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Abstract

We consider a dynamic screening model where the agent may go bankrupt due to, for

example, cash constraints. We model bankruptcy as a verifiable event that occurs whenever

the agent makes a per period loss. This leads to less stringent truth-telling constraints than

those considered in the existing literature. We show that the weaker constraints do not af-

fect optimal contracting in private values settings but may do so with interdependent values.

Moreover, we develop a novel method to study private values settings with continuous types

and identify a new regularity condition that ensures that the optimal contract is deterministic.

Keywords: Dynamic Screening, Bankruptcy, Verifiability, Mean Preserving Spread

JEL: D82, H57

1 Introduction

A recent literature studies bankruptcy constraints in dynamic screening models where a procurer

(the principal) procures goods or services over multiple periods from a supplier (the agent) whose

costs evolve dynamically over time and are the supplier’s private information (e.g. Krishna et al.,

2010, Mirrokni et al., 2020, Krasikov and Lamba, 2021, Ashlagi et al., 2022). These bankruptcy

constraints capture the fact that, in practice, suppliers are frequently unable to sustain short-

term losses during the relationship, for example due to cash or credit constraints. The classical

literature on dynamic screening/mechanism design (e.g., Baron and Besanko, 1984, Battaglini,
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2005, Pavan et al., 2014, Esö and Szentes, 2017) neglects such concerns, effectively assuming

that agents can sustain arbitrary losses after having accepted a contract.

We make two contributions to this literature. First, we explicitly impose cash constraints both

on and off the equilibrium path. We do so by providing a more complete micro foundation of the

contractual feasibility constraints, modeling bankruptcy as a verifiable event that occurs whenever

the agent obtains a negative per-period utility.1 In particular, bankruptcy may occur also off the

equilibrium path. This differs from the approach of the existing literature, which focusses on direct

revelation mechanisms and imposes cash constraints on but not off the equilibrium path. We

argue that our micro foundation yields feasibility constraints that are weaker than those posited

by the existing literature.2 A key insight of our analysis is that whether these weaker constraints

affect optimal contracting depends on whether the parties have private or interdependent values.

We show that in private values environments, where the principal’s and the agent’s valuation are

independent, optimal contracting is not affected. To the extent that the existing literature on

dynamic screening models with cash constraints considers private values, our analysis therefore

validates the results of the literature. By contrast, we show with an explicit example that this may

no longer be true with interdependent values. Hence, imposing bankruptcy constraints only on

the equilibrium path is with loss in general.

Second, we extend the existing literature’s analysis of bankruptcy with two agent types and

private values to settings with continuous types. This extension is not straightforward, because

with cash constraints the principal’s ex ante payoff is a non-linear and non-monotone function

of the agent’s (future) information rents. Hence, contrary to dynamic screening without cash

constraints, the problem cannot be reduced to maximizing a virtual surplus representation where

allocations are additively separable by type, and is consequently difficult to solve when there are

more than two types. To analyze the problem with more than two types, we therefore develop a

novel solution method to identify an optimal contract.

The basic idea behind this method is based on the observation that every dynamic contract

induces a continuation value for the agent which, from the principal’s perspective, is a random

1The verifiability of bankruptcy reflects existing institutional rules, since bankruptcy is a legal process formally

verified and declared by the court system. For instance, bankruptcy is enshrined by the US Constitution in Article 1,

Section 8, Clause 4, and in the case of business debtors further specified in its Bankruptcy Code under Chapter 11.

In the UK, the first statute of law dealing with bankruptcy is the Statute of Bankrupts dating back to 1542.
2Effectively, our micro foundation implies that an optimal contract has to satisfy only one-sided incentive con-

straints. Hence, our study of dynamic setting with bankruptcy constraints links to the literature that considers static

settings in which such one-sided incentive constraints exist for exogenous reasons (e.g., Moore, 1984, and Celik,

2006). In line with our finding, this literature shows that, in static settings, these weaker incentive constraints do

not give rise to different predictions in settings with private values or, more generally, when the aggregate surplus is

monotone in the allocation.
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variable, as it depends on the agent’s privately known type. A standard argument from dynamic

programming implies that the principal’s continuation profit is concave in the agent’s continuation

value. This observation allows us to rank contracts in terms of second order stochastic dominance

of the induced continuation value. As a result, we can identify an optimal contract as a contract

that, among the set of feasible contracts, displays minimal dispersion in the second order sense.

We show that, under a regularity condition, an optimal contract has a simple, deterministic cutoff

structure where cost types below a cutoff produce the good and types above the cutoff do not. The

regularity condition differs from the more familiar monotone virtual surplus kind of conditions,

and also appears in the (static) multi-dimensional screening literature (e.g. Manelli and Vincent

(2006)). The connection is that, as in this literature, we write the principal’s optimization problem

in terms of the agent’s (continuation) value rather than the allocation rule.

Finally, we point out that cash constraints conceptually differ from withdrawal rights in the

context of sequential screening problems with a single trading period (e.g. Krähmer and Strausz,

2015, Bergemann et al., 2020). This is so because with a withdrawal right the agent can volun-

tarily decide whether to sustain a loss ex post or not. Indeed, in contrast to verifiable bankruptcy,

voluntary participation leads, if anything, to stricter incentive constraints, as it weakly increases

an agent’s utility from a misreport.3

2 The model

A principal (the buyer, she) and an agent (the seller, he) interact over two periods τ = 1, 2.4

In each period, the principal seeks to procure one good from the agent. In period τ, the terms

of trade are the probability of trade xτ and a transfer tτ from the principal to the agent.5 The

principal’s valuation for the good is vτ ≥ 0, and the agent’s cost to produce the good is θτ. While

vτ is commonly known, θτ, the agent’s cost type in period τ, is privately known to the agent in

period τ, and it is commonly known that θτ is distributed with cdf Fτ with support Θτ ≡ [θτ, θ̄τ]
and differentiable pdf fτ. We assume that θ1 and θ2 are stochastically independent.

The parties have time-separable quasi-linear utilities. That is, under the terms of trade xτ, tτ

the principal’s utility in period τ is vτxτ− tτ, and the agent’s utility is tτ−θτxτ. A party’s overall

3On this point see also Compte and Jehiel (2009) who show that in mechanism design settings with ex post veto

rights the potential to punish agents for misreports is limited because they can quit the mechanism ex post.
4In section 5, we show that our analysis extends to a setting with infinitely many periods.
5As is standard, we interpret tτ as the expected payment t(0)

τ
(1−xτ)+ t(1)

τ
xτ, where t(0) (resp. t(1)) is the payment

when trade does not (resp. does) occur. Alternatively, for a divisible good, we may interpret xτ as the share of the

good traded.
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utility is the sum over the per-period utilities.

The novelty of our paper is to consider a situation in which the event that the agent makes a

loss is verifiable. That is, if the agent were to make losses in period τ under the prevailing terms

of trade, the agent would go bankrupt and this is publicly verifiable. In this case, both parties

receive their reservation utility of zero.

The timing is as follows:

1. At the outset, the principal commits to a long-term contract which specifies the terms of

trade over the two periods. If the agent rejects the contract, both parties receive their

reservation utility of 0 and the game ends.

2. If the agent accepts, then in period 1, he privately learns θ1. If t1 − θ1x1 ≥ 0, the terms of

trade x1, t1 are implemented. If t1 − θ1x1 < 0, bankruptcy occurs and both parties receive

0.6,7

3. In period 2, the agent privately learns θ2. If t2 − θ2 x2 ≥ 0, the terms of trade x2, t2 are

implemented. If t2 − θ2x2 < 0, bankruptcy occurs and both parties receive 0.

Example: To illustrate our analysis, we use the uniform example, where θ1 and θ2 are both uni-

formly distributed over the interval [0, 1], and v1 = v2 = θ̄ = 1. For this example, trade is efficient

for all types and the per-period first-best surplus equals SFB = SFB
1
= SFB

2
=
∫ 1

0
1− θ dθ = 1/2,

yielding an aggregate surplus of SFB
1
+ SFB

2
= 1. In the static second best, the optimal mechanism

is a posted price of 1/2, yielding the principal a per-period profit of ΠSB ≡ (1− 1/2) ∗ 1/2 = 1/4

and the agent a per-period second best utility of USB ≡
∫ 1/2

0
1/2 − θ dθ = 1/8. Implementing

a posted price of 1/2 for each of the two periods, yields an overall profit of 2ΠSB = 1/2 to the

principal and an overall utility of 2USB = 1/4 to the agent, resulting in aggregate surplus of 3/4.

In the benchmark case in which there is an interim participation constraint in period 1 but

no bankruptcy constraint, the optimal mechanism implements a posted price of p = 1/2 for the

first period, and extracts the whole surplus in the second period. This yields an overall profit

of ΠSB + SFB = 3/4 to the principal, an overall utility of USB = 1/8 to the agent, resulting in

aggregate surplus of 7/8. �

6Related to footnote 5, if x1 ∈ (0,1), bankruptcy occurs if t(0) < 0 and the mechanism does not prescribe trade,

and if t(1) − θ1 < 0 and the mechanism does prescribe trade.
7We neglect any negative externalities of bankruptcy on third parties, such as workers or subcontractors whose

labor or bills remain unpaid, because, per definition, such externalities are external to the contracting parties.
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3 The principal’s problem

The principal’s objective is to design a contract to maximize her profits. Because the principal has

full commitment, the revelation principle applies, implying that an optimal contract is in the class

of direct mechanisms where, on the equilibrium path, the agent reports his type truthfully in every

period (Myerson, 1986). Moreover, because bankruptcy in period 1 is verifiable, a mechanism can

condition the terms of trade in period 2 on whether bankruptcy has occurred in period 1 or not.

Without loss, we can therefore restrict attention to contracts of the form (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
),

where

(x1, t1) : [θ
1
, θ̄1]→ [0, 1]×R, (x b

2
, t b

2
) : [θ

1
, θ̄1]× [θ 2

, θ̄2]→ [0, 1]×R, (1)

where b ∈ {B, N} indicates whether bankruptcy has (b = B) or has not (b = N) occurred in

period 1.

To state the incentive compatibility constraints, we denote for b ∈ {N , B} the agent’s expected

period 2 utility from a report θ̂1, conditional on truthfully reporting in period 2, by

U b(θ̂1) =

∫ θ̄2

θ 2

max{0, t b
2
(θ̂1,θ2)− θ2x b

2
(θ̂1,θ2)} dF2(θ2). (2)

Moreover, let

Θ
N
1
= {θ1 | t1(θ1)− θ1 x1(θ1) ≥ 0} (3)

be the set of period 1 types where bankruptcy does not occur in period 1 under a given mechanism.

Definition 1 A contract (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) is feasible if:

(i) It is incentive compatible in period 2, that is, for b ∈ {N , B}:8

max{0, t b
2
(θ1,θ2)− θ2x b

2
(θ1,θ2)} ≥max{0, t b

2
(θ1, θ̂2)− θ2x b

2
(θ1, θ̂2)} ∀θ1,θ2, θ̂2. (4)

(ii) It is incentive compatible in period 1, that is:

8The revelation principle for dynamic games requires truthful reporting in period 2 only after a truthful report in

period 1 (see Myerson, 1986). In our context, where types are independent, the support of period 2 types is “non-

shifting”, that is, is independent of the period 1 type. It then follows with standard arguments that if truth-telling in

period 2 is optimal for the agent after telling the truth in period 1, then it is so after any report in period 1.
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⋄ For all θ1 ∈ ΘN
1

, we have:

t1(θ1)− θ1x1(θ1) + U N(θ1) ≥ t1(θ̂1)− θ1 x1(θ̂1) + U N(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1x1(θ̂1) ≥ 0, (5)

t1(θ1)− θ1x1(θ1) + U N(θ1) ≥ U B(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1x1(θ̂1) < 0, (6)

⋄ For all θ1 /∈ ΘN
1

, we have:

U B(θ1) ≥ t1(θ̂1)− θ1x1(θ̂1) + U N(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1x1(θ̂1)≥ 0, (7)

U B(θ1) ≥ U B(θ̂1) ∀θ̂1 : t1(θ̂1)− θ1x1(θ̂1) < 0. (8)

Part (i) of the definition captures the truth-telling constraints for the agent in period 2, taking

into account that bankruptcy in period 2 occurs whenever the terms of trade would impose a loss

on the agent. Similarly, part (ii) describes the truth-telling constraints for the agent in period

1. This requires a distinction between four cases, depending on whether truth-telling does or

does not induce bankruptcy in period 1 and whether deviating from truth-telling does or does not

induce bankruptcy in period 1.

The principal’s problem is thus to select a feasible contract that maximizes her profits

∫

Θ
N
1

�

v1x1(θ1)− t1(θ1) +

∫

Θ
N ,N
2
(θ1)

v2x N
2
(θ1,θ2)− tN

2
(θ1,θ2) dF2(θ2)

�

dF1(θ1) (9)

+

∫

Θ1\ΘN
1

�

0+

∫

Θ
N ,B
2 (θ1)

v2x B
2
(θ1,θ2)− tB

2
(θ1,θ2) dF2(θ2)

�

dF1(θ1), (10)

where

Θ
N ,b

2 (θ1) ≡ {θ2 ∈ Θ2 | t b
2
(θ1,θ2)− θ2x b

2
(θ1,θ2)≥ 0} (11)

denotes the set of period 2 types θ2 for whom bankruptcy does not occur in period 2 given the

period 1 type θ1 and given that bankruptcy has not (b = N) or has (b = B) occurred in period 1.

To solve the principal’s problem, we first show that it is without loss to focus on contracts

under which bankruptcy never occurs on the equilibrium path where the agent tells the truth.

The intuition is simply that the bankruptcy outcome is equivalent to not trading the good (x =

0) and making no payments (t = 0). Thus, the outcome of a mechanism γ in which bankruptcy

occurs on the equilibrium path can be replicated by the mechanism which differs from γ only in

that it specifies no trade and zero payments (and hence no bankruptcy) in case bankruptcy would
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occur under γ.

Second, it is without loss to focus on mechanisms in which the agent exactly breaks even in the

first period, and backloads any potential profit for the agent in that it accrues only in the second

period.9 The reason is that if the agent were to make a profit in the first period, the principal

could deduct it from the agent’s first period 1 payments and pay it out in period 2 instead. This

would not affect the principal’s profit and would maintain truth-telling incentives for which only

total payments matter.

We summarize these considerations in the next lemma.

Lemma 1 For any feasible contract there is a payoff-equivalent feasible contract

(x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) with the following properties:

• The agent exactly breaks even, and there is no bankruptcy in period 1 (on path):

t1(θ1)− θ1x1(θ1) = 0 for all θ1. (12)

• There is no bankruptcy in period 2 (on path):

tN
2
(θ1,θ2)− θ2x N

2
(θ1,θ2) ≥ 0 for all θ1,θ2. (13)

• After the off-path event that there is bankruptcy in period 1, the relationship is terminated:

x B
2
(θ1,θ2) = tB

2
(θ1,θ2) = 0 for all θ1,θ2. (14)

Lemma 1 implies that we can find an optimal contract in the class of feasible contracts that

satisfy (12)-(14). Since properties (12) and (14) pin down t1, x B
2
, and tB

2
, we are actually left to

determine only the triple (x1, x N
2

, tN
2
). We therefore introduce the following definition.

Definition 2 A triple (x1, x2, t2) : [θ
1
, θ̄1]→ [0, 1]2 ×R is called a backloaded contract if

NB2 : t2(θ1,θ2)− θ2 x2(θ1,θ2) ≥ 0 ∀θ1,θ2. (15)

A backloaded contract uniquely induces a contract (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) with the properties

(12)-(14) by setting t1 = θ1x1, x N
2
= x2, tN

2
= t2, and x B

2
= tB

2
= 0. For a backloaded contract, we

9This argument also appears in Ashlagi et al. (2022).
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write

U(θ1) =

∫ θ̄2

θ2

t2(θ1,θ2)− θ2 x2(θ1,θ2) dF2(θ2) (16)

for the agent’s expected period 2 utility. The next lemma characterizes when a backloaded con-

tract is feasible.

Lemma 2 A backloaded contract (x1, x2, t2) induces a feasible contract (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) if and

only if

IC2 : t2(θ1,θ2)− θ2 x2(θ1,θ2) ≥ t2(θ1, θ̂2)− θ2x2(θ1, θ̂2) ∀θ1,θ2, θ̂2 (17)

IC1 : U(θ1) ≥ (θ̂1 − θ1)x1(θ̂1) + U(θ̂1) ∀θ1 ≤ θ̂1 (18)

Constraint IC2 corresponds to the period 2 truth-telling constraints (4). The more interesting

constraint is IC1 which corresponds to the period 1 truth-telling constraints.10

The novelty is that IC1 only requires that the agent does not report a higher type than his true

type, but not that he does not report a lower type. The reason for this asymmetry is that if the agent

reported lower costs in the first period, then, because any cost type breaks even in period 1, the

agent would go bankrupt after such a lie. But, bankruptcy does not occur on path and is verifiable.

Consequently, such a lie would be detected, and under a backloaded mechanism, the relationship

would be terminated. This prospect is enough to dissuade the agent from understating his costs,

and extra incentives are not needed to induce truth-telling.

We can now re-state the principal’s problem as selecting an optimal backloaded contract.

Under a backloaded contract, the principal’s period 1 profit equals v1x1(θ1) − θ1x1(θ1) for all

θ1, because the agent breaks even in period 1. Moreover, her profit in period 2 is equal to

v2x2(θ1,θ2) − t2(θ1,θ2) for all (θ1,θ2), because no bankruptcy occurs in period 2. Thus, the

principal’s problem is

P : max
x1,x2,t2

∫ θ̄1

θ1

∫ θ̄2

θ2

v1 x1(θ1)− θ1x1(θ1) + v2 x2(θ1,θ2)− t2(θ1,θ2) dF2(θ2) dF1(θ1)

s.t . IC2, NB2, IC1,

where IC2 and IC1 are the feasibility constraints, and NB2 ensures that the contract is a backloaded

10To see that IC1 replaces the period 1 truth-telling constraints (5)-(8) note that because under a backloaded

contract there is no bankruptcy in period 1 for any θ1, constraints (6), (7) and (8) are all redundant, and the only

relevant constraint is (5), which now has to hold for all θ1, leading to IC1.
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contract

Intuitively, for given θ1, the principal faces the standard (intra-temporal) rent-efficiency trade-

off in period 2, because she has to grant low cost types an information rent for truth-telling due to

the presence of the no-bankruptcy constraint NB2. Moreover, because a backloaded contract uses

the expected period 2 information rent for incentivizing low cost types in period 1 to reveal the

truth, the principal also faces an inter-temporal trade-off between maximizing profits in period 1

and 2.

Before solving problem P, we note that the no-bankruptcy constraint NB2 is formally equiv-

alent to a period 2 participation constraint. Hence, problem P is equivalent to a two-period

dynamic mechanism design problem with ex post participation constraints, but with the novelty

that the first period incentive constraints are asymmetric in that they only require higher types

not to mimic lower types.

4 Solution to the principal’s problem

We solve the principal’s problem by the well-known technique in dynamic programming to reduce

the dynamic problem P to a sequence of static problems (Spear and Srivastava, 1987, Thomas

and Worrall, 1990). Consequently, we proceed in two steps. In the first step, we solve for optimal

period 2 terms of trade (x U
2

, tU
2
) that promise the agent a certain exogenously given expected

period 2 utility U . In the second step, we then solve for an optimal period 1 allocation x1 and an

optimal continuation value U taking as given optimal period 2 terms of trade (x U
2

, tU
2
) from step

1 that supply the agent with U .

Step 1: Optimal period 2 terms of trade

Note first that the principal can promise any positive utility U ≥ 0. Indeed, by NB2, the principal

cannot promise a negative utility while she can offer any utility U ≥ 0 by, for example, offering

the terms of trade (x2, t2) = (0, U). Thus, the set of feasible promised utilities is {U | U ≥ 0}.
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For a given report θ1, the principal’s problem to optimally promise U ≥ 0 is

P2 : Π(U)≡max
x2,t2

∫ θ̄2

θ2

v2x2(θ1,θ2)− t2(θ1,θ2) dF2(θ2) s.t (19)

IC2 : t2(θ1,θ2)− θ2x2(θ1,θ2) ≥ t2(θ1, θ̂2)− θ2x2(θ1, θ̂2) ∀θ2, θ̂2 (20)

NB2 : t2(θ1,θ2)− θ2x2(θ1,θ2) ≥ 0 ∀θ2 (21)

PK :

∫ θ̄2

θ 2

t2(θ1,θ2)− θ2x2(θ1,θ2) dF2(θ2) = U . (22)

While the constraints IC2 and NB2 carry over from problem P, the constraint PK ensures that the

agent receives his promised utility U .

Problem P2 corresponds to a static monopoly problem where the agent has an interim outside

option of 0 after learning θ2 (as reflected by NB2), and an ex-ante outside option of U before

learning θ2 (as reflected by PK). The solution is well-known from Samuelson (1984); for details

see our Remark 1 below. We state the features that will be key for our purposes in the next lemma.

In order to avoid uninteresting case distinctions, we impose the following mild condition.11

Assumption 1: The second best solution (xSB
2

, tSB
2
) to the relaxed version of P2 where PK is

missing is unique.

Given Assumption 1, the utilities in the second best solution for both the principal and the

agent are unique and we denote them, respectively, by ΠSB
2

and USB
2

. Moreover, we denote the

surplus associated with the period 2 first-best allocation x FB
2
(θ1,θ2) ≡ 1[θ2,min{v2,θ̄2}](θ2) by12

SFB
2
=

∫ min{v2,θ̄2}

θ 2

v2 − θ2 dF2. (24)

Clearly, USB
2
∈ (0, SFB

2
).

Lemma 3 The value of problem P2 as a function of U,Π(U), is concave in U withΠ(0) = Π(SFB
2
) = 0

and attains a unique maximum ΠSB
2

at USB
2

, that is, Π(USB
2
) = ΠSB

2
.

11It is well-known (e.g. Riley and Zeckhauser, 1983) that in the absence of PK , the solution to P2 can be imple-

mented by a posted price p given by

p ∈ arg max
p̃

∫ p̃

θ 2

v2 − θ2 −
F2(θ2)

f2(θ2)
dF2(θ2). (23)

Notice that the right hand side is generically a singleton in the sense that whenever it is not a singleton, a slight

perturbation of
F2(θ2)

f2(θ2)
would remove all but one solution. Hence, Assumption 1 is mild in that it holds generically.

12Given a set A, the indicator function 1A(a) is 1 if a ∈ A and 0 otherwise.
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The concavity of the value follows from a standard mixing argument. Specifically, given two

promises U ′ and U ′′, the principal can promise the agent the convex mixture Ū = αU ′+(1−α)U ′′

by appropriately randomizing between the optimal terms of trade for U ′ and U ′′. This would yield

the principal a profit αΠ(U ′
2
) + (1− α)Π(U ′′

2
), but by re-optimizing, the principal can promise Ū

at a higher profit, implying that Π is concave.

To see why Π(0) = 0, note that IC2 and NB2 imply that the only way to provide the agent with

expected utility U = 0 is through no trade (x2 = t2 = 0), resulting in zero profits for the principal.

To see that Π(SFB
2
) = 0, observe that the principal’s profit Π is the total surplus generated minus

the utility U supplied to the agent. Hence, if the principal promises the entire first-best surplus

to the agent, U = SFB
2

, she cannot make a strictly positive profit. But she can at least guarantee

herself zero profits by selecting terms of trade that generate the first-best surplus. Therefore,

Π(SFB
2
) = 0. Finally, that the principal’s profit is uniquely maximized at USB follows directly from

the definition of the second best and Assumption 1.

Remark 1 (Period 2 implementation) We briefly discuss how the period 2 contract can be imple-

mented. If the principal promises more than the second best surplus, U ≥ SFB
2

, then it follows from

the proof of Lemma 3 that the optimal contract displays the first-best allocation x FB
2
(θ1,θ2). The

intuition is that when guaranteeing the agent a utility exceeding the first-best level SFB
2

, the prin-

cipal does not face the standard rent-efficiency trade-off anymore. Now, if the principal promises

exactly U = SFB
2

, this can be indirectly implemented by an offer from the principal to procure the

good at a price of v2. If the principal promises strictly more, U > SFB
2

, then an optimal contract

can be indirectly implemented by a two-part tariff. In particular, the principal makes an uncondi-

tional payment U −SFB
2

and offers to procure the good at a price of v2. This two-part tariff yields

her an expected profit Π(U) = SFB
2
− U .

If, on the other hand, U < SFB
2

, it follows from Samuelson (1984) that an optimal trading

probability is of the form

x2(θ1,θ2) =











1 i f θ2 ∈ [0,θ ′
2
]

ξ i f θ2 ∈ (θ ′2,θ ′′
2
]

0 else

(25)

for some ξ ∈ [0, 1], θ ≤ θ ′
2
≤ θ ′′

2
< v2 which all depend on U . If ξ = 0, the optimal contract

can be implemented by an offer from the principal to procure the good at price θ ′
2
. If ξ > 0, the

optimal contract can be implemented by a menu of three options for the agent: to not produce

11



the good at a price of 0; to produce a “fraction” ξ of the good for a price of ξθ ′
2
,13 or to produce

the good at price θ ′′
2

.

Whether ξ is strictly positive or not, depends on the distribution F2 and on the size of U . For

the special case that the hazard rate F2/ f2 is increasing, we have that ξ = 0 for all U so that the

optimal contract can be implemented with a posted price.

Example: For our uniform example, the hazard rate F2(θ2)/ f2(θ2) = θ2 is increasing so that, as

noted in Remark 1, a posted price in period 2 is optimal. In particular, , for U ∈ [0, SFB
2
] = [0, 1/2],

the optimal contract for U ∈ [0, SFB
2
] = [0, 1/2] corresponds to a posted price p2 which maximizes

p2(v− p2) subject to the promise keeping constraint
∫ p2

0
p2−θ dθ = U . This constraint simplifies

to p2
2
/2 = U and therefore pins down p2(U) =

p
2U . The resulting profit is Π(U) = p2(v − p2) =p

2U(1−
p

2U) =
p

2U − 2U . Moreover, for U > 1/2, we have Π(U) = 1/2− U . Taken together,

we thus have:

Π(U) =

( p
2U − 2U i f U ≤ 1/2;

1/2− U i f U > 1/2.
(26)

Note that Π(U) is not only continuous but also differentiable at U = 1/2.

Step 2: Optimal period 1 terms of trade

Step 1 allow us to re-write the principal’s problem P as a static maximization problem over the

period 1 terms of trade x1 and the agent’s promised utility U . More specifically, any combination

(x1(θ1), U(θ1)) with U(θ1) ≥ 0 corresponds to a backloaded contract (x1(θ1), x2(θ1, ·), t2(θ1, ·))
where (x2(θ1, ·), t2(θ1, ·)) is the solution to P2 with U = U(θ1). We refer to (x1, U) as a reduced

backloaded contract (and simply as backloaded contract if there is no risk of confusion). Clearly,

only contracts corresponding to reduced backloaded contracts can be optimal.

Recall that under a backloaded contract, the agent breaks even in period 1, that is, t1(θ1) =

θ1x1(θ1). Consequently, the principal receives the profit v1 x1(θ1)− θ1x1(θ1) in period 1 and the

profit Π(U(θ1)) in period 2. Suppressing the time index for period 1, we can therefore rewrite

13For an indivisible good the contract randomizes between trade and no trade and the agent is payed θ ′
2

if trade is

the outcome.
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the principal’s problem as

P ′ : max
x ,U

∫ θ̄

θ

[v − θ]x(θ ) +Π(U(θ )) dF(θ ) s.t (27)

IR : U(θ )≥ 0 ∀θ (28)

IC : U(θ )≥ (θ̂ − θ )x(θ̂) + U(θ̂) ∀θ ≤ θ̂ (29)

UG : x(θ ) ∈ [0, 1] ∀θ . (30)

The constraint IR is simply the feasibility constraint that the agent’s expected utility cannot be

negative, and the constraint IC is inherited from the original formulation of P.

Problem P ′ looks similar to a standard monopoly problem where U(θ ) is agent type θ ’s in-

formation rent, and constraint IR corresponds to a standard (interim) participation constraint.

There are, however, two important differences.

First, unlike in the static monopoly problem with transferable utility, the principal’s objective

is not linear in the agent’s information rent. This is due to the period 2 bankruptcy constraint

which results in a rent-efficiency trade-off in period 2. In fact, if the principal did not face a

bankruptcy constraint in period 2, her objective would be linear in the information rent because

she would then optimally implement the first-best allocation in period 2 and could award the

agent any (possibly negative) level of rent through an appropriate transfer.

To shed more light on the principal’s costs of providing incentives, recall that Π is single-

peaked with a maximum at USB. Therefore, if the period 1 type were publicly known, the principal

would maximize the objective by picking an efficient x(θ ) and setting U(θ ) equal to the second

best information rent USB. But since the period 1 type θ is private information, the principal

has to create a spread in the information rents and award a higher information rent to low cost

than to high cost types to induce the former to report truthfully. As a result, the cost of providing

incentives through promising a certain information rent U in period 2 is not monotone in U . For

example, ”punishing” the agent with a zero information rent in period 2 is extremely costly, since

Π(0) = 0 means that the principal has to sacrifice the entire surplus in period 2. Likewise, to

reward the agent with a rent higher than USB, then because Π is maximal at USB, the principal

has to give the agent a surplus share that exceeds the second best share of the surplus in period

2.

Second, the incentive compatibility constraints IC are uni-directional, only requiring that the

agent does not report a less efficient type. In contrast to the setting with bi-directional incen-

tive constraints, the uni-directional constraints prevent us from employing familiar solution tech-
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niques that are based on the characterization of incentive compatibility in terms of monotonicity

of the trading probability and revenue equivalence. In fact, it is easy to see that IC does not

even imply that x(θ ) is monotone.14 To address this issue, the next lemma provides necessary

conditions for IC that allow us to relax problem P ′.

Lemma 4 If (x , U) satisfies IC, then it satisfies the two following conditions:

M: U is decreasing.

ICL: U ′(θ ) ≤ −x(θ ) for all θ where the derivative exists.

Property M is straightforward and simply reflects that lower cost types can guarantee them-

selves at least the utility of a higher cost type by pretending to be that type. As to condition ICL,

note first that because U is decreasing, U is differentiable almost everywhere. Recall that in the

standard case where IC is required for all reports θ̂ , the derivative of the agent’s utility is actually

pinned down by the allocation x . In our case, where IC is required only for reports θ̂ > θ , it is

only necessary that the derivative of the agent’s utility is bounded by the allocation x .

The lemma implies that we obtain a relaxed version of P ′ if we replace IC with the mono-

tonicity condition M and the “localized” condition ICL:

R : max
x ,U

∫ θ̄

θ

[v − θ]x(θ ) +Π(U(θ )) dF(θ ) s.t IR, M , ICL, UG (31)

We now solve R and then show that its solution also solves P ′. We proceed in two steps. We

first show that at a solution to R, trade never happens if it is inefficient, and the constraint ICL

is binding. In the second step, we use these properties to establish a solution to R. To establish

the first step, let Φ be the (non-empty) feasible set for problem R. We then obtain the following

result.

Lemma 5 Let ( x̃ , Ũ) ∈ Φ. Then there is (x , U) ∈ Φ which delivers the principal a (weakly) higher

profit than ( x̃ , Ũ) and has the following properties:

(i) If v < θ̄ , then x(θ ) = 0 for all θ > v.

(ii) U ′(θ ) = −x(θ ) for all θ .

The first part makes the familiar point that an optimal contract induces a downward distortion.

To understand the second part, recall that Π is concave with a maximum at USB. For a given

14Analyzing a screening problem with uni-directional incentive constraints and discrete types, Celik (2006) makes

the same observation. His techniques for solving the subsequent problem do not apply to our framework with

continuous types.
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trading probability x , the principal therefore seeks to choose U as closely as possible to USB while

maintaining the incentive compatibility requirement that U ′(θ ) ≤ −x(θ ). Thus, an optimal choice

of U is maximally flat, implying that U ′(θ ) = −x(θ ).

We emphasize that although property (ii) corresponds to the revenue equivalence property

from standard screening models where IC is required for all reports θ̂ , in our setting, property

(ii) expresses an optimality rather than a feasibility condition.

In standard screening models, property (ii) is useful, because it pins down the agent’s utility

U as an integral over the trading probability x . If, in addition, Π is linear, an integration by parts

argument can be used to replace U in the objective function of (31), and the problem can then be

solved by point-wise maximization over x(θ ). In our case, because Π is concave, this approach

does not work.

Our alternative approach is to instead use property (ii) to replace the trading probability x by

the agent’s utility function U in the objective function of (31) and then maximize over U . This

allows us to show that an optimal contract is in the class of cutoff-contracts where the good is

traded if and only if that agent’s cost is below a cutoff θ0 ∈ [θ .θ̄].

Definition 3 A cutoff-contract (x , U) is characterized by two parameters: a cutoff θ0 ∈ [θ , θ̄] and

an intercept U0 ≥ θ0 − θ such that

x(θ ) =

(

1 i f θ ≤ θ0

0 else
, U(θ ) =

(

U0 − (θ − θ ) i f θ ≤ θ0

U0 − (θ0 − θ ) else.
(32)

We denote by Λ the set of cutoff contracts. Clearly, Λ ⊂ Φ. We now state the main result of this

section that, under a regularity condition, a cutoff-contract is a solution to the relaxed problem

R.

Proposition 1 Let (v−θ ) f ′(θ )
f (θ )

be increasing on the range [θ , min{v, θ̄}]. Consider ( x̃ , Ũ) ∈ Φ. Then

there is a cutoff-contract (x , U) ∈ Λ which delivers a (weakly) higher profit than ( x̃ , Ũ).

While we prove the proposition in the appendix, the underlying logic is best understood in the

context of our uniform example. Note that the uniform example satisfies the regularity condition

trivially, as f ′(θ ) = 0.

Example: Consider some ( x̃ , Ũ) ∈ Φ. As indicated earlier, we can use part (ii) of Lemma 5 to
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U

θ
0

U0 = Ũ(0)

U0 − θ0

θ0

Ũ(1)

1

Ũ(θ)

U(θ)

θ̃

=
F

U

1

U0

1−θ0

U0 −θ0

1−θ̃

Ũ(1)

F U

F Ũ

Figure 1: The left panel illustrates, given Ũ and that θ is uniformly distributed over [0, 1], the

construction of the cutoff contract U(.) such that U0 = Ũ(0) and
∫ 1

0
U(θ ) dθ =
∫ 1

0
Ũ(θ ) dθ . The

right panel shows the associated probability distributions F U and F Ũ of U and Ũ in utility space.

F Ũ is a mean preserving spread of F U .

replace x̃ by Ũ ′ in the objective of (31). Using integration by parts, the objective then rewrites as

∫ θ̄

θ

[v − θ] x̃(θ ) +Π(Ũ(θ )) dF(θ ) =

∫ 1

0

[v − θ]Ũ ′(θ ) +Π(Ũ(θ )) dθ (33)

= −Ũ(0) +

∫ 1

0

Ũ(θ ) dθ +

∫ 1

0

Π(Ũ(θ )) dθ . (34)

We now construct a function U belonging to a cutoff-contract for which expression (34) is at

least as large as for Ũ . To do so, note that Lemma 5 implies that Ũ is a decreasing continuous

function with a slope between −1 and 0. Therefore, because under a cutoff-contract, U has slope

−1 up to the cutoff θ0 and then slope 0, an intermediate value argument implies that we can find

U so that

U0 = Ũ(0),

∫ 1

0

U(θ ) dθ =

∫ 1

0

Ũ(θ ) dθ . (35)

In particular, there is a θ̃ ∈ [0, 1] so that

U(θ )≤ Ũ(θ ) for θ ≤ θ̃ and U(θ )≥ Ũ(θ ) for θ ≥ θ̃ . (36)

The first panel of Figure 1 illustrates the construction graphically.

By (35), the first two terms in (34) are the same for U and Ũ . The key idea to analyze the third
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term in (34) is to interpret the agent’s utility as a random variable which induces a probability

distribution in utility space (the pushforward). Formally, and as illustrated in the second panel of

Figure 1, the distributions induced by Ũ and U correspond to the cumulative distribution functions

F Ũ(u) = Pr(θ ∈ [0, 1] : Ũ(θ ) ≤ u) and F U(u) = Pr(θ ∈ [0, 1] : U(θ )≤ u). (37)

The key observation is now that the second part of (35) and (36) imply that F Ũ is a mean pre-

serving spread of F U . Therefore, because Π is concave, the third term in (34) is larger for U than

for Ũ . �

For the general case without uniform distribution, the construction is analogous. The mean

preserving spread argument carries over unchanged. The role of the regularity condition is to

sign what corresponds to the first and second terms in (34), since these terms depend in general

on the density f .

The regularity condition in Proposition 1 is not entirely new to the literature. In a context

where the principal is a seller and the agent is a buyer, Manelli and Vincent (2006, Theorem

4) impose an equivalent regularity condition when characterizing the profit maximizing solution

in a multi-dimensional screening problem. A sufficient condition for the regularity condition is

that jointly f ′ ≤ 0 and f is log-convex.15 Examples include the family of power distributions

F(θ ) = θα, θ ∈ [0, 1], for α ≤ 1 or of exponential distributions F(θ ) = 1− e−λθ , θ ≥ 0, λ ≥ 0.

Proposition 1 shows that a cutoff-contract is a solution to the relaxed problem R. It is straight-

forward to verify that any cutoff-contract satisfies the constraints IC of the original problem.

Therefore, we have:

Proposition 2 Let (v − θ ) f ′(θ )
f (θ )

be increasing on the range [θ , min{v, θ̄}] , then there is a cutoff-

contract (x , U) ∈ Λ which solves the original problem P ′.

Since a cutoff-contract consists only of the two parameters θ0, U0, finding the optimal cutoff-

contract comes down to solving an optimization problem in two variables. We illustrate this

exercise in our running example.

15To see this, note

d

dθ
(v − θ) f ′(θ)

f (θ)
= − f ′(θ)

f (θ)
+ (v − θ) d

dθ

f ′(θ)

f (θ)
= − f ′(θ)

f (θ)
+ (v − θ) d

dθ
log( f (θ)). (38)

Because v − θ is positive on the range [θ ,min{v, θ̄}], this expression is postive if f ′ ≤ 0 and log f is increasing, that

is, f is log-convex.
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Example: For our uniform example, the principal’s objective is

W (θ0, U0) =

∫ θ0

0

1− θ dθ +

∫ θ0

0

Π(U0− θ ) dθ +

∫ 1

θ0

Π(U0 − θ0) dθ (39)

with U0 ≥ θ0 and where Π is given by (26). To determine the maximizer, we first determine an

optimal θ ∗
0
(U0) for a given U0. A tedious but otherwise straightforward analysis of the first and

second order condition with respect to θ0 yields16

θ ∗
0
(U0) = U0 − 1/18. (42)

Next, we maximize W (θ ∗
0
(U0), U0) = W (U0 − 1/18, U0) with respect to U0. For U0 ≤ 1/2, this

expression reduces to 109/648+(5+4
p

2U0−9U0)U0/6 which is strictly increasing for U0 ≤ 1/2

so that a maximum exhibits U0 ≥ 1/2. For U0 > 1/2, the expression W (U0−1/18, U0) reduces to

the quadratic expression 41/324+ 4/3 · U0 − U2
0

which attains a maximum at U0 = 2/3.

We therefore conclude that (θ ∗
0
, U∗

0
) = (11/18, 2/3) maximizes W (θ0, U0) with a payoff of

185/324 ≈ 0.571, exceeding by 14% the principal’s payoff of 2ΠSB = 1/2, from charging twice

the static optimal price p = 1/2.

Recall from above that in the uniform example, the period 2 terms of trade can be implemented

by offering the agent a period 2 price p2 =
p

2U . With this in mind, period 1 cost types θ

above the cutoff θ ∗
0
= 11/18 do not produce in period 1 and obtain expected period 2 utility

of U(θ ) = U∗
0
= 2/3, corresponding to a period 2 price offer p2 = 1/3. All period 1 cost types

θ below the cutoff θ ∗
0
= 11/18 produce in the first period and obtain expected period 2 utility

U(θ ) = U∗
0
− θ = 2/3 − θ , corresponding to a period 2 price offer p2 = min{4/3 − 2θ1, 1}.

Interestingly, period 1 cost types θ < 1/6 obtain more than the utility 1/2. These types always

produce in period 2, since they receive the offer to produce at a price of 1 in period 2.

The ex ante expected utility of the agent is 157/648 so that expected aggregate surplus is

16The first order condition with respect to θ0 is:

∂W

∂ θ0

= (1− θ0)(1−Π′(U0 − θ0)) = 0 ⇔ θ0 = 1 or Π′(U0 − θ0) = 1. (40)

It is easy to check that θ0 = 1 is not a maximizer of W . By (26), the unique solution to Π′(U0 − θ0) = 1 is θ0 =

U0 − 1/18. This is indeed a maximizer of W (θ0, U0), because the second order condition is

∂ 2W

∂ θ 2
0

= −1+Π′(U0 − θ0) +Π
′′(U0 − θ0)(1− θ0) < 0, (41)

is satisfied for θ0 = U0 − 1/18, since the first two terms cancel, while Π′′(U) = −
p

2U−3/2/4 < 0 for U ≤ 1/2 and

U0 − θ0 = 1/18< 1/2.
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(no A.I.) FB 2xSB No bankruptcy bankruptcy

P’s payoff 1 0.5 0.75 0.571

U’s ex ante payoff 0 0.25 .125 0.242

ex ante surplus 1 0.75 .875 0.813

Table 1: Payoff comparisons

185/324 + 157/648 = 527/648 ≈ 0.813, compared to the first best surplus of 1. Without

bankruptcy constraints, aggregate surplus is 7/8=.875, while the twicely repeated static second

best contract yields aggregate surplus of .75. Table 1 summarizes. �

Remark 2 (Implementation) We now briefly discuss how an optimal cutoff contract can be indi-

rectly implemented by a menu of prices. For simplicity, suppose that the optimal period 2 terms

of trade can be implemented by a posted price. Recall from Remark 1 that this is the case if, for

example, F2/ f2 is increasing.

An optimal contract can then be implemented by a menu {(r, p2(r)) | r ∈ [θ ,θ0]} where the

agent can choose to produce the good in period 1 for a price r and conditional on not going

bankrupt in period 1, obtains the option to produce the good in period 2 for the price p2(r)

where p2 is decreasing in r. Moreover, if the agent goes bankrupt in period 1, the relationship is

terminated.

To see this, recall that under a backloaded contract, the agent breaks even in period 1. Under

a cutoff contract, the agent therefore receives in period 1 the transfer θ̂1 and produces the good if

he announces θ̂1 ∈ [θ ,θ0] and does not go bankrupt. If he announces θ̂1 ∈ (θ0, θ̄] he receives the

transfer 0 and does not produce the good. This corresponds to choosing a price r = θ̂1 ∈ [θ ,θ0] at

which to deliver the good in period 1. Moreover, after announcing θ̂1, the agent obtains expected

utility U(θ̂1) in period 2 which can be implemented by a posted price p2(θ̂1) which is decreasing

in θ̂1 because U(θ̂1) is decreasing in θ̂1. This corresponds to obtaining the option to produce the

good at p2(r) = p2(θ̂1) in period 2 after choosing the price r in period 1.

5 Extensions

In this section, we discuss how our analysis extends to settings where there are multiple time

periods and to a model with interdependent types.

More than two periods. While we performed our analysis only for two periods, the extension to

multiple periods is straightforward. To illustrate, suppose that there are infinitely many periods
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and that cost types θτ are i.i.d. with time-independent cdf F on the support [θ , θ̄].17 For the

problem to be well-defined, assume that both parties discount future payoffs with a discount

factor δ ∈ [0, 1). Under the dynamic programming formulation, the principal’s choice variables

are a probability of trade x(θ ) for the current period and the expected continuation utility for the

agent U(θ ) that both depend on a report θ by the agent about his current type (as well as on the

history of past reports which we suppress). The principal’s value function Π(V ) is now defined

recursively as a function of the agent’s expected utility V (starting as of now) according to the

dynamic program:

P∞ : Π(V ) =max
x ,U

∫ θ̄

θ

(v − θ )x(θ ) +δΠ(U(θ )) dF(θ ) s.t . (43)

IR : U(θ )≥ 0 ∀θ (44)

IC : U(θ )≥ (θ̂ − θ )x(θ̂) + U(θ̂) ∀θ ≤ θ̂ (45)

UG : x(θ ) ∈ [0, 1] ∀θ (46)

PK :

∫ θ̄

θ

δU(θ )dF(θ ) = V. (47)

While problem P∞ yields the principal’s value function, the solution to the principal’s overall

problem starting in the initial period is obtained by maximizing Π with respect to V .

The essential difference between P∞ and P ′ is the presence of the promise keeping constraint

PK which ensures that the agent’s expected utility from the contract is V . As above, we consider

a relaxed problem where we localize IC and replace it with the constraints M and ICL as stated

in Lemma 4:

R∞ : Π̃(V ) =max
x ,U

∫ θ̄

θ

(v − θ )x(θ ) + δΠ̃(U(θ )) dF(θ ) s.t IR, M , ICL, UG, PK . (48)

It follows from standard arguments (see Stockey and Lucas, 1989, or Krishna et al. 2013) that Π̃

exists. Crucially, as in the two-period case, Π̃ is concave. Recall that to establish the optimality of

a cutoff contract for the two-period problem R, we exploited the concavity of Π̃ to construct for a

every feasible contract ( x̃ , Ũ) a feasible cutoff-contract (x , U) that is an improvement. Note that,

in contrast to problem R, feasibility in problem R∞ requires that a contract, in addition, satisfies

PK . Therefore, to extend the argument from R to R∞, we have to ensure that the cutoff contract

(x , U) that improves a given feasible contract does satisfy PK .

17The extension to an arbitrary finite time horizon is analogous but all expressions are time-dependent.
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However, note that the cutoff contract (x , U) constructed in the two-period problem to improve

upon ( x̃ , Ũ) has the property that18

∫ θ̄

θ

U(θ )dF(θ ) =

∫ θ̄

θ

Ũ(θ )dF(θ ). (49)

Therefore, as ( x̃ , Ũ) is an arbitrary feasible contract and thus satisfies PK by definition, so does

(x , U). This shows that a cutoff contract is optimal also when there are more than two periods.

Interdependent types. We have modelled bankruptcy as a verifiable event, thus distinguishing it

from the event that the agent voluntarily takes an outside option. Bankruptcy constraints there-

fore affect the incentive compatibility constraints because the verifiability of bankruptcy allows

the principal to detect misreports that lead to bankruptcy. As a result, the incentive constraints

in our problem end up being only one-sided, as explicitly shown in (29) of problem P ′. This is in

contrast to the existing literature, where bankruptcy constraints are imposed only on path, and

incentive constraints are two-sided.

Despite this conceptual difference, the solution in our specific setup would not change if we

imposed (29) in its usual two-sided form by requiring that the inequality in (29) holds for all

combinations θ and θ̂ rather than only for θ ≤ θ̂ . This is so because in our specific setup the

principal’s valuation for the good does not depend on the agent’s type. Our private values for-

mulation implies that the solution to the relaxed problem is monotone, and thus satisfies the

stronger two-sided incentive constraints. A similar observation has been made in the static mech-

anism design literature on one-sided incentive constraints. In particular, Celik (2006) shows that,

whenever the efficient solution is monotone, the solution with one-sided incentive constraints

coincides with the one for two-sided incentive constraints.

The monotonicity of the efficient solution however rules out a strong negative correlation

between the principal’s and the agent’s valuation. In such a case, it might well be that the solution

to the relaxed problem violates the two-sided, but satisfies the one-sided incentive constraints. To

demonstrate this explicitly, consider the following adaptation of our uniform example. Instead of

a constant type-independent first period valuation of the good of v1 = 1, suppose the principal

has, for some θ̃ ∈ (0, 1), the type-dependent first period valuation

v1(θ ) =

(

0 if θ ≤ θ̃
1 otherwise .

(50)

18This corresponds to the right part of (35) where we defined (x , U) in the uniform example.

21



Note that the efficient solution is then not monotone: it exhibits x = 0 for θ ≤ θ̃ and x = 1

for θ > θ̃ . If we however require the incentive constraints (29) in problem P ′ to hold in their

two-sided version and thus for all combinations of θ and θ̂ , then the allocation x is necessarily

monotone. Hence, a solution (x2S, U2S) to the version of P ′ with two-sided incentive constraints

is such that x2S is monotone.

We next argue that, if θ̃ is sufficiently small, then (x2S, U2S) is not a solution to problem P ′ with

the one-sided incentive constraint (29). To see this, note first that, for θ̃ > 0 but small enough, we

must have x2S(θ ) > 0 for θ < θ̃ .19 Now adapt (x2S, U2S) to ( x̂ , Û) by setting x̂(θ ) = 0 for θ < θ̃ ,

while keeping the rest unchanged. Note that the adapted schedule ( x̂ , Û) satisfies (29) in its one-

sided form, because the reduction in x̂ relaxes the constraint since (29) is required to hold only

for θ̂ − θ > 0. The feasibility of (x2S, U2S) therefore implies the feasibility of ( x̂ , Û). Moreover,

given the principal’s valuation (50), the pair ( x̂ , Û) increases the objective (27) as compared to

(x2S, U2S) because ( x̂ , Û) implements the efficient allocation for θ < θ̃ . Hence, (x2S, U2S) does

not solve P ′.

Hence, the previous example explicitly shows that for interdependent values the predictions

when modeling cash constraints by verifiable bankruptcy can differ qualitatively compared to

when modeling cash constraints by imposing a non-negative per period utility on the agent on

path.

6 Conclusion

We study bankruptcy constraints in an otherwise standard dynamic screening model. We model

bankruptcy as a verifiable event and show that it affects contractual feasibility constraints not only

through participation but also incentive compatibility constraints. Thus, our analysis highlights

the importance of spelling out explicitly the economic consequences of bankruptcy in terms of the

underlying economic environment.

While our paper assumes that bankruptcy occurs whenever the agent makes short term losses,

in practice the occurrence and consequences of bankruptcy may be more complicated than that,

since bankruptcy may, for example, be partially discretionary or involve restructuring processes.

19To see this, observe that otherwise, the fact that x2S is decreasing, would imply that x2S is equal to zero every-

where. It is easy to see that this would yield the principal a payoff of at most zero. But, for θ̃ small, the principal

could improve by using the solution to the problem when θ̃ = 0. Indeed, if θ̃ = 0, we are in our original uniform

example for which we have shown that the principal makes a strictly positive profit. Thus, by continuity, the principal

would still make a positive profit if θ̃ > 0 but sufficiently small. This contradicts the assumption that (x2S , U2S) was

optimal.
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It is an interesting avenue for future research to capture such richer forms of bankruptcy.

Our paper also makes a methodological contribution. In particular, we solve for an optimal

contract using a new method that ranks contracts in terms of the spread of the distribution of the

induced continuation values for the agent. An open question is to what extent our approach can

be employed in a model with correlated cost types (as in Krasikov and Lamba, 2021). Such an

extension is beyond the scope of the current paper because it implies that the agent’s continuation

value becomes type dependent, thus constraining the principal’s choice of continuation values.

Another interesting avenue is to apply our solution method to static mechanism design problems

in which the principal’s payoff is not linear in the agent’s information rent.
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Appendix

Proof of Lemma 1 Let γ̃ = ( x̃1, t̃1, x̃ N
2

, t̃N
2

, x̃ B
2
, t̃B

2
) be a feasible contract. Our proof strategy is to

first define an auxiliary contract γ̂ that is feasible and payoff-equivalent to γ̃ but under which no

bankruptcy occurs. In a second step, we modify γ̂ to obtain the desired contract γ that has the

properties stated in the lemma. In what follows, we indicate all variables pertaining to γ̃ and γ̂

with a tilde and a hat.

Step 1: Define the auxiliary contract γ̂= ( x̂1, t̂1, x̂ N
2

, t̂N
2

, x̂ B
2
, t̂B

2
) by

( x̂1(θ1), t̂1(θ1)) =

(

( x̃1(θ1), t̃1(θ1)) if θ1 ∈ Θ̃N
1

,

(0, 0) otherwise
(51)

( x̂ N
2
(θ1,θ2), t̂N

2
(θ1,θ2)) =











( x̃ N
2
(θ1,θ2), t̃N

2
(θ1,θ2)) if θ1 ∈ Θ̃N

1
,θ2 ∈ Θ̃N ,N

2 (θ1)

( x̃ B
2
(θ1,θ2), t̃B

2
(θ1,θ2)) if θ1 6∈ Θ̃N

1
,θ2 ∈ Θ̃N ,B

2 (θ1)

(0, 0) otherwise,

(52)

( x̂ B
2
(θ1,θ2), t̂B

2
(θ1,θ2)) = (0, 0) ∀θ1,θ2. (53)

We show that γ̂ is feasible and payoff-equivalent to γ̃. To see this, note first that, by construc-

tion, we have Θ̂N
1
= Θ1 and Θ̂

N ,N

2 (θ1) = Θ2 for all θ1. Furthermore,

Û N(θ1) = Ũ N(θ1) for θ1 ∈ Θ̃N
1

and Û N(θ1) = Ũ B(θ1) for θ1 6∈ Θ̃N
1

. (54)

To see feasibility, observe that γ̂ trivially satisfies (4) for b = B, and inherits (4) for b = N

by construction. To see (5), let t̂1(θ̂1)− θ1 x̂1(θ̂1) ≥ 0. Consider first the case that θ1 ∈ Θ̃N
1

and

θ̂1 ∈ Θ̃N
1

. Then, we have:

t̂1(θ1)− θ1 x̂1(θ1) + Û N(θ1) = t̃1(θ1)− θ1 x̃1(θ1) + Ũ N(θ1) (55)

≥ t̃1(θ̂1)− θ1 x̃1(θ̂1) + Ũ N(θ̂1) (56)

= t̂1(θ̂1)− θ1 x̂1(θ̂1) + Û N(θ̂1), (57)

where the inequality follows, because γ̃ satisfies (5) and the two equalities follow from (54). The

other cases can be shown analogously.

To see (6), note that the left hand side of (6) is non-negative by definition of γ̂. Moreover,

because x̂ B
2
= t̂B

2
= 0, we have Û B(θ̂1) = 0 for all θ̂1 so that the right hand side is zero. Therefore,

(6) follows. To complete the proof of feasibility, note that (7) and (8) are void for γ̂, because
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Θ̂
N
1
= Θ1.

Finally, γ̂ and γ̃ are payoff-equivalent, because by construction, if bankruptcy does not occur

under γ̃, then γ̂ implements the same terms of trade as γ̃, and when bankruptcy occurs under γ̃,

no trade occurs under γ̂ so that under either contract both the principal and the agent get zero.

Step 2: We now construct a feasible contract γ= (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) which is payoff-equivalent

to γ̂ and satisfies (12)-(14). To do so, note first that γ̂ satisfies (13) and (14), but may violate

(12) and display t̂1(θ1)− θ1 x̂1(θ1) > 0 for some θ1.

Define γ as the contract that differs from γ̂ only in that the period 1 profits for the agent are

backloaded to period 2. Formally, γ displays x1 = x̂1, x N
2
= x̂ N

2
, x B

2
= x̂ B

2
, tB

2
= t̂B

2
and payments

t1(θ ) = θ1x1(θ1), tN
2
(θ1,θ2) = t̂N

2
(θ1,θ2) + t̂1(θ1)− t1(θ1). (58)

Note first that γ satisfies (12) by construction. Moreover, it inherits (14) from γ̂ and also property

(13) because

tN
2
(θ1,θ2)− θ2x N

2
(θ1,θ2) = t̂N

2
(θ1,θ2) + t̂1(θ1)− t1(θ1)− θ2 x̂ N

2
(θ1,θ2) (59)

= t̂N
2
(θ1,θ2)− θ2 x̂ N

2
(θ1,θ2) + t̂1(θ1)− θ1 x̂1(θ1) ≥ 0, (60)

where the inequality follows since under γ̂ no bankruptcy occurs.

We next show that γ is feasible. Indeed, γ trivially satisfies (4) for b = B because x B
2
= tB

2
= 0.

For b = N , we have for all θ1,θ2, θ̂2:

tN
2
(θ1,θ2)− θ2x N

2
(θ1,θ2) = t̂N

2
(θ1,θ2) + t̂1(θ1)− t1(θ1)− θ2 x N

2
(θ1,θ2) (61)

≥ t̂N
2
(θ1, θ̂2) + t̂1(θ1)− t1(θ1)− θ2 x N

2
(θ1, θ̂2) (62)

= tN
2
(θ1, θ̂2)− θ2 x N

2
(θ1, θ̂2), (63)

where the first and the third lines use the definition of tN
2

, and the second line follows because γ̂

satisfies (4) for b = N and since x N
2
= x̂ N

2
.

To see (5), consider θ1, θ̂1 so that t1(θ̂1)−θ1x1(θ̂1) ≥ 0. Because t̂1(θ̂1) ≥ t1(θ̂1) and x̂1(θ̂ ) =

x1(θ̂ ), this implies that also t̂1(θ̂1)− θ1 x̂1(θ̂1) ≥ 0. Therefore, since γ̂ satisfies (5), we have

t̂1(θ )− θ1 x̂1(θ1) + Û N(θ1) ≥ t̂1(θ̂ )− θ1 x̂1(θ̂1) + Û N(θ̂1). (64)

Moreover, by construction, we have that t1(θ1) + U N(θ1) = t̂1(θ1) + Û N(θ1). These two observa-
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tions imply that

t1(θ1)− θ1x1(θ1) + U N(θ1) = t̂1(θ )− θ1 x̂1(θ1) + Û N(θ1) (65)

≥ t̂1(θ̂ )− θ1 x̂1(θ̂1) + Û N(θ̂1) (66)

= t1(θ̂ )− θ1x1(θ̂1) + U N(θ̂1). (67)

Furthermore, γ satisfies (6), because U B(θ̂1) = 0 for all θ̂1 and the left hand side of (6) is non-

negative. Finally, (7) and (8) are void for γ, because ΘN
1
= Θ̂N

1
= Θ1.

It remains to show that γ and γ̂ are payoff-equivalent. But this follows, because the only

difference between the contracts is that the payments have been moved between periods, but the

sum of payments over the two periods is the same. qed

Proof of Lemma 2 Let γ = (x1, t1, x N
2

, tN
2

, x B
2
, tB

2
) be the contract induced by the backloaded

contract (x1, x2, t2). Hence, t1 = θ1 x1, x N
2
= x2 ,tN

2
= t2, x B

2
= tB

2
= 0. We have to show that γ is

feasible if and only if IC2 and IC1 hold. To see this, observe first that γ trivially satisfies (4) for

b = B because x B
2
= tB

2
= 0. Moreover, for any backloaded-induced contract γ, the constraint (4)

for b = N rewrites as IC2. Hence γ satisfies (4) if and only if it satisfies IC2.

We next show that constraint (5) is equivalent to IC1. Indeed, since t1(θ̂1) = θ̂1 x1(θ̂1) for all

θ̂1, we have

t1(θ̂1)− θ1 x1(θ̂1) ≥ 0 ⇔ (θ̂1 − θ1)x1(θ̂1) ≥ 0 ⇔ θ1 ≤ θ̂1. (68)

Hence, γ satisfies (5) if and only if for all θ1 ≤ θ̂1, we have t1(θ1)− θ1 x1(θ1) + U(θ1) ≥ t1(θ̂1)−
θ1x1(θ̂1) + U(θ̂1). But because t1(θ

′
1
) − θ ′

1
x1(θ

′
1
) = 0 for all θ ′

1
holds for any contract γ that is

induced by some backloaded contract, this is equivalent to IC1.

Moreover, γ always satisfies (6) because the right hand side of (6) is zero, and the left hand

side is non-negative. Finally, (7) and (8) are void for γ because ΘN
1
= Θ1. This completes the

proof. qed

Proof of Lemma 3 To simplify notation, we omit θ1 and suppress the time subindex. With stan-

dard screening arguments, we can write P2 as a maximization problem that maximizes the virtual
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surplus with respect to the allocation x(·) and the rent of the most inefficient type u(θ̄ ) as follows:

P2 : Π(U)≡ max
x ,u(θ̄ )

∫ θ̄

θ

�

v − θ − F(θ )

f (θ )

�

x(θ ) dF(θ )− u(θ̄) s.t (69)

M : x(θ ) is decreasing in θ (70)

NB2 : u(θ̄) ≥ 0 (71)

PK : u(θ̄) +

∫ θ̄

θ

x(θ )
F(θ )

f (θ )
dF(θ ) = U (72)

That Π(U) attains a maximum ΠSB
2

at USB
2

is explained in the main text.

To see the further claims of the Lemma note that PK pins down u(θ̄ ), and by substituting out

u(θ̄) in the objective (70) and NB2, the problem simplifies to

P̂2 : Π(U)≡max
x

∫ θ̄

θ

(v − θ )x(θ ) dF(θ )− U s.t (73)

M : x(θ ) is decreasing in θ (74)

NB2 :

∫ θ̄

θ

x(θ )
F(θ )

f (θ )
dF(θ )≤ U (75)

To see that Π(0) = 0, note that (75) implies that the only way to supply U = 0 is to have x(θ ) = 0

for all θ , resulting in zero profits, hence: Π(0) = 0.

To see that Π is concave, let x ′ resp. x ′′ be solutions to P̂2 for U ′ resp. U ′′. Then the allocation

x̄ = αx ′ + (1 − α)x ′′ satisfies M and NB2 for U = αU ′ + (1 − α)U ′′. Moreover, x̄ yields profit

αΠ(U ′)+ (1−α)Π(U ′′). The solution to P̂2 for U = αU ′+ (1−α)U ′′ must therefore yield at least

Π̄. Thus, we have Π(αU ′ + (1−α)U ′′) ≥ αΠ(U ′) + (1−α)Π(U ′′), which establishes concavity of

Π.

To see that Π(SFB) = 0, note that, by definition, Π+ U ≤ SFB for any allocation x(·). Hence,

we have Π(SFB) ≤ 0. To show Π(SFB) = 0, it therefore suffices to show that, for U = SFB, the

first-best allocation x FB(θ ) = 1[θ ,min{v,θ̄}](θ ) satisfies (74) and (75) and yields 0 for the objective

(73). Indeed, x FB(θ ) clearly satisfies (74) and, together with U = SFB, yields 0 for the objective

(73). To see that the first-best allocation also satisfies (75) for U = SFB
∫ min{v,θ̄}
θ

v−θ dF(θ ), note
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that by integration by parts:

∫ θ̄

θ

x FB(θ )
F(θ )

f (θ )
dF(θ ) =

∫ min{v,θ̄}

θ

F(θ )

f (θ )
dF(θ ) (76)

= −(v − θ )F(θ )
�

�

�

min{v,θ̄}

θ
+

∫ min{v,θ̄}

θ

v − θ dF(θ ) ≤ SFB. (77)

qed

Proof of Lemma 4 That U is decreasing is immediate from IC . Since U is decreasing, U has a

derivative almost everywhere by Lebesque’s Theorem. Now suppose that U ′ exists at θ . Note that

for h> 0, we can write IC as U(θ − h)− U(θ )≥ hx(θ ). Thus,

U ′(θ ) = lim
h→0

U(θ )− U(θ − h)

h
≤ −x(θ ), (78)

as desired. qed

Proof of Lemma 5 Let ( x̃ , Ũ) ∈ Φ be such that it does not satisfy (i) or (ii). We construct an

improvement (x , U) ∈ Φ that satisfies (i) and (ii).

Suppose that v < θ̄ and ( x̃ , Ũ) violates (i). Consider first the case that Ũ(v) ≤ USB, and define

(x , U) as

x(θ ) =

(

x̃(θ ) i f θ ≤ v

0 i f θ > v
, U(θ ) =

(

Ũ(θ ) i f θ ≤ v

Ũ(v) i f θ > v.
(79)

Clearly, (x , U) ∈ Φ and satisfies (i). We next argue that (x , U) is a (weak) improvement over

( x̃ , Ũ) by showing that

∫ θ̄

θ

(v − θ )x(θ ) dF(θ ) ≥
∫ θ̄

θ

(v − θ ) x̃(θ ) dF(θ ), and (80)

∫ θ̄

θ

Π(U(θ )) dF(θ )≥
∫ θ̄

θ

Π(Ũ(θ )) dF(θ ). (81)

Inequality (80) is immediate from the definition of x . To see (81), note that because U is de-

creasing and U(v) ≤ USB by assumption, it follows by construction that for all θ > v, we have

USB ≥ U(θ ) ≥ Ũ(θ ). Thus, because Π is concave and uniquely maximized at USB by Lemma 3,

this implies that Π(U(θ ))≥ Π(Ũ(θ )) for all θ > v. Since U(θ ) = Ũ(θ ) for all θ ≤ v, (81) follows.
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Next consider the case that Ũ(v)> USB. Define (x , U) as

x(θ ) =

(

x̃(θ ) i f θ ≤ v

0 i f θ > v
, U(θ ) =

(

Ũ(θ ) i f θ ≤ v

USB i f θ > v.
(82)

Clearly, (x , U) ∈ Φ and satisfies (i). It follows with similar arguments as in the previous paragraph

that (x , U) is a (weak) improvement over ( x̃ , Ũ).

Finally, suppose ( x̃ , Ũ) violates (ii). Define

τ= sup{θ | Ũ(θ ) ≥ USB}. (83)

Because U is decreasing, we have that

Ũ(θ )≥ USB for all θ < τ, and Ũ(θ ) < USB for all θ > τ. (84)

Define (x , U) as x(θ ) = x̃(θ ) for all θ , and

U(θ ) = USB −
∫ θ

τ

x(t) d t . (85)

Clearly, (x , U) ∈ Φ and satisfies (ii). To show that (x , U) yields a higher profit than ( x̃ , Ũ), observe

that because ( x̃ , Ũ) and (x , U) specify the same allocation x , it is sufficient to show that

Π(Ũ(θ ))≤ Π(U(θ )) for almost all θ . (86)

To see this, consider first the case that θ < τ. It is well-known that the derivative of a decreasing

function is (Lebesgue) integrable and that Ũ(θ )− Ũ(θ̃ ) ≥
∫ θ

θ̃
Ũ ′(t) d t for all θ , θ̃ . Hence, for all

ε > 0 with θ < τ− ε:

Ũ(θ ) ≥
∫ θ

τ−ε
Ũ ′(t) d t + Ũ(τ− ε) (87)

= −
∫ τ−ε

θ

Ũ ′(t) d t + Ũ(τ− ε) (88)

≥
∫ τ−ε

θ

x̃(t) d t + Ũ(τ− ε) (89)

= −
∫ θ

τ−ε
x(t) d t + Ũ(τ− ε), (90)
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where the second inequality follows from ICL, and the final equality from x = x̃ Because the

inequality holds for all ε > 0 and since Ũ(τ− ε) ≥ USB by (84), we can infer that

Ũ(θ ) ≥ −
∫ θ

τ

x(t) d t + USB = U(θ ). (91)

Moreover, since θ < τ, we have U(θ ) ≥ USB, and accordingly, Ũ(θ ) ≥ U(θ ) ≥ USB. Because Π is

concave and uniquely maximized at USB by Lemma 3, these inequalities imply (86) for θ < τ. A

symmetrical argument works to show (86) for θ > τ, and this completes the proof. qed

Proof of Proposition 1 To avoid case distinctions, we only consider the case v < θ̄ .20 By Lemma

5, it is sufficient to prove the statement for ( x̃ , Ũ) ∈ Φ which satisfies properties (i) and (ii) from

Lemma 5. Consequently, we have:

(i’) Ũ(θ ) = Ũ(v) for all θ ≥ v.

We first construct a contract ( x̂ , Û) which is not necessarily in Λ that delivers a (weakly) more

profit than ( x̃ , Ũ). In a second step, we then construct (x , U)which is in Λ that delivers a (weakly)

higher profit than ( x̂ , Û).

As to the first step, define for α ∈ [Ũ(v), Ũ(θ )] the two functions

Ûα(θ ) =











Ũ(θ )− (θ − θ ) i f θ ∈ [θ , θ̂]

α i f θ ∈ (θ̂ , v)

Ũ(θ ) i f θ ∈ [v, θ̄]

, ∆(α)≡
∫ θ̄

θ

Ûα(θ )− Ũ(θ ) dF(θ ),

where θ̂ ≡ θ + Ũ(θ)−α ∈ [θ , v].

In words, Ûα starts at Ũ(θ ), then decreases with slope−1 until it attains the value α at the point

θ̂ , then stays constant equal to α until it reaches the point θ = v, at which it jumps downwards

to Ũ(v) and stays constant from then on (since it coincides with Ũ which is constant on [v, θ̄] by

(i’) above)

Next, we show that there is α̂ ∈ [Ũ(v), Ũ(θ)] so that

∫ θ̄

θ

Ûα̂(θ ) dF(θ ) =

∫ θ̄

θ

Ũ(θ ) dF(θ ). (92)

Indeed, by construction, for α = Ũ(θ ), we have Ûα(θ )− Ũ(θ ) ≥ 0 for all θ , and for α= Ũ(v), we

20The other case, in which θ̄ ≤ v, can be shown with identical arguments, and is actually simpler because step 2

of the proof as presented here is not needed to establish the result.
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have Ûα(θ )− Ũ(θ ) ≤ 0 for all θ . It follows that ∆(Ũ(θ)) ≥ 0 and ∆(Ũ(v))≤ 0. Because ∆(α) is

continuous on α ∈ [Ũ(v), Ũ(θ )], the intermediate value theorem applies, implying (92).

Moreover, because Ûα̂ and Ũ coincide on [v, θ̄] by construction, the previous equality can

equivalently be written as

∫ v

θ

Ûα̂(θ ) dF(θ ) =

∫ v

θ

Ũ(θ ) dF(θ ). (93)

From now on, denote Ûα̂ simply by Û . Moreover, let

x̂(θ ) =

(

1 i f θ ∈ [θ , θ̂ ]

0 i f θ > θ̂ .
(94)

We now show that ( x̂ , Û) yields a (weakly) higher profit than ( x̃ , Ũ). This is trivially the case

for α̂ = Ũ(v), where we have ( x̂ , Û) = ( x̃ , Ũ). Hence, suppose α̂ > Ũ(v). In this case, we

have Û(v) > Ũ(v). Therefore, because Û(θ) = Ũ(θ), Ũ ′(θ ) ≥ Û ′(θ ) = −1 for θ ∈ [θ , θ̂] and

Ũ ′(θ )≤ Û ′(θ ) = 0 for θ ∈ [θ̂ , v], there is a θ̃ ∈ [θ , v] so that

Û(θ )− Ũ(θ ) ≤ 0 ∀θ ≤ θ̃ and Û(θ )− Ũ(θ ) ≥ 0 ∀θ ≥ θ̃ . (95)

Using the facts that Û ′ = − x̂ and Ũ ′ = − x̃ , and x̂(θ ) = x̃(θ ) = 0 for all θ > v, we can write

the difference in the principal’s profits from ( x̂ , Û) and ( x̃ , Ũ) as

W ( x̂ , Û)−W ( x̃ , Ũ) =

∫ θ̄

θ

(v − θ )[ x̂(θ )− x̃(θ )] +Π(Û(θ ))−Π(Ũ(θ )) dF(θ )

=

∫ v

θ

(v − θ )[ x̂(θ )− x̃(θ )] dF(θ ) +

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ )

=

∫ v

θ

(v − θ )[Ũ ′(θ )− Û ′(θ )] dF(θ ) +

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ).
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Integrating the first integral by parts delivers

W ( x̂ , Û)−W ( x̃ , Ũ) = (v − θ ) f (θ )[Ũ(θ )− Û(θ )]

�

�

�

v

θ
(96)

−
∫ v

θ

[(v − θ ) f ′(θ )

f (θ )
− 1][Ũ(θ )− Û(θ )] dF(θ ) (97)

+

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ). (98)

We now argue that this expression is positive. Observe first that by construction, Û(θ ) = Ũ(θ),

and thus the right hand side of (96) is equal to zero. Moreover, by (93), expression (97) can

firstly be written as

−
∫ v

θ

[(v − θ ) f ′(θ )

f (θ )
][Ũ(θ )− Û(θ )] dF(θ ) = Y, (99)

and we can secondly add
∫ v

θ
[(v − θ̃ ) f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ) = 0, with θ̃ defined in (95), to

obtain:

Y = −
∫ v

θ

[(v − θ ) f ′(θ )

f (θ )
− (v − θ̃ ) f ′(θ̃ )

f (θ̃)
][Ũ(θ )− Û(θ )] dF(θ ) (100)

= −
∫ θ̃

θ

[(v − θ ) f ′(θ )

f (θ )
− (v − θ̃ ) f ′(θ̃ )

f (θ̃ )
][Ũ(θ )− Û(θ )] dF(θ ) (101)

−
∫ v

θ̃

[(v − θ ) f ′(θ )

f (θ )
− (v − θ̃ ) f ′(θ̃ )

f (θ̃)
][Ũ(θ )− Û(θ )] dF(θ ). (102)

Now, the assumption that (v−θ ) f ′(θ )
f (θ )

is increasing implies that the first bracket under the integral

(101) is negative for all θ ∈ [θ , θ̃], and (95) implies that the second bracket under the integral

(101) is positive for all θ ∈ [θ , θ̃], so that, overall (101) is positive. Analogously, (102) is positive.

Finally, to see that (98) is positive, define for an arbitrary decreasing function U , the cdf F U

as the push-forward measure, that is, the utility distribution induced by U , given by

F U(u) = Prob({θ | U(θ )≤ u}). (103)

By (92) and (95), F Ũ is a mean preserving spread of F Û . Thus, because Π is concave by Lemma
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3, we have

∫ θ̄

θ

Π(Û(θ ))−Π(Ũ(θ )) dF(θ ) =

∫ θ̄

θ

Π(u) dF Û(u)−
∫

Π(u) dF Ũ(u)≥ 0. (104)

This completes the first step of the proof.

As to the second step, let ( x̂ , Û) from the first step be given. We construct (x , U) ∈ Λ which

delivers a (weakly) more profit than ( x̂ , Û). Indeed, let (x , U) be a cutoff-contract with cutoff

θ0 = θ̂ and an intercept U0 ∈ [Û(v) + θ̂ − θ , Û(θ )] such that21

∫ θ̄

θ

U(θ ) dF(θ ) =

∫ θ̄

θ

Û(θ ) dF(θ ). (105)

This also implies that

U(θ )− Û(θ )≤ 0 ∀θ ≤ v and U(θ )− Û(θ ) ≥ 0 ∀θ ≥ v. (106)

Because θ0 = θ̂ implies x = x̂ , the difference in the principal’s profit from (x , U) and ( x̂ , Û) can

be written as

W (x , U)−W ( x̂ , Û) =

∫ θ̄

θ

(v − θ )[x(θ )− x̂(θ )] +Π(U(θ ))−Π(Û(θ )) dF(θ ) (107)

=

∫ θ̄

θ

Π(U(θ ))−Π(Û(θ )) dF(θ ). (108)

Similarly to the argument at the end of the first step, (105) and (106) imply that F Û is a mean

preserving spread of F U , and hence (108) is positive, and this completes the proof. qed

Proof of Proposition 2 Note first if there is a solution (x , U) ∈ Λ to the relaxed problem R, then

because (x , U) ∈ Λ is obviously feasible for the original problem P, it is also a solution to P.

It remains to show existence of a solution (x , U) ∈ Λ to R. For this recall that a cutoff contract

is characterized by cutoffs θ0 ∈ [θ , θ̄] and U0 ≥ θ0− θ . We first show the auxiliary claim that for

any ( x̃ , Ũ) ∈ Λ there is a (x , U) ∈ Λ which yields a (weakly) higher profit than ( x̃ , Ũ) and has the

21Given θ0 = θ̂ , the cutoff U0 exists by the intermediate value theorem, because the integral on the left hand side

of (105) is strictly larger than the right hand side for U0 = Û(θ ), strictly lower for U0 = Û(v) + θ̂ − θ , and changes

continuously in U0.
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property that

U0 ≤ USB + (θ̄ − θ ). (109)

Indeed, consider a ( x̃ , Ũ)with cutoffs (θ̃0, Ũ0) that violates (109). Since ( x̃ , Ũ) is a cutoff contract,

this implies that Ũ(θ )> USB for all θ . Define (x , U) ∈ Λ with cutoffs

θ0 = θ̃0, U0 = Ũ0 − (Ũ(θ̄ )− USB). (110)

By construction, we have that USB ≤ U(θ ) ≤ Ũ(θ ) for all θ . Thus, because Π is concave and

uniquely maximized at USB by Lemma 3, this implies that Π(U(θ )) ≥ Π(Ũ(θ )) for all θ . There-

fore, and since x = x̃ , we obtain the profit

W (x , U) =

∫

(v − θ ) x̃(θ ) +Π(U(θ )) dF(θ ) ≥
∫

(v − θ ) x̃(θ ) +Π(Ũ(θ )) dF(θ ) =W ( x̃ , Ũ),(111)

and this proves the auxiliary claim.

Now, let Λ̄ be the set of cutoff contracts that satisfy (109). That is, (x , U) ∈ Λ̄ if we can express

(x , U) as a cutoff contract with cutoff θ0 ∈ [θ , θ̄] and intercept U0 ∈ [θ0 − θ , USB + (θ̄ − θ )].
The auxiliary claim and Proposition 1 then imply that there is a solution (x , U) ∈ Λ to R if

there is a solution to the problem

Q : max
(x ,U)

W (x , U) s.t . (x , U) ∈ Λ̄. (112)

Because the profit W (x , U) of a cutoff contract is pinned down by (θ0, U0), problem Q boils down

to the problem of choosing a two-dimensional variable (θ0, U0) from the compact set [θ , θ̄]×[θ0−
θ , USB + (θ̄ − θ )]. Because profit is continuous in (θ0, U0), there is a solution to Q. Therefore,

there is a solution (x , U) ∈ Λ to R, and this completes the proof. qed
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