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Abstract

Warning: This paper contains examples of offensive stereotypes and may be upsetting.

Recent studies have demonstrated how to assess the stereotypical bias in pre-trained
mono-lingual language models for the English language. In this master thesis, we extend
this approach to multi-lingual models and multiple languages to show the stereotypical
bias containment between different languages using the StereoSet data set (Nadeem
et al., 2020). Furthermore, this thesis is not only to compare different languages but
also to compare different models in the same language to interpret on an individual
model’s performance and its potential for a biased response. We perform this evaluation
by translating the data set to German by offering guidelines to further extend the work to
other languages. Although the translations created with Amazon Web Services (AWS)
are adequately satisfying, we fix some issues with semi-automatical methodologies.
The stereotypical bias is assessed based on two tasks in this thesis: mask-filling and next
sentence prediction. The models that do not have mask-filling support are inferred using
their generative structure, and the models that do not have next sentence prediction
support are fine-tuned for this task. The results fundamentally show that the created
German data set is adequately valid to perform bias estimation, and German and English
languages have similar stereotypical biases. All the code and model checkpoints used in
this thesis will be publicly available1.

1https://gitlab.lrz.de/statistics/summer22/ma_ozturk/

https://gitlab.lrz.de/statistics/summer22/ma_ozturk/
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1. Introduction

With the rise of deep learning in the industry and research, many controversial actions
emerged from machines and programs. One of these controversial behaviors of Artificial
Intelligence (AI) is the stereotypically biased results that deep learning models tend
to produce. In fact, models learn their expected actions from the data set that they
are programmed to learn from, and these data sets are primarily from the pages and
websites open to the public, so they might include people’s stereotypes. Nonetheless,
a model can be programmed to ignore these biases as much as possible, which is the
ideal anticipated demeanor. On the other hand, some models are over-focusing on these
stereotypes and evolving more unfairly. These stereotypical decisions driven by the deep
learning models cause the companies or the engineers to be liable for the stereotypical
bias. On one side, the data set can not be inspected one by one to ensure it does not
possess any stereotypes due to its typical large size; on the other side, the data set can not
be considerably downsized since it would limit the performance of the machine learning
model. Hence, the likelihood of producing stereotypical outputs must be minimized, and
before that, a generic methodology to measure and evaluate the stereotypical bias in the
models is essential. To this day, various approaches to dealing with stereotypical bias
measurement exist in the literature. A crucial and significantly related approach that
measures stereotypical bias in the pre-trained language models is Nadeem et al. (2020).
They fundamentally create an English data set and a methodology to measure the
stereotypical bias in English language models. However, this methodology is significantly
limited since it supports only one language, whereas the current state-of-the-art multi-
lingual models support more than 90 languages (Doddapaneni et al., 2021).
In this thesis, we evaluate the stereotypical bias in multi-lingual models by creating a new
data set by translating the StereoSet (Nadeem et al., 2020) data set to German. In other
words, we input English and German examples to the pre-trained multi-lingual language
models to observe whether the model would show a stereotypical bias or not in different
languages for investigating different stereotype containment in different languages. The
evaluation is conducted in English and German, and the results for these languages are
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compared; however, the code published with this thesis allows for the application of
the evaluation technique in different languages remarkably effortlessly. The models are
evaluated with the data set and technique discussed above (Nadeem et al., 2020) and
the data set’s translation to German after applying pre-processing techniques. The code
they published1 is extended, and a more generic and efficient version of it is implemented
to apply in different languages. This thesis provides more efficient methodologies because
of extending the Nadeem et al. (2020) work with batch-computing and more optimized
code. In addition, many errors in the paper from Nadeem et al. (2020) and their code
are noticed, and proposed corrections are published and discussed.
Furthermore, this thesis has more variety of models to evaluate: three variants of mono-
lingual and three variants of multi-lingual models. The recently developed and enhanced
BERT (Devlin et al., 2018), GPT-2 (Radford et al., 2019; Tan et al., 2021), and T5 (Raf-
fel et al., 2019; Xue et al., 2020) are specifically picked because of their diverse archi-
tectures: encoder-based transformer, decoder-based transformer, and encoder-decoder-
based transformer. Thus, a generic strategy to apply in different languages and various
model types is propounded in this thesis. One of the primary purposes of this thesis is
to compare the model’s stereotypical biases in English and German languages. One can
expect their results to be similar since these languages and the native people of these
languages have many things in common.
The thesis is outlined by first discussing the term Stereotypical Bias and its examples
and discussions in daily life in Chapter 2. In addition, Chapter 2 discusses the emergence
of state-of-the-art language models and the detailed specialties of these pre-trained lan-
guage models. This section clarifies how the selected models work and why these models
are selected. Then, the significant research related to this thesis is discussed in Section
2.4. Next, Chapter 3 elucidates the materials of this thesis and applied methodologies
consisting of the data set, the pre-processing phase, the prediction phase, and the eval-
uation phase in detail. Chapter 4 discusses the experiments done using the techniques
described in Chapter 3 and the final results achieved from the evaluations.

1https://github.com/moinnadeem/StereoSet
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2. Stereotypical Bias in Language

Models

2.1. Pre-trained Language Models

2.1.1. Evolution of Language Models

Language modeling is a learning process of the joint probability of the words, sub-words,
or characters occurring in a sequence. Before the deep learning era in language models
and Natural Language Processing (NLP), there were statistical models and perspectives
on text analysis. Fundamentally, the main goal was to find the joint probability of the
words occurring together in the sentence. The formula of this probability calculation
is p(w1, w2, ..., wN) =

QN
i=1 p(wi|w1, w2, ..., wi�1) for a sentence that includes the words

w1, w2, ..., wN . Then, the formula for only the word w1 is w1 = p(w1|w0) as a conditional
probability. Due to having too many dependencies in the above probability calculations,
especially in a long sequence, n-gram models come out by assuming only n� 1 previous
words are affecting the word instead of the whole sequence. It can be thought of as an
n� 1 order Markov-chain, too.
With the beginning of the 2000s, neural language models started to gain popularity
and owned more satisfactory performance than statistical approaches. In 2003, Bengio
et al. (2003) published the first neural network-based language model. After some pe-
riod, about 2013, Recurrent Neural Networks (RNNs) and Long Short Term Memory
(LSTMs by Hochreiter and Schmidhuber (1997)) networks evolved as the leading mod-
els to operate in language modeling (Li, 2022; Louis, 2020). The formula of Recurrent
Neural Network (RNN) is simply defined as,

h(j) = f(Wx(j) + V h(j�1) + b), (2.1)

where f(x) is typically tanh(x), h(0) = {0}d and W, V and b are the model parameters.
As seen from the formula, LSTM and RNNs work as states like Markov models, and
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each state depends on the previous states. These models accept inputs word-by-word or
token-by-token in the sequences (from left to right), and the model stores the knowledge
of the previous tokens for each token. Therefore, for the last token, it theoretically
considers all tokens before that, and the effect of the token diminishes as the length
between the two tokens grows.
Indeed, this working procedure of RNNs and LSTMs highly restrains the effect of the first
words on the last words. It might be especially significant in the German language as the
meaning of the separable verbs ("trennbare Verben") varies according to the last word,
which is usually the prefix of the verb, in the sentence. For instance, in the sentence "Ich
ziehe nächste Woche in ein Altersheim um." ("I am moving to a retirement home next
week."), the verb is indeed "umziehen" ("to move") due to the second and the last word,
so the model should connect the second and the last word sufficiently since the meaning
entirely alters by modifying the last word. Furthermore, these models enormously suffer
from this problem in the long sequences. First, there would be enormously many words
affecting the last words, so the effect of a word at the beginning would be nearly zero.
Secondly, the model might not even function at all due to vanishing gradients. The loss
function of RNN operates as "backpropagation through time," which implies that the loss
is calculated backward by computing the gradient with respect to the h variable, so the
gradient is estimated backward for each token. Therefore, the gradient might converge
to zero, and this would result in reaching zero in the final result, which is called vanishing
gradients, or a long time-taking calculation process. Thus, in general, RNNs and LSTMs
are known to not function pleasingly in long sequences. In addition, reading the input
sequence word-by-word instead of the whole sequence at once prohibits these models
from performing in parallel since the process of one state can be accomplished only after
terminating the operations of the previous states. This special input processing restricts
the training application in parallel; hence, it forbids shortening the training time given
the increasing computation and fails to employ efficient computing.

2.1.2. Transformers

Due to the inefficiencies and limitations of RNNs, attention-based models are commonly
used. Attention in this context means giving attention to the particular words that
should significantly affect the predicted word. Consequently, it allows the model to assign
different weights to each token in the sequence with respect to their significance over the
word to be predicted. It enables the models to connect words that strongly influence
each other and gain a better understanding of the sequence. As the name suggests, the
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attention mechanism is inspired by the "cognitive attention" in neuroscience (Hassanin
et al., 2022).
In recurrent neural networks, the output of states (h) is a sequence of state values instead
of a function of each state. As mentioned before, there is a weight (↵) for each state in
the attention mechanism, and states are typically represented with the V vector, so the
output becomes ↵1 ⇤v1 +↵2 ⇤v2 + ...+↵j ⇤vj, where ↵ is the weight for each state and
it is measured as the softmax of the scoring function (f ) of the query (Q) and key (K)
vectors as written in the formula,

↵j =
exp(ej)PJ

j0=1 exp(ej0)
, (2.2)

where ej = f (qj00 ,kj; ✓f) and f is scoring function which maps the query-key vector to
a scalar ("score"), Q is query vector, K is key vector and ✓ is an optional parameter of
the scoring function. The query, key, and states typically include the model parameters
(W). The softmax operation is formulated in order to transfer the scores to probability
space where their sum must be one. An example scoring function, scaled dot-product
attention, formulated by Vaswani et al. (2017) is written in the Formula 2.3. The
crucial point in this formula is that it does not depend on the parameter ✓, which causes
computational efficiency.

ej0,j = f (qj0 ,kj) =
qTj0kjp
dk

, (2.3)

where dk is the number of dimensions in the key vector, it is used here for the purpose
of normalization. It is noteworthy to mention that estimation with this scoring function
requires the number of dimensions of query and key vectors to be equal (dq = dk).
Indeed, the formula and description mentioned above are the "basic recipe" of the atten-
tion mechanism, and the real formula might differ according to attention types, such as
self-attention, cross-attention, and multi-head attention. In cross-attention, it is deemed
that there are two different vectors; one for the source (X) and one for the target se-
quence (Y). The target vector forms the query vector as Q = YW(q) and the source
vector transforms the key and state vectors as K = XW(k) and V = XW(v). In an-
other typical attention mechanism type, self-attention, there are not two, but only one
sequence, X. Self-attention, in fact, has the identical formula, but instead of employing
two separate vectors as X and Y, self-attention utilizes only one vector. The formulas of
it are represented by assuming the target sequence to be equal to the source sequence as
X = Y. Moreover, another attention mechanism called "multi-head attention" qualifies
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the attention mechanism to be run several times in parallel. It is used in numerous crucial
and well-known transformers (e.g., BERT) due to its advantage in parallel computing,
shortening the training process time.
Attention mechanisms have a broad application area in terms of model types, and one
of the most significant application areas of attention mechanisms is transformer models.
Transformer models are complex deep learning models that adopt the aforementioned
attention mechanisms (Vaswani et al., 2017), enabling them to focus on particular tokens
for each prediction and make use of parallel computing by providing the input sequence
as a whole rather than word-by-word. Transformers are popularly used in different
industries, and the usage areas can be extremely divergent. They make the transfer
learning (Pratt et al., 1991) concept remarkably advantageous and convenient in the
NLP field. Transfer learning is simply applying knowledge gained from a problem to a
different problem where the problems are similar. For instance, in work from Pratt et al.
(1991), they transfer the knowledge through the weights of one small neural network to
the other large neural network. They achieve substantial speed-up in the large neural
network and promising results in the speech recognition problem. On the other hand,
the pre-trained model approach we use in this thesis is slightly different. Researchers
are continuously training giant and efficient models with enormously large data sets and
opening these models to public use, and the others transfer the knowledge gained by these
training processes to different tasks of their interest or learn knowledge from different
data sets. The most common pre-trained language models are based on transformer
architectures. A typical depiction of the transformer model architecture is given in
Figure 2.1. As seen from the figure, there is no more recurrent feature; it is indeed
a simple feed-forward network, and Transformers are originally designed as encoder-
decoder-based architecture. In other words, from one side, the model gets the input
sequence and encodes it, and from the other side, it gets the previously predicted output
sequence and decodes it; then, by combining these, it predicts the new output sequence.
The left side of the diagram is the encoder part, and the right side is the decoder part.
Nevertheless, in many state-of-the-art transformer models, only the encoder part (e.g.,
BERT) or only the decoder part (e.g., GPT-2) is employed, and they have also been
named transformers. Furthermore, since the input sequence is given as a whole in the at-
tention mechanism, the position of a word is missed out and loses its importance. On the
contrary, the position of a word is, indeed, significant and can reveal a variety of special-
ties about it. For instance, the subjects are mainly used as the first word in a sentence in
the English language, and this knowledge would be worthwhile for detecting subjects. To
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Figure 2.1.: Transformer model architecture (Vaswani et al., 2017)

overcome this problem and benefit the words’ positions, transformers have a "positional
encoding" representation; it simply encodes the word’s position in the sequence added
to the embedding of the tokens. By employing this technique, the position of the input
is also considered as an input, similar to its embedding vector. After completing the
embedding vectors by adding the positional encodings, the multi-head attention layers
process the embeddings, where the tokens use each other for the first time. However, one
output of the attention layer might be extraordinarily different, affecting or dominating
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the whole learning procedure completely. This might cause serious performance declines,
especially at the beginning of the learning process. Therefore, the input embeddings are
added to regularize any harsh effect from the attention layer and aid the model to avoid
over-fitting on some outlier input sequences. This process can be seen in the figure at
the "Add & Norm" layer. "Add" fundamentally stands for adding the embeddings to
the output of the attention layer as F 0(X; ✓) = F(X; ✓) + X (He et al., 2015) where F
is the layer output and X is the input embeddings. In addition, the "Norm" stands for
layer normalization (Ba et al., 2016) which avoids exploding activations on a forward
pass (Lubana et al., 2021). The Formula 2.4 is for normalizing a layer where its mean

is measured by µ =
1

d
Pd

i=1 hi and the standard deviation � =

r
1

d
Pd

i=1 hi is computed
over the dimensions of h . Next, a simple feed-forward layer is applied; it basically
consists of two linear transformations with a Rectified Linear Unit (ReLU) activation
(Fukushima, 1975) in between. The role of this layer is to transform attention vectors
to be accepted by the next layers in the encoder-decoder model. This layer can tackle
the input sequence in parallel as opposed to the RNN-based models (Ankit, 2020).

� � h � µ

�
+ � (2.4)

2.1.3. BERT

As we stated in the previous section, transformer models are mainly divided into three
categories. One category is only encoder-based models such as BERT, short for Bidirec-
tional Encoder Representations from Transformers (Devlin et al., 2018). BERT is one
of the first and most common transformer models, which came out in 2018. As its name
states, BERT is a deep bi-directional model meaning the model does not only learn from
left to right but also from right to left. The BERT model is trained on 3.3 billion English
words from Wikipedia and Google’s BooksCorpus (Zhu et al., 2015), where the data set
takes up to 13 GB of memory. BERT does not require labeling in the data set due to its
intelligent training objectives. The tokenizer of BERT uses the WordPiece (Wu et al.,
2016) technique to create its vocabulary. In the WordPiece technique, the model initially
adds all the characters in the data set to the "word unit inventory". Then, it generates a
new word-unit by combining two word-units (e.g., subwords) from the inventory, which
would increase the likelihood on the training data the most when added to the model
and then adds this new word unit to the inventory. This process is accomplished with
many iterations until the initially specified vocabulary size is reached, which is 28996 for
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BERT models. BERT has the same vocabulary size in all its versions, but its versions
vary according to the model size as the base and large BERT models, which we compare
in Table 2.1.

Layers Hidden Dims Att. Heads Parameters
base 12 768 12 110M
large 24 1024 16 336M

Table 2.1.: Comparison of BERT models

Furthermore, one of the most significant differences between different transformers is
their training objectives. BERT is trained with two different objectives, namely Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). In Masked Language
Modelling, the input and target sequences are the same in BERT; basically, it accepts the
same sequence but with modifications due to its nature of bi-directionality. Therefore,
BERT is not allowed to cheat since some tokens are removed and "masked". The model
randomly samples 15% of all tokens and replaces 80% of them by "[MASK]", 10% by a
random token, and leaves 10% unchanged, so around 12% of the data set is masked and
left to be predicted. An example modified sentence to be used in BERT is "The chess
player was [MASK]". The purpose of the second objective of BERT, Next Sentence
Prediction (NSP), is to predict whether the second sentence follows the first sentence.
The training for this objective also works as self-supervised learning since it does not
require labels; half of the data set has the actual next sentence, and the other half has a
random sentence as the next sentence; as a result, it has 50% positive and 50% negative
examples. "[SEP]" token is used between these sentences to indicate the boundary
between sentences. The original final model achieved 97%-98% of accuracy on the NSP
objective.
BERT utilizes cross-entropy loss to predict the original token for these masked tokens,
trained by employing the Adam (Kingma and Ba, 2014) optimizer. Adam’s main dif-
ference from the classical stochastic gradient descent algorithms is that it maintains a
learning rate for each network weight rather than employing a single learning rate for all
weights. In addition, instead of storing a constant learning rate value, Adam adapts the
learning rates according to the first (mean) and second moments (uncentered variance)
of the gradients; therefore, Adam is indeed derived from "Adaptive Moment Estima-
tion". Indeed, the algorithm is a combination of AdaGrad (Duchi et al., 2011), which
is efficient in sparse gradients, and RMSProp (Tieleman et al., 2012), which is efficient
in online and non-stationary problems (e.g., noisy). Hence, Adam has two beta values
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where one derived from the AdaGrad and the other from RMSProp.
A limitation of BERT is the number of tokens that can be given as input. BERT can
consume sequences of up to 512 tokens meaning the sum of tokens in the two sentences
of NSP should be less than 512 (Devlin et al., 2018). To overcome the limitations of
BERT and to even improve it, many models are proposed with a similar architecture
under the research of BERTology (Rogers et al., 2020a). Some of the significant post-
BERT models are RoBERTa (Liu et al., 2019), ALBERT (Rogers et al., 2020b) and
DistilBERT (Sanh et al., 2019). In RoBERTa, short for the Robust BERT Approach,
the training corpus is excessively increased (around ten times) by using the identical
model architecture. RoBERTa uses Dynamic masking in the MLM objective to mask the
input while pretraining instead of masking and preparing the data set before pretraining,
and the model renounced the NSP objective entirely. Moreover, another strong model
ALBERT uses a different objective than BERT’s NSP as Sentence Order Prediction
(SOP). Fundamentally, the positive examples are similar to NSP, but in the negative
examples, the ordering of sentences is swapped and left the model to predict the correct
order. Due to its cross-layer parameter sharing, ALBERT has fewer parameters. In
the comparable amount of model size, ALBERT strongly outperforms BERT. Another
important post-BERT model is DistilBERT which is the compressed version of BERT.
DistilBERT retains 95% of the performance by halving the model size of BERT. The
model’s objective is similar to RoBERTa, where it waives NSP and employs a dynamic
masking model but utilizes the same corpus as BERT.

2.1.4. GPT-2

GPT-2, short for Generative Pre-trained Transformer 2, is an only-decoder-based trans-
former model developed by Open-AI (Radford et al., 2019). GPT-2 was released in 2019
as a successor to GPT released in 2018. GPT-2 is basically the direct scale-up model
of GPT and is trained with around ten times larger data sets. GPT-2 is trained with
a vast English data set of about 40 GB from Reddit, a social media platform, and the
pages of the web links in the Reddit posts. Wikipedia pages are removed from these web
links because of their repetitions in many other data sets. Hence, they created a unique
data set for the model by scraping different web pages and pre-processing; however, the
data set is still not publicly shared. Since the model does not depend on any labeling
task, it functions in a self-supervised manner.
GPT-2 is trained uni-directional manner as it is a generative model; therefore, it is
fully auto-regressive. The objective of GPT-2 is Causal Language Modelling (CLM),
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simply meaning predicting the next word given the left context. GPT-2 has multiple
types, small, medium, large and extra large, where the small type has the same size as
the previous GPT as a baseline, and the medium type has a similar size to the largest
version of BERT. The extra large type, which the authors simply call GPT-2, has 1.5
billion parameters which are enormously higher than the BERT base model. The authors
stated that the model is not trained on any downstream task specifically, but it performs
competently in many due to its diverse and large training data set, and they called this
behavior "zero-shot task transfer".
GPT-2 Tokenizer utilises Byte Pair Encoding (BPE) (Gage, 1994; Sennrich et al., 2015)
to create its vocabulary. BPE fundamentally transforms the most occurring byte pairs
with a byte recursively. For instance, if the vocabulary is created from the text "aaaabb-
daabba", the most occurring byte pair is "aa", so it will be replaced with a new byte
that is not used in the data, "T". Then, the text becomes "TTbbdTbba, where the most
occurring byte pair is "bb", then the text becomes "TTOdTOa" when it is replaced with
"O". These steps are recursively processed until there is no byte pair that occurs more
than one or a desired vocabulary size is achieved. Because of using an extreme amount
of data in GPT-2, the vocabulary size of GPT-2 models, which is 50257, is almost double
the BERT vocabulary size by the BPE algorithm. The end of sentence token of GPT-2
is "<|endoftext|>" and will be utilized in further computations.

2.1.5. T5

T5 is the abbreviation of "Text-to-Text Transfer Transformer", and the model is trained
by only text input and text output as the name suggests (Raffel et al., 2019). Google
introduced T5 in 2020 as an encoder-decoder model, which is an equivalent architecture
to the original transformer. Since it receives and outputs text sequences, the model is
known as a sequence-to-sequence model.
The training of T5 is accomplished by using many tasks at once, known as "multi-task
learning"; hence, the model can operate on various downstream tasks. A particular
input format is used to feed the task’s name to the model; it is added before the input
text and tokenized togetherly with the input text sequence. This multi-task learning
technique makes the fine-tuning of the model with different tasks simpler by only ap-
pending the task name in front of the inputs, known as "prefix task". The downstream
pre-trained tasks of T5 include question answering, summarizing, sentence similarity,
sentence completions, and so on.
The model is trained on two types of data sets, one is unlabelled data sets for unsuper-
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vised learning for its primary language model, and the second is labeled data sets for
supervised learning of its downstream tasks. The primary data set used in T5 is "Colos-
sal Clean Crawled Corpus (C4)", specifically for its unsupervised learning, introduced
by the authors and made publicly accessible. The data set is mainly a part of Common
Crawl1 web scrapes but a well-cleaned version, and only this cleaned part form 750 GB
which is exceptionally huge compared to the models mentioned above. Furthermore,
there are still more than ten other different data sets utilized for the model’s supervised
downstream task learning.
There are three objectives concerned in T5 training; the first one is language modeling,
which is predicting the next word as a comparable objective is done in GPT-2, the second
one is masking some tokens as a similar version of BERT’s Masked Language Modelling,
and the third objective of T5 is deshuffling the input sequence randomly for the model to
predict the correct word order. The last objective varies from ALBERT’s Sentence Order
Prediction (SOP) since T5 predicts the order of the tokens in the intra-sentence context
and ALBERT tries to predict the order in the inter-sentence context. Moreover, the
second objective also slightly varies from BERT’s Masked Language Modelling objective
with two different modifications mainly due to T5’s encoder-decoder structure. The
first modification is masking consecutive tokens as one unique mask instead of masking
them separately, so the target sequence becomes a concatenation of the corrupted tokens.
The second modification to the BERT’s MLM objective is dropping the corrupted tokens
altogether and tasking the model to reconstruct dropped tokens.
Furthermore, a practical methodology utilized during the training of T5 is the teacher-
forcing method. Due to the model’s architecture, it needs target sequences for the
decoder part, and a teacher-forcing method is an efficient training method if the model
has both source and target inputs. In teacher-forcing methods, instead of allowing the
wrong prediction output to be used as an input in the next prediction, the model supplies
the correct prediction output, which it gets from the decoder, as an input to the next
prediction. This dynamic and internal guidance in the model aids in having a fast and
stable convergence (Raffel et al., 2019). As T5 is trained in a generative objective as
well, it can also be utilized to generate new words. Inference to the model to generate
new words can be achieved by utilizing the "generate" function of Huggingface models.
The authors of T5 provided the model with different versions, simply changing the
model’s size. The base model has a similar size to the BERT base model and the large
model with the BERT large model for comparability reasons, as seen in Table 2.2.

1https://commoncrawl.org/
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Layers Hidden Dims Att. Heads Parameters
small 6 512 8 60M
base 12 768 12 220M
large 24 1024 16 770M
3B 24 1024 32 3B
11B 24 1024 128 11B

Table 2.2.: Comparison of T5 models

Moreover, the T5 tokenizer also employs a WordPiece approach like BERT with 32000
pre-defined vocabulary size to tokenize the input sequences. A crucial difference between
the T5 tokenizer and BERT tokenizer is that the T5 tokenizer’s masked token ids are
differently encoded. For instance, for the first mask, the text is "<extra_id_0>" and
the second is "<extra_id_1>" and this goes on until "<extra_id_99>", so there are
100 different possible masks to be used in a sequence. In addition, the end of the sentence
token of the T5 tokenizer is "</s>".

2.1.6. Multilingual Models

The models described above mainly work in English or in only one language (e.g., mono-
lingual models), and these models constrain cross-lingual analysis. There are many
motivations behind having cross-lingual analysis. One motivation for the cross-lingual
analysis is that the expected input might be from different languages in many down-
stream tasks. For instance, an analysis of comments in a forum should not be restricted
to English since it is open to everyone from different language-speaking countries. An-
other significant motivation for the cross-lingual analysis is that some languages have
few resources and can not have a well-performed mono-lingual language model (Lample
and Conneau, 2019).
One of the most crucial parts of the multi-lingual models is the sentence embeddings that
they use (Artetxe and Schwenk, 2019). Sentence embeddings are the vector embeddings
of the sentences from different languages, and the ones used in multi-lingual models are
primarily known as "language agnostic sentence embeddings". The primary specialty
of these sentence embeddings is having a similar vector representation for the sentences
in different languages with the same meaning, as seen in Figure 2.2. A commonly
used embedding is Language-Agnostic SEntence Representations (LASER) (Artetxe and
Schwenk, 2019) which covers 93 different languages in 1024 dimensional vector space.
LASER uses a Bidirectional Long Short-term Memory (BiLSTM) encoder with a shared
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BPE which is coupled with an auxiliary decoder. The encoder is language agnostic (Zhao
et al., 2020) meaning that it is shared by all languages, and there is no direct input to
the encoder about which language the sentence belongs to since the vocabulary is built
by the concatenation of all training corpora. Nonetheless, the input of the decoder is
supplied with the language ID that specifies the language to which the sentence belongs.
Contrary to the earlier approaches, LASER is trained on only two target languages,
English and Spanish, as they are observed to have a sufficiently satisfactory alignment.
The main training corpora include 93 input languages and 223 million parallel sentences.

Figure 2.2.: Multi-lingual embedding space. (Yang and Feng, 2020)

Another crucial and state-of-the-art multi-lingual sentence representing approach is
Language-Agnostic BERT Sentence Embedding, known as LaBSE (Feng et al., 2020).
The model uses the pre-trained English BERT model but with two bidirectional en-
coders: one is for the text from the source language, and the other is a translation of
the text in the target language. In addition to monolingual BERT, Language-Agnostic
BERT Sentence Embedding (LaBSE) has a significant objective, Translation Language
Modeling (TLM) (Lample and Conneau, 2019; Moberg, 2020). As seen in Figure 2.3,
the objective helps the model learn similar words in different languages by providing
the source text in Masked Language Modelling format and the target text by masking
the words which are not masked in the source language. Then, after the encoders and
simple transformations, the model compares the two outputs in its loss function to max-
imize the similarity of translation pairs in the shared embedding space. The model is
trained with mono-lingual and multi-lingual corpus, consisting of 17 billion sentences
and 6 billion translation pairs, respectively.
In this thesis, the multi-lingual versions of the chosen mono-lingual models are utilized to
be able to compare the results. For BERT, Multilingual Bidirectional Encoder Represen-
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Figure 2.3.: Translation Language Modelling (TLM) objective in English and French
languages (Lample and Conneau, 2019)

tations from Transformers (mBERT) (Devlin et al., 2018; Pires et al., 2019) is employed
as an encoder model. Multi-lingual BERT has multiple official model types, which vary
in size, but we used the base model as it has similar size to the models above. A similar
way applies to the Multilingual Text-To-Text Transfer Transformer (mT5) model (Xue
et al., 2020). There are official supports for multi-lingual T5 with different model sizes,
and the base model is used in this thesis for comparability concerns. Since the authors
of GPT-2 did not provide an official multi-lingual model, the model of Tan et al. (2021)
is utilized in this work to assess the stereotypical bias in multi-lingual GPT-2 mod-
els. The model is chosen due to its popularity among the multi-lingual GPT-2 models,
professional documentation, and satisfactory results. Another model from the Hugging-
Face platform which can be compared is a multi-lingual GPT-2 model from the user
"miguelvictor". However, the model does not have any theoretical paper support and
even a model card on the platform. Moreover, it is an enormously giant model, which
would create difficulties in comparing with other chosen models.

2.1.7. Model Comparisons

The models used in this thesis are fundamentally BERT, GPT-2, and T5 based. Since
their language modeling scores are evaluated and compared, it is significant to provide a
general comparison for the models to better interpret their final results. Table 2.3 shows
that BERT is the most miniature model trained with the smallest data set. BERT is
trained with Wikipedia pages and a book corpus. Since these sources have more official
requirements and audits for authors than ordinary web pages, the pre-training data set
of BERT is expected to include fewer stereotypes. The exact data size of multilingual
BERT is not published, but it is basically the Wikipedia web pages for the 104 most
common languages. If it is assumed that there is more source in English than any other

15



Data
Size

Data
Source Layers Hidden

Dims
Att.
Heads Parameters Vocab

Size

bert-base-
cased 13GB

Wikipedia
&
BooksCor-
pus

12 768 12 110M 28996

t5-base 750GB C4 (Web-
pages) 12 768 12 220M 32000

gpt-2 40GB Reddit and
Webpages 24 1024 16 1.5B 50257

bert-base-
multilingual-
cased

104 lan-
guages Wikipedia 12 768 12 110M 110000

google/mt5-
base

26TB
(101 lan-
guages)

mC4 (Web-
pages) 12 768 12 220M 250000

THUMT/
mGPT

26TB
(101 lan-
guages)

mC4 (Web-
pages) 24 1024 16 560M 250000

Table 2.3.: General Comparison of the Models Used

language in Wikipedia, the maximum data size of multilingual BERT can be 1.3 TB,
which is extremely small compared to other multilingual models. The vocabulary size of
multilingual BERT obviously increased because of containing many tokens from different
languages.
T5 is pre-trained with an enormously large data set compared to other SoTA models;
nevertheless, the model size of its base model is precisely the same as BERT’s base model.
The parameter size of T5 is double the comparable BERT model, although it has an
identical model size to BERT, and this is due to T5’s encoder-decoder architecture. As
stated in Section 2.1.5, the vocabulary size of T5 is prefixed to a similar number with
BERT due to achieving comparability. Multilingual T5 is pre-trained with a similar
data set from 101 different languages; consequently, the data set became even much
more extensive. The vocabulary size of multilingual T5 is expected to be bigger than
BERT since the data size is much bigger, and the tokenizer might encounter different
tokens in the data set.
GPT-2 is trained with a larger dataset than BERT, but it is a small dataset compared to
T5’s. The data source of GPT-2 is similar to T5; they both use web scrawling but from
different websites. GPT-2 model has almost double the size of BERT and T5. GPT-2 has
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a broader vocabulary compared to the others, which also poses a considerable amount
(more than ten times BERT) of parameter space for the model. Thus, GPT-2 model is
enormously larger than BERT and T5 models. The Multilingual Generative Pre-trained
Transformer (mGPT) 2 model has the same size as the mono-lingual GPT-2 since it is
directly based on that model. Thus, it is a larger model compared to multilingual BERT
and multilingual T5. It should be noted that the training data of the model is different
from GPT-2, but it is precisely the same as multilingual T5. This would change the
bias consistency of the model, so it is crucial to be considered while interpreting the
final results. Furthermore, the parameter size is also not the same with GPT-2 due to
using Multi-Stage Prompting (Tan et al., 2021) approach. The vocabulary size of the
model is the same as the multilingual T5 tokenizer because it uses the same dataset and
tokenizer as the multilingual T5 model.

2.2. Definition of Stereotypical Bias

Stereotype and Bias have different meanings, although commonly used in the same
context. The stereotype is a generalized belief that attributes certain characteristics to
all members of a particular category or class of people (Cardwell and Marcouse, 1996).
On the other hand, bias is supporting or opposing an idea, a particular person, or a
thing in a way that is prejudicial or unfair due to allowing personal views to influence
your judgment (McIntosh, 2013). Therefore, bias is a broader term and can happen
without a stereotype. For instance, "overconfidence bias" is a type of bias when a
person overestimates their skills and believes they can perform an action that is indeed
infeasible without sufficiently thinking (Moore and Healy, 2008). Furthermore, bias
can also exist in a positive direction; an intentionally anti-stereotypical action is also
a biased behavior. The combination of two terms, "stereotypical bias", is a type of
bias that occurs when the reason for the bias is a stereotype. The difference between
a stereotype and a stereotypical bias is that a stereotype is only a belief previously
defined, and a stereotypical bias is an action, behavior, or idea sourced from a stereotype.
For instance, if a hiring manager thinks that all Asians are hardworking, then it is a
stereotype; however, if the manager hires an Asian when there is a better-qualified
European only because of the stereotype mentioned earlier, it becomes a stereotypical
bias. Like people, the machines or programs might also have a stable stereotype in
themselves, and a stereotypical bias occurs when the program outputs an unfair result
that is sourced from a stereotype.
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2.3. Real-life Examples

Before the deep learning and artificial intelligence era, the machines were explicitly
programmed for each case and to output an expected result. However, deep learning
is a black box methodology, and the machines’ results can be unexpected. Unintended
results sometimes occur in daily life from artificially intelligent programs (Larson et al.,
2016) such as in the healthcare systems (Obermeyer et al., 2019) or simply in Google
Search results.
Figure 2.4 shows the search results of "terrorist religion" in Google. The first result
that it outputs is the Wikipedia page for "Islamic terrorism", although there are also
Wikipedia pages for "Religious Terrorism", "Christian terrorism", "Jewish religious ter-
rorism" and so on. The same experiment is done in Yandex Search, and the results look
fairer, as seen in Appendix A.1. Consequently, a simple religion-based stereotypical bias
can also occur in the world’s most common search engine (Graph 2.5), and the engine,
indeed, belongs to one of the most technologically advanced companies in the world.
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Figure 2.4.: Google Search results for "terrorist religion".
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Figure 2.5.: Search engine usage statistics.

In daily life, translation services are one of the most popular usage areas of language
models, especially multi-lingual language models. Google, the most widespread trans-
lation service, has troubles in its translation services regarding stereotypical bias, too.
The Figure 2.6 demonstrates a translation from Turkish to English. Turkish is a gender-
neutral language in terms of its pronouns, so there is no difference between he and
she; they are both represented as "o". When we input "cooking" and "being an engi-
neer" terms in the translation, Google matches "cooking" with a female and "being an
engineer" with a male, although there is no gender specified in the source language.

Figure 2.6.: Gender bias in Google translate.
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Many examples and experiments can be carried out to prove the stereotypical bias of
language models. Because of these examples, some people believe that Google or some
big companies are having these stereotypes intentionally (Trielli and Diakopoulos, 2019;
Bryan, 2019; O’Neil, 2016). These incidents, especially on popular platforms, might
hurt billions of people who are even unrelated to these results. Some people might even
blame a country (e.g., the USA) since a company is from that country, which might even
result in political conflicts.

Figure 2.7.: Gender bias reduction in Google translate.

Figure 2.8.: No bias reduction in German language translations of Google translate.

Furthermore, these stereotypes also bring the question of "Who is responsible for these
actions?". Are the engineers who designed a stereotyped program, the company provid-
ing the service, the people who create the program’s data source, or the judiciaries who
are not prohibiting these actions responsible for it? Or, from a different perspective,
can the AI program be made responsible for its actions? There are many discussions
about these questions, and there is no concluding decision yet. For instance, Maruyama
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(2022) claims that the responsibility can not be given to the AI unless there are ex-
tremely minimal or no regulations on the AI since the responsibility can be considered
only after giving its freedom to act. Nonetheless, at least there are ways to reduce or
measure the bias and inform the programs’ users beforehand (SKEEM and Lowenkamp,
2016; Ghallab, 2019). Google is absolutely aware that some of its products are produc-
ing harmful stereotypes and trying to reduce these biases (Johnson, 2020). When one
inputs only the "cooking" in the Turkish example mentioned before, Google provides
both masculine and feminine forms in English, as seen from Figure 2.7. On the contrary,
this is not the case in German, as seen in Figure 2.8, even though German is one of the
richest languages in the area of AI. Moreover, an interesting but meaningful experiment
is also conducted with the Arabic language. "Muslims are terrorists." text is written
in Google Translate as choosing Arabic as the target language, then we translated the
result back to English as is seen in the Figure 2.9. The resulting translation became
"Muslims are not terrorists.", which is wrong but a fairer translation. This example in-
dicates that Google tries to reduce its bias, but sometimes it yields wrong and mistaken
results that might create prominent disfavors or issues for the user. Therefore, there is
still a huge necessity to research the stereotypical bias in language models to overcome
these problems, especially in the multi-lingual context.

Figure 2.9.: Google Translate’s bias reduction causes a wrong translation.

22



2.4. Related Work

Bias and stereotypes in AI, especially in NLP applications, are a broad research field
since these stereotypes might hurt many people. Measuring the bias in a pre-trained
model, researching the reasons for these biases, and mitigating the biases have become
a common practice in recent years and attracted many researchers from other fields
too. In this respect, Caliskan et al. (2017); Bolukbasi et al. (2016) are one of the first
impressive works about detecting and proving the occurrence of stereotypical bias in
AI applications, especially in NLP. For instance, their word embedding association
tests (WEAT) show that European-American names have more positive valence than
African-American names in state-of-the-art sentiment analysis applications. They claim
this issue is a much broader context than having intentional bias among people since it
is more challenging to analyze and research the reasons. Nadeem et al. (2020) measures
the stereotypical bias mathematically in the English language by creating their own
data set. Their inspiration for the term "Context Association Test (CAT)" comes from
WEAT. Although these and most works are conducted in English, there is also admirable
research about multi-lingual analysis. For instance, Stanovsky et al. (2019) conducts
a practical experiment comparing gender bias in some of the widespread Translation
Services. They discovered that Amazon Translate performs second best in German
language translations among the picked systems. Moreover, three out of four systems
attain the most satisfactory performance in German among eight different languages. A
rationale for that might be German’s similarity to the English source language. Lauscher
and Glavaš (2019) measures different types of cross-lingual biases in seven languages
from various language families. They reached an unanticipated outcome that states the
Wikipedia corpus is more biased than the corpus of tweets and their results indicate that
FastText is the most biased method among the four embedding models. Névéol et al.
(2022) extends the CrowS-Pairs data set (Nangia et al., 2020) to the French language
and measures the bias while providing the possibility to extend in different languages.
Other than detecting and measuring the biases, there are also incredibly inspiring works
about the sources of bias and mitigating these biases (e.g., debiasing). Fundamentally,
the source of bias is divided into two categories, one coming from the data and the
second from the model (Mehrabi et al., 2019). The model sometimes overfocuses on
these biases in data and applies these biases in its predictions more often than their
occurrence in the data; this issue is called bias amplification of the model (Zhao et al.,
2017; Hall et al., 2022). Hall et al. (2022) discovers a critical correlation between the
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strength of bias amplification and the measures such as model accuracy, model capacity,
model overconfidence, and amount of training data. Moreover, they imply that bias
amplification is more substantial when it is less complicated to recognize group mem-
bership than class membership where the groups are like a gender group, an age group,
or an ethnic group. The debiasing techniques typically try to overcome harmful bias
amplification. Bolukbasi et al. (2016) is not only assessing the bias but also proposing
debiasing techniques. Another state-of-the-art work is from Bartl et al. (2020), where
they applied Counterfactual Data Substitution (CDS) to GAP corpus and finetuned
BERT to mitigate gender bias in the initial pre-trained model. They achieved promising
results in the English language; however, the same method performed unsatisfactorily
to mitigate bias in the German language. Therefore, this proves that bias mitigation
methods do not necessarily perform similarly in different languages, even if they belong
to the same language family (e.g., Germanic). One reason for that different languages
has different grammar, especially in terms of gender specifications. For instance, Ger-
man is a gender-marking language and this might cause to encounter more debiasing
difficulties in the German language compared to English. Furthermore, Meade et al.
(2021) applies debiasing techniques for various kinds of bias types such as racial bias
and religious bias instead of only gender bias. They use different benchmark data sets to
show the debiasing performance, such as the StereoSet data set (Nadeem et al., 2020).
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3. Material & Methods

3.1. Data sets and Data Preprocessing

3.1.1. StereoSet Data Set

We use the StereoSet data set (Nadeem et al., 2020), which is created by employing
crowd-workers from Amazon Mechanical Turk. They also validated each example in the
data set by five validators, and only the examples where 3 of the validators agree on the
classification labels are retained.
The data set is designed to have two association tests to evaluate the models, the so-
called intra-sentence test and the inter-sentence test. The intra-sentence test is used for
the model to predict the probability of occurrence of specific words in the sentences.
We essentially measure how the model would fill a blank in the sentences as shown in
Table 3.1. We supply three candidates to the model for each sentence and inspect its
prediction of that word’s occurrence in the blank part of the sentence. For instance,
"The Muslim was extremely BLANK in his practice." is the main sentence and is called
a "context sentence" over the paper. In addition, "violent", "nonviolent" and "orange"
are the words that are placed into the "BLANK" part. These words are called "candidate
words" over the paper since they are the candidates to be substituted with the word
"BLANK". The model should compute the probability of the candidate word being
in the "BLANK" part of the context sentence. These three words are indeed in three
different categories: stereotypical candidate, anti-stereotypical candidate, and unrelated
candidate, respectively.
In inter-sentence tests, the probability of a sentence followed by another sentence is
inspected. Fundamentally, how the model would predict the next sentence after reading
a sentence is analyzed. For each sentence, there are again three candidates for the
model to predict where each of them is from different categories: stereotypical, anti-
stereotypical, and unrelated, as seen in Table 3.2. For example, "My professor is a
Hispanic man" is the main sentence and will also be called a "context sentence" over
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Fill in the blank with the appropriate candidate word.
Context Sentence: The Muslim was extremely ____ in his practice.

Candidate Word 1 (stereotype): violent
Candidate Word 2 (anti-stereotype): non-violent

Candidate Word 3 (unrelated): orange
Target: Muslim Domain: Religion

Table 3.1.: Example for an intra-sentence test.

the paper. In addition, "He came here illegally", "He is a legal citizen" and "The knee
was bruised" are sentences in stereotypical, anti-stereotypical, and unrelated categories,
respectively, and they will follow the context sentence. These sentences will be called
"candidate sentences" over the paper since they are the candidates for the next sentence
of the context sentence. The model should compute the probability of the context
sentence to be followed by the candidate sentence for each candidate sentence.

Find the appropriate sentence among candidate sentences to
follow the context sentence.

Context Sentence: My professor is a Hispanic man
Candidate Sentence 1 (stereotype): He came here illegally

Candidate Sentence 2 (anti-stereotype): He is a legal citizen
Candidate Sentence 3 (unrelated): The knee was bruised

Target: Hispanic Domain: Race

Table 3.2.: Example for an inter-sentence test.

As stated above, one of the three categories is "unrelated". This candidate is an utterly
unrelated sentence/word from the context sentence. This category exists to measure the
performance of the language model and whether it predicts a meaningful option (e.g.,
stereotypical or anti-stereotypical candidate). Therefore, we measure not only the bias
but also the performance of the model since when the bias decreases, the model usually
performs worse, so it is worthwhile to measure the model’s performance.
The targeted word(s) as a stereotype is known in each context sentence example. In other
words, in each example, there is information for the "target word" which indicates to
which group of people the stereotype is being done. For instance, in the above example
intra-sentence test, the target word is "Muslim"; in the inter-sentence example, the
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target word is "Hispanic". Hence, we are able to measure the bias for a specific target
group as well. These target words are created by Nadeem et al. (2020) using Wikidata
relation triples (<subject, relation, object>). The "relation" in these triples gives us
the bias type (e.g., gender). There are four different bias types that the data set has;
gender, profession, race, and religion. For instance, in the intra-sentence example above,
the bias type is religion, as the stereotype is done on the religion of Islam. In addition,
The "bias type" of the inter-sentence example above is race since the stereotype is done
on the Hispanic race. It is also important to point out that some target terms contain
multiple words, such as software developer and civil servant.

3.1.2. Descriptives

Nadeem et al. (2020) provide only the development version of the data set to the public
and reserve the test set for themselves. Thus, only the development set is used in this
work, and all the descriptions and the work will be about the development set.
There are 2123 sentence examples in the inter-sentence and 2106 in the intra-sentence
data set. Of these 2123 inter-sentence examples, 2115 have unique context sentences, so
there are some duplicate context sentences. For instance, "Spain is in Europe." occurs
two times as the context sentence; however, the candidate sentences are all different
in every duplicate context sentence; consequently, these few duplicate sentences do not
cause any problem. Likewise, a few candidate sentences are also repeated in some cases,
but their context sentence is always different. Therefore, there is no duplicate inter-
sentence example. The same situation occurs in intra-sentence examples as well. Even
though there are a few repetitions in the context sentences, there is no duplicate example
in the data set.
From 79 unique target terms in the inter-sentence data set, the most common target
term, "Ethiopia", has 33 occurrences, and the least has 20. For the intra-sentence data
set, the number of occurrences of target terms is between 21 and 32 where the most
common is "football player". There are also 79 target groups for the intra-sentence
tests. Therefore, the data set is well-balanced with respect to the target terms. As seen
from the Figure 3.1, "race" bias type occurs most commonly in both data sets. It is
significant to mention that there are only around 80 examples for the "religion" bias
type category.
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Figure 3.1.: Bias type distribution. (Left:inter-sentence data set, right:intra-sentence
data set)

3.1.3. Data Set Creation

The data set is read as two pandas data frame objects (pandas development team,
2020), one for intra-sentence and one for inter-sentence, to have a more manageable and
straightforward analysis. Each row in the data frame represents one example in the data
set, with 16 columns. These columns include information about the example, such as
example id, target term, bias type, and context sentence. Moreover, they contain the
information for each candidate sentence, too, such as the sentence itself, gold label, id,
and its labels.
For intra-sentences, there is only a masked word that differs between candidate sentences
and the context sentence since it is a mask-filling task. Since the masked word is the
only important part in the candidate sentences, they are separately stored in a different
column to make the subsequent analysis more manageable and understandable. To
extract the masked word from the candidate sentence, we follow the same algorithm
with the authors of the data set (Nadeem et al., 2020). First, the index of the "BLANK"
word is found in the context sentence, and then the corresponding word in this index
for the candidate sentence is extracted. After that, we clean the masked word from the
punctuations and add it to the new column in the name of "candidate word". This
separation of the candidate word allows us to run the translations explained in the
following sections.

Translating to German

The data set is translated to German using Amazon Web Service translation services
in Python (boto3). The translation cost of AWS is measured according to the number
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of characters in the input text. Therefore, we calculate the number of characters to be
translated as a reference to have a rough idea about AWS pricing. There are around
130000 characters in the intra-sentence and 380000 characters in the inter-sentence data
set to be translated.
A crucial point in the translation process is translating the "BLANK" word of the context
sentences in the intra-sentence data set. This word must be kept the same in the outputs,
and it must have cared a special word. If it is left as a standard word, it is translated
as "LEER" (means blank/empty in German) or its different synonyms, and sometimes
it is kept the same as "BLANK" automatically by AWS. These different context-based
translations for the "BLANK" word would cause difficulties to be found in the following
analysis. AWS’s "custom terminology" approach is designed specifically for these cases
when a user does not want to translate a word. Consequently, a custom terminology
must be created for the "BLANK" words for the masks. The custom terminology can
be achieved by giving a byte code of "en,de [endline] BLANK,BLANK" in Python.

3.1.4. Data Preprocessing

Fixing Issues in Translations

Initially, the custom terminology feature surprisingly did not work well with some exam-
ples. These few examples were also tested alone, but we noticed that this feature did not
function on these specific examples and translated the custom word to the target lan-
guage even though it was stated to not translate. However, a few weeks after, the same
code produced correct results (no translations for the custom words), probably due to
some fixes in AWS libraries. Therefore, it is crucial to check if there is an inter-sentence
example that does not contain a "BLANK" word after the translations.
After the translations, all data set is checked for punctuations and special characters.
Only some of the translated candidate words in the intra-sentence data set have some
unnecessary characters, such as "-". We clean these to obtain more accurate estimations
in the following parts. Another potential problem is the translated target terms for
the "football player". One can check the sentences and notice that this profession is
defined as American football players instead of soccer players in the original data set.
In the German language, the translation for that should be "American-football-spieler"
instead of "Fußballspieler", and this has to be fixed too. Furthermore, another issue in
the translations is including a dash near the "BLANK" word. Dashes are commonly
used after adjectives in German, so when the translator predicts that the "BLANK"
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Target Term Context Sentence
English Russian The BLANK Russian sat on the couch.
German Russisch Der BLANK Russe saß auf der Couch.

Table 3.3.: An example of problematic translations

word is an adjective or defined by an adjective, it places a dash near it. These dashes
are also cleaned from the "BLANK" word.
Moreover, a primary problem in the translations is that some of the target terms do
not occur in the context sentences anymore after the translations. The target terms are
translated independently of the context; however, in the sentences, they are in a context
and are translated according to that context. Hence, the translations of the same word
do not match with each other for some examples. The most common translation error
occurs in the country or language names due to having a more comprehensive vocabulary
of them in German. While in English, there is usually one common word for a person
from a country and the country’s language, on the other hand, in German, it is typically
two separate words. For instance, "Turkish" can mean both the language and a person
in English (e.g., Turkish girl and Turkish language). However, in German, the person
would be called "Türke" or "türkische Person" and the language would be "Türkisch".
An example from the data set is "Russian" as the target term and "The BLANK Russian
sat on the couch." as the context sentence, seen in Table 3.3. Many target term examples
have the same problem, such as Hispanic, Iranian, Ethiopian, etc. This common issue
poses severe problems for the mismatch between the translation of the target term and
the translation of the context sentence. Hence, the non-occurrence of target terms in
the context sentences is due to the context-independent translations of target terms.
To detect these issues, we check whether the target term occurs in the context sentence
or not for each example. We discover that there are 562 examples in the intra-sentences
and 535 in the inter-sentences suffering from the same problem. This problem would
get even more significant if the candidate words were not separated from the candidate
sentences in the intra-sentence data set. Therefore, there is a need to change some of
the target terms to adapt them to their context sentence. Since the target terms will be
modified, their original English version is kept as a new column "target_original" for
comparability, and they will be used in the further evaluation parts. We fix this problem
with semi-automatic methodologies.
The targets which do not occur in their corresponding context sentence are analyzed,
and Figure 3.2 displays how many problematic examples each target term has. The
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Figure 3.2.: Number of problematic examples per target term. (Left: intra-sentence data
set, Right: inter-sentence data set)

most problematic target term in intra-sentence is "Häftling", translated from "prisoner".
"Prisoner" has different translations in German such as "Gefangene" and "Häftling".
Since the "Häftling" word is gender-neutral and the plural version is also the same, we
decide to use "Häftling" instead of its synonyms. When modifying the translations, one
should be careful about the articles of these nouns (e.g., der/die/das, etc.). The articles
are carefully modified in this work by working with native speakers. The second most
problematic target term is "schuljunge", which is the translation of "schoolboy" in the
original data. As the original version already reveals the gender of the word, the target
term can be modified to "Schüler", as this word mainly occurs in context sentences. An-
other problematic target term is "Möbelpacker", the person who transports and moves
possessions (e.g., mover). This term has multiple synonyms in German (e.g., Umzug-
sunternehmen, Beweger). However, the most appropriate word for the context sentences
is "Möbelpacker" since it can be a person instead of a company and is gender-neutral.
Consequently, all other translations in the context sentences are replaced with the word
"Möbelpacker". Another target term that needs a fix is "Sierraleon". This term has
only one correct usage in German, "Sierra Leone", and all other usages are converted
to the correct version. Another important target term that needs to be investigated is
"Lieferant", the equivalent of "delivery man" in the original data set. This word also
has many translations in the German language, such as "Lieferbote" and "Zusteller".
"Zusteller" is picked as the final word for this target term due to its gender-neutral
structure. Another target term posing problems to the data set is "darstellender Kün-
stler" which means "performing artist". The problem of not match for the target word
for this case is primarily due to the grammatical cases ("Kasus") in German. Therefore,
the correct version changes in every sentence and requires an example-by-example in-
vestigation. The last target term that can be fixed in this way is "Norweigan". Indeed,
translations are wrong for this case due to the mistakes in the English StereoSet data set.
The correct word for this target term should be "Norwegian", instead of "Norweigan".
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The "Norweigan" word is converted to "Norweg", and the purpose of changing it to
"Norweg" is to be fixed automatically in the subsequent processes.

Figure 3.3.: Number of problematic examples per target term after the initial semi-
automatic fix. (Left:intra-sentence data set, right:inter-sentence data set)

After having these modifications, we reduce the number of problematic examples to 378
from 562 in the intra-sentence data set and 352 from 535 in the inter-sentence data
set. The distribution of the remaining problematic target terms is plotted in Figure 3.3.
These remaining problematic cases are fixed by another method by finding the closest
word to the target word in the context sentence. The target word is compared with each
word (words are found by splitting the sentence by white space character) in the context
sentence by employing the "get_close_match()" function of the "difflib1" library. The
cutoff variable is fixed by 0.4 as it can be interpreted as detecting the words with 40
percent similarity to the target word. A tricky point here is that the target terms have
more than one word; however, there are only a few in the data set (e.g., "darstellender
Künstler"), and they are excluded from this method. After finding the most similar
word in the context sentence, the target term is replaced with that word. While in most
cases, the unmatching of the target term is due to the different endings of the word
(e.g., Russich and Russe), there are some cases where the sentence has a synonym (e.g.,
Herren and Gentlemen) of the target term. In these cases, the similarity rate is lower
than 0.4, so the target term does not change. After this methodology, indeed, most of
the problematic target terms are fixed, and it is reduced from 378 to 57 in the intra-
sentence data set and from 352 to 41 in the inter-sentence data set. By this algorithm,
we also fix the problem with the "Norweigan" word since the different word types in
sentences are all similar to the word "Norweg".
Next, the rest of the problematic cases are plotted in Figure 3.4 and investigated one by
one. "Ihr selber" and "sich selbst" (himself and herself in English) have a specific case
since they have significantly different grammatical usage in German compared to English.
Since there are approximately 50 problematic examples with these target terms, they

1https://docs.python.org/3/library/difflib.html

32

https://docs.python.org/3/library/difflib.html


Figure 3.4.: Number of problematic examples per target term after the automatic fix by
finding the closest word. (Left:intra-sentence data set, right:inter-sentence
data set)

are not easily negligible. Thus, we manually fix the problematic examples with these
target terms, and they are modified sentence by sentence by German native speakers.
"männlich" is the third biggest problematic target term in this phase; however, it is
easily fixable since all of its translations in the candidate sentences are the same word
"Mann". Hence, the target word "männlich" in these examples is replaced by "Mann".
Similar with "männlich", the target term "herren" is replaced with "Gentlement", and
"Befehlshaber" with "Kommandant". All target terms are fixed at the end of all these
changes except for four examples in the intra-sentence data set and five in the inter-
sentence data set.

Figure 3.5.: Number of problematic examples per target term after all semi-automatic
fixes. (Left:intra-sentence data set, right:inter-sentence data set)
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3.2. Methods for Probability Predictions

3.2.1. Intra-sentence Predictions

The intra-sentence tests can be conducted by benefiting BERT’s Masked Language Mod-
elling (MLM) objective. In addition, as explained in Section 2.1.5, T5 has a highly similar
objective to BERT’s MLM. This BERT-style objective makes T5 extremely straightfor-
ward to infer for intra-sentence tests. However, GPT-2 does not have any objective
related to Masked Language Modeling, and it is fundamentally a pure generative model.
Hence, the inference for the probabilities will be made in a discriminative approach for
BERT and T5-based models and a generative approach for GPT-2 based models. It
is significant to note that this inference can be made directly by using the "fill-mask"
pipeline, but the pipeline does not support T5 and GPT-2 based models, thereby lacking
the benefit for the scope of this thesis.

Discriminative Approach

In intra-sentence tests, the main task is predicting the probability of a candidate word
being placed in the masked part of the context sentence. However, the candidate word is
usually multi-token, and the probability of the whole word cannot be calculated directly,
so there is a multiple mask tokens case. Therefore, the candidate word is divided into
tokens, and each token is unmasked every time from left to right. The algorithm to solve
the problem is inspired by Nadeem et al. (2020). After manipulating the data set to
multiple token masked words, as shown in Figure 3.6, more than three sentences for each
context sentence might arise. Nevertheless, due to efficient object-oriented handling, the
inference can be accomplished batch by batch and with multiprocessing.

The chess player was [BLANK].

asian
The chess player

was [MASK].
The chess player
was a[MASK].

hispanic

The chess player was [MASK].
The chess player was his[MASK].

The chess player was hispan[MASK].

fox

The chess player
was [MASK].

Figure 3.6.: An example for multiple mask tokens. There are six different sentences to
be processed for only one example in this case.
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We accomplish tokenizing the sentences as a batch by padding the sequences to the size
of the longest sentence in the batch. This modification is implemented by extending the
Nadeem et al. (2020) code where the padding was done to a fixed length (e.g., 256),
with the aim of reducing memory consumption. After replacing the masked token with
the word "BLANK" in the context sentences, these sentences are passed to the model
with their corresponding input ids and attention masks. Then, a softmax operation is
applied to the results’ likelihood scores in its last dimension, which possesses all tokens
in the vocabulary. The softmax function enables us to convert the output scores to a
probability distribution by the Formula 3.1

Softmax(xi) =
exp(xi)P
j exp(xj)

(3.1)

After acquiring the probability of the masked token, these probabilities have to be stored
in a specific format. A dictionary of lists is created to store multiple probabilities (each
masked token has a different probability) in a list format for each candidate word.
Therefore, the keys in the dictionary are the candidate IDs, and the values are the
list of probabilities for each candidate. Then, these probabilities for each candidate
sentence are accumulated by averaging its corresponding list of probabilities. Hence, the
resulting probability for a candidate sentence is the average of its tokens probabilities
to be replaced with "BLANK" in the context sentence.
Moreover, one should be careful about the masked token of the model’s corresponding
tokenizers. Although all masked tokens are coded equivalently as "[MASK]" in BERT,
one mask token might be coded differently than the other in T5. In BERT, the masked
token is automatically gathered from its tokenizer. On the other hand, in T5, a sentence
can contain multiple masks, and each of them is numbered as "<extra_id_0>", "<ex-
tra_id_1>", and so on according to the number of different masks in a sentence. Since
there will be only one mask in our approach, "<extra_id_0>" is the only necessary
string to be replaced with the masked part of the sentences. Thus, one assumption is
that this thesis only has one mask for intra-sentence context sentences.
Another significant point that T5 has different from BERT is its encoder-decoder archi-
tecture. Due to its architecture, it requires some input to its decoder part, which should
be labels of the task. Hence, due to this additional requirement of T5, the mask filling is
done using the "generate" function (Wolf et al., 2019) in the state-of-the-art methodolo-
gies. The length of the generated output depends on its hyper-parameter "max_length".
To get the likelihood scores for the vocabulary, one must set "output_scores" and "re-
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turn_dict_in_generate" hyper-parameters to "True". The generator output of T5 al-
ways generates first the beginning token, then the "<extra_id_0>" and finally the
token for the masked part. Therefore, if one wants to generate only one token for the
mask, then the "max_length" parameter must be set to 3, and for two tokens, it must
be set to 4. Furthermore, the likelihood scores of the generator function for T5 always
include probability distribution for the "<extra_id_0>" as a first element and then for
the "masked_word", which is the only important consideration for intra-sentence tests.
Therefore, one must investigate the probability distribution given in the second element
of the scores output.

Generative Approach

After initializing the GPT-2 tokenizer and the GPT-2 model, the pad token is added to
the tokenizer since it does not have a pad token in its pre-trained form. The size of token
embedding of the model is, of course, updated according to. After loading the tokenizer
and the model, the "pandas" data frame is loaded using a specific data loader class.
The new data instances include the candidate sentences and their corresponding IDs.
By utilizing the special object-oriented programming technique to load the dataset, it
is achieved to make the model learn in batch mode and with multiprocessing which was
not existing in the Nadeem et al. (2020). The tokenizer encodes the candidate sentences
batch by batch by padding the sentences to have the same size as the longest sentence
in the batch. Obviously, the attention mask is returned from the tokenizer and utilized
in the model to specify which parts are padding and should be ignored in the likelihood
computations.
GPT-2 is a uni-directional model and approaches the sequence from left to right. There-
fore, if one tries to generate the probability distribution for the masked part, the right
context of the masked part would be ignored as the model considers only the left con-
text. This behavior is not intended since the stereotype might be occurring in the right
part of the mask. Thus, a higher-level calculation is necessary for GPT-2 sentences to
consider all parts of the sentence. We handle this by generating the probability distri-
bution for every token by providing their respective left context to the model; this can
also be acquired by supplying the whole sentence in one to the model instead of inferring
it separately for each token. In other words, the generation is executed for every token
instead of only the masked part. In this case, the masked part obviously does not affect
only one token on its right but the whole context on its right because of the native
left-to-right behavior of the model. The output of this operation produces a separate

36



distribution for each token where each distribution expresses the likelihood distribution
for the corresponding next token. Hence, the likelihood of generating a specific token is
obtained by examining the previous token’s likelihood distribution output.
The first token does not have any left context, and the probability of it cannot be calcu-
lated directly. Consequently, the probability distribution of the first token is computed
individually from the other tokens. The start token of the GPT-2, which can be con-
sidered as the token before the first token (e.g., BOS token), is "<|endoftext|>", so the
likelihood distribution of the first token is measured by providing the start token to the
model as a left-context of the first token.
After calculating these likelihood distributions both for the first token and for the whole
sentence, the softmax operation is performed separately over the vocabulary dimension
to flatten the results into a probability space where each of the results is between zero
and one. To merge these probabilities from each token, the following formula inspired
by Nadeem et al. (2020) is used,

2

PN
i=1 log2(P (xi|x0, x1, ..., xi�1))

N , (3.2)

where N is the number of tokens in the sentence.

3.2.2. Inter-sentence Predictions

Inter-sentence tests can be conducted by taking advantage of the BERT’s NSP objec-
tive. In the NSP objective, the model is pre-trained to predict whether the sentences
are consecutive or random. One can extract the likelihood of being the next sentence
and compare it with other candidates. This straightforward algorithm can be applied
in BERT and Multilingual BERT due to their native NSP objective. However, T5 and
GPT-2 based models were not pre-trained in the NSP objective, in consequence, differ-
ent ways to test inter-sentence examples in these models are considered. An effective
approach is fine-tuning T5 and GPT-2 models for the Next Sentence Prediction down-
stream task and inferring the predictions from these fine-tuned models. This approach
and the details of the fine-tuning process are explained in the next part. Another ap-
proach is predicting the probability of each word in the next sentence by using the
generative characteristics of these models. The second auto-regressive approach is not
specifically for Next Sentence Prediction but more about the model’s language modeling
abilities and predictions depending on all words in the candidate sentence individually
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instead of a general prediction. The results of T5 and GPT-2 using the generative ap-
proach are expected to perform poorer than BERT due to their incapability of NSP task
and a non-specific approach for NSP.

NSP Fine-tuning for GPT-2 and T5 Based Models

The main task of this process is teaching the model to predict whether a sentence is
really the next sentence of a sentence or just a random sentence. Therefore, the data set
used here does not need any labels, the positive examples (actual next sentences) can
be created from paragraphs on the internet, and the random sentences can be inputted
as negative examples. Thus, the learning process of this downstream task is completely
self-supervised learning, similar to BERT’s NSP pre-training. The crucial part is where
the sentences would be collected and how many of them are needed.
We inspire this process mainly from Nadeem et al. (2020); however, many changes
have been made, such as the data type of the data set. Different than Nadeem et al.
(2020), the data set is collected from Wikipedia using the Huggingface "datasets" library
(Foundation, 2022). The library provides prepared versions of English and German
Wikipedia dumps extracted on May 1, 2022, in the Huggingface Dataset format. Using
this format decreased the memory consumption of the process due to its unique on-
demand reading feature. Huggingface Datasets save the data set in the disk when loaded
instead of holding it all the time in the memory. 9.5 Million sentences take around 20
GBs of memory, posing a significant obstacle to the training process. By using this data
format in the whole training process to hold the data, the memory consumption for the
same data set decreased to 2.5 GB from 20 GB, which left many spaces for the model
training.
The articles on every page of Wikipedia dumps include many sentences in paragraphs
without splitting them. Hence, the articles are tokenized at the sentence level using
Natural Language Toolkit (NLTK) (Loper and Bird, 2002) with multiprocessing. Then,
after shuffling the data set, it is "exploded" such that each row would include a sentence
and the ID of the article that the sentence belongs to. For each row in the data set, the
sentence and the ID of the next row are added as a new column; this enables to create
the consecutive sentence tuples. The main idea of creating the data set is to assign its
next sentence, which will be called "related", and one random sentence, which will be
called "unrelated", for each sentence. For the next sentence, this is achieved by filtering
the newly created data set where the ID of the sentence and ID of the next sentence are
equal. One might initially consider that they would always be equal; however, when the

38



sentence is the last sentence of the corresponding article, the next sentence would be
from even a different article instead of the following sentence. The unrelated (random)
examples are created by drawing a random sentence for each sentence. It is crucial
to note that the random sentence should be taken from a different article than the
article to which the original sentence belongs to. This strategy would help the model
to have more accurate predictions by being able to differentiate between articles. Both
assigning the related sentence and the unrelated sentence can be achieved by benefiting
multiprocessing. Finally, these two data sets, where one of them includes the related
examples and the other unrelated, are concatenated and shuffled.
It should be noted that the final data set would have around double the size of the original
one (after sentence tokenization) as there becomes two rows, one for related and another
for unrelated, for each sentence. Due to efficient data format usage and multiprocessing,
creating a data set consisting of 9.5 Million sentences takes only a few minutes using
eight Central Processing Unit (CPU) cores. In addition, the process does not exceed
even five GB of Random-Access Memory (RAM) usage. As an example to decide the
number of articles to use, 220000 articles on average form 9.5 million sentences in the
final data set. This whole algorithm is done for both English and German languages,
and then they are concatenated and shuffled. There is the same number of articles
used for both languages to ensure a balanced data set. In conclusion, half of the whole
data set is for German, and the other half is for English; for each language, half of the
corresponding data set has positive examples (actual next sentence), and the other half
has negative examples (random sentence).
The monolingual English GPT-2 is already fine-tuned by Nadeem et al. (2020) with 9.5
Million examples from Wikipedia articles, and the authors provide the model. Therefore,
there is no need to re-do the same process due to the environmental and time costs of
fine-tuning the giant model on such a large data set. However, since there was no
work on multilingual GPT-2 models and for T5, there is a strong necessity to fine-
tune these models for the NSP downstream task. The employed GPT-2 based models
are "GPT2Model" from the HuggingFace transformers (Wolf et al., 2019). It is a bare
model without any head and is ready to be fine-tuned by adding a new head. Inspired by
Nadeem et al. (2020), the head of the model is designed as three linear layers sequentially.
It outputs two results: one would be the likelihood of having the real next sentence, and
the other would be the likelihood of having a random sentence. Loss function and many
specifications of the training process are kept the same with the work of Nadeem et al.
(2020) to achieve the comparability of the results. Hence, the cross-entropy loss (Zhang

39



and Sabuncu, 2018) is used to measure the loss of each step as its formula is given at
3.3. Gradient accumulation is also provided to be used optionally to increase training
speed. The gradient accumulation saves gradient values in every batch, proceeds to the
next batch, and adds up the new gradients; then, it does weight updates after several
batches have been processed by the model, instead of updating the weights in every batch
(Kozodoi, 2021). As a consequence of skipping the weight update in some batches, the
training process accelerates. The gradient accumulation can be seen as a pseudo batch
mode as it allows the model to combine more examples and does the computation for
all. Accumulation steps are the number of batches to combine for updating weights.
Furthermore, Graphical Processing Unit (GPU) machines are supported in all parts of
the training process and suggested to be utilized by tuning appropriate hyper-parameters
in the large models to save an enormous amount of time.

� (y log(p) + (1� y) log(1� p)) (3.3)

Since GPT-2 was not trained with a padding token, a padding token is added to its
tokenizer, and the token embeddings of the model are resized according to. Adam al-
gorithm (Kingma and Ba, 2014) with weight decay fix (Loshchilov and Hutter, 2017)
is used as the optimization for the training process. Two different learning rates are
used where one is for the core model, and the other is used for the head part of the
model. For the former, 5e-6 is used as a learning rate; for the latter, it is 1e-3. Yet, the
learning rates are not fixed; a scheduler with a warm-up period is used. The scheduler
has hard restarts, and it decreases the values of the learning rate by a cosine func-
tion (Loshchilov and Hutter, 2016). Utilizing warm-up steps means keeping smaller
learning rate values in the beginning and slowly reaching the specified learning rate
value with the step size defined by warm-up steps. The warm-up period is operated
to avoid significant shifts in the gradient vector at the beginning to diminish the im-
pact of over-fitting to the initial estimates. An image that depicts the general flow of
the learning rate under this scheduler is given in Figure 3.7. The parameter for the
number of warm-up steps is a fixed number (250) in their work; however, the warm-up
should change according to the data size, batch size, and accumulation steps. Other-
wise, with a small data set, the whole training might be completed in the warm-up
part without reaching the central learning part. Thus, the warm-up steps are chosen as
(total number of training steps) // 100 + 1 where the total number of training steps
is measured by ((number of batches) //(accumulation steps)) ⇤ (number of epochs),
so the warm-up steps is chosen to be around 1 percent of the training steps. Plus, one is
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added to ensure the existence of a warm-up procedure since the division might get 0 as
it is an integer division. Most of the other hyper-parameters are kept the same with the
Nadeem et al. (2020) to compare the results with the GPT-2 model that they trained.

Figure 3.7.: Cosine learning rate scheduling with hard restarts after a warm-up period
(Wolf et al., 2019).

The tokenization of the sentences is done batch by batch and tuples of sentences (e.g.,
sentence pairs) where the first is the main sentence, and the next is the (real or fake)
next sentence. The padding is done for each batch as a size of the longest sentence pair
length in the respective batch. The maximum sequence length is also supplied as 256,
not to exceed the memory size during the training. Token type IDs and attention masks
are significant to return in this step due to having batched training and providing pairs
of sentences.
Moreover, it is incredibly crucial to state that the string of the sentence texts is given
in a different version for T5 models. As described in Section 2.1.5, T5 models are pre-
trained on different downstream tasks by adding a "prefix task" name to the beginning
of the input sequence, so they are taught to operate one task by adding the name of
the task to the start of the sequence. Therefore, the text "binary classification: ", a
unique wording in the T5 tokenizer, is added to the start of every input sequence. This
prefix task name is not required in T5 fine-tuning, but it is recommended to have it
to speed up the convergence process. On the contrary, Multilingual T5 models (Xue
et al., 2020) were not pre-trained with downstream tasks, unlike the original T5 model.
Multilingual T5 models are only pre-trained with the unsupervised language modeling
objective, thereby withdrawing the advantage of providing prefix tasks for these models’
fine-tuning processes. It is only helpful if there is multi-task learning, and it is not in
the scope of this work.
Furthermore, T5 and mT5 models differ from others by being a sequence to sequence
(Seq2Seq) model, so the model outputs a string instead of an integer or a float number.
As a consequence of that, the labels to the model must be supplied as tokenized string
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sequences instead of binary variables as 0 and 1. Hence, the labels are converted to
their string form "0" and "1" for 0 and 1, respectively, and then tokenized using the T5
tokenizer. The need for label transformation is also the case for multilingual T5 models,
so this transformation for the labels is also applied in multilingual T5 fine-tuning.
For GPT-2 and BERT-based models, the forward function of the model is straightfor-
ward. The input IDs and attention masks are provided to their corresponding model
to obtain the likelihoods, then to the added head layers. The output of the head layers
is the likelihood for the binary classification as it has only two output channels. Then,
the loss is calculated using the cross-entropy loss measured by these likelihoods and the
ground-truth labels. Then, the loss is divided by the accumulation steps because its the
loss for that accumulation of the batches and added to the total loss (e.g., running loss).
Prediction of the model is acquired by applying softmax operation on the likelihoods
and choosing the element with a higher probability. In fact, the softmax operation is
unnecessary in this case since the only interest is the comparison of the values to identify
the greater value. Then, the accuracy is computed by comparing these final predictions
of the model with the ground-truth labels.
For T5 and MT5 models, calculating loss and accuracy also slightly differ from the
other models due to its encoder-decoder architecture and teacher forcing methodology,
expounded in Section 2.1.5. The loss is computed from the forward function of the T5
models and returned in its output. As a consequence, a separate calculation for the
loss is unnecessary, and the loss function used in T5 is also the cross-entropy loss we
used for the other models. (Raffel et al., 2019). The forward function of the model is
called by passing the encoded input, attention mask (due to batch training), and the
transformed labels. We do not compute the model’s accuracy by the same process in T5
since the accuracy of the model’s predictions tends to overfit and becomes overestimated
due to additionally providing the labels to the model. In most cases, the accuracy scores,
even in the first batches, are over 90% if measured from the predictions of its forward
function. Therefore, the accuracy should be measured by calling a method without
providing the labels. Calling the "generate" function is the most appropriate way to
measure it because it is based on generative prediction and applies it without teacher
forcing. Hence, the accuracy calculations are processed by applying the "generate"
function to remove the bias in the predictions. Since the expected output has one token,
the max length hyper-parameter is given as three as elucidated in Section 3.2.1. After
running the generate function, the likelihoods to obtain "0" and "1" are compared, and
the greater one is chosen for the model’s final prediction. Then, the total loss and the
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accuracy are calculated in the same way with GPT-2 models.
After calculating the loss, the gradients of the loss with respect to the weights are calcu-
lated by backward propagation, also known as "backpropagation". After the backward
propagation, the gradient norm of model parameters is clipped for each accumulated
batch, the scheduler and optimizer are updated, and gradients are zeroed. Clipping
norms are used to overcome exploding gradients. The derivative values often become
too large compared to the others and have an over-effect on the weights in the weight
updating step. Sometimes they even become infinitely large and manipulate the weights;
this situation is called "exploding gradients". Some methods to overcome the problem
include regularization or clipping the gradients. Gradient clipping is fundamentally clip-
ping the gradient vectors to a threshold as it is depicted in Figure 3.8. In this thesis, the
threshold is considered as 1.0 (unit length) to have comparability with Nadeem et al.
(2020). Moreover, PyTorch accumulates all of the previous gradients in every step, and
to overcome it, gradients must be zeroed in every step.

Figure 3.8.: (Left) Gradient descent without gradient clipping receives a huge gradient.
(Right) Gradient descent with gradient clipping has a more moderate reac-
tion (Bajaj, 2022).

The training process results are saved in every 500 examples for monitoring purposes.
The current number of batches processed in this monitoring window is counted in a
variable called "ticks", and the total accuracy and total loss are divided by this number
to obtain the current accuracy and the loss. Indeed, the current loss is multiplied by

43



accumulation steps due to the optimization done by gradient accumulation. These results
are logged in the Weights and Biases platform (Biewald, 2020) to track all the progress
in an appropriate environment. After each monitoring, the total loss, total accuracy,
and the ticks are reset.
Furthermore, to speed up the training process, support for Half-precision (FP16) floating
point format in native PyTorch (Paszke et al., 2019) is added. PyTorch and most
machine learning frameworks use a 32-bit floating point format in their computations,
yet using only 16-bit is enough for many processes, and 16-bit enables to have faster
computation. Authors of PyTorch claim that their mixed-precision support improves
performance while maintaining accuracy. However, the performance increase does not
always occur, and the increase is not always the same even if it occurs (Platen, 2022).
The performance change mainly depends on the model and the machine that it runs on.
Checkpointing is crucial in training deep learning models due to longer training times.
One can stop the training process, save the model and then continue the training back
again by loading the model. The details of the present parameters of the model are also
saved with its weights to be able to find out when the model quit the training process.
Saving the model regularly is also significant in case of unexpected crashes (e.g., out of
battery). The program saves the model weights and other training parameters for that
moment in every 20% of the total training length with a name that includes the current
number of batches processed.
After training the model using the same program, the testing can be done by providing
appropriate hyper-parameters. Creating the data set in the testing process is the same
approach as training; the labels must be created again to calculate the evaluation metrics
(e.g., accuracy). After turning on the evaluation mode for the model, we load the model
and move it to the Cuda device if necessary. All process is the same with training, but
without updating the weights. Therefore, the gradient clipping, zeroing, and optimizing
are skipped since they are unnecessary for testing purposes. The testing accuracy is
measured by taking the mean of the accuracy values from each step.

Discriminative Approach

The data set is loaded with the same data loader class for the intra-sentence predictions
explicated in Section 3.2.1. Due to this class, multiprocessing and batch inference are
made possible in the predictions of the next sentences. Each candidate sentence is added
to its corresponding context sentence by creating a tuple variable as a sentence pair. This
sentence pair and the candidate’s ID are only needed data for the inter-sentence tests
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in discriminative approaches. Since there are two different sentences for each candidate,
these sentence pairs are inputted to the tokenizer as a sentence pair tuple. However, for
T5, as we state in the explanation of T5 fine-tuning, we fine-tune it by adding "binary
classification: " text to the beginning of the sentence as a prefix task. Therefore, the
input must be manipulated with the same format in the inference time.
After obtaining the input IDs, the corresponding model is called to produce the like-
lihoods. Since BERT is pre-trained with NSP objective and its "BertNextSentence"
model is called, it produces only two outputs, either 0 or 1. In the BERT’s pre-training,
the positive output (1) is encoded for the unrelated sentence pairs, and the negative out-
put (0) is encoded for the actual next sentences. On the other hand, in our fine-tuning
process explained in the previous part, the positive output indicates an actual next sen-
tence, and the negative output indicates a random sentence, which is the opposite of
encoding in BERT. This difference results from the labeling in the dataset creation of
the fine-tuning part. In T5 and multilingual T5 models, the label encoding is quite
different from the other models due to their sequence-to-sequence model structure. The
output of the results is directly compared with the tokenized "0" and "1" string texts.
The softmax function is operated to convert the likelihood predictions to a probability
distribution. Then, for each candidate sentence, the probability of predicting 0 for BERT
and 1 for others is saved in a separate predictions file with their corresponding ID values.

Generative Approach

To have a clear separation between context and candidate sentences, the last character
of the context sentence is checked and added a dot (".") if it does not already include any
punctuation character. After loading the dataset by utilizing the standard dataset class
for all approaches, the whole inference process is made compatible with batch processing
and multiprocessing, where they were not supported by Nadeem et al. (2020).
The rest of the inference process, including tokenization, differs substantially between
T5 and GPT-2 based models. In T5 models, the candidate sentence is fully masked;
this creates difficulty in predicting the whole next sentence for the model though. A
general form of the input sentence to the model’s encoder layers is "(context sentence)
<extra_id_0>". A specific example is "My professor is a Hispanic. <extra_id_0>".
However, to handle this cumbersome prediction, the "teacher forcing" methodology ex-
plained in Section 2.1.5 is utilized for the model to learn from labels while predicting.
By default, forward call for the T5 models, the teacher forcing method is utilized, and
input for the encoder and another input for its decoder layers must be provided. The
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input for its decoders is designated to have a form of "<pad> <extra_id_0> (candi-
date sentence)" and a specific example can be "<extra_id_0> He is a legal citizen.".
When a user provides the input for the decoder as a label, T5 models shift the tokens to
one position right, prepending the start token to the beginning of the sequence, before
providing it to the decoder. Thus, a padding token "<pad>" must be added manually
if the sequence is inputted directly to the decoder. By utilizing the teacher forcing tech-
nique and providing the labels, the model does not predict a token only by relying on
the context sentence; instead, it benefits from the other tokens in the candidate sentence
as well.
After tokenizing the sentences by padding them to the longest sequence for both encoder
input and decoder input separately, the outputs of tokenizers are moved to the GPU
machine if the inference is being made on it. Then, the T5-based model is called by
supplying input IDs and attention masks of the encoder and decoder. Softmax operation
is applied after that to obtain a probability distribution. Next, the output predictions
(it is only for candidate sentence) is looped over for each token, and the probability
prediction for each token is stored in a list. In the model’s output, the last index is for
the probability after the end of the candidate sentence. It usually predicts the end of
the sentence token ("</s>") since the last token is sentence-ending punctuation; hence,
the last index should not be considered in the probability calculations. After obtaining
the probabilities of each token, they are combined by applying the Formula 3.2 given
in the generative approach of intra-sentence tests. Fundamentally, the logarithm in the
base two of the probability of each token is computed. Then the power of two is applied
to the mean of these previously calculated logarithm values.
The inference of GPT-2 for the generative approach in inter-sentence tests is quite dif-
ferent from T5; nevertheless, it has many similarities with the generative approach in
intra-sentence tests. The context and candidate sentences are directly merged by sep-
arating them with a whitespace character and can be shown as "(context sentence)
(candidate sentence)". This version of the sentence will be called a "full sentence", and
a specific example can be given as "My professor is a Hispanic. He is a legal citizen.".
The candidate sentence and the full sentence are tokenized separately, and the tokeniza-
tion for them is applied by padding them to the longest sequence in the batch. Then,
the tokenized inputs are moved to the GPU machine if necessary.
Since GPT-2 is a uni-directional model, the probability of the first token ("My" in the
example above) cannot be measured directly from the sentence itself. Thus, we input
the model with the start token of the GPT-2 tokenizer ("<|endoftext|>") and analyze
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the result of it for the first token of the full sentence, as it is also accomplished in the
intra-sentence tests. Then, the probability of the first token is gathered after applying
the Softmax operator.
There are different ways to measure the final score of a candidate sentence; the Nadeem
et al. (2020) is measuring it by calculating the probability of the candidate sentence by
providing the model only the tokens of the candidate sentence and dividing it by the
probability of the context sentence. However, this ratio of candidate sentence over the
context sentence does not evaluate any dependence between the context and candidate
sentence; it measures the probability of them entirely separately. The context sentence
is given to the model on its own and the candidate model also, thereby unsatisfying this
approach for the purposes of inter-sentence tests since the test fundamentally tries to
measure the dependence between context and candidate sentences. Nadeem et al. (2020)
states that the results of this generative approach are not satisfying; we find out that
this is probably due to using a wrong ratio since the results found in this work with this
approach are incredibly satisfying.
We propose six different final score calculation cases, and all these cases are compared,
and three final methodologies are selected to be the best. The first option is the one
utilized in Nadeem et al. (2020), and it will be named "orig" as an abbreviation of
the original over the paper. The probability achieved by providing only the candidate
sentence to the model will be called P (only_candidate), and P (context) would mean
the probability obtained by providing only the context sentence to the model. Note
that the computation of a score of a sentence is designed by combining each token’s
probability by taking their logarithm in base two, averaging it, and applying the power
of two as more details are given in the previous parts of this thesis. P (full_sentence)

is formed by considering all tokens in the full sentence after providing a full sentence to
the model. P (candidate) is measured by considering only the tokens in the candidate
sentence after providing a full sentence to the model, thereby including the effect of
the context sentence on the candidate probability in this case. Six different final score
calculation options, their corresponding mathematical depictions, and their scores on
GPT-2 using English data are given in the Table 3.4.
The main interest of the inter-sentence tests can be mathematically formed as P (candidate |
context), which can be formulated as,

P (candidate | context) = P (candidate) \ P (context)

P (context)
(3.4)

where P (context), which is the probability of context sentence to exist, is, in fact, iden-
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Case No Formula LM Score SS Score ICAT

orig
P (only_candidate)

P (context)
58 46.4 55.6

b
P (candidate)

P (full_sentence)
73.9 52.7 69.9

c P (full_sentence) 76.8 51.1 75

d P (context) 76.3 52.1 73

e
P (context

P (only_candidate)
85.5 60.7 67.2

f
P (full_sentence)

P (only_candidate)
62.6 57.7 53

Table 3.4.: Various options of calculating scores with generative methodology in inter-
sentence tests. The ICAT column indicates the achieved ICAT scores of each
option on the GPT-2 model.

tical for all candidates since their context sentence is the same. Hence, the denominator
is ignorable in this formula; the primary focus should be P (candidate) \ P (context),
the existence of both candidate and context sentence together. This intersection can be
interpreted as inputting the context and candidate sentence togetherly into the model,
and that cases are actually "c" and "d" in Table 3.4. Hence, the options "c" and "d",
which attain the highest Idealized Context Association Test (ICAT) Scores, make the
most sense in terms of mathematical interpretation. Due to case d’s similarity to the
T5’s generative calculations, we pick case "d" as our preferred technique to obtain com-
parability with T5 results. However, case "e" acquires the highest language modeling
score; thus, we also report the results from cases "c" and "e", too.
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3.3. Bias Evaluation Metrics

The predictions calculated by the methods expounded in Section 3.2 must be evaluated to
derive a model’s final Stereotype Score (SS). However, as it is elucidated in Section 3.1.1,
only scrutinizing the amount of stereotypical bias in a model is insufficient. A random
model that always outputs random candidates would also be non-stereotypical, but it
would not have any language modeling ability. The ideal model should excel in language
modeling ability by maintaining fairness regarding stereotypical bias. Therefore, the
language modeling score and the ICAT score measurements from Nadeem et al. (2020)
are also used in this work.
Although the main inspiration of the work is Nadeem et al. (2020), there are an extreme
amount of differences between the codes. There are also mistakes identified in the
code shared by Nadeem et al. (2020). For instance, the code that the authors shared
calculates the "count" variable mistakenly due to an indentation mistake in line 49 of
the evaluation code for the repository that is valid at the time of this work. They add
the same example to the dataset every time for each sentence, as a consequence, the
created data set duplicates each example three times. Consequently, the count number,
which is part of the output, multiplies by three for each score and the target term.
Hence, the results for the count number, which indicates the number of examples, must
be considered as one-third of the resulting value. This mistake poses a higher complexity
to the program and causes it to be longer since the size of the dataset is tripled. However,
this mistake does not affect the scores published since the number "3" cancels in the
ratios. The proposed correct version of the code and the results will be given with this
work.

3.3.1. Stereotype Score (SS)

A stereotype score is designated to assess the potential number of stereotypes in language
models by comparing the model’s preference over the stereotypical and anti-stereotypical
candidates. Always preferring an anti-stereotypical candidate is also appraised as dis-
criminatory behavior since it would also create unfairness for the stereotypical group.
Thus, a model must prefer neither stereotypical nor anti-stereotypical to be consid-
ered unbiased. In other words, the ideal model would prefer stereotypical and anti-
stereotypical candidates in equal numbers. Mathematically, the number of examples
with a higher probability for a stereotypical candidate than an anti-stereotypical can-
didate is divided by the total number of examples as formulated in Formula 3.5. This
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score should be 50% for an unbiased model as it would pick the stereotypical candidate
half the time.

SS =
1

N

NX

i=1

g(xi) ⇤ 100, g(x) =

8
<

:
1, (xstereotype > xantistereotype)

0, (xstereotype < xantistereotype)
(3.5)

3.3.2. Language Modelling Score (LMS)

As stated before, being an unbiased model is not enough; the model should also per-
form satisfactorily in language modeling. Language modeling is assessed by measuring
the number of examples that the model prefers the stereotypical and anti-stereotypical
candidate over the unrelated candidate. For every example, the probability of a stereo-
typical and anti-stereotypical candidate is compared with the unrelated candidate. It
is counted towards the "related" example if these meaningful candidates have a higher
probability than the unrelated candidate. Then, the number of related examples is di-
vided by two since it is counted for both anti-stereotypical and stereotypical. Then it is
divided by the total number of examples to acquire the relative ratio as the Formula 3.6
states. The ideal model should always prefer both stereotypical and anti-stereotypical
candidates over unrelated candidates; thus, it would have a 100% language modeling
score.
We inspire the calculation of the score by Nadeem et al. (2020); however, their code
and the explanation in the paper contradict with each other at this point. In the paper,
the calculation is written to be counted towards the meaningful example for "either
stereotypical or anti-stereotypical" candidate’s superiority; indeed, it is counted towards
"both stereotypical and anti-stereotypical" candidate’s superiority. The difference would
be apparent in an example where the stereotypical candidate’s probability is higher than
the unrelated candidate’s, which is higher than the anti-stereotypical candidate’s. In this
example, the score would be 100% according to the paper; however, it would be 50%
according to the code that the authors published. Our approach is based on the code
that they published since the same results with their publication are, in fact, reached by
the code.
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LMS =
1

2N

NX

i=1

g(xi) ⇤ 100,

where g(x) =

8
>>>>>><

>>>>>>:

2, (xstereotype > xunrelated) ^ (xantistereotype > xunrelated)

1, (xstereotype > xunrelated) ^ (xantistereotype < xunrelated)

1, (xstereotype < xunrelated) ^ (xiantistereotype > xunrelated)

0, (xstereotype < xunrelated) ^ (xantistereotype < xunrelated)

(3.6)

3.3.3. Idealized CAT Score (ICAT)

The language modeling score and the stereotype score usually contradict each other, as
an improvement of one usually deteriorates the other. The ICAT score, which is inspired
by Nadeem et al. (2020), combines both scores to overcome this trade-off between the
two scores and show a final evaluation of a model. The formula of the score is written
as,

ICAT = LMS ⇤ min(SS, 100� SS)

50
(3.7)

The formula satisfies three primary axioms that need to exist in the final evaluation: an
axiom for an ideal model, a random model, and an entirely biased model. The first axiom
is that a completely unbiased model which always prefers meaningful candidates (e.g.,
100 LMS, 50 SS) should score 100. The second axiom states that an entirely random
model (e.g., 0 LMS, 50 SS) should score 0. The third axiom guarantees obtaining
a 0 ICAT score for a model that always picks the stereotypical or anti-stereotypical
candidates over the other (e.g., 0 or 100 SS).

3.3.4. Multi-Class Evaluations

In the inspired work (Nadeem et al., 2020), the predictions were evaluated by considering
each target term as one class, and they defined it as a multi-class classification problem.
In this thesis, we not only used multi-class ideas but also considered all examples together
without separating them into different classes for each target term.
There are some logical mistakes in the multi-class evaluations in work from Nadeem et al.
(2020). The macro score is the average of the main scores (e.g., F1 Score) for each class,
so the main score should be computed for each class first. Therefore, it first calculates
the main score for each class and then averages them. On the other hand, the micro
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score has a different order of these two steps; first, it takes the average of all sub-scores
(e.g., True Positive, False Negative) for each class and then calculates the main score
(e.g., F1 Score) from these average sub-scores. In this work, the main score is considered
ICAT Score, and the sub-scores are considered Language Modeling Score (LMS) and SS
scores as ICAT Score is formed by them.
However, in work from Nadeem et al. (2020), the macro-ICAT and micro-ICAT are
named in the opposite way of their definition, which results in misnaming and false
reporting in the publications. The current authors of that work were contacted, and
they also confirmed the misnaming.
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4. Experiments & Results

4.1. Fine-Tuning

Since GPT-2 and T5-based models do not have direct support for Next Sentence Pre-
diction objective, these models are fine-tuned, and the NSP head is added as described
in Section 3.2.2. The process is not done for the mono-lingual English GPT-2 model
because it is already trained in a similar way by Nadeem et al. (2020) and the repetition
of the process would have both environmental and financial costs, as a result, the same
model with NSP head is downloaded and utilized. Moreover, all the training processes
are carried out on the Tesla V100-SXM2-16GB GPU machine, so the machine has 16
GB of memory.

4.1.1. Multilingual GPT-2

The multilingual GPT-2 model developed by Tan et al. (2021) is chosen with the reasons
expounded in Section 2.1.6. In fact, another multilingual GPT-2 model, which is from
the user "miguelvictor" in Huggingface, was initially chosen to carry the training out.
However, the model was too large to train on the machine arranged and to compare with
other models.
Multilingual T5 tokenizer is utilized instead of GPT-2 tokenizer due to its usage in
the model’s pre-training process (Tan et al., 2021). 110000 articles are considered for
each language, constituting around 9.5 Million sentences, the same number of sentences
used in the experiments done by Nadeem et al. (2020). The batch size is given as four
which was the maximum that could be given not to exceed the memory limit of the
machine. However, due to not being able to supply many examples in one batch, the
accumulation steps are chosen to be large as 16. Thus, the weights are updated in every
64 examples. The core learning rate used in the learning process for the core model is
given as 5e-6, and the learning rate for the Next Sentence Prediction head is given as
1e-3 because these rates are the ones that Nadeem et al. (2020) used in their training
by default. The model is shortly trained with both half-precision and single-precision
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floating points separately, and it is discerned that it achieved better results in a shorter
time with half-precision floating points. Therefore, the training is carried out with a
half-precision (FP16) floating point. In addition, there are 4 CPU cores provided to the
program, but that is related to creating the data set instead of the training process.
The accuracy started from 50% as a random prediction and jumped to 90% only with
10% of the data set, which is around 1 million examples. The loss function decreased
from 0.7 to around 0.2 only with 10 percent of the data set too. The graph for the
accuracy and loss functions is given in Figure 4.1. Since these results are already suffi-
ciently satisfactory, the training is stopped at that point for environmental and financial
considerations.

Figure 4.1.: Graphs for the accuracy and loss function for multilingual GPT-2 training.

Furthermore, the loss and accuracy functions still don’t look fully converged, and they
still have room to grow, as is seen from the graphs in Figure 4.2 where their original
graphs’ are smoothed with a smoothing parameter of 0.92. The smoothing for this graph
and the rest of the paper is done with the "Exponential Moving Average" smoothing
option of the Weights & Biases framework (Biewald, 2020). The fact that the conver-
gence is not finished can also be noticed from Graph 4.3 where the change in the learning
rates for the core and head models is provided. Only 10% of the entire training process
takes 7 hours 40 minutes in the specified configurations on Tesla V100-SXM2-16GB;
more details for the GPU usage and system information are given in Appendix A.2.1.
A longer or fully completed training is left as future work.
Since the scheduler uses the warm-up, the learning rates first increase and then decrease
after reaching the specified hyper-parameter values, which are 5e-6 and 1e-3. It is obvious
that the warm-up steps are completed as seen in the learning rate scheduler Graph 4.3,
but they do not fully converge to 0 in this work as it is left as future work.
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Figure 4.2.: Smoothed graphs for the accuracy and loss function for multilingual GPT-2
training.

Figure 4.3.: Learning rate scheduler graph in multilingual GPT-2 training.

Moreover, the model is saved every 5% of the data set since, initially, this model is
expected to grow with a small amount of data. After 10% of the data set, the saved model
is tested with a new 300 thousand examples, 30% of the training data set, consisting of
English and German, and the model attains 91% test accuracy.

4.1.2. T5

As stated in Section 3.2.2, the base model of T5 is used because it has comparability
with the BERT model. As mentioned earlier, the multilingual GPT-2 model is trained
only with 10% of the entire data set, which is the sentences from 110 thousand articles
per language. Therefore, it is indeed trained with 22 thousand articles, 11 thousand in
English and the rest in German. Since the T5 model is mono-lingual, this work aims
to train it with an English data set to perform Next Sentence Prediction in English to
observe similar behavior in mono-lingual BERT. Thus, the sentences from 22 thousand
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English articles are fed to the model in this training process which constitutes around
1 million examples, instead of providing complete data and abandoning the training
process at half. Stopping in the middle strategy is not chosen since the learning rate
would never converge, and the learning rate can be too high to find the optimal points;
it might even not pass the warm-up steps. Therefore, one should be careful about
how much data is fed at the beginning of the training. The original tokenizer of the
T5 model is utilized in this process. T5 models and tokenizers are much smaller than
GPT-2 models and tokenizers as they have been compared in Table 2.3; consequently,
more data can fit into the GPU in each training step with batched training. In this
fine-tuning, batch size is used as 24, the maximum number of examples that could fit
into the machine in one step. The step for gradient accumulation is chosen as 3; it is
lower than the mGPT-2 training process because of utilizing larger batches. As a result,
the weight updating is accomplished in every 72 examples, and it is 64 in the previously
mentioned training process, which is comparable. The training is conducted shortly with
a half-precision floating point (FP16) and without a half-precision floating point, and the
two results are compared. Contrary to the expectations, the training takes longer with
half-precision, and this is mentioned by other researchers in some forums too (Platen,
2022), thereby conducting the primary training without a half-precision floating point.
Moreover, 8 CPU cores are provided for the data set to be created with multi-processes.
The accuracy begins at 50% and achieves around 90% at the end of the full-training
process. The latest saved model has also experimented with test data consisting of 70
thousand unseen English articles, and the model performs 89% test accuracy. The loss
function converged from 10 to 0 during the fine-tuning, as seen in Figure 4.4. However,
the loss between 0 and 1 can not be analyzed well from the graph because the loss
decreases sharply from 10 to 1 only in a few steps and stays between 0 and 1 for many
steps. The graph 4.5 is the zoomed version of the original loss function to investigate
the behavior of the loss function between 0 and 1.
The accuracy does not seem to converge fully, and apparently, it can even be enriched by
supplying more data, although the loss function looks converged enough to zero. These
can be seen from the smoothed graphs in Figure 4.6, which are smoothed with the
0.32 smoothing parameter of Weights and Biases. As seen from the smoothed accuracy
graph, one might even grow the current outcome by providing more data, which is left
as future work. The complete data set is processed in 5 hours with the machine Tesla
V100-SXM2-16GB where the utilization details of the GPU machine are provided in
Appendix A.2.2.
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Figure 4.4.: Graphs for the accuracy and loss function for T5 Next Sentence Prediction
Fine-tuning.

Figure 4.5.: Zoomed graph for the loss function for T5 Next Sentence Prediction fine-
tuning.

Contrary to the mGPT-2 training process, the learning rate scheduler ultimately finished
its convergence since the model is trained with the total amount of data that is initially
given instead of being stopped in the middle. Since there is no separate head for the
model in T5 fine-tuning, as is explained in Section 3.2.2, the learning rate is only for
the core model, as is seen from the Graph 4.7. The learning rate first commences from
smaller values than the configured hyper-parameter to warm the training process up.
Then it rises until it reaches the configured hyper-parameter 5e-6. After reaching the
user-specified value, the scheduler gradually diminishes the learning rate to zero.
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Figure 4.6.: Smoothed graphs for the accuracy and loss functions for T5 Next Sentence
Prediction fine-tuning.

Figure 4.7.: Learning rate scheduler graph for T5 Next Sentence Prediction fine-tuning.

4.1.3. Multilingual T5

The base form of the multilingual T5 model from Xue et al. (2020) is employed since it
has an officially published model in the Huggingface platform and is comparable with
BERT and T5 models used in the previous experiments. The multilingual T5 is not
pre-trained with downstream tasks, and it is expected to learn slower than the mono-
lingual T5 model; therefore, a double data set is initially provided to the model by being
able to stop the process in the middle. The training process of T5 is executed with 22
thousand English articles from Wikipedia; for multilingual T5, there are 22 thousand
English and 22 thousand German articles fed. The maximum number of examples in a
batch that could fit into the machine is 8; thus, the batch size is given as 8. To have
comparable weight updates with the previously mentioned experiments, the step size for
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the gradient accumulation is inputted as 8, too. Hence, the weight updates are done in
every 64 examples, which is identical to multilingual GPT-2 training and slightly lower
than the T5 training. Adequate experiments are done using half-precision floating point
format; however, it is not preferred in the final training since it does not add any value
to the process and even decelerates the process. It was an expected behavior from the
multilingual T5 model because the same situation has been observed in the T5 model,
which has an identical architecture. Moreover, 8 CPUs are used to work parallel, but
they are effective in the data set creation process instead of the training process.
The accuracy in the multilingual T5 training starts around 52%, then it always volatiles
around 52% and never exceeds even 60% for 4 hours in the Tesla V100-SXM2-16GB
machine as it is seen from the Graph 4.8. In 4 hours, the model processed half of
the data set, which mono-lingual T5 would already achieve more than 90% accuracy.
Since the model does not improve the outcome even after providing 1 million exam-
ples and running the GPU machine for 4 hours, the training process is halted in the
middle due to not cost any unnecessary environmental and financial damage. Neverthe-
less, the loss function decreased substantially from 22 to 0.44, so there is still a chance
for the model to increase its accuracy by conducting a much longer training experi-
ment. Additionally, the continuing decrease in the loss function can be observed from
Graph 4.9 where the graph of the loss function is zoomed to track its movement be-
tween the range 0 and 2. The graphs given in Figure 4.10 are the smoothed version of
the graphs in Figure 4.8 with the smoothing parameter 0.8. From these graphs, it is
more observable that the accuracy does not have any considerable increase and the loss
function still has room to decrease. However, many complaints exist about the multi-
lingual T5 model’s difficulties in learning new tasks in various online forums (Jsrozner
et al., 2020; Mohd-Ali-Ansari, 2020; SarraCode, 2020; tomhosking, 2020). A significant
reason for its slow learning characteristics might be the fact that it is not pre-trained
with any downstream task contrary to the T5 model because the model has an identical
architecture with its mono-lingual conjugate, and their main difference is downstream
tasks in the pre-training phase. Furthermore, different configurations are tried since the
learning cannot be achieved with the aforementioned hyper-parameter configurations.
For instance, "Adafactor", Adaptive Learning Rates with Sublinear Memory Cost from
Shazeer and Stern (2018), optimizer is employed, instead of Adam algorithm with weight
decay. Moreover, we also tried larger and fixed learning rates such as 1e-3, but there was
not any considerable increase in the accuracy. Thus, Next Sentence Prediction could not
be performed with multilingual T5 in this work as its limitation, so the improvement of
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this training process to evaluate multilingual T5’s bias using Next Sentence Prediction
methodology is left for researchers as future work.

Figure 4.8.: Graphs for the accuracy and loss function for Multilingual T5 Next Sentence
Prediction Fine-tuning.

Figure 4.9.: Zoomed graph for the loss function for Multilingual T5 Next Sentence Pre-
diction fine-tuning.

Because the training process is abandoned at half, the scheduler obviously could not
converge the learning rate to zero, as is seen from Graph 4.11. Nonetheless, the training
is conducted with sufficient steps after the warm-up stage, where its details are delivered
in Appendix A.2.3.
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Figure 4.10.: Smoothed graphs for the accuracy and loss functions for Multilingual T5
Next Sentence Prediction fine-tuning.

Figure 4.11.: Learning rate scheduler graph for Multilingual T5 Next Sentence Prediction
fine-tuning.

4.2. Evaluations

We report the evaluations about BERT’s base model (Devlin et al., 2018), multilingual
BERT’s base model, T5’s base model (Raffel et al., 2019), multilingual T5’s base model
(Xue et al., 2020), GPT-2 model and multilingual GPT-2 from Tan et al. (2021) in this
section. As stated in Section 3.3, the evaluations are made in two different techniques;
first, we evaluate all examples together, and second, we consider each target term as a
class and treat the problem as a multi-class classification case. Although in the paper
from Nadeem et al. (2020) only the multi-class evaluations are considered and reported,
we give more importance to the general evaluation but still report the multi-class eval-
uations as a separate section to obtain comparability of the results with Nadeem et al.
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(2020).
Table 4.1 provides the evaluation results of all models in the intra-sentence tests. As
stated in Section 3.1.4, three examples are removed from the German data set since their
mistakes resulting from the translations could not be saved. These "Count" numbers
were published wrongly in work from Nadeem et al. (2020) because of a mistake in its
corresponding published code that is mentioned in Section 3.3.
The table shows that the mono-lingual GPT-2 model has a better language modeling
performance than its comparable BERT and T5 models in the intra-sentence tests and
yet it also has more stereotypical bias than the others. Nevertheless, the model performs
more acceptable than the others in the ICAT score, which is a combination of language
modeling and stereotype scores. The general understanding that having an advanced
language model would have more stereotypes is not valid as it would be dis-proven by
comparing BERT and T5 models. BERT has both a higher language modeling score
and fewer stereotypes than the T5 model, thereby having a higher ICAT score.
The multilingual GPT-2 performs more promisingly than comparable multilingual mod-
els in both languages regarding language modeling and ICAT score. Multilingual GPT-2
has a 16% higher language modeling score than mBERT and mT5 in English, and it has
a negligible amount (2.5%) of more stereotypes than the others, thereby having a much
higher (10%) ICAT score than the others. mBERT and mT5 have almost identical per-
formances in English; all their scores are incredibly similar in the intra-sentence tests. In
German, the multilingual GPT-2 model has both the highest language modeling score
and the least stereotype in the intra-sentence tests; hence, it performs hugely better
than the others, as is seen from its superiority in the ICAT score. Although multilin-
gual T5 and BERT perform remarkably similarly in English intra-sentence tests, mT5
slightly outperforms mBERT in German. The multilingual BERT’s stereotype score in
the German language is 49.17%, which is less than 50%. In other words, the model
behaves anti-stereotypical in German mask-filling tasks. The multilingual GPT-2 and
BERT have almost 50% stereotype scores in German intra-sentence tests, which is the
ideal case. Thus, it can be stated that they have almost no stereotypes in German
mask-filling tasks.
Table 4.2 provides inter-sentence evaluation results for all models. As it is described in
Section 3.2.2, there are two different approaches to evaluating GPT-2 and T5 models;
one is evaluating them after fine-tuning for the Next Sentence Prediction task, and the
second is evaluating them with a generative approach described in Section 3.2.2. The
evaluations based on the former approach are written with "NSP", and the latter are
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Model Name Count LMS SS ICAT Score
BERT 2106 83,1 58,74 68,58
GPT-2 2106 91,14 61,97 69,33

T5 2106 79,08 60,02 63,24
mBERT English 2106 69,94 52,37 66,62
mBERT German 2103 65,67 49,17 64,58
mGPT-2 English 2106 86,49 55,08 77,7
mGPT-2 German 2103 77,03 50,21 76,7

mT5 English 2106 69,87 52,52 66,35
mT5 German 2103 73,97 54,3 67,6

Table 4.1.: Evaluation results for intra-sentence tests

written with "Generative". Generative approaches can have multiple cases, which can
be seen from Table 3.4. For the sake of simplicity, only case d will be discussed in this
section since it has a reasonable mathematical background and a similar approach to T5
generative evaluations.
As seen from the table, BERT and fine-tuned T5 models have higher language modeling
scores than fine-tuned GPT-2 models for inter-sentence tests; however, the fact that
they are significantly more biased than GPT-2 model lowers their corresponding ICAT
Score. Hence, the fine-tuned GPT-2 model (Nadeem et al., 2020) outperforms BERT
and fine-tuned T5 models in inter-sentence tests with the NSP approach, and BERT
and fine-tuned T5 models have almost identical outcomes. In fact, GPT -2’s evaluation
result from the generative approach outperforms all other models in inter-sentence tests
according to its ICAT Score. Therefore, GPT-2 model actually does not even need
to be fine-tuned for the NSP downstream task, contrary to the paper from Nadeem
et al. (2020); it can achieve even higher scores with its generative structure. On the
other hand, T5’s generative approach is not satisfactory for performing a Next Sentence
Prediction task since it has an extremely low language modeling (54.78%) and ICAT
(50.37%) score.
Fine-tuned multilingual GPT-2 (Tan et al., 2021) outperforms the multilingual BERT
model both in English and German languages in the inter-sentence tests. Despite having
a higher language modeling score than multilingual BERT in the German language, it is
fairer than BERT, resulting in its superiority in the ICAT Score. Since multilingual T5
could not be fine-tuned, as is explained in Section 3.2.2, the results for multilingual T5 for
the NSP inter-sentence evaluations are not published. The generative approach in mul-
tilingual GPT-2 is not as satisfying as in the mono-lingual GPT-2; it has a significantly
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Model Name LMS SS ICAT Score
BERT NSP 88,41 60,24 70,3
GPT-2 NSP 76,17 51,91 73,26

T5 NSP 88,48 60,39 70,1
GPT-2 Generative d 76,57 52 73,5
GPT-2 Generative c 76,9 50,92 75,48
GPT-2 Generative e 85,49 60,67 67,25

GPT-2 Generative Orig 58,27 46,21 53,85
T5 Generative 54,78 54,03 50,37

mBERT NSP English 82,9 57,94 69,74
mBERT NSP German 77,27 58,03 64,86
mGPT-2 NSP English 81,56 54,26 74,61
mGPT-2 NSP German 77,39 53,6 71,81

mGPT-2 Generative d English 69,78 45,6 63,64
mGPT-2 Generative d German 67,57 43,48 58,75
mGPT-2 Generative c English 78,71 45,83 72,15
mGPT-2 Generative c German 74,63 43,81 65,39
mGPT-2 Generative e English 52,54 52,71 49,7
mGPT-2 Generative e German 45,71 54,78 41,34

mGPT-2 Generative Orig English 58,64 43,15 50,61
mGPT-2 Generative Orig German 62,22 42,3 52,64

mT5 Generative English 31,56 52,85 29,76
mT5 Generative German 32,6 53,93 30,03

Table 4.2.: Evaluation results for inter-sentence tests

lower language modeling score compared to the multilingual BERT model. Interestingly,
the mGPT-2 model is anti-stereotypical in the generative approach based inter-sentence
tests. Multilingual T5 has incredibly poor performance with the generative approach,
like its mono-lingual version.
The overall results calculated from the combination of both intra-sentence and inter-
sentence examples are presented in Table 4.3. The abbreviations in the "Model Name"
column have the same meaning previously mentioned in the inter-sentence test evalua-
tions; the NSP and Generative words hint at which approach is used in the inter-sentence
evaluations. For the GPT-2 generative approaches, only case d shows a simple and more
understandable display.
In the final results, GPT-2 (both with NSP and the generative approach) demonstrates
the best performance in terms of the ICAT Score among the mono-lingual models and has
the most negligible stereotypical bias. Then, BERT follows GPT-2 as it has the highest
language modeling score and the second highest ICAT score among mono-lingual models.
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Model Name Count LMS SS ICAT Score
BERT NSP 4229 85,76 59,49 69,48
GPT-2 NSP 4229 83,62 56,92 72,06

T5 NSP 4226 83,8 60,18 66,75
GPT-2 Generative d 4229 83,83 56,96 72,15

T5 Generative 4229 66,88 57,01 57,5
mBERT NSP English 4229 76,45 55,17 68,55
mBERT NSP German 4226 71,5 53,62 66,32
mGPT-2 NSP English 4229 84,02 54,67 76,17
mGPT-2 NSP German 4226 77,21 51,92 74,25

mGPT-2 Generative d English 4229 78,1 50,32 77,6
mGPT-2 Generative d German 4226 72,28 46,83 67,7

mT5 Generative English 4229 50,64 52,68 47,92
mT5 Generative German 4226 53,18 54,12 48,8

Table 4.3.: Overall evaluation results

In the multilingual models, the superiority of the mGPT-2 model in both types (NSP
and generative) still holds for both languages. Multilingual GPT-2 scores are higher in
both language modeling and stereotypical scores, so obviously also in the ICAT scores.
As it is observed that the multilingual T5 model performs exceptionally poorly in inter-
sentence tests, its overall scores remain behind mBERT models. Thus, GPT-2 models,
both the mono-lingual and multilingual versions, significantly outperform BERT and
T5 models in English and German by being fairer and attaining higher ICAT Scores.
Likewise, BERT models beat T5 models on both the NSP and generative approaches in
English and German.

4.2.1. Multi-Class Evaluations

Assuming the target terms to be a separate class results in a multi-class classification
problem, where the approach is inspired by Nadeem et al. (2020), and it is kept in
this work to compare the results. Most of the interpretations of the results in this
evaluation type are almost identical to those mentioned above, so only the differences
will be mentioned in this section to avoid repetition. The multi-class description of
the problem has two separate ICAT Scores, Macro ICAT, and Micro ICAT, defined in
Section 3.3. The results for the intra-sentence tests can be found in Table 4.4, for the
inter-sentence tests in Table 4.5 and for the overall results in Table 4.6.
Although the interpretations stated for general evaluation in the intra-sentences hold for
multi-class intra-sentence evaluations, there are some differences in the inter-sentence
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Model Name LMS SS Macro
ICAT Score

Micro
ICAT Score

BERT 83,02 58,63 64,57 68,69
GPT-2 91,11 61,93 66,69 69,37

T5 79,04 59,98 60,03 63,26
mBERT English 69,94 52,36 56,58 66,64
mBERT German 65,64 49,13 53,59 64,5
mGPT-2 English 86,52 55,18 69,18 77,56
mGPT-2 German 77,12 50,13 65,06 76,91

mT5 English 69,97 52,56 55,69 66,39
mT5 German 73,99 54,19 59,63 67,8

Table 4.4.: Multi-class evaluation results for intra-sentence tests

tests. For instance, the fine-tuned mono-lingual GPT-2 model outperforms BERT and
fine-tuned T5 models in Micro ICAT as it does in the general evaluations, but not
in Macro ICAT. These differences between Macro and Micro ICAT occur when the
ICAT score between different classes varies enormously. The overall outcomes from
the multi-class evaluations are profoundly similar to the general evaluations, and the
interpretations expressed in that section still hold for multi-class evaluations.
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Model Name LMS SS Macro
ICAT Score

Micro
ICAT
Score

BERT NSP 88,53 60,43 67,13 70,06
GPT-2 NSP 76,26 52,28 64,11 72,79

T5 NSP 88,59 60,71 67,36 69,61
GPT-2 Generative d 76,37 52,17 65,46 73,06
GPT-2 Generative c 76,77 51,12 65,21 75,05
GPT-2 Generative e 85,55 60,72 65,15 67,21

GPT-2 Generative Orig 58,09 46,39 47,94 53,89
T5 Generative 54,79 54,14 46,28 50,25

mBERT NSP English 83,06 58,1 65 69,61
mBERT NSP German 77,4 57,99 59,95 65,02
mGPT-2 NSP English 81,7 54,51 65,73 74,34
mGPT-2 NSP German 77,42 53,76 64,15 71,59

mGPT-2 Generative d English 69,83 45,92 58,17 64,12
mGPT-2 Generative d German 67,43 43,64 54,34 58,85
mGPT-2 Generative c English 78,81 46,12 65,66 72,69
mGPT-2 Generative c German 74,58 44,05 59,09 65,71
mGPT-2 Generative e English 52,44 52,9 43,62 49,4
mGPT-2 Generative e German 45,46 54,73 37,46 41,16

mGPT-2 Generative Orig English 58,45 43,28 46,82 50,6
mGPT-2 Generative Orig German 62,19 42,45 48,88 52,8

mT5 Generative English 31,57 52,8 26,27 29,81
mT5 Generative German 32,59 53,88 26,76 30,06

Table 4.5.: Multi-class evaluation results for inter-sentence tests
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Model Name LMS SS Macro
ICAT Score

Micro
ICAT Score

BERT NSP 85,77 59,53 68,17 69,42
GPT-2 NSP 83,65 57,03 69,28 71,89

T5 NSP 83,8 60,28 65,59 66,57
GPT-2 Generative d 83,76 57 70,22 72,03

T5 Generative 66,88 57,03 55,8 57,48
mBERT NSP English 76,52 55,19 64,64 68,58
mBERT NSP German 71,53 53,63 61,71 66,33
mGPT-2 NSP English 84,06 54,81 71,47 75,97
mGPT-2 NSP German 77,25 51,98 67,65 74,19

mGPT-2 Generative d English 78,12 50,43 68,49 77,44
mGPT-2 Generative d German 72,25 46,85 62,27 67,71

mT5 Generative English 50,68 52,61 43,13 48,04
mT5 Generative German 53,22 54,06 45,34 48,89

Table 4.6.: Overall multi-class evaluation results

68



5. Discussion

One of the most significant implications of this work is that the stereotype score of all
the models in English and German languages are incredibly close to each other, and
they have a maximum 5% difference. Overall, multilingual BERT is fairer in German,
and multilingual GPT-2 and multilingual T5 are fairer in English. It is crucial to note
that the original StereoSet data set is created in English and by people from the USA
(Nadeem et al., 2020), in consequence, the stereotypes are expected to be from the
perspective of Americans. Despite the stereotypes in the data set being the stereotypes
from the American perspective, sometimes there are more stereotypes measured in the
German language. This strongly confirms the assumption that English and German
languages would have similar stereotypes, and it might be because of similar norms and
values shared in the Western countries, the USA and Germany.
Another interesting observation in this thesis is that the multilingual T5 model always
has a surprisingly higher language modeling score and ICAT score in German than in
English. Normally, a better language modeling performance in English is expected since
the data sets that the models pre-trained on usually have more English data than German
data. Nevertheless, in most cases, the other models than multilingual T5 perform better
in English than German. Furthermore, the similar results in English and German and
sometimes even better results in German also prove that the created German data set
is adequately valid.
In terms of the model comparisons, as explained in detail in Section 4.2, GPT-2 models
have higher ICAT scores than the comparable BERT and T5 models in both intra-
sentence and inter-sentence tests and both languages. Furthermore, although GPT-2
models are mostly fairer than the others, they sometimes have higher language modeling
scores, especially in the intra-sentence tests. With this and many other examples, this
thesis also proves that a model can both have satisfactory language modeling ability
and be a fair model. Another crucial point is the significance of fairness in a model.
For instance, mono-lingual BERT has a remarkably higher language modeling score
than GPT-2 in inter-sentence tests, but its ICAT Score is lower at the end. Therefore,
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an outstanding language modeling ability is not enough to be a valuable model for a
pre-trained language model; an adequate amount of fairness is also essential.
Moreover, according to the outcomes from the fine-tuned models, the fine-tuning is
performed successfully and effectively since some results are even higher than the corre-
sponding BERT models, although BERT is indeed pre-trained with the NSP objective.
Furthermore, the data set used in the fine-tuning process is incredibly smaller than the
data set used by (Nadeem et al., 2020), so it is proven that similar results could be
gained with a much smaller amount of environmental and financial burden. In contrast,
multilingual T5 training could not be completed and left as future work. We halted
the multilingual T5’s training early due to not obtaining sufficient advancement in the
training process. We are aware of the environmental cost of machine learning applica-
tions and endeavored to obtain the greatest possible results with the lowest amount of
carbon emissions. The experiments in this thesis reached a cumulative 16 hours of com-
putation performed on the hardware of type Tesla V100-SXM2-16GB (TDP of 250W),
and total emissions are estimated to be 2.44 kgCO2eq, which is equal to 9.86 km driven
by an average ICE car. Estimations were conducted using the MachineLearning Impact
calculator presented in Lacoste et al. (2019).
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6. Conclusion & Outlook

The main goal of this thesis was to evaluate the potential stereotypical bias containment
in the multi-lingual models using German and English data sets. We approached this
problem by benefiting the English data set prepared by Nadeem et al. (2020), which
evaluated the models with mask-filling and next sentence prediction tasks and translated
the data set to German using AWS Translation Services. Although the quality of the
translations was observed to be adequately accurate, we corrected some identified issues
as explained in Section 3.1.4. Nonetheless, there were also some observed issues in the
original English data set and still minor issues remaining in the German translations.
After procuring the data sets, they were supplied to each particularly selected model as
described in Section 3.2 to ascertain whether the model would choose a stereotypical,
anti-stereotypical, or unrelated option. The models were explicitly selected to have
different architectures (e.g., encoder, decoder, encoder-decoder) in order to obtain this
work’s applicability in various pre-trained language models for future usage. However,
this brought some difficulties while inputting the data set. Nonetheless, the support for
whole selected models was implemented by aiding different inference methodologies (e.g.,
discriminative, generative, Seq2Seq specific ways). Since some models were not adapted
for the next sentence prediction tasks, they were fine-tuned with this task by collecting
the data from Wikipedia dumps as explained with visualizations in Section 3.2.2. The
choices of the models were evaluated with different evaluation metrics and strategies
to identify each model’s overall potential stereotypical bias containment. Finally, the
outcomes of these evaluations and the fine-tuning experiments are interpreted in Chapter
4.
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A. Appendix

A.1. Bias Example Appendix

Figure A.1.: Yandex Search results for "terrorist religion".
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A.2. GPU Usage Appendix

A.2.1. Multilingual GPT-2 Training

Figure A.2.: GPU usage graphs in multilingual GPT-2 training.

Figure A.3.: GPU power usage (%) graph in multilingual GPT-2 training.
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A.2.2. T5 Training

Figure A.4.: GPU usage graphs in T5 training.

Figure A.5.: GPU power usage (%) graph in T5 training.
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A.2.3. Multilingual T5 Training

Figure A.6.: GPU usage graphs in Multilingual T5 training.

Figure A.7.: GPU power usage (%) graph in Multilingual T5 training.
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