to blood and 
tissue specimen collection.

Clinical sample collection and categorization, DNA 
extraction, droplet digital PCR, CEA analysis, library 
preparation and in silico dilutions
Information on sample collection and categorization, 
DNA extraction, droplet digital PCR (ddPCR), carci-
noembryonic antigen (CEA) analysis, library preparation, 
and in silico dilutions are provided in the Supplementary 
Methods (Additional file 1).

Whole‑genome sequencing bioinformatics analysis
Following paired-end sequencing with 2 × 101  bp reads 
on the NovaSeq 6000 system (Illumina, San Diego, Cali-
fornia, USA), demultiplexing of samples was performed 
using BCL Convert (Illumina), and raw sequencing data 
were processed using the DRAGEN DNA Pipeline on 
the Illumina DRAGEN Bio-IT Platform (Illumina) v3.9. 
After adapter trimming, sequencing reads were aligned 
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to GRCh38/hg38. Duplicates and reads with a mapping 
quality < 30 were removed from analysis. A second bam 
file with 90–150  bp fragments only was generated for 
SCNA analysis. In all of the following analysis regions 
overlapping with ENCODE blacklist [24] and the UCSC 
gap track [25] were excluded.

Global and regional fragmentation analysis
Global and regional fragmentation of cfDNA was ana-
lyzed as described by Peneder et al. in 2021 [20]. Briefly, 
fragment length was determined using Picard CollectIn-
sertSizeMetrics (version 2.26.6) and global fragmentation 
was derived as the fraction of fragments with distinct 
lengths. Regional fragmentation was established as the 
z-scored difference in the ratio of short (90–150  bp) to 
long (151–220  bp) fragments (S/L ratio) in 100  kb bins 
compared to the 55 healthy controls. Z-scores of the frag-
mentation of healthy controls were calculated by com-
parison to the other 54 healthy control samples. Data 
of genomic regions harboring SCNAs were excluded to 
avoid bias due to regionally enriched ctDNA. The com-
putational analysis described by Peneder et  al. in 2021 
[20] was adapted that regions harboring SCNAs were 
identified based on the SCNA workflow, described 
below rather than ichorCNA. Furthermore, we used a 
significant enrichment of short fragments (90–150  bp) 
as indicator for ctDNA based on global, and signifi-
cantly different z-scored S/L-ratios on at least one chro-
mosome arm as indictor for ctDNA based on regional 
fragmentation.

Coverage in CRC‑specific regions of interest
The LIQUORICE tool (v.0.5), developed by Peneder et al. 
in 2021 [20], was used to identify ctDNA based on sig-
nificant coverage drops in CRC-specific transcription-
ally active chromatin regions (epigenetic signatures). 
We analyzed the coverage in CRC-specific active chro-
matin regions, published by Chiara et  al. in 2021 [26] 
and in universal DNase I hypersensitivity sites (DHS). 
The neighboring 20 kb of each region set weresplit into 
500  bp bins to identify the mean coverage around the 
regions of interest. To correct for bias due to region-
ally enriched ctDNA, SCNAs, identified with the SCNA 
workflow, described below, were provided to LIQUO-
RICE. Significant coverage drops compared to healthy 
controls in at least two of the analyzed region sets were 
considered as indicator for ctDNA.

Somatic copy number alterations
The CNV workflow provided with the Illumina DRA-
GEN Bio-IT Platform (Illumina) was performed based 
on 90–150  bp fragments, since higher sensitivity for 
SCNA calling was previously described for these short 

fragments [18, 20]. In detail, reads were counted in 50 kb 
bins, followed by GC bias correction and normaliza-
tion based on a reference set containing data from 55 
healthy control samples. Segmentation was performed 
by circular binary segmentation with disabled merging 
of two adjacent segments (merge-threshold = 0). Follow-
ing the DRAGEN CNV workflow, SCNAs were identi-
fied according to the Plasma-Seq pipeline described by 
Heitzer et al. [15] applying chromosome specific thresh-
olds (Additional file  1: Figure S3, Methods; Additional 
file 2: Tables S3 and S4).

Focal somatic copy number alterations
Focal SCNAs, identified within the Plasma-Seq pipeline 
were defined as described by Ulz and Belic et al. in 2016 
[22]. SCNAs of < 20 Mb, overlapping with ≤ 100 genes of 
the COSMIC cancer gene census [27] with a higher or 
lower log2 ratio than the chromosome specific LOB com-
pared to the neighboring 20 Mb were identified as focal 
SCNAs. In addition segments with a higher log2 ratio of 
0.58 (~ three copies) compared to the neighboring 20 Mb 
were identified as focal amplifications, even if no gene of 
the COSMIC cancer gene census [27] overlapped.

Machine learning model for tumor detection
For ctDNA detection in samples collected from CRC 
patients, different machine learning (ML) classifiers were 
trained as described by Peneder et al. in 2021 [20]. Briefly, 
support vector machines, feed-forward neural networks, 
random forests and binomial generalized linear models 
with elastic-net regularization were trained and evalu-
ated using 100 bootstrapping iterations with fivefold 
cross-validation in each training set.

We evaluated the performance of ML classifiers on 
the following feature sets: (i) Global fragmentation, (ii) 
regional fragmentation, and (iii) a meta-learner (Addi-
tional file 1: Methods; Additional file 2: Table S5) [18–20].

For each feature set the support vector machine was 
selected as best ML classifier to build a final ML model 
on the complete data.

Statistical analysis
Differences in global and regional fragmentation of 
healthy individuals and CRC patients were determined 
using a Mann–Whitney-U test. Bonferroni correction 
was used to adjust p-values for multiple testing. All sta-
tistical analyses were performed using statistical func-
tions within the Python module SciPy v.1.8 (scipy.stats) 
with Python version 3.10.



Page 4 of 14Hallermayr et al. Journal of Hematology & Oncology          (2022) 15:125 

Results
Tumor‑specific global fragmentation pattern
To establish a comprehensive data set for LB analysis in 
all stages of CRC, we applied WGS with a median cov-
erage of 6x (SD = 2.37) in 259 plasma samples of CRC 
patients (n = 50) and healthy controls (n = 61) (Addi-
tional file  2: Table  S2). We first evaluated, whether the 
global fragmentation pattern of cfDNA may be a suitable 
marker for untargeted ctDNA detection. Fragmentation 
patterns are a result of various chromatin states that are 
associated with altered expression of tumor-associated 
genes [19, 21, 28, 29].

We compared the global fragmentation of cfDNA 
from CRC patients to cfDNA from healthy controls 
which typically present with a peak of ~ 167  bp cor-
responding to DNA bound by one nucleosome plus 
linker DNA [20] (Fig.  1A). We observed a significant 
enrichment of short fragments (90–150  bp) in CRC 
patient samples with clinically diagnosed tumor burden 

(n = 134) compared to healthy controls (n = 55) (Mann–
Whitney-U test, p-value = 4.75*10–5) (Fig.  1B). When 
allocating CRC patient samples according to the course 
of disease, we observed a significant enrichment of 
short fragments during therapy (between surgery and 
adjuvant chemotherapy, or during chemotherapy before 
staging) (n = 27) (p-value = 1.48*10–4). A tendency 
(albeit not statistically significant) toward a higher pro-
portion of short fragments could be identified in all 
other progression sample groups with clinically diag-
nosed tumor burden (Fig.  1C). When stratifying CRC 
patient samples collected at diagnosis according to 
their disease stage, we further observed a significant 
enrichment of short fragments in patients with stage IV 
CRC (n = 16) (p-value = 7.25*10–5) (Fig. 1D).

Interestingly albeit not statistically significant, we 
detected different fragmentation profiles due to enrich-
ment of short fragments < 167 bp when analyzing sam-
ples from CRC patients in remission with no evidence 

Fig. 1  Differences in global fragmentation between cfDNA from CRC patients and healthy controls. A Heat map showing enrichment or decrease 
in cfDNA fragments from 90 to 410 bp according to their length as z-scores of each sample compared to healthy controls. B Short cfDNA fragments 
(90–150 bp) are significantly enriched in samples collected from CRC patients with clinically diagnosed tumor burden. C Only for samples collected 
in the beginning of therapy a significantly enriched fraction of short fragments can be observed. D At diagnosis a significant enrichment in short 
fragments was only observed in patients with stage IV CRC. (ns: p-value ≤ 1; *: p-value ≤ 5*10–2, **: p-value ≤ 1*10–2, ***: p-value ≤ 1*10–3, ****: 
p-value ≤ 1*10–4)
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of disease compared to healthy controls. When focus-
ing on samples from CRC patients in remission more 
than six weeks post-treatment, we did no longer 
observe an enrichment of short fragments < 167  bp 
(Fig.  1A). The observed enrichment within the first 
weeks post-surgery is likely associated with the intake 
of low-molecular weight heparin, in accordance with 
previous findings [30, 31]. Taken together, our results 
indicate that cfDNA is more fragmented in CRC 
patients compared to healthy controls and can there-
fore support untargeted detection of ctDNA.

Tumor‑specific regional fragmentation profiles
To assess whether regional fragmentation across the 
genome could serve as another non-genetic marker for 
ctDNA detection in CRC patients, we calculated the 
ratio of short (100–150  bp) to long (151–220  bp) frag-
ments (S/L ratio) in 100 kb bins for each chromosome in 
CRC patients and healthy controls, as recently described 
[19, 20]. Notably, data of chromosome arms harbor-
ing SCNAs were excluded to avoid bias due to region-
ally enriched ctDNA. Compared to healthy controls, 
we observed distinct differences in the S/L ratio of CRC 
patients at diagnosis, during therapy, and with stable or 
progressive disease. In contrast, in CRC patients with 
partial remission or in remission, we did not observe 
such differences (Fig. 2A). Focusing on CRC patient sam-
ples with clinically diagnosed tumor burden, we observed 
a significant enrichment in short fragments on chromo-
some arms 1p and 15q, and significant enrichment of 
long fragments on chromosome arms 4p, 5p, 11p, 11q, 
19q, 21p and 21q (Fig. 2B). Overall, we were able to detect 
ctDNA in 75% (100/134) of samples collected from CRC 
patients with clinically diagnosed tumor burden based on 
significantly different regional fragmentation on at least 
one chromosome arm.

The differences in regional fragmentation between 
CRC patients and healthy controls support recent find-
ings identifying cfDNA fragmentation as independent 
biological feature representing chromatin profiles of the 
cells of origin [19, 20].

Combination of global and regional fragmentation analysis 
using machine learning
To test whether machine learning (ML) classifier based 
on global fragmentation and regional fragmentation 
in 5  Mb bins increase accurate detection of ctDNA, we 
trained four ML algorithms using 100 bootstrapping 
iterations with fivefold cross-validation (see Materi-
als and Methods). For each iteration the prediction of 
the best model was stored and predictions for the two 
classifiers based on global and regional fragmentation 
were combined within a supervised meta-learner [20]. 

Samples collected from CRC patients with clinically 
diagnosed tumor burden (n = 134) served as positive 
cohort, and healthy individuals, including samples col-
lected from patients in remission more than six  weeks 
post-treatment without any known recurrence at a later 
time point (n = 63) served as control cohort for a better 
representation of biological variability (Additional file 1: 
Figure S1). All classifiers showed high prediction per-
formance to distinguish cfDNA from CRC patients and 
healthy controls, with receiver operating characteristic 
(ROC) area under the curve (AUC) values of up to 94% 
and sensitivity at 95% specificity of up to 70% (Fig. 3A). 
Since our ultimate goal was to develop a workflow appli-
cable in clinical practice, we trained a final model based 
on the best performing ML algorithm for each feature 
set. Evaluating the performance of ML classifiers using 
only the support vector machine, we observed ROC AUC 
values and sensitivity at 95% specificity of up to 95% and 
75%, respectively (Fig.  3B). Eventually, we trained final 
ML models for both feature sets as well as the meta-
learner including all data of CRC patients (n = 134) and 
controls (n = 63) without further subsetting. Applying 
these models with 95% specificity, ctDNA presence was 
correctly predicted in 36% (48/134) of samples based on 
global fragmentation (34/91 metastatic, 14/43 localized), 
and in 90% of samples based on regional fragmentation 
(121/134: 85/91 metastatic, 36/43 localized) and based 
on the meta-learner (120/134: 84/91 metastatic, 36/43 
localized). However, also samples collected from patients 
in remission, especially within the first six weeks post-
surgery were classified as ctDNA positive (Fig. 3C). These 
results in combination with the findings above indicate 
that the non-genetic cfDNA features analyzed within 
LIFE-CNA are not informative for the correct identifi-
cation of ctDNA within the first six weeks post-surgery. 
However, the effects of surgery on cfDNA fragmentation 
seem to normalize after six weeks, indicating a potential 
use for recurrence monitoring starting at this time point.

CRC‑specific active chromatin for ctDNA detection
We evaluated whether CRC specific chromatin signa-
tures can be detected based on coverage changes using 
the LIQUORICE tool [20] and whether these chroma-
tin signatures represent an independent marker for 
ctDNA detection. Specifically, we analyzed five sets of 
enhancer regions identified to be active in CRC includ-
ing (i) active distal ChromHMM-defined [32] enhancer 
regions, (ii) CRC-specific gained enhancers identi-
fied by Hi-C [33], (iii) gained enhancers occupied by 
the transcriptional coactivators YAP/TAZ, (iv) highly 
conserved enhancers occupied by YAP/TAZ, and (v) 
active transcriptional start sites (TSS) in CRC [26]. In 
addition, we analyzed the coverage in universal DHS. 
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In total, we observed significantly stronger coverage 
drops in all region sets in samples collected from CRC 
patients compared to healthy controls. In 5% (3/55) of 
healthy controls significantly stronger coverage drops 
in one of the analyzed region sets were detected when 
comparing the coverage to all 54 other healthy control 
samples. Therefore, to ensure a specificity of ≥ 95% for 
ctDNA detection based on the coverage in CRC-spe-
cific active chromatin regions, significantly stronger 
coverage drops need to be identified in at least two of 
the analyzed region sets rather than one. Overall, we 
detected ctDNA based on differential coverage in 33% 
(44/134) of samples collected from CRC patients with 
clinically diagnosed tumor burden (Additional file  2: 

Table  S6). However, we obtained similar values [32% 
(12/37)] for remission patients and [33% (3/9)] for 
remission patients more than six weeks post-treatment. 
Taken together, coverage-based chromatin site analysis 
for ctDNA detection is suitable at diagnosis, but not for 
recurrence (also not > 6 weeks).

Quantification of the ctDNA fraction in CRC patients
To quantify the ctDNA fraction as a complement to frag-
mentation and coverage-based chromatin site analysis, 
we used the ichorCNA tool [17], which led to correct 
prediction of ctDNA in only 35% (47/134) of samples 
with clinically diagnosed tumor burden, even when 

Fig. 2  Differences in regional fragmentation between cfDNA from CRC patients and healthy controls. A Heat map showing the z -scored of 
S/L-ratios in 100 kb bins of each sample compared to healthy controls. B Significant differences in z-scored S/L-ratios between samples collected 
from CRC patients with clinically diagnosed tumor burden and healthy controls were observed on multiple chromosome arms. (*: p-value ≤ 5*10–2, 
**: p-value ≤ 1*10–2, ***: p-value ≤ 1*10–3, ****: p-value ≤ 1*10–4)
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selectively enriching for ctDNA-associated 90–150  bp 
fragments (Additional file 1: Figure S3) [18, 20].

Detection of genome‑wide and focal SCNAs in CRC 
patients
To identify genome-wide and focal SCNAs we applied a 
combination of the Illumina DRAGEN CNV workflow 
and Plasma-Seq [15, 22], considering ctDNA-associated 
90–150  bp fragments (Additional file  1: Methods, Fig-
ures S4 and S5) [18, 20]. We analyzed paired tumor tissue 
and plasma samples collected at diagnosis to validate the 
SCNA pipeline. To correct for germline CNVs, constitu-
tional DNA from saliva was additionally analyzed. In 44% 
(12/27) of patients with localized- and in 94% (15/16) of 
patients with metastatic CRC genome-wide SCNA pro-
files were highly concordant to the corresponding tissue. 
SCNAs unique to plasma were identified in 78% (21/27) 
of patients with localized- and 82% (13/16) of patients 
with metastatic CRC (Fig.  4A). In addition, we identi-
fied focal SCNAs in plasma matching tumor tissue in 4% 
(1/27) of patients with localized-, and in 63% (10/16) of 
patients with metastatic CRC, and focal SCNAs only in 

plasma in 15% (4/27) of patients with localized-, and in 
63% (10/16) of patients with metastatic CRC (Fig.  4B). 
Certain genetic events found in plasma may not be pre-
sent in tumor tissue because of the representation of only 
one site of the entire tumor mass rather than the com-
plete tumor heterogeneity including metastatic sites. It 
is likely that low amplitude SCNAs may not be detected 
in plasma since ctDNA represents only a fraction of total 
cfDNA. Overall, although some SCNAs might be missed 
in plasma, with our approach we are able to detect 
genome-wide SCNAs in plasma from CRC patients over 
all stages, including subclonal events not identified in 
tumor tissue.

Complementary ctDNA detection by combining cfDNA 
features
Based on our results showing that global and regional 
fragmentation as well as chromatin signatures, and 
SCNAs are capable to independently detect ctDNA, we 
compared the sensitivity of all features in CRC patients 
in general and across stages considering the time point of 
sample collection in the course of disease (Fig. 5A, B).

Fig. 3  Performance of ML classifiers based on global and regional fragmentation as well as a meta-learner. Performance was assessed over 100 
bootstrapping iterations with fivefold cross validation A using the best performing model out of four classifiers for each iteration and B only a 
support vector machine over all iterations. C The three final classifiers detect ctDNA in CRC patients with high sensitivity
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Fig. 4  Matched plasma and tumor analysis. To validate the SCNA analysis integrated in LIFE-CNA we performed a matched analysis of plasma 
samples collected at diagnosis with tumor tissue. A Total SCNAs present in plasma (red) or tumor (blue) only or in both plasma and tumor (yellow) 
and B focal SCNAs present in plasma (pink) or tumor (violet) only or in both plasma and tumor (green) present on each chromosome for individual 
patients and summarized over all patients below. Since more than one SCNA can be present per chromosome, it is possible that on the same 
chromosome different SCNAs are detected in plasma only, tissue only or in both plasma and tumor tissue

Fig. 5  LIFE-CNA enables accurate disease monitoring in CRC patients. SCNAs, focal SCNAs (foc. SCNA), tumor fraction in all (tum. frac.) and filtered 
fragments (tum. frac. short), enrichment in fragments from 90 to 150 bp (glob. frag.), regional fragmentation (reg. frag.), and significantly stronger 
coverage drops (low cov.) were analyzed with LIFE-CNA. In addition ctDNA was predicted with machine learning classifiers based on global (ML 
glob. frag.) and regional fragmentation (ML reg. frag.), and a meta-learner (ML Meta.) integrated into LIFE-CNA. To assess performance of LIFE-CNA, 
hotspot variants (SNVs) cfDNA concentration (cfDNA) and CEA were analyzed A in samples from CRC patients collected at different time points 
during disease summarized over all samples and B stratified by disease stage. C LB-CRC-32 was used as one example to show response and 
resistance to treatment throughout the course of disease

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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Regional fragmentation and coverage in active chro-
matin enabled ctDNA detection in 77% (33/43) and 23% 
(10/43) of patients with localized- and in 74% (67/91) and 
37% (34/91) of patients with metastatic CRC with clini-
cally diagnosed tumor burden, respectively. As expected, 
increased numbers of called SCNAs as well as elevated 
tumor fractions (Additional file  1: Data) were mainly 
observed in patients with metastatic CRC (57%, 52/91 vs. 
26%, 11/43 and 45%, 41/91 vs. 14%, 6/43, respectively). 
Enriched short cfDNA fragments enabled ctDNA detec-
tion only in a small number of patients with metastatic 
CRC (19%, 17/91). Considering the three ML classifiers 
integrated in our LIFE-CNA workflow, we observed that 
the classifiers based on regional fragmentation and the 
meta-learner have a higher sensitivity for ctDNA detec-
tion (90%, 121/134 and 120/134, respectively), compared 
to the classifier based on global fragmentation (36%, 
48/134). However, when focusing on samples collected 
within the first six weeks post-surgery, we observed 
ctDNA predictions with all non-genetic cfDNA features 
besides the global fragmentation, with the highest num-
bers of 68% (25/37) being with the ML classifiers based 
on regional fragmentation and the meta-learner. When 
focusing on only those samples collected from patients 
in remission more than six weeks post-treatment ctDNA 
detection rates decreased.

LIFE‑CNA for accurate treatment monitoring in CRC 
patients
The analysis of multiple ctDNA features improves the 
sensitivity of untargeted ctDNA detection. To assess 
the clinical validity of LIFE-CNA for disease monitor-
ing, we assessed changes of our measures over a median 
follow-up time of 7.5  months (range 1–35.5  months) 
in 15 patients and correlated these changes with treat-
ment outcome as a proof-of-concept (Additional file  2: 
Table  S6). In addition to LIFE-CNA, we analyzed the 
commonly used serum protein marker CEA, plasma 
cfDNA concentration, and SNVs for patients with avail-
able hotspot variant data (n = 5). We were able to pre-
dict response to treatment in 77% (10/13) of patients 
(7/7 metastatic, 3/5 localized) by decreasing numbers 
of SCNAs, normalizing regional or global fragmenta-
tion, and/or normalizing coverage in regions of interest. 
CEA was informative in only 25% (3/12) of patients in 
two of those patients ~ 2  months later than LIFE-CNA, 
and decreasing plasma cfDNA concentrations could be 
correlated to treatment response in only 46% (6/13) of 
patients in one of those patients ~ 1  month later than 
LIFE-CNA. Further, LIFE-CNA correctly predicted 
progressive disease in 100% (5/5) of patients up to four 
months before clinical evidence with increasing differ-
ences to healthy controls of all analyzed cfDNA features. 

CEA was informative in only 80% (4/5) of patients in one 
of those patients ~ 3.5 months later than LIFE-CNA and 
cfDNA concentration was informative in only 20% (1/5) 
of patients ~ 9 months later than LIFE-CNA, respectively 
(Additional file 1: Figures S6–S20). For example, response 
and resistance to treatment could be detected with LIFE-
CNA in patient LB-CRC-32 up to five and three months 
before clinical evidence, respectively (Fig. 5C). CEA iden-
tified response to treatment > 2  months later and resist-
ance to treatment in parallel to LIFE-CNA. Although, 
decreasing cfDNA concentration was associated with 
response to treatment, at the time of progression no 
increase could be observed which is in line with previous 
reports showing low sensitivity and specificity of cfDNA 
concentration for treatment monitoring [34]. For SNVs, 
response to treatment could be identified in 3/4 samples, 
whereas no data were available to evaluate changing SNV 
levels for progression detection.

LIFE‑CNA for cancer screening but not for MRD
To analyze whether LIFE-CNA could be applied for the 
detection of MRD post-surgery, plasma samples of 33 
CRC patients collected up to 8  days pre-surgery and 
follow-up samples collected between 1 and 42 days post-
surgery were analyzed (Additional file 1: Figure S21). Pre-
surgery, we detected ctDNA in 92% (22/24) of patients 
with localized- and in 89% (8/9) of patients with meta-
static CRC. Post-surgery, ctDNA was identified in 96% 
(23/24) of patients with localized- and in 100% (9/9) of 
patients with metastatic CRC, in particular due to the 
classifiers based on regional fragmentation and the meta-
learner. Further, significant differences in coverage were 
observed in a large number of post-surgery samples 
(Additional file  1: Figures  S21–S54). Decreasing ctDNA 
predictions more than six weeks post-treatment might 
enable the application of LIFE-CNA for recurrence mon-
itoring (Fig.  5A&B, turquoise: remission more than six 
weeks post-treatment). In addition, the high sensitivity of 
ctDNA detection at diagnosis of patients with localized 
CRC (92%) suggests the great potential of LIFE-CNA for 
cancer screening.

Proof‑of‑principle of LIFE‑CNA using six healthy controls 
and in silico dilutions
We evaluated the specificity of all cfDNA features by 
analyzing six additional healthy controls not included in 
the reference set. Of all analyzed cfDNA features only 
differential regional fragmentation was detected in 1/6 
healthy controls while the remaining cfDNA features did 
not indicate ctDNA (Fig. 6). The ML classifiers based on 
regional fragmentation and the meta-learner, predicted 
ctDNA in 2/6 healthy controls. These results indicate 
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low specificity of the regional-fragmentation and meta-
learner based classifiers for ctDNA detection.

In addition to specificity, we also assessed the sen-
sitivity of LIFE-CNA for the detection of low ctDNA 
levels using in silico dilutions with tumor fractions of 
0.5%, 1%, 2.5%, 5% and 10% (Additional file 2: Table S7). 
Analogous to disease monitoring, also for the in sil-
ico dilutions we observed the highest sensitivity for 
ctDNA detection based on regional fragmentation that 
correctly identified ctDNA in 4/5 samples with 0.5% 
tumor fraction and in all samples with 1% tumor frac-
tion. At 0.5% tumor fraction, elevated tumor fractions 

based on ichorCNA and significant enrichment of short 
fragments could be predicted in one sample. Further, 
SCNAs could be detected in 4/5 samples with 2.5% 
tumor fraction. These results indicate that the sensitiv-
ity of our SCNA analysis could be increased compared 
to the previously described required tumor fractions 
above 5% to 10%. Focusing on the ML classifiers for 
ctDNA prediction, it was not possible to detect ctDNA 
based on global fragmentation in any of the in  vitro 
dilutions. Using the classifier based on regional frag-
mentation, we detected ctDNA in 1/5 samples with 1% 
tumor fraction.

Fig. 6  Proof-of principle showing the high sensitivity of LIFE-CNA. Focal SCNAs (foc. SCNA), tumor fraction (tum. frac.), tumor fraction in 90 
to 150 bp fragments(tum. frac. short), enrichment in fragments from 90 to 150 bp (glob. frag.), differential regional fragmentation (reg. frag.), 
significantly stronger coverage drop in at least to region sets (low cov.), classifier based on global fragmentation (ML glob. frag.), classifier based on 
regional fragmentation (ML reg. frag.), and classifier based on meta-learner (ML Meta.) were analyzed in six additional healthy controls not included 
in the panel of normals and in in silico dilutions with 0.5%, 1%, 2.5%, 5% and 10% tumor fraction as a proof-of-principle for ctDNA detection using 
LIFE-CNA
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Discussion
Non-invasive and highly-sensitive ctDNA analyses allow 
real-time monitoring of patients throughout disease. 
The untargeted detection of ctDNA has the potential to 
extend the advantages of LB analysis to patients with can-
cer across all stages, and independently from knowledge 
about the presence of somatic hotspot variants. However, 
clinical validity of untargeted ctDNA analysis could so 
far mainly be shown for patients with metastatic cancer 
due to their high tumor fractions. Here, we developed 
LIFE-CNA for genome-wide ctDNA detection and dis-
ease monitoring based on multiple tumor-specific altera-
tions across genetics, epigenetics and fragmentomics in 
patients with localized and metastasic CRC. We further 
provide analytical validation as well as a clinical proof-of-
concept using a total of 259 plasma samples from 50 CRC 
patients and 61 healthy individuals. In contrast, a simi-
lar study conducted by Cristiano et  al. [19] focused on 
one cfDNA feature (regional fragmentation analysis) for 
ctDNA detection only. Another study by Peneder et  al. 
[20] also analyzed multiple cfDNA features in Ewing-sar-
coma patients.

To facilitate clinical implementation of genome-wide 
ctDNA analysis suitable for all CRC patients, we defined 
distinct cutoffs or significance tests for each analyzed 
cfDNA feature. Establishing and validating definite crite-
ria to report true ctDNA signals further are an important 
step towards the development of generic guidelines for 
the analytical validation of untargeted LB analyses, com-
plementing the existing guidelines for targeted hotspot 
analyses [9, 35].

We evaluated performance of the various cfDNA fea-
tures and of ML classifiers. CfDNA features achieved a 
higher sensitivity than ML classifiers for ctDNA detec-
tion at diagnosis of patients with localized and meta-
static CRC, while false-positive predictions in external 
healthy controls were higher with the ML classifiers. 
Other applied ML classifiers reported in the literature 
achieved slightly better performance characteristics 
from training and testing procedures for early detec-
tion of ctDNA [20, 36]. One previous study performed 
external validation of a final ML classifier on a cohort 
of lung cancer patients and thereby achieved compara-
ble sensitivity with slightly higher specificity compared 
to our ML classifier [37]. Although thorough external 
validation is required, considering an (albeit small) set 
of external samples indicates that our ML classifier 
might achieve a similar performance for CRC patients. 
Besides focusing solely on ML classifiers or the analy-
sis of multiple cfDNA features, we also investigated 
whether a combination of ML classifiers with the anal-
ysis of multiple cfDNA features can improve the sen-
sitivity of untargeted ctDNA detection. Concretely, 

combining the analysis of global and regional fragmen-
tation, SCNAs and active chromatin coverage with the 
ML classifiers resulted in a slightly improved sensitivity 
for ctDNA detection at diagnosis of patients with local-
ized and metastatic CRC and increased false-positive 
predictions in external healthy controls. We conclude 
that considering cfDNA features without ML classifi-
ers may be favorable in cancer screening, as the num-
ber of false-positives is markedly reduced, with only a 
limited reduction in sensitivity, providing comparable 
performance to colonoscopies, the current gold stand-
ard in CRC screening [38]. However, before clinical 
implementation of LIFE-CNA, sensitivity and specific-
ity needs to be externally validated in a larger cohort.

When evaluating the clinical sensitivity and speci-
ficity of LIFE-CNA for residual disease detection and 
treatment monitoring in a proof-of-concept study, we 
find a (too) high number of ctDNA positive predic-
tions in R0-resected patients within the first six weeks 
post-treatment, showing that LIFE-CNA is probably 
not suited for residual disease detection. This may be 
explained by the fact that gene regulation and cfDNA 
fragment length, both factors being considered in the 
cfDNA features of LIFE-CNA, are perturbed after sur-
gery. Multiple studies described altered gene regulation 
following surgery in response to cellular trauma [39–
41] and the association of low-molecular weight hepa-
rin with increased levels of short cfDNA fragments [30, 
31], which is given to patients directly after treatment.

There are some limitations that should be consid-
ered. Training the ML classifiers on a small a cohort of 
134 CRC patient samples and 63 controls might cause 
overfitting. To overcome false-positive predictions 
caused by biological variability, larger control and posi-
tive cohorts to improve training and external validation 
for testing would be required before implementation 
of ML classifiers into clinical practice becomes fea-
sible. Further, the median age of CRC patients (73) is 
much higher than the median age of healthy controls 
(32). With regard to the association between cfDNA 
fragmentation and nucleosome occupancy, which may 
change during life, future studies with age-matched 
healthy controls are highly important for validation of 
LIFE-CNA. Another limitation of this study is that a 
retrospective analysis of our rather small cohort ena-
bled only the evaluation of a clinical proof-of-concept 
of LIFE-CNA but not the clinical validity. To establish 
the clinical utility a large prospective study would be 
required. If the clinical validity and utility of LIFE-CNA 
are demonstrated, simple blood sampling may allow 
rapid and non-invasive treatment monitoring, avoiding 
unnecessary colonoscopies and radiation introduced by 
imaging.
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Conclusions
Taken together, we assume that considering multiple 
cfDNA features across different types of tumor-specific 
alterations in an untargeted genome-wide approach 
and evaluating them for various applications including 
screening and treatment monitoring, is an important 
step toward translating the high potential of liquid biopsy 
for future personalized medicine applications. Further, 
when analyzing active chromatin regions specific to 
other tumor entities we believe that LIFE-CNA can be 
easily transferred to all solid tumors.
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