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a b s t r a c t 

Data are often missing not at random (MNAR) in scientific experiments. We treat the MNAR problem as 

an imbalanced learning task. Standard predictive error measures of regression (e.g., mean squared error) 

are not suitable for imbalanced learning problems, such as in clinical trials where extreme values tend 

to be MNAR. We investigate hybrid imbalanced learning approaches that combine utility-based regres- 

sion (UBR) with synthetic minority oversampling technique for regression (SMOTER) in cross-sectional 

trial settings. UBR optimizes the product of the conditional probability density (estimated by quantile 

regression forests) and a utility function which takes the relevance of the target variable value and the 

prediction error into account. SMOTER oversamples the relevant rare cases. Simulations show that the 

proposed method provides plausible predictions and reduces the bias for realistic missing data scenar- 

ios when compared with standard approaches like random forests and multiple imputation (systematic 

bias is observed in those methods, i.e., a tendency to underestimate the mean and standard deviation 

given the presence of MNAR in the area of high values of the target variable). The proposed method is 

implemented in a real dataset from an antidepressant clinical trial, and similar pattern of the systematic 

bias from commonly used methods is observed in the real data compare to the proposed method. There- 

fore, we encourage the integration of utility-based learning strategies for handling of missing data in the 

analysis of clinical trials. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

Missing data are the data that would be meaningful for the 

nalysis but is not documented. The missing data, if not handled 

roperly, will lead to lower statistical power for the analysis, and 

ay lead to a bias in the estimated treatment effect and an un- 

erestimate of the variability. There are three types of missing 

echanism [1] . (i) Missing Completely at Random (MCAR): if the 

robability of missingness does not depend on observed or un- 

bserved measurements, e.g., patients move to another city due 

o non-health related reasons. (ii) Missing at Random (MAR): if 

he probability of missingness depends only on observed measure- 

ents conditional on the covariates in the model, e.g., younger 

eople may more likely to have blood pressure not measured. (iii) 

issing Not at Random (MNAR): if the probability of missingness 
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epends on unobserved measurements, e.g., patients discontinue 

rom the study due to lack of efficacy. 

For the handling of missing data, many methods have been 

eveloped under the assumption of MAR or MNAR, respectively. 

n reality, however, missing data are often a mixture of different 

ypes. This makes the assumptions on the missing mechanism vi- 

lated, which leads to poor performance of the handling meth- 

ds [2] . To handle realistic missing data scenarios, Haliduola et al. 

3] proposed a machine learning based missing data imputation 

ramework where the MNAR problem is treated as an imbalanced 

earning task (since the MNAR cases are mostly distributed in one 

ail of the target variable). Take Fig. 1 as an example, depending 

n the proportion of MNAR data, regions that tend to have MNAR 

ay have a smaller amount of available data than other regions 

i.e., an imbalanced distribution). Imbalanced learning is necessary 

o compensate for the MNAR in that region and to avoid individ- 

al predictions being driven by the available non-missing data to 

n overall average level. They proposed oversampling of minority 

lasses (i.e., the classes with extreme value of the target variable 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Simulation data: scatter plot and boxplot for the target variable. The back dots are the non-missing data, blue dots are the MAR, green dots are MCAR, Red dots are 

MNAR. The details of the data generation process are described in Section 3.1 . 
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hat tend to be MNAR), followed by recurrent neural networks to 

odel the data. This framework was shown to be effective for the 

andling of the missing data based on simulation studies and a 

eal clinical trial data. 

Haliduola et al. [3] used a simple random oversampling with 

eplacement and a standard error measure (i.e., mean squared er- 

or, MSE). However, these methods come with drawbacks. First, in 

 simple random oversampling with replacement, random sets of 

opies of minority class cases are added to the data, which may 

ead to many duplicates in the minority class. During the learn- 

ng process, the decision region for the minority class may become 

ery specific and the model will give more focus in that region. 

or example, in a tree-based learning process, this may lead to 

ew splits in the decision trees, which will result in more termi- 

al nodes (leaves) as the learning algorithm tries to learn more and 

ore specific regions of the minority class, and eventually this will 

ause overfitting of the model [5] . Secondly, the standard predic- 

ive error measure like MSE is not suitable for a regression prob- 

em with imbalanced distribution of target variable values in the 

raining data (like in MNAR problem where the extreme values 

end to be missing). Their weakness is that they are not sensitive 

o the location of target variable values [4] . See Fig. 1 as an exam-

le, considering the MNAR data (red dots), distribution of available 

on-missing data (black dots) are imbalanced across the range of 

arget variable (i.e., less available data in the area of high values 

ue to MNAR). If the error measure is not sensitive to the location 

f target variable values, the area of high values will get less focus 

n the training process due to the smaller amount of data in that 

rea, and thus the impact of missing data on the aggregated esti- 

ation will be ignored. In such cases, it is important to give more 

ocus on the area of high values in the training process to compen- 

ate for the MNAR and to avoid the prediction being driven by the 

requent cases in the other locations of the target variable. There- 

ore, it is necessary to have an error metric that is sensitive to the 

ocation of the errors, which copes with imbalanced distribution of 

arget variable values. 

t

2 
In this paper, to avoid model overfitting caused by the sim- 

le random oversampling, we use the synthetic minority oversam- 

ling technique for regression (SMOTER) [7] to oversample the rel- 

vant rare cases; and, to overcome the drawbacks of standard er- 

or measure, we use the imbalanced learning technique utility- 

ased regression (UBR) [6] , which takes both relevance (or impor- 

ance) of the target variable values and the prediction errors into 

ccount in the optimization process. For simplicity, we consider 

ross-sectional data only. Quantile regression forests [9] are used 

o estimate the conditional probability density. The optimization 

rocess involves determining the maximum integral of the product 

f the conditional probability density function and the utility func- 

ion for each case. In light of the “evidence-based computational 

tatistics” [11,12] , we evaluate the proposed method in an exten- 

ive simulation study using realistic missing data scenarios (i.e., 

ixture of MCAR, MAR, and MNAR data). The performance of pro- 

osed method is evaluated comprehensively in terms of the central 

endency and variability of imputed data, prediction accuracy, and 

 performance comparison with commonly used methods like ran- 

om forests and multiple imputation. Finally, we illustrate the pro- 

osed method with a real dataset from an antidepressant clinical 

rial, which is one of the few publicly available datasets that can 

e used to demonstrate methods for handling missing data where 

 continuous outcome is measured. 

. Methods 

In this paper, we aim to handle realistic missing data sce- 

ario (i.e., mixture of MCAR, MAR, and MNAR data) in a contin- 

ous outcome variable. We treat the MNAR problem in clinical tri- 

ls as an imbalanced learning task. We investigate a hybrid im- 

alanced learning approach that combines utility-based regression 

UBR) [6] with synthetic minority oversampling technique for re- 

ression (SMOTER) [7] in the missing data imputation. First, we 

ssign a relevance to the target variable values based on their dis- 

ribution in the training data (i.e., available non-missing data) and 
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efine a threshold for oversampling. The second step is data pre- 

rocessing, where we use the SMOTER method to oversample cases 

ith relevance greater than the threshold. In the third step, we ap- 

ly utility-based regression on the oversampled training data, and 

he model parameters are optimized by maximizing the relevance 

nd minimizing the error simultaneously. The final step is to use 

he optimal model to predict the missing target variable values. 

.1. Utility-based regression 

Let Y be a target variable and X predictor vector. The most com- 

only used error measures in regression are the mean squared er- 

or 

SE = 

1 

n 

n ∑ 

i =1 

( ̄y i − y i ) 
2 
, 

nd the mean absolute error 

AE = 

1 

n 

n ∑ 

i =1 

| ̄y i − y i | . 

The standard predictive error measures are not suitable for a 

egression problem with imbalanced distribution of target vari- 

ble values in the training data (like in MNAR problem where the 

xtreme values tend to be missing). Their weakness is that they 

re not sensitive to the location of target variable values [4] . Take 

ig. 1 as an example, if the error measure is not sensitive to the 

ocation of target variable values, the area of high values will get 

ess focus in the training process due to the smaller amount of 

ata in that area (due to MNAR), and thus the impact of missing 

ata on the aggregated estimation will be ignored. In such cases, it 

s important to give more focus on the area of high values in the 

raining process to compensate for the MNAR and to avoid the pre- 

iction being driven by the frequent cases in the other locations 

f the target variable. Therefore, it is necessary to have an error 

etric that is sensitive to the location of the errors, which copes 

ith imbalanced distribution of target variable values. It should be 

oted that the example in Fig. 1 is used to demonstrate the idea, it

ould be the other way round in reality, i.e., the lower values tend 

o be MNAR. 

Utility is a function of both the error of the prediction and the 

elevance (or importance) of both true and predicted values. To- 

ether, the relevance and loss information give a utility function, 

hich provides more reliable evaluation of a regression model. The 

ltimate goal of utility-based regression is to maximize the util- 

ty, which is achieved by maximizing the relevance and minimiz- 

ng the error simultaneously. In following sections, we use the no- 

ations for utility-based regression defined by Torgo and Ribeiro 

6] and Ribeiro [4] . 

The relevance is the crucial property that distinguishes non- 

niform cost/benefit regression problems from those standard re- 

ression problems. The relevance function ∅ ( Y ): y → [0, 1] is a 

ontinuous function that expresses the domain-specific importance 

oncerning the target variable domain y by mapping it into a [0, 1] 

cale of relevance, where 0 represents the minimum and 1 repre- 

ents the maximum (see an example in Fig. 2 ). To take both pre-

icted value ( ̄y ) and true value ( y ) into account, the joint relevance

unction is defined as weighted average: 

 ( ̄y , y ) = ( 1 − p ) ∅ ( ̄y ) + p ∅ ( y ) 
here p → [0, 1] is the weight, e.g., p = 0.5. The actual form 

he relevance function is domain specific and defined by the user 

ased on the problem in hand. 

For the missing data problem in a continuous target variable 

like the example mentioned above), a relevance function can be 

efined to assign more relevance/importance to the extreme values 
3 
n one tail or both tails according to the distribution of available 

ata. For example, we use boxplot whiskers or summary statis- 

ics like the first quartile (Q1) and the third quartile (Q3) to iden- 

ify the extreme values. In the example in Fig. 2 , the extreme val-

es are identified using the boxplot whiskers, and then the max- 

mum relevance of 1 is assigned to the extreme cases, and mini- 

um relevance of 0 is assigned to the median value. A monotone 

ubic spline interpolation line over a set of maximum and mini- 

um relevance points is the actual shape of the relevance function 

8] . Using the boxplot to identify the extreme values, a coefficient 

eeds to be specified to determine how far the whiskers extend 

o the extreme data points in the boxplot (e.g., a coefficient of 1.5 

s in the standard boxplot). The choice of the coefficient should 

e based on the specific problem in hand and it should be pre- 

pecified. For example, a coefficient smaller than 1.5 can be consid- 

red to assign high relevance to more data points. A range of the 

oefficients can also be considered to perform the sensitivity analy- 

is. In our example, considering the presence of MNAR in the area 

f high values and the MCAR/MAR spread out across the whole 

ange of target variable, it makes sense to assign more relevance 

or both high and low extreme values. Assigning high relevance in 

oth tails may also avoid disproportionately heavy in one tail over 

he other in the prediction. 

The cost of a prediction is defined as product of the relevance 

nd the loss (or error) function, 

 ( ̄y , y ) = ∅ ( ̄y , y ) C max L ( ̄y , y ) 

here ∅ ( ̄y , y ) is the joint relevance function, C max is the maximum 

ost that is only assigned when the relevance is maximum (i.e., 

 ( ̄y , y ) = 1 ). The term ∅ ( ̄y , y ) C max can be seen as a case-specific

aximum cost value, i.e., the maximum penalty we get if ȳ is the 

worst possible” prediction for the particular case under consider- 

tion. L ( ̄y , y ) is the loss function. It is important to scale the loss

unction to [0, 1]. Torgo and Ribeiro [6] defined a percentage-type 

oss function as the difference between the maximum and mini- 

um relevance in the interval between the true and predicted val- 

es. 

 ( ̄y , y ) = [ max 
i ∈ ̄y .. y 

∅ ( i ) − min 

i ∈ ̄y .. y 
∅ ( i ) ] 

The total cost can be calculated by summing up all individual 

ost values. It is important to notice that when asserting the cost 

f a prediction, it is necessary to take both the true and the pre- 

icted values into account. Predicting an irrelevant value for a case 

hat has an actual extreme value is not the only cost that can oc- 

ur. It may be equally serious to predict an extreme value for a 

requent case, as it causes false alarm that could lead to serious 

ost. Therefore, the joint relevance function is used in the above 

ost function. In addition, it makes sense to use weight p = 0.5 in 

he joint relevance function to give equal importance to both types 

f error. 

The benefit of a prediction is defined as product of the rele- 

ance of true value and the complementary of the loss, 

 ( ̄y , y ) = ∅ ( y ) B max ( 1 − L ( ̄y , y ) ) 

here ∅ ( y ) is the relevance function of true value, B max is the max-

mum reward that is only assigned when the relevance is maxi- 

um. In the benefit function, only the relevance of the true value 

s considered as the purpose is to assert how well a model predicts 

he test cases that are relevant (i.e., rewards the accurate predic- 

ion for the relevant values). The total benefit can be calculated by 

umming up all individual benefit values. 

The utility of a prediction is the net balance between its bene- 

ts and costs, defined as, 

 ( ̄y , y ) = b ( ̄y , y ) − c ( ̄y , y ) 
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Fig. 2. An example of relevance function to assign more importance to the extreme values according to the distribution of available data. 
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The total utility can be calculated by summing up all individual 

tility values. The mean utility can also be calculated as utility- 

ased model performance metrics. 

.2. Quantile regression forests 

As mentioned in Section 2.1 , the ultimate goal of utility-based 

egression is to optimize the utility, which is achieved by maxi- 

izing the relevance and minimizing the error simultaneously. In 

his paper, we use the optimization process proposed by Rau et al. 

14] . This method uses quantile regression forests (QRF, [9] ) to es- 

imate the conditional probability density which is a crucial ele- 

ent in the optimization process. To elaborate the main idea of 

RF, we start with the random forests (RF, [16] ) and quantile re- 

ression [18] . 

The random forests build k trees in parallel using n independent 

bservations ( y i , x i ), i = 1, …, n . Each tree is based on the boot-

trapped data (random sampling with replacement, e.g., use 2/3 as 

he original data size) and random subset of variables (e.g., use 1/3 

f all feature variables). This kind of variety is what makes random 

orests more effective than individual decision tree. Let θ denote 

he random parameter vector that determines how a tree is grown 

e.g., which variables are considered for split points at each node), 

he corresponding tree is denoted by T ( θ ), let Lf denote the leaves

f the tree ( L = 1 , …, m ). For every x ∈ X , there is only one leaf Lf

an be obtained when dropping x down the tree. Denote this leaf 

y Lf ( x, θ ) for tree T ( θ ). For a single tree, the weight vector w i ( x,

) is a positive constant if observation x i is part of leaf Lf ( x, θ ) and

 if not, and the weights w i ( x, θ ) sum to 1. The prediction of a sin-

le tree k , given the feature X = x , is then weighted average of the

riginal observations y i , 

¯
 t ( x ) = 

n ∑ 

i =1 

ω i ( x, θ ) y i , 

here t is the t th single tree, t = 1, …, k . The conditional mean

 ( Y | X = x ) is approximated by the averaged prediction of k single

rees, each constructed with an independent and identically dis- 

ributed vector θ t . Let ω i ( x ) be the average of ω i ( θ ) over the trees,

efined as, 

 i ( x ) = k −1 
k ∑ 

t=1 

ω i ( x, θt ) . 
F

4 
The predictions of random forests are then the weighted condi- 

ional mean, 

¯
 ( x ) = 

n ∑ 

i =1 

ω i ( x ) y i . 

The weighted conditional mean is estimated by minimizing the 

SE: 

(Y | X = x ) = arg min 

ȳ 
E{ ( ̄y − y ) 

2 | X = x } . 
The conditional mean describes only one aspect of the condi- 

ional distribution of a target variable Y , while the quantile regres- 

ion aims to provide more information about the conditional dis- 

ribution, e.g., the conditional quantiles [18] . For X = x, the condi- 

ional distribution function F ( y | X = x ) is given by the probability of

 is smaller than y ∈ R ( R is the space for the target variable), 

 (y | X = x ) = P (Y ≤ y | X = x ) . 

For a continuous distribution function, given X = x, the α- 

uantile Q α( x ) is then defined such that the probability of Y being

maller than Q α( x ) is exactly equal to α (0 < α < 1). The quantiles

 α( x ) give more information about the conditional distribution of 

 , which is defined as, 

 α( x ) = inf { y : F (y | X = x ) ≥ α} . 
The loss function L α is defined as the weighted absolute devia- 

ions, 

 α( y, q ) = { α| y − q | y 〉 q 
( 1 − α) | y − q | y ≤ q 

The conditional quantiles are estimated by minimizing the ex- 

ected loss E ( L α), 

 α( x ) = arg min 

q 
E{ L α( Y, q ) | X = x } . 

For quantile regression forests, trees are grown as in the stan- 

ard random forests algorithm [9] . The conditional distribution is 

hen estimated by the weighted distribution of observed target 

ariables, where the weights ( ω i ( x )) attached to observations are 

dentical to the original random forests algorithm. The key differ- 

nce from the standard random forests is that, for each node in 

ach tree, QRF keeps the value of all observations in this node (not 

ust their mean as in the standard random forests), and assesses 

he conditional distribution of those observations. 

For X = x, the conditional distribution function of Y is given by, 

 (y | X = x ) = P (Y ≤ y | X = x ) = E( I { Y ≤y } | X = x ) 
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Fig. 3. Example of correlation matrix used in the simulation data generation. 
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here I { Y ≤ y } is the indicator function, which equals to 1 if Y ≤
 otherwise 0. Just as E ( Y | X = x ) is approximated by a weighted

ean of Y , define an approximation to E (1 { Y ≤ y } | X = x ) by the

eighted mean over the observations of 1 { Y ≤ y } as the prediction 

f QRF, 

 ̄(y | X = x ) = 

n ∑ 

i =1 

ω i ( x ) 1 { Y ≤y } . 

The optimization process uses a method proposed by Rau et al. 

14] , which use QRF to estimate the conditional probability den- 

ity. In regression, for each case, this process involves determining 

he maximum integral of the product of the conditional probabil- 

ty density function and the utility function. The optimal prediction 

or X = x is given by, 

¯
 ( X = x ) = arg max [ ̄y ] ∫ pdf (y | X = x ) U ( ̄y , y ) dy 

here pdf ( y | X = x ) is the conditional probability density estima-

ion for X = x, and U( ̄y , y ) is the utility evaluated on the true

alue y and predicted value ȳ . Final predictions are the conditional 

eans take target variable utility into account. We use the R pack- 

ge “UBL” (stands for “Utility-Based Learning”, [13,15] ) in this pa- 

er. 

.3. SMOTER 

Synthetic Minority Oversampling Technique (SMOTE) was intro- 

uced by Chawla et al. [5] for the classification task. This algorithm 

perates in the feature space rather than target variable space (as 

ll rare cases have the same target minority class). The minority 

lass is oversampled by taking each minority sample and introduc- 

ng synthetic examples along the line segments joining any/all of 

he k minority class nearest neighbors (e.g., k = 5). For example, if 

he amount of oversampling needed is 200%, only two neighbors 

rom the k nearest neighbors are chosen and one sample is gen- 

rated in the direction of each. Synthetic samples are generated in 

he following way: take the difference between the feature vector 

nder consideration and its nearest neighbor. Multiply this differ- 

nce by a random number between 0 and 1, and then add it to the

eature vector under consideration. 

Torgo et al. extended the SMOTE for regression task (i.e., the 

MOTER) in 2013. Three key components were addressed in the 

xtension: the relevance function (i.e., the ∅ ( Y ) as discussed in 

ection 2.1 ) and the user-specified threshold for the relevance val- 

es were used to define the relevant (rare) cases and the frequent 

ases (e.g., relevance threshold = 0.8); the same approach as in 

he original algorithm was used to generate the synthetic feature 

amples; the weighted average of the target variable values of the 

wo seed examples (i.e., the case and the selected neighbor) was 

sed as the synthetic value for the target variable (the weights are 

alculated as an inverse function of the distance of the generated 

ew case to each of the two seed examples). We use the R package

UBL” [15] for the implementation of SMOTER. 

In practice, it is common to implement the SMOTER together 

ith the undersampling of frequent cases. However, in this paper, 

e do not consider the undersampling for following reasons: 1) 

n realistic missing data scenarios, the MNAR data are located in 

ertain area of the target variable, but the MAR/MCAR data may 

pread out in the whole range of the target variable. In the train- 

ng process, it may not be a conservative approach to give less fo- 

us on the locations where MAR/MCAR data may appear; 2) The 

ndersampling reduces the size of the training data, this may not 

e a favorable approach in clinical trials in which the total amount 

f data is normally not massive. 

In SMOTE, the amount of oversampling is a hyperparameter of 

he system [5] . We fine-tuned the appropriate amount of oversam- 

ling using the cross-validation (CV) approach. It is important to 
5 
ote that only the training data should be oversampled during the 

V process, the validation data should never be oversampled to 

void the "overoptimism" issue [19] . 

. Simulation study to evaluate performance of methods 

.1. Design of simulation study 

To demonstrate the idea of the utility-based regression and 

ampling approaches, we consider the cross-sectional data only in 

his paper. In the simulation study, random data is generated for 

00 subjects. The outcome variable and covariates (predictors) are 

ormally distributed. Missing data indicators are binary variables 

i.e., separate indicator variables for MCAR, MAR and MNAR). Cor- 

elated normal and binary data are generated simultaneously us- 

ng the point-biserial correlation approach of Demirtas and Dogana 

20] . Suppose that X and Y follow a bivariate normal distribution 

ith a correlation of ρXY . If X is dichotomized to produce X D , then

he resulting correlation between X D and Y can be given as point- 

iserial correlation, 

X D Y = ρXY 

( 

h √ 

p ( 1 − p ) 

) 

here p is the proportion of the observations above the point of 

ichotomization, and h is the ordinate (probability density func- 

ion) of the normal curve at the same point. 

In the simulation study, we simultaneously generate one out- 

ome variable and seven covariates (each normally distributed 

ith mean 10 and variance 10) and 3 missingness indicators us- 

ng a given correlation matrix (see Fig. 3 for an example). The 

CAR flag (with missing data proportion of 5%) is independent 

rom any other variables. The MAR flag (with missing data pro- 

ortion of 5%) is correlated with the first covariate only (correla- 

ion coefficient = 0.4) and independent from the outcome variable 

nd the other covariates. To evaluate the performance of impu- 

ation method properly, we consider higher proportion of MNAR 

ata (i.e., 25%). The MNAR flag is positively correlated with out- 

ome variable (i.e., the higher values tend to be missing, correla- 

ion coefficient = 0.5) and the second to seventh covariates (cor- 

elation coefficient = 0.2). The outcome variable is correlated with 

he MNAR flag and the second to seventh covariates (correlation 

oefficient = 0.5). The first covariate is correlated with MAR flag 

nly. The second to seventh covariate are correlated with the out- 

ome, therefore they are also correlated with each other (correla- 

ion coefficient = 0.2). See Fig. 1 as an example for the distribution 

f the outcome variable. We use the R package “BinNor” [21] in the 

ata generation. Since the higher values of outcome variable tend 

o be missing (MNAR), the mean of the available non-missing data 

s an underestimation of the true value. A proper missing imputa- 

ion method should compensate for the MNAR and reduce the bias 



H.N. Haliduola, F. Bretz and U. Mansmann Computer Methods and Programs in Biomedicine 226 (2022) 107172 

i

l

f

t

a

o

s

t

r

e

s

e

v

A

m

p

i

t

t  

t

a

g

3

c

m

m

3

i

1

m

m

a

n

e

U

w

w

t

l

t

f

S

b

t

g

t

a

t

i

m

t

o

M

t

a

d

t

a

w

d

h

l

v  

f

e

T

S

o

o

b

c

a

a

(

i

a

e

a

b

p

(

a

m

n the aggregated estimation. In this paper, we perform the simu- 

ation with 100 replications. 

We impute the missing data using proposed method, i.e., UBR 

acilitated by SMOTER (ubr.smt). In the SMOTER process, we iden- 

ify the relevant extreme values based on the summary statistics of 

vailable training data, i.e., the data points ≤ the first quartile (Q1) 

r ≥ the third quartile (Q3) are oversampled. The amount of over- 

ampling is determined as 3 times as the available data in both 

ails based on the cross-validation. In the UBR process, we assign 

elevance function to target variable using the boxplot with a co- 

fficient of 0.75 (i.e., half of the standard coefficient). Based on the 

ummary statistics of available data, a coefficient of 0.75 is consid- 

red as appropriate to assign relevance to the high target variable 

alues where tend to have MNAR and also the low extreme values. 

 range of coefficients (0.5, 0.6, 0.7, 0.8 and 0.9) are also experi- 

ented to illustrate the impact of relevance function on the im- 

utation performance. As mentioned above, the relevance function 

s defined according to the distribution of the available data, and 

here is a shift in the central tendency of the available data due 

o MNAR in the area of high values. This shift is also reflected in

he relevance function, which leads to more relevance given in the 

rea of high values (this is considered as a conservative approach 

iven the presence of MNAR in that area only in this case). 

.2. Measuring performance of the proposed methods 

To compare the performance of proposed method (i.e., UBR fa- 

ilitated by SMOTER), we impute the missing data using other 

ethods including: 

• ubr.org = UBR without facilitating by SMOTER. 
• qrf.smt = QRF facilitated by SMOTER, details of QRF are de- 

scribed in Section 2.2 . We use the R package “quantregForest”

[10] in the implementation. 
• qrf.org = QRF without facilitating by SMOTER. 
• rf.smt = random forests facilitated by SMOTER, details of RF are 

described in Section 2.2 . We use the R package “randomForest”

[17] in the implementation. 
• rf.org = random forests without facilitating by SMOTER. 
• mi = traditional multiple imputation under the assumption of 

MAR. In addition to those machine learning-based methods, 

comparisons with the most commonly used traditional statis- 

tical methods (i.e., multiple imputation) are also considered 

meaningful. We use the R package “MICE” (van Buuren et al. 

[24] ) with 200 multiple imputations. MICE stands for Multivari- 

ate Imputations by Chained Equations, which generates mul- 

tiple imputations for incomplete multivariate data by Gibbs 

sampling. The algorithm imputes an incomplete target column 

by generating "plausible" synthetic values given other columns 

(covariates) in the data. The imputation method for the missing 

continuous outcome variable is predictive mean matching ( [22] 

and [23] ). 

We perform the following measures to compare the perfor- 

ance of difference methods: 

• Calculate the mean and standard deviation (SD) of the imputed 

outcome variable by different imputation methods as men- 

tioned above, and compare with the mean and SD of true value 

(i.e., the complete outcome variable before set the missing val- 

ues). If the estimations are close to the mean and SD of true 

value then the imputation method is appropriate. To show the 

bias that caused by missing data, the mean and SD of available 

non-missing data are also provided. 
• Perform one sample t -test on the imputed data with a null- 

hypothesis of mean = 10, the larger p-values indicate better 

imputation performance. 
6 
• Perform a simple linear regression of imputed value versus the 

true value, and compare the intercepts (close to 0 is better) and 

the slops (close to 1 is better). 

.3. Simulation results 

We visualize the performance measures from 100 studies us- 

ng the boxplot. In Fig. 4 , the boxplots for the mean values from 

00 studies per scenario are presented. The true means follow nor- 

al distribution around 10 (the blue box). The bias caused by the 

issing data is substantial, the means estimated from non-missing 

vailable data are significantly lower than the true means (i.e., 

oimp, the brown box on the right in below figure). The means 

stimated based on imputed data by the proposed method (i.e., 

BR + SMOTER) are the closest to the true means (the green box) 

hen comparing with other methods. The means from the UBR 

ithout SMOTER (the light green box) are the second closest es- 

imation of the true means. The QRF and RF perform very simi- 

arly (the boxes labeled as qrf.org and rf.org), which is expected as 

he goal is to provide the conditional mean as prediction. When 

acilitating by SMOTER, QRF and RF perform better than without 

MOTER but still are not as good as the proposed method (the 

oxes labeled as qrf.smt and rf.smt). The traditional multiple impu- 

ation is not as good as the proposed method (the purple box). In 

eneral, all other methods tend to underestimate the mean given 

he presence of MNAR in the area of high values of the target vari- 

ble. 

It is also important to evaluate the performance of imputa- 

ion method in terms of the variability of imputed data. As shown 

n Fig. 5 , similar as for the central tendency measure (i.e., the 

ean), the proposed method provides the closest estimation for 

he SD, followed by the UBR without facilitating by SMOTER. All 

ther methods tend to underestimate the SD given the presence of 

NAR in the area of high values of the target variable. 

We perform sensitivity analysis in terms of the coefficient of 

he relevance function. A range of coefficients (i.e., 0.5, 0.6, 0.7, 0.8 

nd 0.9) are experimented and results are shown in Fig. 6 (A for 

istribution of mean and B for distribution of SD). It is clear that 

he relevance function impacts the performance of UBR consider- 

bly. The coefficient here is a parameter to determine how far the 

hiskers extend to the extreme data points in the boxplot when 

efining the relevance function. The higher coefficients result in 

igh relevance been assigned to the more extreme cases (e.g., for 

ess data points), this may increase the variability of the predicted 

alues. As mentioned in Section 3.1 , there is a shift in the relevance

unction due to MNAR in the area of high values, this leads to 

ven less lower extreme values been assigned with high relevance. 

herefore, higher coefficients result in higher estimated mean and 

D in this case. As mentioned above, all commonly used meth- 

ds tend to underestimate the mean and SD given the presence 

f MNAR in the area of high values of the target variable. It would 

e equally worse to overestimate the mean and SD (e.g., in the 

ase of coefficient = 0.9). Therefore, it is important to pre-specify 

 proper relevance function according to the distribution of avail- 

ble data and make a plausible assumption on the missing data 

i.e., the possible locations of target variable scale where the miss- 

ng data tend to occur). It is also important to perform sensitivity 

nalysis with different relevance functions (and associated param- 

ters) to check the appropriateness and robustness of the primary 

nalysis. 

We perform one sample t -test on the imputed data (imputed 

y different methods) with a null-hypothesis of mean = 10 and 

resent the distribution of p-values in Fig. 7 . For the true data 

where no missing data), the p-values are mostly greater than 0.05 

s expected. For the proposed method (i.e., UBR + SMOTER), the 

ajority of the p-values are greater than 0.05. While for other 
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Fig. 4. Simulation result – distribution of means of imputed data by different methods. ubr = utility-based regression (coefficient of relevance function = 0.75), 

smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests, mi = multiple imputation, noimp = no imputation. 

Fig. 5. Simulation result – distribution of SDs of imputed data by different methods. ubr = utility-based regression (coefficient of relevance function = 0.75), smt = SMOTER 

data, org = original data, qrf = quantile random forests, rf = random forests, mi = multiple imputation, noimp = no imputation. 
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ethods, the p-values are quite small (mostly < 0.05). Although 

he p-value is sample size dependent, but the trend is clear to 

how that the proposed method is better than other methods in 

erms of the ability to reduce the bias of missing data in the ag- 

regated estimation. 

We perform simple linear regression for the true value versus 

he imputed value (by different method). The intercept and the 

lop from the linear regression are visualized using the boxplots in 

ig. 8 . The proposed method (i.e., UBR + SMOTER) gives the least 

ntercept and the greatest slop (i.e., closest to 1), suggesting the 

est performance among all the methods. 

. Real data example 

We implement the proposed method in a real dataset from 

n antidepressant clinical trial, which is available on the website 

f London School of Hygiene and Tropical Medicine [25] . Origi- 

al data are from an antidepressant clinical trial with four treat- 

ents; two doses of an experimental medication, a positive con- 

rol, and placebo [26] . There are 26.1% and 25.0% patients with 

issing Hamilton 17-item rating scale for depression (HAMD17) at 

eek 6 in Control group (i.e., placebo, N = 88) and Test group (i.e., 

reated by randomly selecting patients from the three non-placebo 

rms, N = 84), respectively. 
7 
We use the HAMD17 at Week 6 as the target variable (cross- 

ectional data), use the treatment group and the available baseline 

ariables as predictors (including the gender, baseline HAMD17 

alue, HAMD Total score and Patient Global Impression of Improve- 

ent (PGI-I)). The reasons for discontinuation are not available in 

he published dataset, this makes it difficult to make assumption 

bout the missing mechanism. We define the relevance function 

ccording to the summary statistics of the available data. In the 

re-processing, the data points ≤ Q1 or ≥ Q3 are oversampled us- 

ng SMOTER method. The amount of oversampling is determined 

s twice as the original available data in both tails based on the 

ross-validation. In the UBR process, maximum relevance of 1 is 

ssigned to the data points ≤ Q1 or ≥ Q3, and minimum rele- 

ance of 0 is assigned to median value (note: it is not the boxplot 

ethod in this case and therefore no coefficient to be determined). 

 monotone cubic spline interpolation line over a set of maximum 

nd minimum relevance points is the actual shape of the relevance 

unction. 

To compare the imputation performance, we impute the miss- 

ng data using the methods as described in Section 3.2 . The im- 

uted outcome variable (i.e., change from baseline in HAMD17 

core at Week 6) is analyzed using the analysis of covariance (AN- 

OVA) model with treatment as factor and baseline value as co- 

ariate. To show the bias that caused by the missing data, we also 
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Fig. 6. Simulation result – sensitivity analysis: distribution of means (A) and SDs (B) of imputed data by ubr + smt using different coefficients in the relevance function (0.5, 

0.6, 0.7, 0.8, 0.9). ubr = utility-based regression, smt = SMOTER data. 

Fig. 7. Simulation result – distribution of p-values from one sample t -test on imputed data by different methods. ubr = utility-based regression (coefficient of relevance 

function = 0.75), smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 
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nalyze the outcome variable without imputation using ANCOVA. 

he results from the different approach are presented in forest plot 

 Fig. 9 ). The proposed imputation method (i.e., UBR + SMOTER) 

rovided the most conservative estimation for the treatment effect 

n both treatment groups. There is systematic bias in the results 

rom other methods. This bias is more pronounced in the Control 
8 
roup, a possible reason could be there are more low responders 

ith missing data in Control group (e.g., may be more MNAR in 

ontrol group). In general, comparing with the proposed method, 

ther methods tend to be optimistic, which may lead to aggressive 

stimation and hence introduce bias in the study conclusion (es- 
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Fig. 8. Simulation result – distribution of the intercepts (A) and slops (B) from simple regression of true data vs. imputed data by different methods. ubr = utility-based 

regression (coefficient of relevance function = 0.75), smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 

Fig. 9. Real data: forest plot for the analysis results of change from baseline in HAMD17 score at Week 6 using different methods. ubr = utility-based regression, 

smt = SMOTER data, org = original data, qrf = quantile random forests, rf = random forests. 
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ecially in the cases when the dropout rate or the efficacy pattern 

f dropouts are not comparable between treatment group). 

. Discussion 

We aim to handle the realistic missing data scenarios (i.e., mix- 

ure of MCAR, MAR, and MNAR data) in clinical trials with con- 
9

inuous outcome variable. We treat MNAR as imbalanced learning 

ask. The standard error measures are not suitable for non-unique 

ost learning. We propose a hybrid imbalanced learning approach 

hat combines UBR with SMOTER. The UBR takes both the predic- 

ion error and relevance of the target variable value into account 

uch that the areas been assigned high relevance get more focus 
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n the learning process. SMOTER is an effective approach to give 

ore weights on the rare cases and also to avoid the model over- 

tting problem. The relevance function is a crucial part of the pro- 

osed method. The choice of the relevance function and its associ- 

ted parameters should be based on the specific problem in hand 

nd it should be pre-specified. It is inevitable to define the rele- 

ance function according to the distribution of available data, and 

t is also important to make a plausible assumption on the miss- 

ng data (i.e., the possible locations of target variable scale where 

he missing data tend to occur) based on the information collected 

n the clinical trial. We recommend to perform sensitivity analysis 

ith different relevance functions (and associated parameters) to 

heck the appropriateness and robustness of the primary analysis. 

e evaluate the performance of proposed method in a comprehen- 

ive manner in the simulation study. When assessing the impact of 

issing data on the aggregated estimation, we recommend to eval- 

ate the performance of imputation method not only in terms of 

he bias (like mean of imputed data) but also in terms of variance 

he imputed data, which is also an important element in the deci- 

ion making (e.g., the decision based on the inferential statistics). 

The commonly used imputation methods (like random forests 

nd multiple imputation) do not perform as well as the proposed 

ethod and showed systematic bias in the aggregated estimation. 

hose methods tend to underestimate the mean and SD given the 

resence of MNAR in the area of high values of the target vari- 

ble. A similar pattern of the systematic bias is also observed in 

he real data from an antidepressant clinical trial with a dropout 

ate of 25%. Overall, our hybrid imbalanced learning approach pro- 

ides plausible prediction for all the MCAR, MAR and MNAR data 

nd reduced the bias of missing data in the aggregated estimation. 

herefore, we encourage the integration of utility-based learning 

trategies for handling of missing data in the analysis of clinical 

rials. 

Limitations of this study include: (1) The use of some specific 

echnical elements, such as QRF and SMOTER, is based on our cur- 

ent knowledge in this domain, and this can be further improved 

nce new and better methods emerge; (2) To demonstrate the ba- 

ic idea of utility-based regression, we look at the cross-sectional 

ata only. However, in practice, missing data problem is more of- 

en in the longitudinal studies. Therefore, from practical point of 

iew, an extension of the utility-based regression in the longitudi- 

al setting is necessary. 

upporting information 

All R programs for the whole workflow, datasets and outputs 

ill be available at the website of Computer Methods and Pro- 

rams in Biomedicine. 
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