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Derivation and validation of an epigenetic
frailty risk score in population-based cohorts
of older adults

Xiangwei Li 1,2, Thomas Delerue3, Ben Schöttker1,4, Bernd Holleczek5,
Eva Grill6,7, Annette Peters8,9,10, Melanie Waldenberger 3,8,
Barbara Thorand 6 & Hermann Brenner 1,11,12

DNAmethylation (DNAm) patterns in peripheral blood have been shown to be
associated with aging related health outcomes. We perform an epigenome-
wide screening to identify CpGs related to frailty, definedby a frailty index (FI),
in a large population-based cohort of older adults from Germany, the ESTHER
study. Sixty-five CpGs are identified as frailty related methylation loci. Using
LASSO regression, 20 CpGs are selected to derive a DNAmbased algorithm for
predicting frailty, the epigenetic frailty risk score (eFRS). The eFRS exhibits
strong associations with frailty at baseline and after up to five-years of follow-
up independently of established frailty risk factors. These associations are
confirmed in another independent population-based cohort study, the KORA-
Age study, conducted in older adults. In conclusion, we identify 65 CpGs as
frailty-related loci, of which 20 CpGs are used to calculate the eFRS with pre-
dictive performance for frailty over long-term follow-up.

Frailty is defined as a state of elevated vulnerability to poor resolution
of homeostasis1. It is frequently observed in older adult populations2,3

and increases the risk of developing negative health outcomes
including falls, physical limitations, hospitalization, andmortality1,4,5. A
growingbodyof research has reported that this syndrome results from
a multidimensional interplay of genetic, biological, psychosocial, and
environmental factors6–8.

Without a gold standard measurement for frailty, various models
were proposed to measure and define frailty in the past years4,9–11, and
they were based on questionnaires, performance measures, routine

data, or a combination of any of these. Two principal instruments
were widely accepted in clinical practice12, the performance and
questionnaire-based approach suggested by Fried et al.4 and the
“Frailty index (FI)-approach” suggestedbyRockwoodet al.10, whichcan
use any kindofdata as long as the included itemsare frailty-related and
fulfill specific validated criteria. FI has been shown to be a valid pre-
dictor of morbidity and mortality in many different population-based
cohorts13,14.

Epigenetic modifications have been recognized to play a major
role in aging15,16 and aging-related conditions, such as frailty17,18.
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Recently, various DNA methylation (DNAm)-based aging algorithms
have been developed19–23 and have also been shown to be associated
with frailty24,25. However, none of these algorithms was specifically
derived for predicting frailty.

Here, we followed a previously proposed three-phase procedure21

to derive and validate DNAm signature-based frailty risk score in a
large population-based cohort study of older adults. Replication was
performed in another independent population-based cohort. Frailty
was defined by a frailty index (FI) based on the concept of deficit
accumulation10,26.

Results
Characteristics of the study populations
Table 1 shows the baseline characteristics of the participants. In
ESTHER, the distributions of age, sex, body mass index, smoking sta-
tus, and alcohol consumptionwere similar among the three subsets (all
P-values > 0.05). The mean age was approximately 62 years, and a
slight majority of participants were women. The majority of partici-
pants were overweight or obese (approximately 7 out of 10).
Approximately half of themhad never smoked, and approximatelyone
out of six participants was still smoking at the time of enrollment. In
KORA-age, the mean age was about 76 years and half of the partici-
pants were females. The education level (27% with ≥12 years of school
education), bodymass index levels (80%overweight or obese), and the
level of alcohol consumption were higher than those in ESTHER.

Table 2 presents the distribution of FI at baseline and various
follow-ups. FI and the proportion of frail participants increased with
follow-up in ESTHER and KORA-age. In KORA-age, the levels of FI were
higher due to the inclusion of older participants.

Identification of frailty-related CpGs
In the discovery phase, conducted in subset I, 2220 CpGs passed the
genome-wide significance threshold (FDR <0.05). 65 CpGs located at

47 genes across 21 chromosomes were successfully replicated in the
validation phase in subset II and were deemed as frailty-related
methylation loci. When more comprehensively adjusted for further
potential confounders usingmodel 2, 53 CpGswere associatedwith FI,
of which 43 CpGs were inversely associated with FI, with a decrease in
FI (95% CI) per one standard deviation (SD) increase in methylation
ranging from 0.92% units (0.06–1.77) to 3.07% units (1.05–5.08)
(Supplementary Data 1).

Screening the literature for CpGs that werepreviously reported to
be associated with frailty identified 15 CpGs from three studies25,27,28.
Eight of them showed statistically significant associationswith frailty in
subset III (Supplementary Table 1).

Construction of eFRS
Using LASSO regression, the number of CpGs was further
reduced from 65 to 20 because many CpGs were correlated with
each other. The eFRS was constructed with these 20 selected CpGs
using the equation: eFRS ¼ 0:204� 0:209× cg00921350� 0:100×
cg01234420� 0:016× cg02867102� 0:293 × cg03725309� 0:146 ×
cg04955914� 0:084× cg07312601þ 0:158 × cg07349348þ 0:137 ×
cg08463758þ 0:248× cg10408430� 0:101 × cg11700584� 0:049×
cg12510708þ 0:064× cg13570972� 0:057× cg15058210� 0:180× cg
15380836� 0:144 × cg17860366þ 0:315 × cg17971578� 0:075× cg
18791730� 0:176 × cg19267254� 0:025× 21656937� 0:077cg×
cg23458887.

Functional annotation of sets of CpGs
We performed a literature search in PubMed to obtain information on
the genes that contain the 65 frailty-related CpGs (Supplementary
Data 2). The 20 CpGs included in eFRS is annotated to 17 Genes. These
genes are involved in various frailty-related outcomes, including dif-
ferent types of cancer (i.e.,HDAC4, CASP9,NFE2L3, RILP, STK40,HAO2,
SNX20, MRTO4, EMILIN3, P4HA3), cardiovascular disease (i.e., HDAC4,

Table 1 | Baseline characteristics of the study population

Characteristics ESTHER study KORA-Age study

Discovery panel
Subset I (n = 998)

Validation panel
Subset II (n = 730)

Further validation
Subset III (n = 538)

Validation in independent cohort
Subset IV (n = 1010)

Age (years; mean ± SD) 62.0 ± 6.7 61.7 ± 6.5 62.2 ± 6.6 75.9 ± 6.59

Sex (N/%)

Men 438 (43.9) 322 (44.1) 208 (38.7) 506 (50.1)

Women 560 (56.1) 408 (55.9) 330 (61.3) 504 (49.9)

Educational levels (N/%)a

Low (≤9 years) 747 (76.5) 524 (73.9) 395 (75.1) 206 (20.4)

Intermediate (10–11 years) 128 (13.1) 112 (15.8) 81 (15.4) 531 (52.6)

High (≥12 years) 102 (10.4) 73 (10.3) 50 (9.5) 273 (27.0)

Body mass index (N/%)b

Underweight (<18.5 kg/m2) 5 (0.5) 4 (0.6) 1 (0.2) 1 (0.1)

Normal weight (18.5-<25.0 kg/m2) 256 (25.7) 187 (25.7) 161 (29.9) 204 (20.2)

Overweight (25.0–<30.0 kg/m2) 476 (47.8) 347 (47.6) 230 (42.8) 495 (49.0)

Obesity (≥30.0 kg/m2) 258 (25.9) 191 (26.2) 146 (27.1) 310 (30.7)

Smoking status (N/%)c

Never smoker 510 (52.2) 346 (48.9) 249 (47.7) 578 (57.2)

Former smoker 312 (31.9) 232 (32.8) 176 (33.7) 385 (38.1)

Current smoker 155 (15.9) 129 (18.3) 97 (18.6) 47 (4.7)

Alcohol consumption (g per day) 9.8 ± 13.2 9.5 ± 12.8 8.9 ± 12.3 12.9 ± 17.4

Epigenetic frailty risk score (mean ±SD) 0.14 ± 0.02 0.14 ± 0.03 0.09 ±0.03 0.12 ± 0.03

SD standard deviation.
aData missing for 21 participants, 21 participants, and 12 participants for subset I, subset II, and subset III, respectively.
bData missing for 3 participants and 1 participant for subset I and subset II, respectively.
cData missing for 21 participants, 23 participants, and 16 participants for subset I, subset II, and subset III, respectively.
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CASP9, SARS), diabetes mellitus (i.e., RPL36AL, SARS), and Alzheimer’s
Disease (i.e., RPL36AL).

Supplementary Fig. 1 presents pathway enrichment and PPI net-
work analysis of target genes of frailty-related CpGs. The enrichment
heatmap (Supplementary Fig. 1A) shows that pathways of these genes
include cellular macromolecule biosynthetic process, non-small cell
lung cancer, viral carcinogenesis, export from the cell, and viral pro-
cess. Supplementary Fig. 1B shows the relationships between these
enriched terms, where each node symbolized an enriched term and a
similarity > 0.3 are connected by edges. With the application of
MCODE algorithm29, three modules (regulation of kinase activity,
positive regulation of kinase activity, and positive regulation of
transferase activity) in the PPI network were seen (Supplemen-
tary Fig. 1C).

Supplementary Data 3 shows the results of the mQTL analysis on
the CpGs included in eFRS. Altogether, we identified 3, 3, and 55
mQTLs where genetic variation was significantly associated
(P < 1 × 10−7) with the loci cg02867102, cg07312601, and cg11700584,
respectively.

Association of eFRS with FI at baseline and each follow-up
Figure 1 shows the correlation matrix of age, eFRS and FI at baseline
and various follow-up times in the two validation subsets. In ESTHER,
eFRSwasmore strongly related to chronological age thanFI at baseline
(Spearman correlation coefficients, rSp, 0.443 and 0.267, respectively),
but the correlation of FI with age increased with increasing length of
follow-up (up to rSp = 0.397 at 11-year follow-up). Correlation coeffi-
cients between eFRS at baseline and FI at baseline and the various
follow-up times were all in the range of 0.2–0.3, and correlation
coefficients between the FI at various points of time were all in the
range of 0.6–0.9. Essentially very similar correlations between eFRS
and FI at baseline and the various follow-ups were seen with Pearson’s
correlation coefficients (rSp similarly ranged from 0.2 to 0.3).

Approximately 6%, 9%, 9%, 9%, and 5%variation of frailty of at baseline,
2-, 5-, 8-, and 11-year follow-up can be explained by eFRS. Furthermore,
we observed a significant correlation of eFRS with AccAgeGrim (rSp =
0.566, P <0.001). Replicated analyses in KORA-age showed consistent
patterns and similar correlations. eFRS showed a slightly stronger
correlation with age (rSp = 0.427) than FI at baseline (rSp = 0.411). Cor-
relation coefficients between eFRS and FI at baseline and the two
follow-ups similarly ranged between 0.2 and 0.3. About 6%, 7%, and 7%
variation of frailty at baseline, 4-, and 8-year follow-up canbe explained
by the eFRS. All correlations in ESTHER and KORA-age were highly
statistically significant (P <0.001).

Supplementary Table 2 provides covariate-adjusted associations
of eFRS at baseline with FI at baseline and subsequent follow-up
rounds in the two validation subsets. In ESTHER, a one SD increase in
eFRS was associated with an increase in the FI by approximately 2
percent units (range from 1.55 to 2.16 percent units). The associations
were fairly stable across follow-up rounds and various adjustment
levels, even though they did no longer reach statistical significance for
FI measured at the 11-year follow-up, given the smaller number of
participants who were still included in this follow-up round. In KORA-
age, very similar, albeit slightly weaker associations were observed
between eFRS and FI at baseline and subsequent two follow-up times
(a one SD increase in eFRS was associated with 1.27-1.97 percent unit
increments of FI).

Supplementary Fig. 2 illustrates multivariable-adjusted ORs (95%
CIs) for the association of FRS with being pre-frail or frail at baseline
and each follow-up in the two validation subsets. In ESTHER, the
associations of pre-frailty/frailty with highest (vs. lowest) quartiles of
eFRSwere statistically significant at 2-year follow-up and 5-year follow-
up with ORs 3.53 (95% CI = 1.66–7.52) and 2.86 (95% CI = 1.18–6.92),
respectively. Similarly, when assessing ORs as per SD of eFRS, eFRS
were strongly associated with being pre-frail or frail at baseline (OR =
1.38, 95% CI = 1.05–1.82), 2-year follow-up (OR = 1.67, 95%

Table 2 | Frailty characteristics by follow-ups and subsets

N (participants) Frailty index (means ± SD) Frailty categories a (N/%)

Non-frail Pre-frail Frail

Subset I (ESTHER study)

Baseline 998 0.139 ±0.092 413 (41.4) 458 (45.9) 127 (12.7)

2-year follow-up 966 0.152 ± 0.099 347 (35.9) 446 (46.2) 173 (17.9)

5-year follow-up 843 0.171 ± 0.107 253 (30.0) 387 (45.9) 203 (24.1)

8-year follow-up 726 0.198 ±0.109 151 (20.8) 349 (48.1) 226 (31.1)

11-year follow-up 497 0.211 ± 0.117 93 (18.7) 230 (46.3) 174 (35.0)

Subset II (ESTHER study)

Baseline 730 0.143 ±0.092 282 (38.6) 339 (46.4) 109 (14.9)

2-year follow-up 693 0.152 ± 0.099 255 (36.8) 328 (47.3) 110 (15.9)

5-year follow-up 618 0.164 ±0.105 201 (32.5) 278 (45.0) 139 (22.5)

8-year follow-up 517 0.190 ±0.108 117 (22.6) 248 (48.0) 152 (29.4)

11-year follow-up 385 0.199 ±0.117 91 (23.6) 164 (42.6) 130 (33.8)

Subset III (ESTHER study)

Baseline 538 0.146 ±0.096 206 (38.3) 250 (46.5) 82 (15.2)

2-year follow-up 507 0.157 ± 0.106 188 (37.1) 212 (41.8) 107 (21.1)

5-year follow-up 449 0.169 ±0.110 149 (33.2) 189 (42.1) 111 (24.7)

8-year follow-up 369 0.197 ± 0.118 94 (25.5) 151 (40.9) 124 (33.6)

11-year follow-up 258 0.200 ±0.125 64 (24.8) 102 (39.5) 92 (35.7)

Subset IV (KORA-Age study)

Baseline 1025 0.184 ±0.120 236 (23.0) 574 (56.0) 215 (21.0)

4-year follow-up 782 0.217 ± 0.133 130 (16.6) 401 (51.3) 251 (32.1)

8-year follow-up 593 0.241 ± 0.158 93 (15.7) 282 (47.6) 218 (36.8)

SD standard deviation.
aNon-frail: 0 < frailty index ≤0.100; pre-frail: 0.100 < frailty index <0.250; frail: 0.250 ≤ frailty index.
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CI = 1.26–2.23) and 5-year follow-up (OR = 1.38, 95% CI = 1.01–1.87).
Patterns were less consistent and associations were not statistically
significant with pre-frailty/frailty status at 8- and 11-year follow-up. In
KORA-age, strong associations of eFRS with being pre-frail or frail at
baseline were seen with multivariable-adjusted ORs for eFRS quartiles
3 and4compared toquartile 1 as 1.99 (95%CI = 1.23–3.21) and2.77 (95%
CI = 1.61–4.75), respectively. A one SD increase of eFRS was sig-
nificantly associated with a 40% increased odds of being pre-frail or
frail at baseline. When restricting the analysis to those who were non-
frail at baseline, similar associations were seen between eFRS at
baseline and riskofbeing pre-frail or frail atmultiple follow-ups in both
ESTHER and KORA-age (Supplementary Fig. 3).

Associations of eFRS with being frail at baseline and various
follow-up times in the two validation subsets are shown in Fig. 2. In
ESTHER, participants in eFRS quartile 4 were at strongly increased risk
of being frail atbaseline (OR = 7.98, 95%CI = 2.27–28.07), 2-year follow-
up (OR = 2.93, 95% CI = 1.13–7.57), and 5-year follow-up (OR = 2.92, 95%
CI = 1.12–7.67), compared to participants with eFRS in quartile 1. Mul-
tivariable adjusted ORs (95% CIs) of being frail at baseline, 2-year fol-
low-up, 5-year follow-upwere 1.94 (1.31–2.89), 1.64 (1.15–2.35), and 1.48
(1.07–2.04) per one SD increase of eFRS, respectively. In KORA-age, the
associations with being frail were generally weaker but statistically
significant associations were still observed between eFRS and frailty at
4-year follow-up. Similar associations of eFRSwith being frail at follow-
ups were seen in both ESTHER and KORA-age when the analysis was
restricted to participants who were non-frail or pre-frail at base-
line (Fig. 3).

We further conducted sensitivity analyses with models that
adjusted for smoking status using theMaas 13-CpGsmodel rather than
self-reported smoking status in ESTHER. The positive associations
were highly consistent between both types of models (Supplementary
Table 3).

Predictive performance of eFRS for frailty at baseline and
follow-ups
Table 3 displays the individual and joint predictive performance of age,
sex, and eFRS for being frail in the two validation subsets. In ESTHER,
eFRS presented comparable predictive performances at baseline and
follow-ups with the combination of age and sex. When adding FRS to
models including age and sex, the predictive performance for pre-
diction of FI at baseline and 5-year follow-up was significantly
improved (from 0.629 to 0.711 at baseline and from 0.650 to 0.680 at
5-year follow-up). In the substantially older cohort of KORA-age, the

predictiveperformanceof age and sexweregenerallymuchhigher and
adding eFRS to models including age and sex only slightly increased
predictive performance.

Association of AccAgeGrim with FI at baseline and each
follow-up
AccAgeGrim showed similar associations with FI at baseline and sub-
sequent follow-up times in ESTHER as eFRS (a one SD increase in
AccAgeGrim was associated with 1.53–2.17% unit increments of FI,
Supplementary Table 4). Similar associations of AccAgeGrim with
being pre-frail or frail were also seen at baseline, 2-year follow-up, and
5-year follow-up (Supplementary Fig. 4). However, a significant rela-
tionship between AccAgeGrim with being frail was only seen at 5-year
follow-up (Supplementary Fig. 5).

Discussion
In this large-scale EWAS conducted in a population-based cohort of
older adults, we identified 65 frailty-related CpGs located at 47
genes across 21 chromosomes based on DNA from whole blood, 20
of which were selected to construct the eFRS. To our knowledge,
this is the first EWAS-derived eFRS, and it was found to be sig-
nificantly associated with frailty at multiple points of time during
long-term follow-up. These findings were validated in samples that
did not overlap with samples from which the eFRS was derived and
were also confirmed in an independent cohort, which demonstrated
the ability of the eFRS to predict both prevalence and longer-term
incidence of frailty.

To our knowledge, few studies have specifically assessed the
relationship between DNAm patterns and frailty17,18. Only one previous
EWAS on frailty defined according to the Fried criteria among 70-year-
old people has been conducted and identified one CpG (cg18314882
on chromosome 8 in theMAF1 gene)25. However, the single CpG is not
among the CpGs identified in our study. The differences in identified
CpGs within corresponding gene clusters between the two studies
might be due to the different measurements for frailty. Bellizzi et al. 17

defined frailty status using cluster analysis and reported that global
DNA methylation was lower in frail individuals than in the non-frail
participants. This is in line with our study, which observed that 43 out
of 53 CpGs were inversely associated with FI in an adjusted model.
Another study by Collerton et al. 18 using the Fried frailty definition in a
cohort with 85 years old participants found that the genome-wide
methylation was not associated with frailty status. Recently, several
DNAm-based algorithms, i.e. Hannum’s blood-specific clock19 and

Age eFRS FI-BL FI-2Y FI-5Y FI-8Y FI-11Y Age eFRS FI-BL FI-4Y FI-8Y

Age 1.000 0.443 0.267 0.305 0.335 0.365 0.398 Age 1.000 0.427 0.411 0.420 0.503

eFRS 0.443 1.000 0.247 0.294 0.293 0.297 0.232

eFRS 0.427 1.000 0.264 0.265 0.272
FI-BL 0.267 0.247 1.000 0.811 0.745 0.717 0.684

FI-BL 0.411 0.264 1.000 0.782 0.710FI-2Y 0.305 0.294 0.811 1.000 0.805 0.774 0.732

FI-4Y 0.420 0.265 0.782 1.000 0.782
FI-5Y 0.335 0.293 0.745 0.805 1.000 0.855 0.816

FI-8Y 0.503 0.272 0.710 0.782 1.000

FI-8Y 0.365 0.297 0.717 0.774 0.855 1.000 0.863

FI-11Y 0.398 0.232 0.684 0.732 0.816 0.863 1.000

a b

Fig. 1 | Spearman correlation coefficients of age, epigenetic frailty risk score
and frailty index at baseline and various follow-up times. All P-values <0.001
(two-sidedwithout adjustments). a subset III (ESTHER study);b subset IV (KORA-Age

study). eFRS epigenetic frailty risk score, FI-BL baseline frailty index, FI-2Y 2-year
follow-up frailty index, FI-4Y 4-year follow-up frailty index, FI-5Y 5-year follow-up
frailty index, FI-8Y 8-year follow-up frailty index, FI-11Y 11-year follow-up frailty index.
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CCategories of eFRS

Subset III (ESTHER study)
Baseline

Quartile 1 

Quartile 2 

Quartile 3 

Quartile 4 

Per SD of eFRS

2year followup

Quartile 1

Quartile 2 

Quartile 3

Quartile 4

Per SD of eFRS

5year followup

Quartile 1

Quartile 2  

Quartile 3

Quartile 4

Per SD of eFRS

8year followup

Quartile 1

Quartile 2 

Quartile 3

Quartile 4

Per SD of eFRS

11year followup

Quartile 1

Quartile 2 

Quartile 3

Quartile 4

Per SD of eFRS

Subset IV (KORAAge study)
Baseline

Quartile 1

Quartile 2 

Quartile 3

Quartile 4

Per SD of eFRS

4year followup

Quartile 1

Quartile 2   

Quartile 3

Quartile 4

Per SD of eFRS

8year followup

Quartile 1

Quartile 2  

Quartile 3

Quartile 4

Per SD of eFRS

n/N

7/135

12/134

24/134

39/135

82/538

15/127

20/128

27/124

45/128

107/507

13/114

21/114

36/108

41/113

111/449

22/97

29/99

32/89

41/84

124/369

21/84

21/61

24/60

26/53

92/258

32/252

44/251

59/252

73/252

208/1,007

47/220

55/198

68/192

76/161

246/771

50/160

67/143

55/104

228/585

493/585

OR (95% CI)

Reference

2.68 (0.799.14)

5.38 (1.6317.84)

7.98 (2.2728.07)

1.94 (1.312.89)

Reference

1.52 (0.623.73)

1.88 (0.774.58)

2.93 (1.137.57)

1.64 (1.152.35)

Reference

1.52 (0.633.66)

2.85 (1.216.71)

2.92 (1.127.67)

1.48 (1.072.04)

Reference

1.15 (0.532.52)

0.92 (0.402.10)

1.71 (0.694.26)

1.29 (0.911.84)

Reference

2.59 (0.986.84)

1.72 (0.624.75)

3.27 (1.0110.57)

1.34 (0.872.08)

Reference

0.86 (0.501.49)

0.86 (0.501.48)

1.11 (0.641.93)

1.15 (0.951.40)

Reference

1.04 (0.631.71)

1.18 (0.701.97)

1.89 (1.103.23)

1.29 (1.041.60)

Reference

0.80 (0.461.41)

1.12 (0.631.99)

1.58 (0.842.96)

1.15 (0.891.47)

0.40 1.0 2.0 4.0 6.0

OR (95% CI)

Fig. 2 | Associationof epigenetic frailty risk scorewithbeing frail at follow-ups.
Vertical ticks within the blue boxes and horizontal lines show the OR and 95% CI.
Models were adjusted for age, sex, leukocyte composition, batch, baseline smoking

status (never smoker, former smoker, current smoker), and alcohol consumption
(g per day). eFRS epigenetic frailty risk score, ORodds ratio, CI confidence interval,
SD standard deviation.
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GrimAge23, have been derived to estimate ‘epigenetic age’ and were
suggested to closely correlate with frailty24,25,30.

The identified frailty-related CpGs highlight several genes or
genetic regions and might promote further investigation of the bio-
logical mechanism of frailty. Glycolytic glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) contains two of the frailty-related CpGs
(cg00252813 and cg02519286) and has been found to be likely related
to the pathogeneses of amyotrophic lateral sclerosis and Huntington’s
disease31,32, various forms of cancers33, and neurodegenerative
disorders33. Three CpGs (cg01406381, cg21766592, and cg25607249)
are located at Solute Carrier Family 1 Member 5 (SLC1A5), a high-
affinity L-glutamine transporter that was highly expressed in several
cancer types34–36. The remaining CpGs and correspondent genes, such

as SARS, SCRN1, PIK3CD, RUNX1, NCAPH, HDAC4, and VAC14, were also
observed to be associated with multiple diseases. The roles of the
identified CpGs in the development and/or progression of diseases
may explain the association of eFRS with frailty.

We derived a DNAm-based algorithm for predicting frailty, mea-
sured by the FI, and this eFRS showed robust predictive performance
for frailty in a comprehensive validation chain. Of the 20 CpGs inclu-
ded in the eFRS, 8 CpGs map to intergenic regions with unknown
function, and the other 12 CpGs are annotated to genes involved in
common chronic diseases, including coronary artery disease, stroke,
type 2 diabetes mellitus, and multiple types of cancers37–40. Frailty has
been shown to be strongly associated with a broad range of adverse
health outcomes, such as worsening mobility4, falls38, fracture41, and

CCategories of eFRS
Subset V (ESTHER study)
2year followup
Quartile 1
Quartile 2 
Quartile 3
Quartile 4
Per SD of eFRS
5year followup

Quartile 1
Quartile 2  
Quartile 3
Quartile 4
Per SD of eFRS
8year followup

Quartile 1
Quartile 2 
Quartile 3
Quartile 4
Per SD of eFRS
11year followup
Quartile 1
Quartile 2 
Quartile 3
Quartile 4
Per SD of eFRS

Subset VI (KORAAge study)
4year followup
Quartile 1
Quartile 2   
Quartile 3
Quartile 4
Per SD of eFRS
8year followup
Quartile 1
Quartile 2  
Quartile 3
Quartile 4
Per SD of eFRS

n/N

11/118
12/117
8/100
17/93
48/428

10/103
15/106
18/90
17/85
60/384

17/88
21/89
18/75
25/67
81/319

17/78
17/55
13/49
19/47
66/229

26/195
31/170
32/150
39/122
128/637

27/159
34/142
41/115
34/83
136/499

OR (95% CI)

Reference
1.19 (0.512.80)
1.19 (0.492.85)
2.82 (1.196.69)
1.48 (1.012.16)

Reference
1.47 (0.583.72)
2.40 (0.946.09)
2.60 (1.106.68)
1.38 (1.011.94)

Reference
1.51 (0.554.19)
1.14 (0.383.41)
2.43 (0.767.81)
1.27 (0.881.83)

Reference
2.00 (0.735.46)
1.32 (0.463.79)
2.30 (0.687.81)
1.22 (0.781.93)

Reference
1.31 (0.772.21)
2.33 (1.234.43)
1.82 (0.913.64)
1.30 (1.001.69)

Reference
1.95 (1.023.74)
3.12 (1.347.28)
1.04 (0.462.33)
1.30 (0.951.79)

0.40 1.0 2.0 4.0 6.0

OR (95% CI)

Fig. 3 | Association of epigenetic frailty risk score with being frail among par-
ticipants who were being non-frail or pre-frail at baseline. Vertical ticks within
the blue boxes and horizontal lines show the OR and 95%CI. Models were adjusted
for age, sex, leukocyte composition, batch, baseline smoking status (never smoker,

former smoker, current smoker), and alcohol consumption (g per day). eFRS epi-
genetic frailty risk score, OR odds ratio, CI confidence interval, SD standard
deviation.
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mortality42. The shared linkage with morbidity may therefore explain
the association between eFRS and frailty.Moreover, the associations of
12 CpGs and common chronic diseases also support the potential
capacity of eFRS for predicting adversehealth outcomes and even fatal
outcomes. Given that frailty may potentially be preventable up to
somepossible point of no return, the potential predictive performance
of eFRS might be helpful for designing, implementing, and evaluating
interventions aimed to prevent or slow down the development of
frailty.

Several accurate composite algorithms of chronological age or
lifespan have been built based on DNAm, including the Mortality Risk
Score (MRscore) by Zhang et al.21, PhenoAge by Levine et al.22, and
GrimAge by Lu et al.23. These DNAm-based algorithms were demon-
strated to be robust predictors of mortality, lifespan, and
healthspan21–23. In our study, a high correlation between eFRS and
GrimAge was observed. Such correlation is not unexpected given that

GrimAge includes DNAm-based surrogate biomarkers for health-
related plasma proteins and smoking pack-years23 and the majority
of the CpGs used to construct eFRS are annotated to health-related
conditions. When comparing CpGs included in eFRS and these aging
algorithms, threeoverlappedwithGrimAge (cg02867102, cg07312601,
and cg11700584). Moreover, cg02867102 and cg11700584 were sig-
nificant signals in previous EWASs on smoking and aging43–45, which
points to the major role of smoking in adverse health outcomes in old
age including frailty.

The current study has several strengths including the large-scale
random samples from the general population, the long-term follow-up
with repeated measurements of frailty at multiple points of time dur-
ing follow-up, and replication in a completely independent cohort.
However, it is also necessary to consider the limitations of the present
study when interpreting the results. First, the deficits for the mea-
surement of FI were self-reported which might have led to potential
reporting bias. However, in the ESTHER cohort, self-reported diseases
which account for a large share of the self-reported deficits were found
to be in high agreement with medical records in careful validation
steps carried out at each follow-up. Second, the recruitment of the
participants was conducted during a voluntary health check-up.
Therefore, the participants of the ESTHER cohort might not be a fully
representative sample of the general population. Nevertheless, the
prevalence of risk factors and chronic diseases has been found to be
comparable to those observed in the corresponding age range in a
representative health survey from Germany which took place at the
same time as ESTHER baseline recruitment did46. Third, in the dis-
covery phase, only the CpGs included in both the 450K and EPIC array
were included in the EWAS. Potential frailty-related CpGs exclusively
covered by the EPIC array might have been missed.

In conclusion, in this EWAS on frailty conducted in a large
population-based cohort, we identified 65 frailty-related CpGs and
derived an epigenetic algorithm of frailty based on 20 CpGs. The
DNAm-based eFRS was demonstrated to be strongly associated
with long-term frailty and validated both internally in an inde-
pendent subset and in an external population-based cohort. Fur-
ther studies should investigate the associations of eFRS with
additional health outcomes and its potential use for earlier
detection of frailty risk and designing, monitoring, and evaluating
prevention measures.

Methods
Study population and study design
The epigenome-wide association study (EWAS), including derivation
and internal validation, is based on the ESTHER study, an ongoing
prospective, population-based cohort study of older adults conducted
in the federal state of Saarland, Germany. Details of the study design
and population have been reported previously21,47. Briefly, men and
women aged 50–75 undergoing a general health check-up in Saarland,
a small federal state in southwestern Germany, from 2000 to 2002
were eligible for participation. At the time of recruitment, these gen-
eral health exams were routinely offered every 2 years to people aged
35 years and older by their general practitioners (GPs). Overall, 9940
adults aged 50–75 yearswere recruited by their GPs andwere followed
by participant and GP questionnaires after 2, 5, 8, and 11 years During
baseline enrollment and each follow-up, standardized questionnaires
for participants and their GPs were used to collect extensive basic data
on sociodemographic characteristics, risk factors, lifestyle factors, and
medical history. Moreover, whole blood samples were collected at
baseline from which DNA was extracted. The ESTHER cohort was
found to be representative of the older German population with
respect to major sociodemographic, lifestyle, and medical
characteristics46.

Three subsets were randomly selected in three different rounds of
methylation analysis from the ESTHER cohort for epigenome-wide

Table 3 | AUC (95% CI) of chronological age, sex, and epige-
netic frailty risk score in prediction of being frail at baseline
and each follow-up

Categories AUC (95% CI) P a

Subset III (ESTHER study)

F-BL

Age, sex 0.629 (0.566–0.692)

eFRS 0.702 (0.641–0.763)

Age, sex, eFRS 0.711 (0.652–0.770) 0.01

F-2Y

Age, sex 0.644 (0.584–0.704)

eFRS 0.666 (0.607–0.724)

Age, sex, eFRS 0.682 (0.625–0.739) 0.07

F-5Y

Age, sex 0.650 (0.591–0.708)

eFRS 0.658 (0.602–0.714)

Age, sex, eFRS 0.680 (0.624–0.736) 0.04

F-8Y

Age, sex 0.661 (0.601–0.720)

eFRS 0.631 (0.571–0.691)

Age, sex, eFRS 0.671 (0.613–0.729) 0.31

F-11Y

Age, sex 0.689 (0.621–0.756)

eFRS 0.595 (0.522–0.668)

Age, sex, eFRS 0.691 (0.624–0.758) 0.38

Subset IV (KORA-Age study)

F-BL

Age, sex 0.741 (0.702–0.780)

eFRS 0.620 (0.579–0.662)

Age, sex, eFRS 0.745 (0.706–0.784) 0.23

F-4Y

Age, sex 0.715 (0.676–0.755)

eFRS 0.630 (0.588–0.672)

Age, sex, eFRS 0.720 (0.681–0.760) 0.03

F-8Y

Age, sex 0.759 (0.717–0.801)

eFRS 0.638 (0.592–0.685)

Age, sex, eFRS 0.763 (0.721–0.804) 0.44

AUC area under the curve, eFRS epigenetic frailty risk score, F-BL baseline frailty status, F-2Y
2-year follow-up frailty status, F-5Y 5-year follow-up frailty status, F-8Y 8-year follow-up frailty
status, F-11Y 11-year follow-up frailty status.
aP-value for adding eFRS to the model containing age and sex (two-sided P-value with
adjustments).
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DNA methylation data measurements. Subsets I and II included 998
and 741 randomly selected subjects for whom DNAm measurements
were performed in August 2018 and July 2019 for various projects47,48.
Subset III has a nested case-control design for mortality-related
methylation signatures and 548 participants were randomly selected
as the subcohort irrespective of death status21. Subset I was used as a
discovery panel in the epigenome-wide screening for CpG sites related
to frailty at baseline. Subset II wasutilized as thefirst internal validation
panel to further select CpG sites to construct a methylation-based
epigenetic frailty risk score (eFRS). The associations of eFRS with FI at
baseline and during 11 years of follow-up were further validated in
subset III.

Replication in an independent cohort was performed in the
KORA-Age study, a population-based cohort study conducted in the
region of Augsburg, Southern Germany, whose study population and
design have been described in detail previously49. In 2008 and 2009,
4123 participants aged ≥65 years from four population representative
surveys conducted between 1984 and 2001 were enrolled and com-
pleted the baseline assessments. Then, an age- and sex-stratified
random sub-sample (n = 1079) additionally completed medical
examinations and was followed up in 2012 and 2016. Methylation
data were available for 1010 participants from this random sub-
samples (subset IV in the current analysis). The baseline, 4- and 8-year
follow-up data of these 1010 participants were used to validate the
associations of eFRS with FI in an independent cohort.

The ESTHER study was approved by the ethics committees of the
medical faculty of Heidelberg University and of the medical board of
the state of Saarland. The KORA-Age study was approved by the Ethics
Committee of the Bavarian Medical Association (EK No. 08064). All
ESTHER and KORA-Age participants provided written informed
consent.

DNA methylation assessment
DNAm profiles of subsets I and II from ESTHER, and subset IV from
KORA-Agewere assessedwith the InfiniumMethylation EPIC BeadChip
kit (EPIC, Illumina, Inc., San Diego, CA, USA), and DNAm profiles of
subset III from ESTHER were determined with the earlier introduced
Infinium Human Methylation450K BeadChip Assay (450K, Illumina,
Inc., San Diego, CA, USA). Details of the methylation analysis in the
ESTHER study have been reported previously48. Genome-wide DNAm
profilingwas conducted by theGenomics and ProteomicsCore Facility
of the German Cancer Research Center according to the manu-
facturer’s protocol. In data pre-processing, signals of probes with
detectionP-value > 0.01,missing values >10%, andprobes targeting the
X and Y chromosomes were excluded. Only the CpGs that are covered
by both the 450K array and EPIC array were included in the EWAS. In
the KORA-Age study, data quality control and pre-processing were
conducted following the CPACOR pipeline50. Probes with detection P-
value > 0.01 and missing values >5% were removed. Quantile normal-
ization was then performed following a coherent approach as descri-
bedby Lehne et al.50. In addition, leukocyte compositionwasestimated
in ESTHER andKORA-Age using the algorithms of Houseman et al.51 for
adjustment.

Frailty assessment
Following a standard procedure26,52, frailty in ESTHER and KORA-Age
was assessed using a frailty index (FI), which is defined as the pro-
portion of presented deficits of a predefined list of all deficits. As
previously described, 31 and 33 deficits were selected for the assess-
ment of FI in ESTHER48 and KORA-Age53, respectively. The lists of
deficits used todefine the FI in ESTHER andKORA-Age arepresented in
Supplementary Tables 5 and 6, respectively. Distributions of FI and
proportions of the status of deficits included in the FI calculation at
baseline and each follow-up in ESTHER are shown in Supplementary
Fig. 6 and Supplementary Data 4, respectively. With reference to

previous studies13,54, participants were deemed frail if their FI was
≥0.250, pre-frail if their FI was >0.100 and <0.250, and non-frail if their
FI was ≤0.100.

Three-phase procedure to construct eFRS
The DNAm-based eFRS was developed using a three-phase process. A
flowchart of the three-phase procedure is presented in Fig. 4. In the
discovery phase, an epigenome-wide screening for frailty-relatedCpGs
was carried out in subset I with baseline FI as a dependent variable
using linear mixed regression models. The linear mixed regression
models included methylation β-values as explanatory variables and
adjustment for leukocyte composition as a fixed effect and batch as a
random effect. After correcting for multiple testing using the
Benjamini–Hochberg method55, CpGs that reached genome-wide sig-
nificance [false discovery rate (FDR) < 0.05] were validated in subset II.
Similar to the discovery phase, linear mixed regression models were
conducted with baseline FI as the dependent variable and additionally
adjusted for age and sex. Again, CpGs with FDRs <0.05 were selected
and were deemed as frailty-related loci. Then, we applied LASSO
regression with a regularization parameter chosen by ten-fold cross-
validation following the ‘one standard error’ rule to select candidates
among identified CpGs and construct eFRS.

Functional annotation of sets of CpGs
Frailty-related CpGs were annotated to genes with the informa-
tion provided in the Illumina manifest file (http://emea.support.
illumina.com/array/array_kits/infinium-methylationepic-beadchip-
kit/downloads.html#), which is based on the University of Cali-
fornia Santa Cruz (UCSC) and RefGene. To analyze the underlying
roles of these genes, we used the Metascape online tool (https://
metascape.org)56 to perform Gene Ontology (GO) analysis, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, and protein-protein interaction (PPI) network. Kappa
scores were used as the similarity metric when performing hier-
archical clustering on the enriched terms and sub-trees with a
similarity of >0.3 were considered a cluster. In order to link
genetic variants to variations of CpGs included in eFRS, methy-
lation quantitative trait loci (mQTL) analysis was applied for the
preliminary association analysis of single nucleotide polymorph-
ism (SNP) sites with CpG sites. SNP-DNAm site pairs with a max-
imum distance of 1 Mb were tested. The analysis of mQTL was
performed using the online tool mQTLdb (http://www.
mqtldb.org)57.

Statistical analysis
Linear mixed regression and LASSO regression were performed to
identify frailty-related CpGs and the eFRS in subsets I and II as
aforementioned. The correlations of chronological age, eFRS, and
FI at baseline and various follow-ups were assessed using Spear-
man correlation coefficients in subset III and subset IV. We also
evaluated the correlation of eFRS and DNAm-based algorithms of
aging in subset III, the AccAgeGrim (GrimAge age acceleration)23.
The associations of eFRS with FI at baseline and various follow-
ups were assessed in the two validation subsets by two linear
mixed regression models that included age, sex, and leukocyte
proportions as fixed effects, and batch as random effects
(model 1). In further analyses, smoking status (never smoker,
former smoker, current smoker) and alcohol consumption (grams
per day) were additionally included as fixed effects (model 2). By
categorizing baseline and various follow-up frailty statuses into
two groups (non-frail versus pre-frail and frail; and non-frail and
pre-frail versus frail), the associations were also estimated using a
logistic regression model adjusting for all variables in model 2. In
addition to logistic regression models including eFRS as a con-
tinuous variable, we also categorized eFRS according to quartiles
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and run logistic regression models including eFRS as a categorical
variable. FDR was also applied for multiple comparisons among
results at baseline and various follow-ups and P < 0.05 was con-
sidered statistical significance after multiple testing.

To assess potential additional variance from passive smoking, we
conducted sensitivity analyses with additional logistic regression
models that controlled for smoking status using a DNAm-based proxy
(the Maas 13-CpGs model)58 rather than self-reported smoking status.
Next, we assessed the association of AccAgeGrim with FI at baseline
and various follow-ups.

Furthermore, we conducted subgroup analyses for the associa-
tions of the eFRS with frailty in which only non-frail participants at
baseline were included for the outcome being pre-frail or frail, and
only non-frail or pre-frail participants at baseline were included for the
outcome being frail using model 2 for adjustment as described above.

We also systematically screened PubMed for previously reported
CpGs associated with frailty and assessed the associations of these
CpGs with frailty by linear-mixed regression models using model 2 for
adjustment as described above.

The LASSO regression analyses were conducted using R pro-
gramming (R Foundation of Statistical Computing, Vienna, Austria,
version 4.0.1) package ‘glmnet (version 4.1-4)’59. All the other statistical
analyses in the ESTHER studywere carried out inSAS9.4 (SAS Institute,
Cary, NC) and the analyses in the KORA-age studywere conducted in R
(version 4.0.1).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are available
within the article and its supplementary information files. Due to
ethical and legal restrictions, individual-level data of the two cohorts
(ESTHER and KORA-age) cannot be made publicly available. Data are
available upon request to X.Li (li.xiangwei@foxmail.com) and are
subject to local rules and regulations. This includes submitting a pro-
posal to the management team, where upon approval, analysis needs
to be done on a local server with protected access, complying with
General Data Protection Regulation. Requests will be responded to in
60 working days. Annotations of genes of frailty-related CpGs were
downloaded from http://emea.support.illumina.com/array/array_kits/
infinium-methylationepic-beadchip-kit/downloads.html#. The under-
lying roles of these genes are available at https://metascape.org56.
Results of mQTL were downloaded from the online tool mQTLdb
(http://www.mqtldb.org)57. The original files generated from the three
websites have been deposited at https://figshare.com/articles/dataset/
mQTLdb_Metascape_Annotations/20468985.

Code availability
SAS codes for statistical analysis are available upon request.

Step 1. Discovery panel 
• Data: baseline data of ESTHER study;
• Study population: random samples (subset I, n=998) from ESTHER study;
• CpGs for EWAS: CpGs that overlapped in 450k and EPIC chips, n=422, 524 CpGs (after data pre-processing);
• EWAS: an epigenome-wide screening for frailty related CpGs was carried using linear mixed regression

[adjusted for batch (random effect) and leukocyte composition (fixed effect)];
• Results: 2220 CpGs were identified (FDR < 0.05).

Step 2. Validation panel 
• Data: baseline data of ESTHER study;
• Study population: random samples (subset II, n=730) from ESTHER study;
• Validation: 2220 CpGs identified from step 1 were included using linear mixed regression [adjusted for age, sex,

leukocyte composition, and batch (random effect)];
• Results: 65 CpGs were deemed as frailty-related CpGs (FDR<0.05).

Step 3. epigenetic frailty risk score construction
• Data: baseline data of ESTHER study;
• Construction: LASSO regression with regularization parameter chosen by ten-fold cross-validation following the

‘one standard error’ rule to select CpGs for frailty risk score;
• Results: 20 CpGs were selected;
• epigenetic frailty risk score = 0.204-0.209 cg00921350-0.100 cg01234420-0.016 cg02867102-

0.293 cg03725309-0.146 cg04955914-
0.084 cg07312601+0.158 cg07349348+0.137 cg08463758+0.248 cg10408430-0.101 cg11700584-
0.049 cg12510708+0.064 cg13570972-0.057 cg15058210-0.180 cg15380836-
0.144 cg17860366+0.315 cg17971578-0.075 cg18791730-0.176 cg19267254-0.025 cg21656937-
0.077 cg23458887.

Step 4. Further validation
Replication in ESTHER study
• Data: baseline, 2-year, 5-year, 8-year, and 11-year follow-up data
• Study population: random samples (subset III, n=538) from ESTHER study;
Replication in an independent cohort: the KORA-Age study
• Data: baseline, 4-year, and 8-year follow-up data
• Study population: random samples (subset IV, n=1010) from KORA-Age study.

Fig. 4 | Study design and analysis flowchart. FDR false discovery rate, EWAS epigenome-wide association study.
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