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Abstract

We consider a dynamic screening model where the agent may go bankrupt due to, for
example, cash constraints. We model bankruptcy as a verifiable event that occurs whenever
the agent makes a per period loss. This leads to less stringent truth-telling constraints than
those considered in the existing literature. We show that the weaker constraints do not af-
fect optimal contracting in private values settings but may do so with interdependent values.
Moreover, we develop a novel method to study private values settings with continuous types
and identify a new regularity condition that ensures that the optimal contract is deterministic.
Keywords: Dynamic Screening, Bankruptcy, Verifiability, Mean Preserving Spread

JEL: D82, H57

1 Introduction

A recent literature studies bankruptcy constraints in dynamic screening models where a procurer
(the principal) procures goods or services over multiple periods from a supplier (the agent) whose
costs evolve dynamically over time and are the supplier’s private information (e.g. Krishna et al.,
2010, Mirrokni et al., 2020, Krasikov and Lamba, 2021, Ashlagi et al., 2022). These bankruptcy
constraints capture the fact that, in practice, suppliers are frequently unable to sustain short-
term losses during the relationship, for example due to cash or credit constraints. The classical

literature on dynamic screening/mechanism design (e.g., Baron and Besanko, 1984, Battaglini,
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2005, Pavan et al., 2014, Eso and Szentes, 2017) neglects such concerns, effectively assuming
that agents can sustain arbitrary losses after having accepted a contract.

We make two contributions to this literature. First, we explicitly impose cash constraints both
on and off the equilibrium path. We do so by providing a more complete micro foundation of the
contractual feasibility constraints, modeling bankruptcy as a verifiable event that occurs whenever
the agent obtains a negative per-period utility.! In particular, bankruptcy may occur also off the
equilibrium path. This differs from the approach of the existing literature, which focusses on direct
revelation mechanisms and imposes cash constraints on but not off the equilibrium path. We
argue that our micro foundation yields feasibility constraints that are weaker than those posited
by the existing literature.” A key insight of our analysis is that whether these weaker constraints
affect optimal contracting depends on whether the parties have private or interdependent values.
We show that in private values environments, where the principal’s and the agent’s valuation are
independent, optimal contracting is not affected. To the extent that the existing literature on
dynamic screening models with cash constraints considers private values, our analysis therefore
validates the results of the literature. By contrast, we show with an explicit example that this may
no longer be true with interdependent values. Hence, imposing bankruptcy constraints only on
the equilibrium path is with loss in general.

Second, we extend the existing literature’s analysis of bankruptcy with two agent types and
private values to settings with continuous types. This extension is not straightforward, because
with cash constraints the principal’s ex ante payoff is a non-linear and non-monotone function
of the agent’s (future) information rents. Hence, contrary to dynamic screening without cash
constraints, the problem cannot be reduced to maximizing a virtual surplus representation where
allocations are additively separable by type, and is consequently difficult to solve when there are
more than two types. To analyze the problem with more than two types, we therefore develop a
novel solution method to identify an optimal contract.

The basic idea behind this method is based on the observation that every dynamic contract

induces a continuation value for the agent which, from the principal’s perspective, is a random

!The verifiability of bankruptcy reflects existing institutional rules, since bankruptcy is a legal process formally
verified and declared by the court system. For instance, bankruptcy is enshrined by the US Constitution in Article 1,
Section 8, Clause 4, and in the case of business debtors further specified in its Bankruptcy Code under Chapter 11.
In the UK, the first statute of law dealing with bankruptcy is the Statute of Bankrupts dating back to 1542.

2Effectively, our micro foundation implies that an optimal contract has to satisfy only one-sided incentive con-
straints. Hence, our study of dynamic setting with bankruptcy constraints links to the literature that considers static
settings in which such one-sided incentive constraints exist for exogenous reasons (e.g., Moore, 1984, and Celik,
2006). In line with our finding, this literature shows that, in static settings, these weaker incentive constraints do
not give rise to different predictions in settings with private values or, more generally, when the aggregate surplus is
monotone in the allocation.



variable, as it depends on the agent’s privately known type. A standard argument from dynamic
programming implies that the principal’s continuation profit is concave in the agent’s continuation
value. This observation allows us to rank contracts in terms of second order stochastic dominance
of the induced continuation value. As a result, we can identify an optimal contract as a contract
that, among the set of feasible contracts, displays minimal dispersion in the second order sense.
We show that, under a regularity condition, an optimal contract has a simple, deterministic cutoff
structure where cost types below a cutoff produce the good and types above the cutoff do not. The
regularity condition differs from the more familiar monotone virtual surplus kind of conditions,
and also appears in the (static) multi-dimensional screening literature (e.g. Manelli and Vincent
(2006)). The connection is that, as in this literature, we write the principal’s optimization problem
in terms of the agent’s (continuation) value rather than the allocation rule.

Finally, we point out that cash constraints conceptually differ from withdrawal rights in the
context of sequential screening problems with a single trading period (e.g. Krahmer and Strausz,
2015, Bergemann et al., 2020). This is so because with a withdrawal right the agent can volun-
tarily decide whether to sustain a loss ex post or not. Indeed, in contrast to verifiable bankruptcy,
voluntary participation leads, if anything, to stricter incentive constraints, as it weakly increases

an agent’s utility from a misreport.>

2 The model

A principal (the buyer, she) and an agent (the seller, he) interact over two periods T = 1,2.%
In each period, the principal seeks to procure one good from the agent. In period 7, the terms
of trade are the probability of trade x_ and a transfer t_ from the principal to the agent.> The
principal’s valuation for the good is v, > 0, and the agent’s cost to produce the good is 6,.. While
v, is commonly known, 6_, the agent’s cost type in period T, is privately known to the agent in
period 7, and it is commonly known that 6, is distributed with cdf F, with support ©, =[0 , 6.]
and differentiable pdf f.. We assume that 6, and 6, are stochastically independent.

The parties have time-separable quasi-linear utilities. That is, under the terms of trade x_, t.

the principal’s utility in period 7 is v.x. —t., and the agent’s utility is t . — 6 _x .. A party’s overall

30n this point see also Compte and Jehiel (2009) who show that in mechanism design settings with ex post veto
rights the potential to punish agents for misreports is limited because they can quit the mechanism ex post.

“In section 5, we show that our analysis extends to a setting with infinitely many periods.

5As is standard, we interpret t . as the expected payment t(1—x,)+tMx_, where t©® (resp. V) is the payment
when trade does not (resp. does) occur. Alternatively, for a divisible good, we may interpret x, as the share of the
good traded.



utility is the sum over the per-period utilities.

The novelty of our paper is to consider a situation in which the event that the agent makes a
loss is verifiable. That is, if the agent were to make losses in period T under the prevailing terms
of trade, the agent would go bankrupt and this is publicly verifiable. In this case, both parties
receive their reservation utility of zero.

The timing is as follows:

1. At the outset, the principal commits to a long-term contract which specifies the terms of
trade over the two periods. If the agent rejects the contract, both parties receive their

reservation utility of 0 and the game ends.

2. If the agent accepts, then in period 1, he privately learns 6,. If t; — 6,x; = 0, the terms of
trade x4, t; are implemented. If t; — 6,x; < 0, bankruptcy occurs and both parties receive
0.57

3. In period 2, the agent privately learns 6,. If t, — 6,x, = 0, the terms of trade x,, t, are

implemented. If t, — 6,x, < 0, bankruptcy occurs and both parties receive O.

Example: To illustrate our analysis, we use the uniform example, where 0, and 6, are both uni-
formly distributed over the interval [0,1], and v; = v, = 0 = 1. For this example, trade is efficient
for all types and the per-period first-best surplus equals S** = SI# = §¥% = f 01 1—6d6 =1/2,
yielding an aggregate surplus of St* +S7” = 1. In the static second best, the optimal mechanism
is a posted price of 1/2, yielding the principal a per-period profit of IT1°. = (1—1/2)x1/2=1/4
01/2 1/2—06 d6 = 1/8. Implementing
a posted price of 1/2 for each of the two periods, yields an overall profit of 2IT°2 = 1/2 to the

and the agent a per-period second best utility of USE =

principal and an overall utility of 2U? = 1/4 to the agent, resulting in aggregate surplus of 3/4.

In the benchmark case in which there is an interim participation constraint in period 1 but
no bankruptcy constraint, the optimal mechanism implements a posted price of p = 1/2 for the
first period, and extracts the whole surplus in the second period. This yields an overall profit
of I1°8 + S¥8 = 3/4 to the principal, an overall utility of US® = 1/8 to the agent, resulting in

aggregate surplus of 7/8. O

®Related to footnote 5, if x; € (0,1), bankruptcy occurs if {2 < 0 and the mechanism does not prescribe trade,
and if t() — 6, < 0 and the mechanism does prescribe trade.

"We neglect any negative externalities of bankruptcy on third parties, such as workers or subcontractors whose
labor or bills remain unpaid, because, per definition, such externalities are external to the contracting parties.



3 The principal’s problem

The principal’s objective is to design a contract to maximize her profits. Because the principal has
full commitment, the revelation principle applies, implying that an optimal contract is in the class
of direct mechanisms where, on the equilibrium path, the agent reports his type truthfully in every
period (Myerson, 1986). Moreover, because bankruptcy in period 1 is verifiable, a mechanism can

condition the terms of trade in period 2 on whether bankruptcy has occurred in period 1 or not.

Without loss, we can therefore restrict attention to contracts of the form (x, t,,x), t}, x2, t2),
where
(x13 tl) : [Qla 9_1] - [O) ]-] X R; (Xg, tg) : [Qla 9_1] X [QZJ 0_2] - [O, ]-] X R: (]-)

where b € {B,N} indicates whether bankruptcy has (b = B) or has not (b = N) occurred in
period 1.
To state the incentive compatibility constraints, we denote for b € {N, B} the agent’s expected

period 2 utility from a report 6,, conditional on truthfully reporting in period 2, by

0
Ub(é1) = J max{0, t;’(él, 0,) — 92X§(é1, 0,)} dF,(6,). (2)
6

=2

Moreover, let
@11\[ = {6, | t1(6;) — 6, x,(6;) = 0} (3)
be the set of period 1 types where bankruptcy does not occur in period 1 under a given mechanism.

Definition 1 A contract (x,, t,, x5y, t), x5, t2) is feasible if:

(i) It is incentive compatible in period 2, that is, for b € {N,B}:®
max{0, t2(6;, 0,) — 0,x5(6;, 6,)} > max{0, t2(6;, 8,) — 6,x2(6,,0,)} V¥6,,6,,0,. 4

(ii) It is incentive compatible in period 1, that is:

8The revelation principle for dynamic games requires truthful reporting in period 2 only after a truthful report in
period 1 (see Myerson, 1986). In our context, where types are independent, the support of period 2 types is “non-
shifting”, that is, is independent of the period 1 type. It then follows with standard arguments that if truth-telling in
period 2 is optimal for the agent after telling the truth in period 1, then it is so after any report in period 1.



o For all 6, € ©Y, we have:

tl(el) - lel(el) + UN(GI) > tl(él)_ Glxl(él) + UN(él) Vél . tl(él) - lel(él) >0, (5)
£,(0)) — 6,x,(6) +UN(6) = UP(H) Vo :t,(8)—6,x,(6)) <0, (6)

o For all 6, ¢ ©Y, we have:

UB(0,) = t,(0,)—6,x,(6,)+UN(0,) V6, :t,(6,)—0,x,(6,)=>0, (7)
Us(6,) = UB() VO, :t,(6)—0,x,(6)) <o. (8)

Part (i) of the definition captures the truth-telling constraints for the agent in period 2, taking
into account that bankruptcy in period 2 occurs whenever the terms of trade would impose a loss
on the agent. Similarly, part (ii) describes the truth-telling constraints for the agent in period
1. This requires a distinction between four cases, depending on whether truth-telling does or
does not induce bankruptcy in period 1 and whether deviating from truth-telling does or does not
induce bankruptcy in period 1.

The principal’s problem is thus to select a feasible contract that maximizes her profits
J |:V1x1(91)_t1(91)+J szév(el,@z)—tév(@b 6-) sz(ez)]dF1(91) ©))
ey €, (61)
+J |:0 + J sz§(91, 0,) — t§(91, 6,) sz(Qz):| dF,(6,), (10)
o\e 0, (61)
where
0;"°(6,) = {6, € ©, | t2(6,,6,) — 6,x3(6;,6,) = 0} (€RY)

denotes the set of period 2 types 0, for whom bankruptcy does not occur in period 2 given the
period 1 type 6, and given that bankruptcy has not (b = N) or has (b = B) occurred in period 1.
To solve the principal’s problem, we first show that it is without loss to focus on contracts
under which bankruptcy never occurs on the equilibrium path where the agent tells the truth.
The intuition is simply that the bankruptcy outcome is equivalent to not trading the good (x =
0) and making no payments (t = 0). Thus, the outcome of a mechanism y in which bankruptcy
occurs on the equilibrium path can be replicated by the mechanism which differs from y only in

that it specifies no trade and zero payments (and hence no bankruptcy) in case bankruptcy would



occur under ¥y.

Second, it is without loss to focus on mechanisms in which the agent exactly breaks even in the
first period, and backloads any potential profit for the agent in that it accrues only in the second
period.” The reason is that if the agent were to make a profit in the first period, the principal
could deduct it from the agent’s first period 1 payments and pay it out in period 2 instead. This
would not affect the principal’s profit and would maintain truth-telling incentives for which only
total payments matter.

We summarize these considerations in the next lemma.

Lemma 1 For any feasible contract there 1is a payoff-equivalent feasible contract

N

(1, t1,x), t), x2, t2) with the following properties:

e The agent exactly breaks even, and there is no bankruptcy in period 1 (on path):
t1(6,) —0,x,(6;) =0 forall 0,. (12)
e There is no bankruptcy in period 2 (on path):
ty (61, 0,) — 0,x)(61,6,) >0 forall 6,,06,. (13)
o After the off-path event that there is bankruptcy in period 1, the relationship is terminated:
x5(0y,0,) =1t2(6,,0,) =0 fordll 6;,0,. (14

Lemma 1 implies that we can find an optimal contract in the class of feasible contracts that
satisfy (12)-(14). Since properties (12) and (14) pin down tq, xB and tB we are actually left to

determine only the triple (x, x}, t)). We therefore introduce the following definition.

Definition 2 A triple (x,x,,t,) : [0, 6,1 —[0,1]% x R is called a backloaded contract if

NB, : t5(61,6,) —0,x5(6,,6,) =0 V6,,6,. (15)
A backloaded contract uniquely induces a contract (x,, t;, x;, tlz\’ ) Xy, 2) with the properties
(12)-(14) by setting t; = 6,x;, x) = x,, t) = t,, and xJ = tJ = 0. For a backloaded contract, we

This argument also appears in Ashlagi et al. (2022).



write

6
U(6,) :J t5(61, 0,) — 0,x,(6;, 0,) dF,(6,) (16)
9,
for the agent’s expected period 2 utility. The next lemma characterizes when a backloaded con-

tract is feasible.

Lemma 2 A backloaded contract (x;, X,, t,) induces a feasible contract (x,,ty,xY, tN xB tB) if and

2272272272
only if

ICy: t5(61,0,) — 0,x,(6,,0,) > t,(6,, éz)—92x2(91, éz) V0,,0,, éz 17)
IC, : U(6,) = (6, —6,)x,(6,)+U(6,) V6, <6, (18)

Constraint I C, corresponds to the period 2 truth-telling constraints (4). The more interesting
constraint is IC; which corresponds to the period 1 truth-telling constraints.°

The novelty is that IC; only requires that the agent does not report a higher type than his true
type, but not that he does not report a lower type. The reason for this asymmetry is that if the agent
reported lower costs in the first period, then, because any cost type breaks even in period 1, the
agent would go bankrupt after such a lie. But, bankruptcy does not occur on path and is verifiable.
Consequently, such a lie would be detected, and under a backloaded mechanism, the relationship
would be terminated. This prospect is enough to dissuade the agent from understating his costs,
and extra incentives are not needed to induce truth-telling.

We can now re-state the principal’s problem as selecting an optimal backloaded contract.
Under a backloaded contract, the principal’s period 1 profit equals v,x,(6;) — 6,x,(6,) for all
0,, because the agent breaks even in period 1. Moreover, her profit in period 2 is equal to
VyX5(04,60,) — t,(6,,60,) for all (6,,6,), because no bankruptcy occurs in period 2. Thus, the

principal’s problem is

0, b,
p: max J J v1x1(61) — 01x1(6;) + v,x5(6;, 0,) — t5(6;, 05) dF,(6,) dFy(6;)
0, Jb,

X1,X2,to

s.t. IC,,NB,,IC,,

where IC, and I C, are the feasibility constraints, and N B, ensures that the contract is a backloaded

10Ty see that IC; replaces the period 1 truth-telling constraints (5)-(8) note that because under a backloaded
contract there is no bankruptcy in period 1 for any 6, constraints (6), (7) and (8) are all redundant, and the only
relevant constraint is (5), which now has to hold for all 6,, leading to IC;.

8



contract

Intuitively, for given 6,, the principal faces the standard (intra-temporal) rent-efficiency trade-
off in period 2, because she has to grant low cost types an information rent for truth-telling due to
the presence of the no-bankruptcy constraint NB,. Moreover, because a backloaded contract uses
the expected period 2 information rent for incentivizing low cost types in period 1 to reveal the
truth, the principal also faces an inter-temporal trade-off between maximizing profits in period 1
and 2.

Before solving problem P, we note that the no-bankruptcy constraint NB, is formally equiv-
alent to a period 2 participation constraint. Hence, problem P is equivalent to a two-period
dynamic mechanism design problem with ex post participation constraints, but with the novelty
that the first period incentive constraints are asymmetric in that they only require higher types

not to mimic lower types.

4 Solution to the principal’s problem

We solve the principal’s problem by the well-known technique in dynamic programming to reduce
the dynamic problem P to a sequence of static problems (Spear and Srivastava, 1987, Thomas
and Worrall, 1990). Consequently, we proceed in two steps. In the first step, we solve for optimal

UtU

period 2 terms of trade (x,, t,

) that promise the agent a certain exogenously given expected
period 2 utility U. In the second step, we then solve for an optimal period 1 allocation x; and an
optimal continuation value U taking as given optimal period 2 terms of trade (xJ, tJ) from step

1 that supply the agent with U.

Step 1: Optimal period 2 terms of trade

Note first that the principal can promise any positive utility U > 0. Indeed, by NB,, the principal
cannot promise a negative utility while she can offer any utility U > 0 by, for example, offering

the terms of trade (x,, t,) = (0,U). Thus, the set of feasible promised utilities is {U | U > 0}.



For a given report 60, the principal’s problem to optimally promise U > 0 is

0,
p,: II(U)= max J VX5 (01, 0,) — t5(0,,60,) dF,(0,) s.t (19)

2542 Qz
IC,: t5(6;, 0,) — 0,x5(0;, 0,) = t,(0;, éz) — 0,x,(6, éz) Vo,, éz (20)
NB,: t,(0:,0,) —0,x,(0,,0,) >0 V0, (21)

0,
PK: J t5(61, 05) — 0,x5(6;, 0,) dF,(60,) = U. (22)
2]

=2

While the constraints IC, and NB, carry over from problem P, the constraint PK ensures that the
agent receives his promised utility U.

Problem P, corresponds to a static monopoly problem where the agent has an interim outside
option of O after learning 6, (as reflected by NB,), and an ex-ante outside option of U before
learning 6, (as reflected by PK). The solution is well-known from Samuelson (1984); for details
see our Remark 1 below. We state the features that will be key for our purposes in the next lemma.
In order to avoid uninteresting case distinctions, we impose the following mild condition.!!

SB tSB

Assumption 1: The second best solution (x;°, t;

) to the relaxed version of P, where PK is
missing is unique.
Given Assumption 1, the utilities in the second best solution for both the principal and the

agent are unique and we denote them, respectively, by II3* and US®. Moreover, we denote the

surplus associated with the period 2 first-best allocation x}°(8y, 0,) = 1jg_min(v,.6,1(62) by

min{vy,0,}
SiP = J v, — 0, dF,. 24)
2]

Clearly, Us® € (0,53").

Lemma 3 The value of problem P, as a function of U, TI(U), is concave in U with T1(0) = H(SgB) =0

and attains a unique maximum IL° at Us®, that is, TI(US?) = I1°.

11t is well-known (e.g. Riley and Zeckhauser, 1983) that in the absence of PK, the solution to P, can be imple-
mented by a posted price p given by

p
F,(6,)
€ arg max Vo — 0y — dF,(6,). (23)
p g £ LZ 2 2 7,(6,) 2(65)

Notice that the right hand side is generically a singleton in the sense that whenever it is not a singleton, a slight

perturbation of ?ﬁggji would remove all but one solution. Hence, Assumption 1 is mild in that it holds generically.

12Given a set A, the indicator function 1,(a) is 1 if a € A and 0 otherwise.

10



The concavity of the value follows from a standard mixing argument. Specifically, given two
promises U’ and U”, the principal can promise the agent the convex mixture U = aU’+(1—a)U”
by appropriately randomizing between the optimal terms of trade for U’ and U”. This would yield
the principal a profit all(U,) + (1 — a)II(U,), but by re-optimizing, the principal can promise U
at a higher profit, implying that IT is concave.

To see why I1(0) = 0, note that IC, and NB, imply that the only way to provide the agent with
expected utility U = 0 is through no trade (x, = t, = 0), resulting in zero profits for the principal.
To see that H(SgB) = 0, observe that the principal’s profit II is the total surplus generated minus
the utility U supplied to the agent. Hence, if the principal promises the entire first-best surplus
to the agent, U = 553 , she cannot make a strictly positive profit. But she can at least guarantee
herself zero profits by selecting terms of trade that generate the first-best surplus. Therefore,
I1(S5P) = 0. Finally, that the principal’s profit is uniquely maximized at U follows directly from

the definition of the second best and Assumption 1.

Remark 1 (Period 2 implementation) We briefly discuss how the period 2 contract can be imple-
mented. If the principal promises more than the second best surplus, U > S1”, then it follows from
the proof of Lemma 3 that the optimal contract displays the first-best allocation x;°(6,, 6,). The
intuition is that when guaranteeing the agent a utility exceeding the first-best level Sg B the prin-
cipal does not face the standard rent-efficiency trade-off anymore. Now, if the principal promises
exactly U = S5”, this can be indirectly implemented by an offer from the principal to procure the
good at a price of v,. If the principal promises strictly more, U > Sg B then an optimal contract
can be indirectly implemented by a two-part tariff. In particular, the principal makes an uncondi-
tional payment U —S;” and offers to procure the good at a price of v,. This two-part tariff yields
her an expected profit II(U) = SJ* — U.

If, on the other hand, U < 553, it follows from Samuelson (1984) that an optimal trading

probability is of the form

1 if 6,€[0,6,]
x(00,0) =1 & if 0,€(050) (25)

0 else

for some & € [0,1], 8 < 6, < 0, < v, which all depend on U. If & = 0, the optimal contract
can be implemented by an offer from the principal to procure the good at price 6,. If £ > 0, the

optimal contract can be implemented by a menu of three options for the agent: to not produce

11



the good at a price of 0; to produce a “fraction” & of the good for a price of £6;,'* or to produce
the good at price 0.

Whether & is strictly positive or not, depends on the distribution F, and on the size of U. For
the special case that the hazard rate F,/f, is increasing, we have that £ = 0 for all U so that the

optimal contract can be implemented with a posted price.

Example: For our uniform example, the hazard rate F,(0,)/f,(0,) = 6, is increasing so that, as
noted in Remark 1, a posted price in period 2 is optimal. In particular, , for U € [0, 553 1=1[0,1/2],
the optimal contract for U € [0, Sg B1=10,1/2] corresponds to a posted price p, which maximizes
p,(v—p,) subject to the promise keeping constraint f é’ *p,—6 dO = U. This constraint simplifies
to p2/2 = U and therefore pins down p,(U) = v2U. The resulting profit is [I(U) = p,(v — p,) =
Vv2U(1—+/2U) = v/2U —2U. Moreover, for U > 1/2, we have I1(U) = 1/2 — U. Taken together,

we thus have:

n(u):{ V2U—2U if U<1/2; o6

1/2—U if U>1/2.

Note that IT(U) is not only continuous but also differentiable at U = 1/2.

Step 2: Optimal period 1 terms of trade

Step 1 allow us to re-write the principal’s problem P as a static maximization problem over the
period 1 terms of trade x; and the agent’s promised utility U. More specifically, any combination
(x,(6,),U(6,)) with U(6,) = 0 corresponds to a backloaded contract (x,(6;), x,(6;,-), t,(6;,+))
where (x,(6;,), t,(0;,+)) is the solution to P, with U = U(6,). We refer to (x,,U) as a reduced
backloaded contract (and simply as backloaded contract if there is no risk of confusion). Clearly;,
only contracts corresponding to reduced backloaded contracts can be optimal.

Recall that under a backloaded contract, the agent breaks even in period 1, that is, t;(6,) =
0,x,(6,). Consequently, the principal receives the profit v;x;(6;) — 6;x,(6;) in period 1 and the

profit II(U(6,)) in period 2. Suppressing the time index for period 1, we can therefore rewrite

13For an indivisible good the contract randomizes between trade and no trade and the agent is payed 6, if trade is
the outcome.

12



the principal’s problem as

P': max J:[v— 01x(6) +TI(U(0)) dF(6) s.t (27)
IR: U)=0 V6 (28)
IC : U)=>(6—-0)x(6)+uU(d) vo<6 (29)
UuG: x(6)€[0,1] V6. (30)

The constraint IR is simply the feasibility constraint that the agent’s expected utility cannot be
negative, and the constraint IC is inherited from the original formulation of P.

Problem P’ looks similar to a standard monopoly problem where U(6) is agent type 0’s in-
formation rent, and constraint IR corresponds to a standard (interim) participation constraint.
There are, however, two important differences.

First, unlike in the static monopoly problem with transferable utility, the principal’s objective
is not linear in the agent’s information rent. This is due to the period 2 bankruptcy constraint
which results in a rent-efficiency trade-off in period 2. In fact, if the principal did not face a
bankruptcy constraint in period 2, her objective would be linear in the information rent because
she would then optimally implement the first-best allocation in period 2 and could award the
agent any (possibly negative) level of rent through an appropriate transfer.

To shed more light on the principal’s costs of providing incentives, recall that IT is single-
peaked with a maximum at U2, Therefore, if the period 1 type were publicly known, the principal
would maximize the objective by picking an efficient x(68) and setting U(0) equal to the second
best information rent US2. But since the period 1 type 0 is private information, the principal
has to create a spread in the information rents and award a higher information rent to low cost
than to high cost types to induce the former to report truthfully. As a result, the cost of providing
incentives through promising a certain information rent U in period 2 is not monotone in U. For
example, "punishing” the agent with a zero information rent in period 2 is extremely costly, since
[1(0) = 0 means that the principal has to sacrifice the entire surplus in period 2. Likewise, to
reward the agent with a rent higher than U2, then because IT is maximal at U2, the principal
has to give the agent a surplus share that exceeds the second best share of the surplus in period
2.

Second, the incentive compatibility constraints IC are uni-directional, only requiring that the
agent does not report a less efficient type. In contrast to the setting with bi-directional incen-

tive constraints, the uni-directional constraints prevent us from employing familiar solution tech-
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niques that are based on the characterization of incentive compatibility in terms of monotonicity
of the trading probability and revenue equivalence. In fact, it is easy to see that IC does not
even imply that x(6) is monotone.'* To address this issue, the next lemma provides necessary

conditions for IC that allow us to relax problem P’.

Lemma 4 If (x, U) satisfies IC, then it satisfies the two following conditions:
M: U is decreasing.

IC;: U’'(0) <—x(0) for all 6 where the derivative exists.

Property M is straightforward and simply reflects that lower cost types can guarantee them-
selves at least the utility of a higher cost type by pretending to be that type. As to condition IC;,
note first that because U is decreasing, U is differentiable almost everywhere. Recall that in the
standard case where IC is required for all reports 6, the derivative of the agent’s utility is actually
pinned down by the allocation x. In our case, where IC is required only for reports 6> 0,itis
only necessary that the derivative of the agent’s utility is bounded by the allocation x.

The lemma implies that we obtain a relaxed version of P’ if we replace IC with the mono-

tonicity condition M and the “localized” condition IC;:

0
R: max J [v—0]x(8)+11(U(B))dF(6) s.t IR,M,IC,,UG (31)

"’ 0
We now solve R and then show that its solution also solves P’. We proceed in two steps. We
first show that at a solution to R, trade never happens if it is inefficient, and the constraint IC,
is binding. In the second step, we use these properties to establish a solution to R. To establish
the first step, let ® be the (non-empty) feasible set for problem R. We then obtain the following

result.

Lemma 5 Let (¥,0) € ®. Then there is (x,U) € ® which delivers the principal a (weakly) higher
profit than (%, U) and has the following properties:

() If v < 0, then x(8) =0 for all 6 > v.

(i) U'(0) = —x(6) for all 6.

The first part makes the familiar point that an optimal contract induces a downward distortion.

To understand the second part, recall that IT is concave with a maximum at UE. For a given

4Analyzing a screening problem with uni-directional incentive constraints and discrete types, Celik (2006) makes
the same observation. His techniques for solving the subsequent problem do not apply to our framework with
continuous types.
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trading probability x, the principal therefore seeks to choose U as closely as possible to U while
maintaining the incentive compatibility requirement that U’(6) < —x(6). Thus, an optimal choice
of U is maximally flat, implying that U'(0) = —x(8).

We emphasize that although property (ii) corresponds to the revenue equivalence property
from standard screening models where IC is required for all reports 8, in our setting, property
(ii) expresses an optimality rather than a feasibility condition.

In standard screening models, property (ii) is useful, because it pins down the agent’s utility
U as an integral over the trading probability x. If, in addition, II is linear, an integration by parts
argument can be used to replace U in the objective function of (31), and the problem can then be
solved by point-wise maximization over x(6). In our case, because II is concave, this approach
does not work.

Our alternative approach is to instead use property (ii) to replace the trading probability x by
the agent’s utility function U in the objective function of (31) and then maximize over U. This
allows us to show that an optimal contract is in the class of cutoff-contracts where the good is

traded if and only if that agent’s cost is below a cutoff 8, € [0.6].

Definition 3 A cutoff-contract (x,U) is characterized by two parameters: a cutoff 6, € [0,0] and

an intercept Uy > 6, — 0 such that

(32)

0 else

x(9)2{1 if 0<06 U(Q):{UO—(Q—Q) if 0<0,
UO_(QO_Q) else.

We denote by A the set of cutoff contracts. Clearly, A C . We now state the main result of this
section that, under a regularity condition, a cutoff-contract is a solution to the relaxed problem
R.

£0)
f(6)

there is a cutoff-contract (x,U) € A which delivers a (weakly) higher profit than (¥,0).

Proposition 1 Let (v—6) be increasing on the range [0, min{v, 8}]. Consider (%,U) € ®. Then

While we prove the proposition in the appendix, the underlying logic is best understood in the
context of our uniform example. Note that the uniform example satisfies the regularity condition
trivially, as f'(0) = 0.

Example: Consider some (¥,0) € ®. As indicated earlier, we can use part (ii) of Lemma 5 to
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U, = U(0)

UO - 90

U)

» U

- >0 .
0 o 0 1 U1)  Up—6, Uo

Figure 1: The left panel illustrates, given U and that 6 is uniformly distributed over [0,1], the
construction of the cutoff contract U(.) such that U, = (0) and f 01 u@e)do = fol U(6)d6. The

right panel shows the associated probability distributions F U and FY of U and U in utility space.
FY is a mean preserving spread of FU.

replace ¥ by U’ in the objective of (31). Using integration by parts, the objective then rewrites as

0 1
f [v—0]%(0)+T11(T(6)) dF(6) f [v—0]0'(6)+11(T(6))d6 (33)
8 0

1

—U(O)+J U(G)d9+J o)) do. (34

We now construct a function U belonging to a cutoff-contract for which expression (34) is at
least as large as for U. To do so, note that Lemma 5 implies that U is a decreasing continuous
function with a slope between —1 and 0. Therefore, because under a cutoff-contract, U has slope
—1 up to the cutoff 6, and then slope 0, an intermediate value argument implies that we can find

U so that
1 1
U, = U(0), f U(e)de =J U(0)de. (35)
0 0
In particular, there is a 6 € [0, 1] so that
U(8) <U(6) for 6 < 6 and U(0) = U(0) for 6 > . (36)

The first panel of Figure 1 illustrates the construction graphically.

By (35), the first two terms in (34) are the same for U and U. The key idea to analyze the third
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term in (34) is to interpret the agent’s utility as a random variable which induces a probability
distribution in utility space (the pushforward). Formally, and as illustrated in the second panel of

Figure 1, the distributions induced by U and U correspond to the cumulative distribution functions
FY(w)=Pr(0€[0,1]: U() <u) and F'(u)=Pr(0€[0,1]:U(H) <u). (37)

The key observation is now that the second part of (35) and (36) imply that F U is a mean pre-
serving spread of FU. Therefore, because II is concave, the third term in (34) is larger for U than

for U. O

For the general case without uniform distribution, the construction is analogous. The mean
preserving spread argument carries over unchanged. The role of the regularity condition is to
sign what corresponds to the first and second terms in (34), since these terms depend in general
on the density f.

The regularity condition in Proposition 1 is not entirely new to the literature. In a context
where the principal is a seller and the agent is a buyer, Manelli and Vincent (2006, Theorem
4) impose an equivalent regularity condition when characterizing the profit maximizing solution
in a multi-dimensional screening problem. A sufficient condition for the regularity condition is
that jointly f’ < 0 and f is log-convex.’® Examples include the family of power distributions
F(6)=0% 6 €[0,1], for a < 1 or of exponential distributions F(0)=1—e*% 8 >0, A > 0.

Proposition 1 shows that a cutoff-contract is a solution to the relaxed problem R. It is straight-
forward to verify that any cutoff-contract satisfies the constraints IC of the original problem.

Therefore, we have:

Proposition 2 Let (v — 0)% be increasing on the range [0, min{v,0}], then there is a cutoff-

contract (x,U) € A which solves the original problem P’.

Since a cutoff-contract consists only of the two parameters 6,, U,, finding the optimal cutoff-
contract comes down to solving an optimization problem in two variables. We illustrate this

exercise in our running example.

5To see this, note

d £'(0) £'(0) d f'(0) £'(8)
—(v—0 - _ —0)— - _
dQ(V )f(9) f(0) t0 )d9 f(0) f(0)

Because v — @ is positive on the range [0, min{v, 6}], this expression is postive if f’ < 0 and log f is increasing, that
is, f is log-convex.

+(v = 0) 2 10g(/ (6), 38)
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Example: For our uniform example, the principal’s objective is

0o 6 1
W(6,,U,) = J 1—9d9+J H(UO—Q)d6+J T(U, — 6,) dO (39)
0 6o

0
with U, > 6, and where II is given by (26). To determine the maximizer, we first determine an
optimal 6;(U,) for a given U,. A tedious but otherwise straightforward analysis of the first and

second order condition with respect to 0, yields'®

Next, we maximize W(6;(U,),U,) = W(U, — 1/18,U,) with respect to U,. For U, < 1/2, this
expression reduces to 109/648+(5+4+/2U,—9U,)U,/6 which is strictly increasing for U, < 1/2
so that a maximum exhibits U, > 1/2. For U, > 1/2, the expression W(U,—1/18, U,) reduces to
the quadratic expression 41/324 +4/3 - U, — Ug which attains a maximum at U, = 2/3.

We therefore conclude that (6;,U;) = (11/18,2/3) maximizes W (6, U,) with a payoff of
185/324 ~ 0.571, exceeding by 14% the principal’s payoff of 2I1°% = 1/2, from charging twice
the static optimal price p = 1/2.

Recall from above that in the uniform example, the period 2 terms of trade can be implemented
by offering the agent a period 2 price p, = +/2U. With this in mind, period 1 cost types 8
above the cutoff 6; = 11/18 do not produce in period 1 and obtain expected period 2 utility
of U(0) = U; = 2/3, corresponding to a period 2 price offer p, = 1/3. All period 1 cost types
0 below the cutoff 6; = 11/18 produce in the first period and obtain expected period 2 utility
U(®) = U;—6 = 2/3— 0, corresponding to a period 2 price offer p, = min{4/3 —26,,1}.
Interestingly, period 1 cost types 6 < 1/6 obtain more than the utility 1/2. These types always
produce in period 2, since they receive the offer to produce at a price of 1 in period 2.

The ex ante expected utility of the agent is 157/648 so that expected aggregate surplus is

16The first order condition with respect to 6, is:

g_gv =(1—90)(1—H/(U0—90)):O =4 90=1 or H/(UO_G()):] (40)
0

It is easy to check that 6, = 1 is not a maximizer of W. By (26), the unique solution to IT'(U, — 6,) = 1 is 6, =
U, —1/18. This is indeed a maximizer of W(6,, U,), because the second order condition is
*w
262

=—1+II'"(Uy— 6y) + II"(Uy — 6,)(1 — 6,) < 0, 41D

is satisfied for 6, = U, — 1/18, since the first two terms cancel, while IT"(U) = —/2U>/2/4 < 0 for U < 1/2 and
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| (no A.L) FB | 2xSB | No bankruptcy | bankruptcy

P’s payoff 1 0.5 0.75 0.571
U’s ex ante payoff 0 0.25 125 0.242
ex ante surplus 1 0.75 .875 0.813

Table 1: Payoff comparisons

185/324 + 157/648 = 527/648 ~ 0.813, compared to the first best surplus of 1. Without
bankruptcy constraints, aggregate surplus is 7/8=.875, while the twicely repeated static second

best contract yields aggregate surplus of .75. Table 1 summarizes. O

Remark 2 (Implementation) We now briefly discuss how an optimal cutoff contract can be indi-
rectly implemented by a menu of prices. For simplicity, suppose that the optimal period 2 terms
of trade can be implemented by a posted price. Recall from Remark 1 that this is the case if, for
example, F,/f, is increasing.

An optimal contract can then be implemented by a menu {(r, p,(r)) | r € [0, 6,1} where the
agent can choose to produce the good in period 1 for a price r and conditional on not going
bankrupt in period 1, obtains the option to produce the good in period 2 for the price p,(r)
where p, is decreasing in r. Moreover, if the agent goes bankrupt in period 1, the relationship is
terminated.

To see this, recall that under a backloaded contract, the agent breaks even in period 1. Under
a cutoff contract, the agent therefore receives in period 1 the transfer 6, and produces the good if
he announces 6, €[ 8, 6,] and does not go bankrupt. If he announces 0, € (6, 0] he receives the
transfer O and does not produce the good. This corresponds to choosing a price r = él €[0,6,] at
which to deliver the good in period 1. Moreover, after announcing él, the agent obtains expected
utility U(8,) in period 2 which can be implemented by a posted price p,(8;) which is decreasing
in él because U(él) is decreasing in él. This corresponds to obtaining the option to produce the

good at p,(r) = pz(él) in period 2 after choosing the price r in period 1.

5 Extensions
In this section, we discuss how our analysis extends to settings where there are multiple time
periods and to a model with interdependent types.

More than two periods. While we performed our analysis only for two periods, the extension to

multiple periods is straightforward. To illustrate, suppose that there are infinitely many periods
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and that cost types 6. are i.i.d. with time-independent cdf F on the support [8,0].) For the
problem to be well-defined, assume that both parties discount future payoffs with a discount
factor 6 € [0,1). Under the dynamic programming formulation, the principal’s choice variables
are a probability of trade x(0) for the current period and the expected continuation utility for the
agent U(0) that both depend on a report 6 by the agent about his current type (as well as on the
history of past reports which we suppress). The principal’s value function II(V) is now defined
recursively as a function of the agent’s expected utility V (starting as of now) according to the

dynamic program:

Poo: TI(V)=max J:(V—e)x(e)mnw(e)) dF(0) s.t. (43)
IR: Uu)=0 Ve (44)
IC: UB)=>(6—-0)x(6)+Ud) Ve<é (45)
UG : x(0)€[0,1] V6 (46)
PK : Je 95U(9)dF(9):V. (47)

While problem P, yields the principal’s value function, the solution to the principal’s overall
problem starting in the initial period is obtained by maximizing IT with respect to V.

The essential difference between P, and P’ is the presence of the promise keeping constraint
PK which ensures that the agent’s expected utility from the contract is V. As above, we consider
a relaxed problem where we localize IC and replace it with the constraints M and IC; as stated

in Lemma 4:
6
Ry, : ﬁ(V)=m%xJ (v—0)x(0)+61(U(8))dF(0) s.t IR,M,IC,,UG,PK. (48)
7 Je

It follows from standard arguments (see Stockey and Lucas, 1989, or Krishna et al. 2013) that IT
exists. Crucially, as in the two-period case, IT is concave. Recall that to establish the optimality of
a cutoff contract for the two-period problem R, we exploited the concavity of IT to construct for a
every feasible contract (%, U) a feasible cutoff-contract (x, U) that is an improvement. Note that,
in contrast to problem R, feasibility in problem R, requires that a contract, in addition, satisfies
PK. Therefore, to extend the argument from R to R, we have to ensure that the cutoff contract

(x,U) that improves a given feasible contract does satisfy PK.

17The extension to an arbitrary finite time horizon is analogous but all expressions are time-dependent.
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However, note that the cutoff contract (x, U) constructed in the two-period problem to improve

upon (&, U) has the property that'®

6 6
J U(O)dF(O)zJ U(0)dF(0). (49)
(2] [¢]

Therefore, as (%, U) is an arbitrary feasible contract and thus satisfies PK by definition, so does

(x,U). This shows that a cutoff contract is optimal also when there are more than two periods.

Interdependent types. We have modelled bankruptcy as a verifiable event, thus distinguishing it
from the event that the agent voluntarily takes an outside option. Bankruptcy constraints there-
fore affect the incentive compatibility constraints because the verifiability of bankruptcy allows
the principal to detect misreports that lead to bankruptcy. As a result, the incentive constraints
in our problem end up being only one-sided, as explicitly shown in (29) of problem P’. This is in
contrast to the existing literature, where bankruptcy constraints are imposed only on path, and
incentive constraints are two-sided.

Despite this conceptual difference, the solution in our specific setup would not change if we
imposed (29) in its usual two-sided form by requiring that the inequality in (29) holds for all
combinations 6 and 6 rather than only for 6 < 6. This is so because in our specific setup the
principal’s valuation for the good does not depend on the agent’s type. Our private values for-
mulation implies that the solution to the relaxed problem is monotone, and thus satisfies the
stronger two-sided incentive constraints. A similar observation has been made in the static mech-
anism design literature on one-sided incentive constraints. In particular, Celik (2006) shows that,
whenever the efficient solution is monotone, the solution with one-sided incentive constraints
coincides with the one for two-sided incentive constraints.

The monotonicity of the efficient solution however rules out a strong negative correlation
between the principal’s and the agent’s valuation. In such a case, it might well be that the solution
to the relaxed problem violates the two-sided, but satisfies the one-sided incentive constraints. To
demonstrate this explicitly, consider the following adaptation of our uniform example. Instead of
a constant type-independent first period valuation of the good of v; = 1, suppose the principal

has, for some € (0, 1), the type-dependent first period valuation

0 ifo<é
141 (0)= (50)
1 otherwise.

18This corresponds to the right part of (35) where we defined (x, U) in the uniform example.
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Note that the efficient solution is then not monotone: it exhibits x = 0 for 6 < 6 and x = 1
for 6 > 0. If we however require the incentive constraints (29) in problem P’ to hold in their
two-sided version and thus for all combinations of 6 and 6, then the allocation x is necessarily
monotone. Hence, a solution (x5, U?®) to the version of P’ with two-sided incentive constraints
is such that x* is monotone.

We next argue that, if 8 is sufficiently small, then (x5, U%) is not a solution to problem P’ with
the one-sided incentive constraint (29). To see this, note first that, for 6 > 0 but small enough, we
must have x25(0) > 0 for 6 < 6.1° Now adapt (x25,U%) to (%, U) by setting £(8) =0 for 6 < 6,
while keeping the rest unchanged. Note that the adapted schedule (%, U) satisfies (29) in its one-
sided form, because the reduction in X relaxes the constraint since (29) is required to hold only
for  — 6 > 0. The feasibility of (x25,U%) therefore implies the feasibility of (%, U). Moreover,
given the principal’s valuation (50), the pair (%, U) increases the objective (27) as compared to
(x%,U%) because (%, U) implements the efficient allocation for 8 < 0. Hence, (x25,U%) does
not solve P’.

Hence, the previous example explicitly shows that for interdependent values the predictions
when modeling cash constraints by verifiable bankruptcy can differ qualitatively compared to
when modeling cash constraints by imposing a non-negative per period utility on the agent on

path.

6 Conclusion

We study bankruptcy constraints in an otherwise standard dynamic screening model. We model
bankruptcy as a verifiable event and show that it affects contractual feasibility constraints not only
through participation but also incentive compatibility constraints. Thus, our analysis highlights
the importance of spelling out explicitly the economic consequences of bankruptcy in terms of the
underlying economic environment.

While our paper assumes that bankruptcy occurs whenever the agent makes short term losses,
in practice the occurrence and consequences of bankruptcy may be more complicated than that,

since bankruptcy may, for example, be partially discretionary or involve restructuring processes.

19To see this, observe that otherwise, the fact that x5 is decreasing, would imply that x2° is equal to zero every-
where. It is easy to see that this would yield the principal a payoff of at most zero. But, for  small, the principal
could improve by using the solution to the problem when 6 = 0. Indeed, if § = 0, we are in our original uniform
example for which we have shown that the principal makes a strictly positive profit. Thus, by continuity, the principal
would still make a positive profit if 6 > 0 but sufficiently small. This contradicts the assumption that (x5, U5) was
optimal.
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It is an interesting avenue for future research to capture such richer forms of bankruptcy.

Our paper also makes a methodological contribution. In particular, we solve for an optimal
contract using a new method that ranks contracts in terms of the spread of the distribution of the
induced continuation values for the agent. An open question is to what extent our approach can
be employed in a model with correlated cost types (as in Krasikov and Lamba, 2021). Such an
extension is beyond the scope of the current paper because it implies that the agent’s continuation
value becomes type dependent, thus constraining the principal’s choice of continuation values.
Another interesting avenue is to apply our solution method to static mechanism design problems

in which the principal’s payoff is not linear in the agent’s information rent.
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Appendix

Proof of Lemma 1 Let § = (X, £, %), ), %5, t)) be a feasible contract. Our proof strategy is to
first define an auxiliary contract y that is feasible and payoff-equivalent to ¥ but under which no
bankruptcy occurs. In a second step, we modify ¥ to obtain the desired contract y that has the
properties stated in the lemma. In what follows, we indicate all variables pertaining to ¥ and ¥
with a tilde and a hat.

Step 1: Define the auxiliary contract § = (%, £,, %), £}, 25, t5) by

oo (£2(0.),5,(8,)) if 6, € O,
(%1(6,),£1(6,)) = D ' ‘1 (51)
(0,0) otherwise
(3?]2\[(91, 6,), Eg’(eh 0,)) if 6, € ézlv’ 0, € élzv’N(eﬂ
(3?]2\[(91: 0,), flzv(eb 0,)) = (9?5(91, 6,), E123(91, 0,)) if0;, ¢ é]l\l’ 0, € élzv’B(Qﬂ (52)
(0,0) otherwise,
(7%5(91, 92): 523(91, 92)) = (0,0) V91: 92- (53)

We show that 7 is feasible and payoff-equivalent to ¥. To see this, note first that, by construc-

tion, we have é’lv =©, and (:)IZV N(6,) = @, for all 6. Furthermore,
UN(Q]_) == ﬁN(Ol) fOI' 01 S éi\[ and [AJN(O:[) == ﬁB(Ql) fOI' 91 ¢ é{l\]. (54)

To see feasibility, observe that y trivially satisfies (4) for b = B, and inherits (4) for b = N
by construction. To see (5), let £,(6,) — 6,%,(6,) > 0. Consider first the case that 6, € (:)11\’ and

6, € 6Y. Then, we have:

fl(el)_elﬁ'l(el)*_ﬁl\](el) = E1(91)_91321(91)“‘f]N(Ql) (55)
> £,(0,)—6,%,(6)+0T"(H,) (56)
= 1(6,)—6,%,(6,)+ UV(6)), (57)

where the inequality follows, because ¥ satisfies (5) and the two equalities follow from (54). The
other cases can be shown analogously.

To see (6), note that the left hand side of (6) is non-negative by definition of y. Moreover,
because X% = t£ = 0, we have U?(8,) = 0 for all §, so that the right hand side is zero. Therefore,

(6) follows. To complete the proof of feasibility, note that (7) and (8) are void for {, because
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AN _
e, =0,.

Finally, ¥ and 7 are payoff-equivalent, because by construction, if bankruptcy does not occur
under ¥, then y implements the same terms of trade as ¥, and when bankruptcy occurs under 7,
no trade occurs under y so that under either contract both the principal and the agent get zero.

N tN .X'B tB

Step 2: We now construct a feasible contract y = (xy, t1,x;, t, X, t,

) which is payoff-equivalent
to 7 and satisfies (12)-(14). To do so, note first that ¥ satisfies (13) and (14), but may violate
(12) and display £,(6,) — 6,%,(6;) > 0 for some 0,.

Define y as the contract that differs from 7 only in that the period 1 profits for the agent are

backloaded to period 2. Formally, y displays x; = £, x) = %), x2 = %2, t? = } and payments
t,(0) = 60,x,(6,), t)(6,6,)=1)(6,,6,)+t,(6,)—1,(6)). (58)

Note first that y satisfies (12) by construction. Moreover, it inherits (14) from y and also property
(13) because

tg’(eh@z)_ezxg(eh@z) = flzv(eb 92)+f1(91)—t1(91)—923?§(91, 92) (59)
= tN(6;,0,) — 0,%Y(6,,0,) + £,(6,)— 0,%,(6,) =0,  (60)

where the inequality follows since under y no bankruptcy occurs.
We next show that y is feasible. Indeed, y trivially satisfies (4) for b = B because xf = tg =0.

For b = N, we have for all 6,, 6,, ézz

tlzv(elaez)_elezv(el,ez) = flzv(ela 0,) + fl(el)_tl(el)_elezv(elsgz) (61)
> £)(61,6,) +£1(61) — £5(6,) — 0,x) (61, 6,) (62)
= tIZV(Glﬂ éZ) - QZXIQV(QIJ éZ): (63)

where the first and the third lines use the definition of t?), and the second line follows because 7
satisfies (4) for b = N and since x}) = %7
To see (5), consider 6;, 8, so that t,(8,)— 6,x,(6,) = 0. Because t,(6,) > t,(6,) and %,(0) =

x,(8), this implies that also £,(6,) — 6,%,(6,) > 0. Therefore, since 7 satisfies (5), we have
£(6)—612,(0) +UN(6) = 11(6)—6,2,(6) +U"(6)). (64)

Moreover, by construction, we have that t,(6,) + UN(0,) = £,(6,) + UV (6,). These two observa-
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tions imply that

tl(el)—91X1(91)+UN(91) = fl(e)_elffl(@l)“‘ﬁlv(el) (65)
> £,(0)—0,%,(6)+U"(6) (66)
= t,(80)—0,x,(6,) + UN(H,). (67)

Furthermore, y satisfies (6), because U®? (él) = 0 for all él and the left hand side of (6) is non-
negative. Finally, (7) and (8) are void for y, because ©) = é)’lv =0,.

It remains to show that y and 7 are payoff-equivalent. But this follows, because the only
difference between the contracts is that the payments have been moved between periods, but the
sum of payments over the two periods is the same. ged

NtN

Proof of Lemma 2 Let y = (x,t;,x,,t;,

x2,t}) be the contract induced by the backloaded

— N _ N
contract (xi, X,, t,). Hence, t; = 0;x;, x; = X, ,t

N =t,, xJ = t¥ = 0. We have to show that y is

feasible if and only if IC, and IC; hold. To see this, observe first that y trivially satisfies (4) for
b = B because xg = tg = 0. Moreover, for any backloaded-induced contract y, the constraint (4)
for b = N rewrites as IC,. Hence v satisfies (4) if and only if it satisfies IC,.

We next show that constraint (5) is equivalent to IC;. Indeed, since tl(él) = élxl(él) for all

A

0,, we have

Hence, y satisfies (5) if and only if for all 6, < ,, we have t,(6,) — 6,x,(6,) + U(6,) > t,(6,) —
0,x,(6,) + U(H,). But because t1(6;) — 0;x,(6;) = 0 for all 6] holds for any contract y that is
induced by some backloaded contract, this is equivalent to IC;.

Moreover, y always satisfies (6) because the right hand side of (6) is zero, and the left hand
side is non-negative. Finally, (7) and (8) are void for y because @f’ = ©,. This completes the

proof. qed

Proof of Lemma 3 To simplify notation, we omit 6, and suppress the time subindex. With stan-

dard screening arguments, we can write P, as a maximization problem that maximizes the virtual
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surplus with respect to the allocation x(-) and the rent of the most inefficient type u(6) as follows:

_ ’ F(6) :
p,: H(U):El?% JQ ( —O—m) x(0)dF(0)—u(0) s.t (69)
M:  x(8)is decreasing in 6 (70)
NB,: u(8)>0 (71)
N I()
PK : u(9)+J (G)f(e) dF(6)=U (72)

That I1(U) attains a maximum II5® at US” is explained in the main text.
To see the further claims of the Lemma note that PK pins down u(0), and by substituting out

u(0) in the objective (70) and NB,, the problem simplifies to

0
P, H(U)Em)?x J (v—0)x(0)dF(0)—U s.t (73)
0
M :  x(8)is decreasing in 6 (74)
0
_ F(0)
NB, : J (G)f(e) dF(6)<U (75)

To see that I1(0) = 0, note that (75) implies that the only way to supply U = 0 is to have x(8) =0
for all 0, resulting in zero profits, hence: I1(0) =0

To see that IT is concave, let x’ resp. x” be solutions to P, for U’ resp. U”. Then the allocation
x = ax’ + (1 — a)x” satisfies M and NB, for U = aU’ + (1 — a)U”. Moreover, x yields profit
all(U") + (1—a)II(U”). The solution to P, for U = aU’ + (1 — a)U” must therefore yield at least
I1. Thus, we have II(aU’ + (1 —a)U”) > all(U’) + (1 — a)II(U"), which establishes concavity of
I1.

To see that TI(SF8) = 0, note that, by definition, IT + U < SF2 for any allocation x(-). Hence,
we have II(Sf8) < 0. To show II(S™8) = 0, it therefore suffices to show that, for U = S5, the
first-best allocation x"2(0) = 119 min(v,57(0) satisfies (74) and (75) and yields O for the objective
(73). Indeed, x"B(0) clearly satisfies (74) and, together with U = S3, yields 0 for the objective
(73). To see that the first-best allocation also satisfies (75) for U = S™2 f mindy, 9} —0 dF(60), note

27



that by integration by parts:

0 F(Q) min{v,0} F(Q)
FB —
L X (Q)f(g) dF(0) = Je 0 dF(6) (76)

min{v,0} min{v,0}
—(v—0)F(0) +J v—0dF(0)<S™. (77

(A 0

ged

Proof of Lemma 4 That U is decreasing is immediate from IC. Since U is decreasing, U has a
derivative almost everywhere by Lebesque’s Theorem. Now suppose that U’ exists at 6. Note that

for h > 0, we can write IC as U(6 —h)—U(6) > hx(60). Thus,

Uu(@)—u(e—h)
h

U'(0)= lim <—x(0), (78)

as desired. ged

Proof of Lemma 5 Let (¥,0) € & be such that it does not satisfy (i) or (ii). We construct an
improvement (x, U) € ® that satisfies (i) and (ii).

Suppose that v < 0 and (&, U) violates (i). Consider first the case that U(v) < US?, and define
(x,U) as

x(@):{x(e) if QSV’ U(@):{ r{(e) if 6<v 09
0 if 6>v Ulv) if 6>v.

Clearly, (x,U) € ® and satisfies (i). We next argue that (x,U) is a (weak) improvement over

(%,0) by showing that

0 6
J (v—Q)x(G)dF(Q)ZJ (v—0)x(6)dF(0), and (80)
(2] 2]

6 6
J II(U(6)) dF(0) = J 11(U(0)) dF(0). (81)

23 23
Inequality (80) is immediate from the definition of x. To see (81), note that because U is de-
creasing and U(v) < U8 by assumption, it follows by construction that for all & > v, we have
USE > U(0) > U(0). Thus, because II is concave and uniquely maximized at US? by Lemma 3,

this implies that II(U(8)) > I1(T(0)) for all 8 > v. Since U(0) = U(0) for all 6 < v, (81) follows.

28



Next consider the case that U(v) > USE. Define (x, U) as

X(@):{ (0) if 6<v | U(G):{ 00) if 6<v ©2)

0 if 6>v USB if 0>v.

Clearly, (x,U) € ® and satisfies (i). It follows with similar arguments as in the previous paragraph
that (x,U) is a (weak) improvement over (&, 7).

Finally, suppose (%, ) violates (ii). Define
T =sup{6 | U(0) > USE}. (83)
Because U is decreasing, we have that
U0)>USBforall® <7, and U(O)<USEforall O > . (84)

Define (x,U) as x(0) = x(0) for all 6, and

0

U(e)= USB—J x(t)dt. (85)

T

Clearly, (x,U) € ® and satisfies (ii). To show that (x, U) yields a higher profit than (%, U), observe

that because (%, U) and (x, U) specify the same allocation x, it is sufficient to show that
11(0(0)) < I(U(H)) for almost all O. (86)

To see this, consider first the case that 6 < 7. It is well-known that the derivative of a decreasing
function is (Lebesgue) integrable and that U(0)—U(6) > f ée U’(¢) dt for all 6, 6. Hence, for all

e>0withO <T—e€:

0
o) > J U(t)dt+U(t—e) (87)
= —J U(t)dt+0U(t—e) (88)
0
> J x(t)dt +U(t —e) (89)
’ 0
= —f x(t)dt +U(r —e), (90)
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where the second inequality follows from IC;, and the final equality from x = X Because the

inequality holds for all € > 0 and since U(7 — €) > USE by (84), we can infer that
0
Ue) = —J x(t)de+U*® = U(0). (91)

Moreover, since 8 < T, we have U(0) > U8, and accordingly, U(0) > U(8) > USE. Because II is
concave and uniquely maximized at US? by Lemma 3, these inequalities imply (86) for 6 < 7. A

symmetrical argument works to show (86) for 6 > 1, and this completes the proof. qed

Proof of Proposition 1 To avoid case distinctions, we only consider the case v < 6.2° By Lemma
5, it is sufficient to prove the statement for (X, U) € & which satisfies properties (i) and (ii) from
Lemma 5. Consequently, we have:

@ U0)=0(v) forall 6 > v.

We first construct a contract (£, U) which is not necessarily in A that delivers a (weakly) more
profit than (%, U). In a second step, we then construct (x, U) which is in A that delivers a (weakly)
higher profit than (%, 0).

As to the first step, define for a € [U(v), U(8)] the two functions

0(@)-(6-6) if 6<[6,6] ;
U,0)=1% «a if 0e€(6,v) , A(a)EJ U,(0)—U(0)dF(6),
0(6) if 6e[v,0] ¢
where 0 =0 +U(0)—a [0, v].
In words, U, starts at 7(8), then decreases with slope —1 until it attains the value a at the point
6, then stays constant equal to a until it reaches the point 8 = v, at which it jumps downwards
to UU(v) and stays constant from then on (since it coincides with ' which is constant on [v, ] by
(1) above)
Next, we show that there is & € [U(v), U(8)] so that

0 0
J U&(O)dF(O)zj U(0) dF(0). (92)
2] 2]

Indeed, by construction, for a = U(8), we have U,(6)—U(6) > 0 for all 8, and for a = U(v), we

20The other case, in which 6 < v, can be shown with identical arguments, and is actually simpler because step 2
of the proof as presented here is not needed to establish the result.
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have U,(0)—0U(0) < 0 for all 6. It follows that A(T(8)) > 0 and A(U(v)) < 0. Because A(a) is
continuous on a € [U(v), U(0)], the intermediate value theorem applies, implying (92).
Moreover, because U, and U coincide on [v, 8] by construction, the previous equality can

equivalently be written as
J U&(G)dF(G):J U(8)dF(0). (93)
(22 22

From now on, denote U, simply by U. Moreover, let

fc(@):{ L if 0<[0,06] (94)

0 if 6>0.

We now show that (£,0) yields a (weakly) higher profit than (%,0). This is trivially the case
for & = U(v), where we have (%,0) = (%,0). Hence, suppose & > U(v). In this case, we
have U(v) > U(v). Therefore, because U(0) = U(8), U’'(8) > U'(0) = —1 for 6 € [Q,é] and
U(0)<0(6)=0for 6 €[6,v], thereisa 6 [0, v] so that

U0)—00)<0 V0<6 and UMO)—UO)=0 VO=6. (95)

Using the facts that U’ = —% and U’ = —%, and £(6) = %(0) = 0 for all 8 > v, we can write

the difference in the principal’s profits from (£, U) and (%, U) as

r‘é
wEx,0-wx,0) = (v—0)[%(0)—x(0)]+11(U(B)—T1(T(6)) dF (6)
Jo

0
= ] (v—9)[fc(9)—5c(9)]dF(9)+J (U(0))—11(U(0)) dF(6)
0 0

0
= ) (v—9)[l7’(9)—0’(6)]dF(6)+J I1(0(6))—T11(U(8)) dF(H).
0 6

rv

v
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Integrating the first integral by parts delivers

W, D) —WE D) = (v—0)f(O)T(0)—1(0)] 6 (96)
_ Jg[v ’;((g)) [0(6)-0O)]dF©O)  (97)

6
+ J (U(0))—11(0(6)) dF(0). (98)

0

We now argue that this expression is positive. Observe first that by construction, U(8) = U(8),
and thus the right hand side of (96) is equal to zero. Moreover, by (93), expression (97) can

firstly be written as

J [(v J;((g)) [0(6)—U(6)]dF(6) =Y, (99)
and we can secondly add fgv[(v - é)%][ﬁ(@) —U(6)] dF(6) = 0, with 8 defined in (95), to
obtain:

B £'(6) £'(6)
= — —0 — 0 0)]dF(6 100
Y JQ[(V )f(e) (v— )f(Q)][U( )—U(0)]dF(6) (100)
(o FO) s 50
= — 101
J [(v— f(e) —(v— f(e) (101)
B £'(6) 5'(0)
_ 102
1 Fe G 1o

£10) :
f(6)

(101) is negative for all 6 € [6, é], and (95) implies that the second bracket under the integral

Now, the assumption that (v—60)~: is increasing implies that the first bracket under the integral

(101) is positive forall 6 € [0, 61, so that, overall (101) is positive. Analogously, (102) is positive.
Finally, to see that (98) is positive, define for an arbitrary decreasing function U, the cdf FY

as the push-forward measure, that is, the utility distribution induced by U, given by
FY(u) =Prob({6 |U(8) < u}). (103)

By (92) and (95), F U is a mean preserving spread of F o, Thus, because II is concave by Lemma
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3, we have
0 0 ) )
J (U(0))—11(TU(9)) dF(6) = J (w) dFY(w)— | M(u)dFY(uw) > 0. (104)
2] L)

This completes the first step of the proof.

As to the second step, let (%, U) from the first step be given. We construct (x,U) € A which
delivers a (weakly) more profit than (%,U). Indeed, let (x,U) be a cutoff-contract with cutoff
0, = 0 and an intercept U, € [U(v) + 6 — 0, U(6)] such that?!

0 0
J U(0) dF(0) :J U(6)dF(6). (105)
0 0
This also implies that
UB)-U(6)<0 VO<v and UO)-U6)=0 VO>v. (106)

Because 6, = § implies x = %, the difference in the principal’s profit from (x, U) and (&, U) can

be written as
g
Wi, U)—W(&,U) = J(v—9)[x(9)—fc(9)]+H(U(9))—H(U(9))dF(0) (107)
0

0
= J TI(U(0))—T1(U(0)) dF(6). (108)
0
Similarly to the argument at the end of the first step, (105) and (106) imply that F U is a mean

preserving spread of FY, and hence (108) is positive, and this completes the proof. ged

Proof of Proposition 2 Note first if there is a solution (x,U) € A to the relaxed problem R, then
because (x,U) € A is obviously feasible for the original problem P, it is also a solution to P.

It remains to show existence of a solution (x, U) € A to R. For this recall that a cutoff contract
is characterized by cutoffs 6, € [6, 8] and U, > 6, — 0. We first show the auxiliary claim that for
any (%,U) € A there is a (x, U) € A which yields a (weakly) higher profit than (%, ) and has the

21Given 6, = 6, the cutoff U, exists by the intermediate value theorem, because the integral on the left hand side
of (105) is strictly larger than the right hand side for U, = U(8), strictly lower for Uy = U(v) + 6 — @, and changes
continuously in Uj,.
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property that
U, <UB +(6-0). (109)

Indeed, consider a (%, U) with cutoffs (éo, U,) that violates (109). Since (%, U) is a cutoff contract,

this implies that 7(0) > US? for all 8. Define (x,U) € A with cutoffs
0, =0, U,=U,—(U(0)—U"®. (110)

By construction, we have that US? < U(0) < U(0) for all 6. Thus, because II is concave and
uniquely maximized at US? by Lemma 3, this implies that I[I(U(8)) > I1(T(8)) for all 6. There-

fore, and since x = X, we obtain the profit
W(x,U)= J(v —0)x(0)+1II(U(OB))dF(6) > J(v —0)%(0)+11(U(0)) dF(0) =W (%, UX111)

and this proves the auxiliary claim.

Now, let A be the set of cutoff contracts that satisfy (109). That is, (x, U) € A if we can express
(x,U) as a cutoff contract with cutoff 6, € [0, 0] and intercept U, € [0, — 0, UE + (6 — 0)].

The auxiliary claim and Proposition 1 then imply that there is a solution (x,U) € A to R if

there is a solution to the problem

Q: I(na))<W(x, U) s.t. (x,U)€A. (112)
x,U

Because the profit W(x, U) of a cutoff contract is pinned down by (6, U,), problem Q boils down
to the problem of choosing a two-dimensional variable (6,, U,) from the compact set [8, 8] x [0,—
6,U%? 4+ (6 — 0)]. Because profit is continuous in (6,,U,), there is a solution to Q. Therefore,

there is a solution (x,U) € A to R, and this completes the proof. ged
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