
Web browsers prescribe the ways we access

and navigate knowledge and communities

online. Since the 1990s browser software has

been an arena for artistic interventions

ranging from quirky standalone browsers to

performative pieces to minimalist browser

add-ons. The (im)possibility of navigation is

not taken for granted and is probed, ques-

tioned, and reformulated through such soft-

ware practices. We propose navigation as a

mode of exploring interactive software that

allows researchers to collectively document

manifold facets of artists’ browsers.

Reihe

Begriffe des

digitalen Bildes

Navigation

Edited by

Inge Hinterwaldner

Daniela Hönigsberg

Konstantin Mitrokhov

  

Munich, 2022

Open Publishing LMU

Navigation

Content

Introduction
Users’ perspectives:
Dealing with jodi’s %wrong Browser .co.kr	 4

Contributions
Documenting %wrong Browser .co.kr
Daniela Hönigsberg	 20

Methodological reflection of the documentalysis of
.co.kr from the %wrong Browser series
Maria M. Hedblom	 33

Descending into detail – a top-down approach to
documenting jodi’s %wrong Browser (co.kr.exe)
Martina Richter	 40

Relational Documents:
Capturing Inter-activity of %wrong Browser
Konstantin Mitrokhov	 54

A piece of flash
Anne Dippel 62
	
The Crack
GVN908	 71

Reading Between the Lines.
jodi’s %wrong Browser .co.kr
Sonia Fizek	 78

Process on Display. Navigating through Flashing Light
Mirjam Mayer	 90

Meta-forensics:
Is it possible to get %wrong Browser right?
Inge Hinterwaldner	 98

How to Capture an artifact from the Information
Systems Perspective
Hendrik Wache, Sarah Hönigsberg, Barbara Dinter 110

Findings
Users’ perspectives (continuation)	 118

analysisfrom
the

outside

%
W

RO
N

G

Brow
ser

analysis
from

the
inside

autom
ated

functionality
interactivity

video
w

ithout
interaction

video
w

ithout
interaction
2nd tim

e

typing
U

RLs
m

oving
the

fram
es

changing
htm

lcodes
resizing
fram

es

enter
fram

es

no
source
code

w
ith

source
code

hex code
analysis

recom
pilation

.exe

reverse
engineering

Adobe
Director

scripts

elem
ents

Stage and
Score

F
i
g
.
1
,

S
t
r
u
c
t
u
r
e

o
f

t
h
e

a
n
a
l
y
s
i
s

a
n
d

d
o
c
u
m
e
n
t
a
t
i
o
n

o
f

J
O
D
I
’
s

%
W
R
O
N
G

B
r
o
w
s
e
r
.

41

Martina Richter

Descending into detail –

a top-down approach to docu-

menting JODI’s %WRONG Browser

(co.kr.exe)

When I started thinking about how to document the %wrong
Browser I wanted to do it in a structured way. As a computer
scientist, my general approach when solving a problem is
to first look at the whole system, then divide it into smaller,
more manageable packages. I follow this procedure in an iter-
ative, recursive and methodical manner. With each division,
I continued creating new smaller levels of packages until they
had a scope that allowed me to easily access the information
I needed. On each level, the packages were examined to either
find the next smaller package or retrieve the sought-after
information.
	 With this general approach in mind, my examination of
this specific software proceeded in the way I have described.
I divided the whole software system into as many parts or ele-
ments as I could identify to gain an understanding of how the
browser application works.

I also used two theoretical lenses in the method of doc-
umenting the browser. The first one – the perspective from
the outside of the software – takes into consideration what
the user can perceive and experience while using the soft-
ware. The second – the perspective from inside the software –
focuses on finding out as much as possible about how the soft-
ware is built and how it works in its dynamic processes.

42

Fig. 1 shows a tree diagram displaying the packages I identi-
fied and examined successively and which method and access
points of investigation I used. The right side of the diagram
shows the from-the-inside approach. The part of that branch
that is encapsulated in the blue area contains the part of the
analysis which would need the source code and was therefore
not included here. That leaves this branch with just limited
options. From my disciplinary perspective, it was a challenge
to conduct the documentation and retrieve the information
about how the browser works without including the source
code in the analysis, but I succeeded nonetheless in gathering
some relevant information about the inner workings of the
program. The artists kindly shared the source code of their
work with us later so that an analysis based on the source
code is included at the end of this volume.

1 First level of division: Perspectives

for looking at the application

The first step in approaching the application was to estimate
what system parts could be identified and what perspectives
would be most effective in approaching them. For that I estab-
lished the two lenses I previously mentioned: the outside per-
spective of the user and the attempt to view the application
from the inside by various methods.

1.1 Outside lens – The browser from

the user’s perspective

Taking the user’s perspective, the first question I wanted to
answer in my documentation of the %wrong Browser was
what the user perceives when using the software. As the user

43

is addressed audio-visually, the media I used to document the
perceivable output also had to be audio-visual.

As a second question, I sought to find out what exactly the
user is able to do when interacting with the application. In
other words: what kind of interactivity does the software offer
and what possibilities for interaction result for the user? One
option, of course, is not to interact at all and simply watch the
application run, observing its behaviour. By addressing these
two questions I hoped to capture all possible in- and outputs
of the software.

1.2 Inside Lens – The perspective from

inside the browser software

The next level of the investigation was to discover and doc-
ument the technical structure of the application: the view
from inside the software. The most important point was to
find indications about what programming language was used.
This information would yield details about the principal struc-
ture of the source code. The structure would differ signifi-
cantly depending on whether it was a program scripted in an
object-oriented language or composed of files created with a
multimedia-authoring tool like the Macromedia Director soft-
ware. It would tell me about certain aspects of the project’s
programming. In an object-oriented language I would find
scripts structured by classes and objects. In the Director files,
I would find a stage and a timeline binding the multiple scripts
and elements together. The result would be a fundamentally
different structure of the application’s build.

In this branch of the analysis, I also tried to ascertain the func-
tions and elements of the software and determine how they work
together. This also involves finding the necessary steps to do this.

44

2 Second level of the division –

View from the Outside

Having determined the first level of division, I then followed
the two resulting branches with suitable methods. First, I
focused on the examination of the user’s perspective, the view
from the outside onto the running application. Here, the per-
ceivable dynamics were the main interest of the investigation.
Therefore, I took the role of the user and observed the systems
behaviour I was confronted with.

2.1 Observation

To find out if the sequence of what I saw and heard stayed the
same with every new execution of the application or whether
differences could be observed, I started the application co.kr.
exe on my PC1 and first watched the screen output without
engaging in any interactions. I took notes of the audio and
visual outputs. I started the browser again and did the same
for a second time; just observing. The result was that there
were distinct differences between the two executions of the
application. My conclusion was that an unpredictable element
was probably used in the form of a randomizing function, to
create the deviating output.

2.2 Interaction

After following that trail, my next aim was to interact with
the browser. I started playing around and wanted to find out
what possibilities the application offered for interaction. I did
that for a while, trying to interact as much and in as many
different ways as possible. Then I started to collect the differ-

1 Lenovo MT 20T0 BU Think FM ThinkPad T14s Gen 1 with a Intel(R) Core(™)

i7 – 10510U CPU, running Microsoft Windows 10 Pro 10.0.19042.

45

ent interaction possibilities, compiling them in a list to then
systematically test them in subsequent trails.

The five forms of interactions that I discerned through
this initial visual inspection were activities that could be per-
formed with the mouse: clicking, double clicking, dragging
and marking. I was also able to interact by entering characters
via a keyboard.

2.3 Documentation of the interaction

and documentation tools

As I compiled my collection, the next step was to work out
how to document the identified possibilities of interaction.

The aim was to record the visual screen output as well as
the sound. Obviously, the appropriate way to address this was
to take videos of the screen. Because screenshots cannot show
timing, movements or sounds, I discarded that idea immedi-
ately. Using the list of opportunities of interactivity, I system-
atically created separate videos of about 2–3 minutes for each
element of the list, showing only the one targeted interaction.

The challenge was to find a suitable PC application that
could record the whole screen as well as the sound output and
that could be started and stopped by keyboard commands –
necessary to prevent the process of switching from the record
application to the %wrong Browser from becoming part of
the recording. This was important because it allowed me to
create clean and discrete videos of the specific interaction
behaviours without any distracting activities that were uncon-
nected to the targeted interactions. Unexpectedly, it was not
an easy task. It took a long time to find and try different appli-
cations. After several trials, I found that obs Studio fulfilled
all my above-mentioned requirements.

46

The result of this step was two videos without interaction and
one for each of the five interactions, a total of seven videos,
each several minutes long.

3 Second level of division –

View from the Inside

As described above, the second part was to look at the appli-
cation by applying an inside-lens and to document these find-
ings as well. My aim was to go into the software and divide it
into as many parts as possible on a technical level. I wanted
to find out how the software was developed and in which
programming language. I also wanted to extract the code, to
examine the techniques, to identify the components used on
the programming level and to see what else I could find just by
having the application running on my computer.

3.1 Working without the source code

Normally when software is analyzed on the technical level to
determine its functionality, its source code is available to be
studied. The source code can be divided into its elements and
functions which allows me to analyze what exactly happens
while I am running the application.

In this case, I had to find ways to gain equivalent informa-
tion from the executable application. I followed the idea of
reverse engineering, that means the approach of drawing as
much as possible from the binary file in order to analyze the
system parts and how they work together. That can be done
on different levels: on the binary file itself, on a disassem-
bled/ assembler level, that is on a machine language level, and
finally on a decompiled level, which means creating a source

47

code in a high-level programming language out of the binary
file that is not the originally programmed one but which per-
forms in the same way.

The different approaches I adopted and describe below
were not selected or applied in a strictly goal oriented manner
but were rather forensic in nature. I tried a variety of methods
in order to gain as much information as possible and use this
to develop a better understanding of the application’s source
code and how it is structured.

3.2 Binary file

Applications are usually programmed in a high-level computer
language. These are computer languages that are easy for
humans to read and write, e.g. C, Perl, Java, or Python. For the
computer to read or understand these languages, the code has
to be translated into binary code. The result of this translation
is the executable program. However, in this form, the code is
more or less impossible for humans to read.

The executable binary file of the application analyzed here,
is downloadable as a zipped file cokr.zip here:
http://wrongbrowser.jodi.org/. I started by extracting it to
co.kr.exe and examining the binary file.

3.2.1 File properties

When looking into the file properties of the executable by a
right mouse click, I found some general information about the
application (Fig. 2). Looking at the tab “Allgemein” (General)
one can see the date and time of the compilation and that it is
a Macromedia Projector file. Going to the tab “Details” yields
additional information about the Macromedia Director Version.

48

This information proved useful because knowing the develop-
ment environment of an executable allows me to find decom-
pilation methods that are particular to the specific version of
the environment. The fact that it was a Macromedia Projector
file led me to the next step, which was to look for a method
or an application to extract more information from the source
code by decompilation.

Fig. 2, .exe-file property menu window.

49

3.2.2 Disassembling with a Hex Code

Viewer

With the application PE Explorer it was possible to depict the
binary co.kr.exe file as a hex coded file. The hex code depiction
of a binary file always shows 4 bits together as a hexadecimal
number. This display is slightly more readable than a mere
series of ‘0’ and ‘1’.

I used some tools of the PE Explorer to collect additional
information and “read” in the binary file. Looking through
the information, I was able to identify the operating system
on which the source code was compiled, the date and time of
compilation and the processing unit.

I also learned more about the software dependencies,
meaning what external software libraries were used to com-
pile the source code. I also was able to obtain and save a list
of used strings.

The PE Explorer software is able to disassemble the hexa-
decimal file. This makes it possible to access an assembler
software level. Assembler is a machine-near software or
language level between high-level language and binary code.
The disadvantage of this code level is that no understandably
structured source code is being generated. The variables are
not discernible and the result is extremely long (in this case
24,988 lines of code). The created code differs so much from
the original source code, and is on such a machine-near level,
that it does not lead to a significantly better understanding of
the code. Or at least it would have taken a very long time to
gain any useful information. Therefore, the next step was to
try and find a way to further decompile the code to reach a
high-level language.

50

It was possible to gather some information by looking at the
hexadecimal coded file and even more when this code was
disassembled, but in the end it did not help me to understand
how the software works or to determine the structure of the
source code.

3.2.3 Decompiling

I embarked on a longer period of Internet research: which appli-
cations could help me to obtain more information about the
Macromedia Director source code (which is composed of the
scripts, elements, score etc.) or even get the source code by
decompiling the executable application? I read a lot in blogs and
Internet forums, trying to gain a better understanding of what
a Projector file is and my chances of success. The results of my
research were rather disappointing. I realized that the chances
of gaining any insights were very limited and my goal of getting
the source code was clearly out of reach using these methods.

My research also revealed the general limitations of decom-
pilation: the decompiled executable application provides a
source code that corresponds to the executable, but it will
never be the original source code. The reason for that is that
programming is never unambiguous as it is possible to reach
the same goal, to produce the same effect in the executed pro-
gram behaviour with completely different source codes. As
mentioned before, original variable names and also comments
will be missing in the created code because they can not be
reconstructed from the binary code and therefore get replaced
by random characters or numbers. This detracts immensely
from its readability and the chances of understanding its
structure. Disregarding these discouraging prospects, I tried
two ways of decompiling the binary code of the project.

51

3.2.3.1 From .exe to source code

My Internet research did not reveal any application that would
decompile Projector files, the executables created with Direc-
tor. Although the language used in Director is Lingo, I turned
to an application that usually is used for C++-.exe. My aim
was to determine what the result looks like in principle and
whether it was worth putting any more energy into it. As
previously described, the executable does not offer any kind
of information about the high-level language used to write
it. Consequently, the result is something that presumes the
program was written in C++ and creates a code that could
theoretically be the source of the executable in that language.

This procedure produced a result but it was unreadable
(Fig. 3). There are, of course, no original variable names, there
is no understandable structure, no modules, objects or classes.
So all the features or properties that make a code readable and
understandable for humans, are not part of the decompiled
code.

3.2.3.2 From .exe to Shockwave flash

During my research I found an entry in a Macromedia forum
with someone asking for a way to decompile a Shockwave
Flash file.2 This post and numerous other search results
pointed to a close relationship between Projector files and
Shockwave Flash files – because Lingo is the main language
used for Adobe Shockwave Flash, making it potentially pos-
sible to use similar tools on both. I had already gained some
experience with decompiling Shockwave Flash files during the
analysis of another artistic project. Using the same tools on
this executable, I hoped to create a Shockwave Flash file, from

2 Anonymous: Help decompiling SWF! In: stackoverflow.com, 11.11.2010,

https://stackoverflow.com/questions/4150912/help-decompiling-swf

[accessed 27.8.2021].

52

which I could extract Director elements like scripts, images,
sounds, timing etc. I looked at several applications, but only
some of them allowed the executable to be used as the source
for the decompilation. In the end I tried two different appli-
cations but the results were as disappointing as with the pre-
vious trials. I was only able to extract shredded information,
like a vector shape (.nl) (Fig. 4) and the frame of a graphical
element as well as a white dot (.com) for other browsers of the
%wrong Browser series I used to see if, in theory, results
could be achieved with this tool. But for the .co.kr browser
nothing at all could be found.

4 Conclusion

The attempt to decompile the executable file concluded my
documentation of the .co.kr browser. Where the outside-lens
on the second level of division provided some information
regarding the perceivable elements and the user’s options for
interacting with them, the underlying structures that were to
be explored with the inside-lens remained mostly untouched
and therefore could not be documented without the inclusion
of the source code. The insights gained when the source code
was used in an analysis will be included in a separate text in
this volume.

DOI: 10.5282/ubm/epub.93525

53

Fig. 3, Screenshot of the disassembler showing part of
the assembler code of the .co.kr.exe.

Fig. 4, Screenshot of the result of decompiling the
 .nl %WRONG Browser.

Edited by

Inge Hinterwaldner

Daniela Hönigsberg

Konstantin Mitrokhov

DFG-Schwerpunktprogramm ‚Das digitale Bild‘
Projekt Browserkunst. Navigieren mit Stil

Erstveröffentlichung: 2022
Gestaltung und Satz: Lydia Kähny und Sophie Ramm
Creative Commons Lizenz:
Namensnennung – Keine Bearbeitung (CC BY-ND)
Diese Publikation wurde finanziert durch die Deutsche
Forschungsgemeinschaft.
München, Open Publishing LMU

DOI 10.5282/ubm/epub.93518
ISBN 978-3-487-16315-4
Library of Congress Control Number
Die Deutsche Nationalbibliothek verzeichnet diese
Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind abrufbar
unter http://dnb.dnb.de

Reihe: Begriffe des digitalen Bildes
Reihenherausgeber
Hubertus Kohle
Hubert Locher

Das DFG-Schwerpunktprogramm ‚Das digitale

Bild‘ untersucht von einem multiperspek-

tivischen Standpunkt aus die zentrale

Rolle, die dem Bild im komplexen Prozess

der Digitalisierung des Wissens zukommt.

In einem deutschlandweiten Verbund

soll dabei eine neue Theorie und Praxis

computerbasierter Bildwelten erarbeitet

werden.

7
8
3
4
8
7

1
6
3
1
5
4

9

