
Bachelor Thesis

Domain transfer across country, time and modality in

multiclass-classification of political texts

Author

Nadja Sauter

Supervisor

Dr. Matthias Aßenmacher
Prof. Dr. Christian Heumann

Department of Statistics

Ludwig Maximilian University of Munich

Munich, 25th of October 2022

Abstract

Natural language processing (NLP) is a research field of Artificial Intelligence that ex-
plores how computers can achieve human-like language understanding. Due to the in-
creased interaction between computers and human language (e.g. Google Search), this
research area has become more and more important in the last twenty years. One com-
mon NLP task is text classification. In the scope of this thesis, four different supervised
learning approaches are investigated to classify political texts into eight categories. The
models TF-IDF + Logistic regression, Word2Vec + Long Short Term Memory Net-
works, Doc2Vec + Logistic regression and BERT are compared on two labeled data
sets. Firstly, manifestos from political parties are used to train and evaluate the mod-
els (within-domain classification). Secondly, the modality of the data is changed from
written text to verbal speeches of New Zealand politicians, which are then classified by
the already fitted models into the eight categories (cross-domain classification). BERT
achieves the best evaluation scores on both data sets and is used for further experiments
across time and country. The results of the additional analysis show that BERT can be
applied on future data with similar performance. Moreover, there seem to be differences
between the manifestos of different countries of origin.

Contents

List of Figures I

List of Tables III

List of Abbreviations V

1. Introduction 1

2. Related work and data 3
2.1. Original paper and data . 3
2.2. Data extraction from Manifesto Project 4

3. Methodology 6
3.1. Classification . 6

3.1.1. Within-domain and cross-domain classification 6
3.1.2. Logistic regression . 7
3.1.3. Evaluation metrics for classification 8

3.2. Neural network . 9
3.2.1. Feedforward neural network . 10
3.2.2. Recurrent neural network . 12
3.2.3. Transformer . 15

3.3. Feature engineering in NLP . 17
3.3.1. TF-IDF . 17
3.3.2. Word2Vec . 19
3.3.3. Doc2Vec . 21

3.4. BERT . 22

4. Implementation of NLP models 25
4.1. Pre-processing . 26
4.2. Training and evaluation of the different models 28

4.3. Comparison of models . 34
4.4. Further experiments across time and countries 36

4.4.1. Test-train split across time . 36
4.4.2. Test-train split across countries 36

5. Limitations and discussion 39

6. Conclusion 41

A. Pre-processing details 42

B. Word clouds 43

C. Further detailed evaluation results of models 45
C.1. Exploratory analysis of Word2Vec . 45
C.2. Evaluation of BERT per category . 46
C.3. Confusion matrices of models . 47

D. Further analysis per country of origin 51

References 52

List of Figures

2.1. Distribution of the eight categories for the different data sets. The
legend includes detailed descriptions of the four data sets. It can be
distinguished between the two extracted data sets and the two data
sets from the paper (Osnabrügge et al., 2021). 5

3.1. Simple Feedforward Neural Network with two hidden layers (Goyal
et al., 2018) . 10

3.2. RNN in rolled and unrolled illustration (Olah, 2015) 12
3.3. Architecture of a LSTM (Goyal et al., 2018) 13
3.4. Architecture of the transformer (Vaswani et al., 2017) 15
3.5. Illustration of scaled dot-product attention (left) and multi-head at-

tention (right) (Vaswani et al., 2017). 16
3.6. Architecture of CBOW and Skip-gram (Mikolov et al., 2013a). 20
3.7. Architectures of Doc2Vec (Le and Mikolov, 2014). 21
3.8. Input representation of BERT (Devlin et al., 2018). 24

4.1. Overview of different implemented models. 25
4.2. Word count per text example of source (left) and target corpus (right)

for the raw and pre-processed data. Note that the counts are the same
for all three pre-processed data sets. 27

4.3. Word clouds for the topic "external relations" of the source (a) and
target corpus (b). 27

4.4. General structure of the applied neural network of the model Word2Vec
+ LSTM. 30

4.5. Exemplary sentence processing where the last row represents the input
for the Long Short Term Memory Networks (LSTM). 31

4.6. F1 scores per category of DistilBERT for the test and the target
data. Detailed information with category sizes are given in Table C.3
in the appendix. 35

I

4.7. Accuracy and F1 (macro) of DistilBERT for the random test split
evaluated per country (result of one fitted model) and test split by
country (result of seven fitted models). 37

4.8. Distribution of the countries of origin of the random test split (left)
and the whole data set (right). The latter depicts the size of the test
set for each test split per country. 38

B.1. Word cloud per category of the source corpus. 43
B.2. Word cloud per category of the target corpus. 44

C.1. Confusion matrices of TF-IDF + LR model for test (above) and target
data (below). 47

C.2. Confusion matrices of Word2Vec + LSTM model for test (above) and
target data (below). 48

C.3. Confusion matrices of Doc2Vec + LSTM model for test (above) and
target data (below). 49

C.4. Confusion matrices of DistilBERT for test (above) and target data
(below). 50

D.1. Distribution of "no topic" category per country of origin of the ex-
tracted source data (version 2018). Canada and South Africa are not
depicted as Canada does not have any "no topic" examples and South
Africa has only one. 51

List of Tables

4.2. Evaluation of TF-IDF + LR model on basic cleaned test and target
data compared to results of the original paper (Osnabrügge et al., 2021). 29

4.3. Exploratory analysis of different architectures evaluated on the val-
idation set. The word embeddings are created with Skip-gram and
a vector size of 100. The first layer is always an embedding layer,
followed by the additional layers described in the table and a last
softmax layer for classification (see illustration 4.4). 32

4.4. Evaluation of Word2Vec + LSTM model on basic cleaned test and
target data. 32

4.5. Evaluation of Doc2Vec + LR model on basic cleaned test and target
data. 33

4.7. Evaluation of fine-tuned BERTBASE and DistilBERT on test and
target data . 33

4.8. Comparison of different models on test (top) and target data (bottom)
ordered by decreasing performance. 34

4.9. Evaluation of DistilBERT on future data compared to results of
previous test set. 36

4.10. Difference in accuracy and the F1 score (macro) between the the two
splitting procedures (see Figure 4.7). The values are ordered increas-
ingly by the accuracy difference. 38

A.1. Unique tokens as vocabulary of each pre-processed data set compared
to raw text. 42

A.2. Maximum and median of the word count per text example of the raw
data and all three pre-processed data sets. 42

C.1. Exploratory analysis of different architecture on validation set. The
word embeddings are created with CBOW and a vector size of 100. . 45

III

C.2. Exploratory analysis of different architecture on validation set. The
word embeddings are created with Skip Gram and a vector size of 300. 45

C.3. F1 scores per category for DistilBERT for test and target data. . . 46

List of Abbreviations

NLP Natural Language Processing
LR logistic regression
NN neural network
FNN Feedforward Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory Networks
Bi-LSTM Bidirectional Long Short Term Memory Network
TF-IDF term frequency - inverse document frequency
CBOW Continuous Bag-of-Words
PV-DM Distributed Memory version of Paragraph Vector
PV-DBOW Distributed Bag of Words version of Paragraph Vector
BERT Bidirectional Encoder Representations from Transformers
MLM masked language modelling
NSP next sentence prediction
UK United Kingdom
USA United States
GPU graphical processing units

V

1. Introduction

In most parliamentary democracies every time before an election a political party pub-
lishes their party manifesto. This program summarizes the policy priorities for the period
following the election and works as a guide for voters (Suiter and Farrell, 2011). Addi-
tionally, the content of the manifestos forms the foundation for the government coalition
process as it summarizes the political goals of each party. Analyzing these texts can be
very interesting from a political science perspective. For instance, Janda et al. (1995)
investigate the common assumption that political parties often try to change their im-
ages following a poor election result. Other researchers examine if parties learn from
foreign successful parties (Böhmelt et al., 2016). Tavits and Letki (2009) and Tsebelis
(1999) also investigate different interesting research questions based on political mani-
festos. Thereby, they use amongst others the database of the Manifesto Project1, which
received the American Political Science Association award (APSA) for the best data set
in comparative politics. It covers programs of over 1000 parties from 1945 until today
in over 50 countries on five continents (Lehmann, 2022). The database provides access
to all these texts and even an additional content analysis. Coders from over 50 different
countries split the documents in quasi-sentences and classified each in a coding scheme
of 54 categories, which were further summarized in eight topics. The hand-annotation
is very time intensive and requires training of the human coders to ensure reliability.

In the age of artificial intelligence, this thesis explores how Natural Language Processing
(NLP) can be used to classify the quasi-sentences of the English-language manifestos of
seven chosen countries into the eight topics of the Manifesto coding scheme. Therefore,
different NLP methods, namely TF-IDF, Word2Vec, Doc2Vec and BERT, are used to
process and subsequently classify the text data. In the following, the related work,
data and underlying theory are introduced. Apart from elaborating the different NLP
models in detail, classification and neural networks are explained as well, including
the two applied models multinomial logistic regression and Long Short Term Memory

1https://manifesto-project.wzb.eu/information/documents/manifestoR

1

https://manifesto-project.wzb.eu/information/documents/manifestoR

networks. After setting the theoretical foundation, the explained models are fitted on
the Manifesto Project corpus. The predictive performance of each model is compared
based on the classification of the manifestos and across domains on an external data set
consisting of political speeches. Finally, the best model is used for further experiments
across time and country.

2

2. Related work and data

This thesis comprises two main research goals. Firstly, four different methods are com-
pared with regard to within-domain and cross-domain classification of political texts. A
detailed explanation of the two kinds of classification follows in Section 3.1.1. A model
suggested by Osnabrügge et al. (2021) is used as a starting point. Secondly, the best
model is used for further experiments across time and country. For the analysis of the
two research questions different data sets are used, which are explained in the following.

2.1. Original paper and data

This work is based on the paper "Cross-Domain Topic Classification for Political Texts"
(Osnabrügge et al., 2021) which uses a supervised learning approach for the classifica-
tion of political manifestos and speeches. The data and the code of their analysis can
be found online on Code Ocean 1. For their analysis, two labeled text data sets are used
with the eight labels "freedom and democracy", "fabric of society", "economy", "polit-
ical system", "welfare and quality of life", "social groups", "external relations" and "no
topic". The first data set, the source corpus (NS = 115,410), consists of English-language
manifestos annotated by the Manifesto Project from 1984 until 2018 from the following
seven countries: Australia, Canada, Ireland, New Zealand, South Africa, the United
Kingdom (UK) and the United States (USA) (Krause et al., 2018). Each document
is split into quasi-sentences and then categorized by a trained coder of the Manifesto
Project. One quasi-sentence mostly equals one sentence. However, some long sentences
contain several statements and for this reason are split into multiple quasi-sentences.
The source data set is used for training and the within-classification. The second data
set, the target corpus (NT = 4,165), consists of English speeches delivered by members
of the New Zealand Parliament from 1987 to 2002. Osnabrügge et al. (2021) extracted
the speeches from the official record of the New Zealand Parliament, the Hansard, and
hand annotated 4,165. This data is used for the cross-domain classification.

1https://codeocean.com/capsule/0078777/tree/v1

3

https://codeocean.com/capsule/0078777/tree/v1

In the paper, a classifier is trained on the Manifesto Project corpus to learn the eight
topics of the coding scheme. Additionally, the authors create an own coding scheme
with 44 topics. For text processing, they use the scikit-learn implementation of the TF-
IDF vectorizer (Pedregosa et al., 2011) and then train a multinomial logistic regression
classifier for the 8 and 44 topics respectively. After the hyperparameter tuning of the
logistic regression with Grid Search, they use this classifier on the the held-out set of the
manifestos and additionally apply it on the speeches. The classifier achieves an accuracy
of 0.641 on the test set of the source corpus and an accuracy of 0.507 on the speeches
for the eight topics, showing that cross-domain classification is a reasonable approach.
The recall per category varies per topic. For instance, the category "no topic" is mostly
misclassified, whereas "welfare and quality of life" has within and across domains the
highest recall. To illustrate the usefulness of their method, they apply it to two empirical
use cases to investigate how electoral reforms and the gender of parliamentarians affect
the topics of the speeches.

The first research goal of this thesis, which compares the different modelling approaches,
uses the two data sets provided by the introduced paper. The TF-IDF classifier of the
paper is reproduced with minor changes and then compared to the other models (see
Subsection 4.2). The goal is to investigate if another method can classify the text better
than the approach of Osnabrügge et al. (2021).

2.2. Data extraction from Manifesto Project

For further experiments across time and country, the manifestos are extracted indepen-
dently via the R-package manifestoR from the Manifesto Project, including additional
information about the publishing year and country of origin. This information is not
given in the source data set of the paper. The same corpus version (2018-2) of the pa-
per, including data until 2018, and the updated version (2021-1) until the year 2021 are
extracted, resulting in N2018 = 114,523 and N2021 = 151,807 observations respectively.
Thereby, a difference of 887 text examples between the 2018 version of the paper (NS =
115,410) and the manually generated data set (N2018 = 114,523) can be observed, which
is probably due to changes in the database of the Manifesto Project.

In total, four different data sets are used for the different research questions. Figure

4

2.1 shows the distribution of the eight categories for each data set. All versions of the
source corpus follow the same distribution with the categories "welfare and quality of
life" and "economy" representing together about 57% of the data. On the other hand,
the most common class of the target corpus is "political system" with a portion of 26%
followed by "welfare and quality of life" with 19%. Thus, the frequency per category
between the target and source corpus is different. Overall, one can see that the classes
are imbalanced in all data sets.

Figure 2.1.: Distribution of the eight categories for the different data sets. The legend
includes detailed descriptions of the four data sets. It can be distinguished
between the two extracted data sets and the two data sets from the paper
(Osnabrügge et al., 2021).

5

3. Methodology

This chapter introduces the methodological background for the following application of
political text classification. Firstly, some fundamental knowledge about classification
and neural networks is explained. Afterwards the methods TF-IDF, Word2Vec and
Doc2Vec are presented for feature engineering in NLP. These methods are applied later
to create numeric representations of the text as input for the classifier. Lastly, the theory
behind the state-of-the-art NLP model BERT is elaborated.

3.1. Classification

In classification tasks, data is categorized into different groups by supervised or unsuper-
vised learning (Solomon and Breckon, 2011). The latter approach is used for unlabeled
data, whereas supervised learning is applied in case of labeled data. Since every text
example is assigned to exactly one category in the data of the implementation (see Sec-
tion 2), supervised learning is utilized for the multi-class text classification task. It can
be further distinguished between within-domain and cross-domain classification, which
is explained in the following. Moreover, the theory about the common classifier logistic
regression is elaborated and later applied in the experiments. In order to evaluate the
results of a classifier, different evaluation metrics are introduced.

3.1.1. Within-domain and cross-domain classification

In within-domain classification, the model is tested on data from the same origin as the
training data. On the other hand, in cross-domain classification, data is classified which
is similar to the training data, but from a different source (Burscher et al., 2015). In
the following experiments, the different models are trained on the source corpus, which
consists of the political party manifestos. Using the trained model on a held-out-set
of the source corpus is within-domain classification, whereas classifying the speeches of
the target corpus is cross-domain classification. While the speeches are also of political

6

context, the modality differs between verbal and written. Thus, the model is used across
domains, which can also be seen as a form of transfer learning. Instead of retraining
a new model from scratch, it is possible to reuse an already existing one, which saves
time and effort. Frequently, the labels of the target corpus are not given in the data
set. As obtaining this additional information can be time and resource intensive or
even impossible, it is often suitable to apply cross-domain classification. To achieve
good performance across domains, the data sets need to be similar enough, so that the
classifier can identify patterns in the target data which it learned on the source corpus.
In order to measure the success of the transfer across domains, the target corpus was
labeled by Osnabrügge et al. (2021) for the following experiments. This is mostly not
given in practice and rather for research purposes here.

3.1.2. Logistic regression

One of the most popular classifiers is logistic regression (LR), which predicts the prob-
abilities of a binary, dependent variable y, given a set of independent variables x ∈ Rn

(Fahrmeir et al., 2021). Following the notation of the scikit-learn documentation of the
binary LR with y ∈ {0, 1}, P (yi = 1 | Xi) is predicted as

p̂ (Xi) = expit (Xiw + w0) =
1

1 + exp (−Xiw − w0)
(3.1)

with w ∈ Rn as weight vector (Pedregosa et al., 2011). LR minimizes the following cost
function

min
w

C
n∑

i=1

(−yi log (p̂ (Xi))− (1− yi) log (1− p̂ (Xi))) + r(w) (3.2)

where r(w) represents the regularization term and C ∈ R+ is the inverse of the reg-
ularization strength. It is common to use regularization to prevent overfitting and to
handle high dimensional data better (Wang et al., 2008). A widely used approach is L2-
regularization, which is also referred to as Ridge regression with r(w) = 1

2
∥w∥22 = 1

2
wTw

(Fahrmeir et al., 2021).

Extending the binary case to a K-class classification problem with yi ∈ 1, . . . , K, the
estimated class probabilities P (yi = k | Xi) can be formulized as

p̂k (Xi) =
exp (XiWk +W0,k)∑K−1
l=0 exp (XiWl +W0,l)

(3.3)

7

with W as a matrix of coefficients (Pedregosa et al., 2011). The regularized objective
function for the optimization becomes

min
W

−C

n∑
i=1

K−1∑
k=0

[yi = k] log (p̂k (Xi)) + r(W) (3.4)

where [yi = k] represents the Iverson bracket which evaluates to 0 if the statement is false
and to 1 otherwise. The minimization of the LR objective can be solved with several
optimization algorithms such as SAGA (Defazio et al., 2014) or Newton-CG algorithm
(Royer et al., 2020). Moreover, LR is part of the generalized linear models and also called
the Maximum Entropy model (ME) in the Natural Language Processing field (Solomon
and Breckon, 2011; Dobson and Barnett, 2018).

3.1.3. Evaluation metrics for classification

In order to assess the performance of a classifier, some measurement needs to be defined,
which is also known as evaluation metric. The most intuitive one is accuracy which
determines how often the model predicts the correct label.

Accuracy =
Number of correct predictions

Number of observations
(3.5)

However, this form of measurement does not consider if a lot of observations are mis-
classified in a special way, so that there are a many false negatives or false positives.
Therefore, other measurements such as recall and precision should be considered. Recall
describes the proportion of correctly identified positives, whereas precision quantifies
what proportion of positive identifications is actually correct (Xiao and Sun, 2021):

Recall =
TP

TP + FN
Precision =

TP

TP + FP
(3.6)

with TP = True Positives, FP = False Positives and FN = False Negatives. The F1
score takes both precision and recall into account (Xiao and Sun, 2021).

F1 =
2 · Precision · Recall

Precision + Recall
(3.7)

In order to calculate the F1 score in multi-class classification, the way of aggregating the
F1 scores per class needs to be defined. The micro F1 takes the global number of TP,
FN and FP into account and is equal to accuracy in the multi-class case. The weighted

8

F1 calculates the individual F1 scores per class and takes the weighted sum, where the
weight w depends on the number of observations per class (Pedregosa et al., 2011).

w1F1class 1 + w2F1class 2 + · · ·+ wKF1class K with K = number of classes (3.8)

In this way, the weighted F1 favours the majority class. In comparison, the macro F1
does not use any weights, resulting in a bigger penalisation for the misclassification of
minority classes (Xiao and Sun, 2021):

1

K
(F1class 1 + F1class 2 + · · ·+ F1class K) (3.9)

Overall, evaluation scores summarize the performance of a model into one measure,
focusing on different kinds of misclassifications. In order to get more details about the
wrong predictions per class, a confusion matrix can be very helpful. This is a K × K

matrix comparing the true labels of each observation with the predictions of the model.

3.2. Neural network

A neural network (NN) is a computing system inspired by the functioning of the human
brain. The working units of the brain are neurons, which are connected to each other and
transmit information over electrical impulses when some threshold is exceeded. The first
artificial, single neuron model, also called perceptron, was developed by Frank Rosen-
blatt (1958). The idea was further developed to multi-neuron networks, but research in
this area stagnated in the 1960s due to the lack of computational power to train these
complex models. This changed in recent decades with the advent of cloud computing
and graphical processing units (GPU), which made it possible to train neural networks
efficiently and fast. Another beneficial development is that larger and larger data sets are
available nowadays which is important for the training procedure as well. Today, neural
networks are a state-of-the-art supervised learning method for many tasks. The fun-
damental architecture is the so-called Feedforward Neural Network (FNN) (see Section
3.2.1). Another common form is the Recurrent Neural Network (RNN) for sequential
data (see Section 3.2.2) or Convolutional Neural Networks which are especially used in
Computer Vision.

9

3.2.1. Feedforward neural network

A FNN consists of three parts: The input layer takes the data and passes it through
an arbitrary number of so-called hidden layers to the final output in the last layer. The
information only flows in one direction from the input to the output layer, explaining the
term feedforward. In Figure 3.1 the circles represent the neurons which are connected
to each other, controlling the influence of the previous layer by weighting their input
and transforming it with a non-linear function. The illustration shows a fully connected
FNN as all neurons are connected to every neuron in the previous layer. Here, the input
is a vector x = (x1, x2, x3, x4, x5, x6) with 6 dimensions which is passed through two hid-
den layers of width 4 and 3, describing the number of units per layer. As the depicted
architecture has more than one hidden layer, this is also called a deep learning neural
network of depth = 2 (Goodfellow et al., 2016). Thus, the depth of a FNN equals the
number of hidden layers.

Figure 3.1.: Simple Feedforward Neural Network with two hidden layers (Goyal et al.,
2018)

FNNs can be described mathematically as a parameterized function, mapping the input
x to the output ŷ = f(x; θ) (Goodfellow et al., 2016). The goal is to approximate the
function f by learning the most suitable parameters θ, following the idea of the maximum
likelihood estimation. It can be shown that a sufficiently complex neural network is able

10

to learn almost any function in any dimension as universal approximator (Hornik et al.,
1989). This can be achieved by nesting functions

f(x; θ) = h(2)
(
h(1)(x; θ)

)
(3.10)

where h(1) represents the first layer and h(2) the second one. More precisely, each h can
be defined as h = g

(
W⊤x+ b

)
with W as a weight matrix, x as input and b as intercept

(Goodfellow et al., 2016). For a FNN of depth 2, as depicted in Figure 3.1, the following
chain structure can be formulized, where the first layer is given by

h(1) = g(1)
(
W (1)⊤x+ b(1)

)
(3.11)

and the second layer defined as

h(2) = g(2)
(
W (2)⊤h(1) + b(2)

)
. (3.12)

The function g is called activation function and is a non-linear mapping in order to rep-
resent non-linearities in the data. Typical activation functions are sigmoid, tanh or the
Rectified Linear Unit (ReLU). Moreover, the activation function has to be differentiable,
so that gradient-based methods can be used for training. A loss function is defined as
L (ŷ, y) = L (f (x; θ) , y) (Goldberg, 2017) to measure how well the current parametriza-
tion approximates the mapping f by comparing the actual values y with the predictions
ŷ of the model. In order to minimize the loss via gradient descent and backpropagation,
the partial derivatives are calculated iteratively and used to adjust the weights.

In order to avoid overfitting, different regularization methods are usually used. One
common approach is to add a regularization constraint on the parameter values in the
loss (e.g. L2-regularization, see Section 3.1.2). Another option is to implement drop
out or early stopping (Goldberg, 2017). The first method skips connections randomly
during training, so that the FNN is not fully connected. The latter stops training when
no further improvement can be seen on the validation set measured by the loss or some
evaluation metric. This can reduce the generalization error, which describes the perfor-
mance of the model when introduced to unseen data (Larsen and Hansen, 1994).

Another important part of fitting a FNN is hyperparameter tuning. The goal is to
maximize the performance of a model by adjusting the parameters of the model such as

11

the number of hidden layers or the proportion of dropout (Andonie, 2019). Grid search
is one applicable algorithm to perform hyperparameter optimization in an exhaustive
manner over all combinations of the specified hypererparmeter space (Liashchynskyi and
Liashchynskyi, 2019).

3.2.2. Recurrent neural network

The idea of RNNs was first investigated by Rumelhart et al. (1985) as a special form of
neural networks used for sequential or temporal data of tasks such as speech recognition,
language translation or time series. In contrast to FNNs, this architecture takes infor-
mation from prior elements into account that can influence the current output, acting as
a memory of the RNN. As depicted in illustration 3.2, RNNs can be visualized as a chain
of multiple copies of the same network with one single hidden layer. The method keeps
the order of the input xt at time step t. The hidden states h can be mathematically
formulated as the recurrence relation (Goyal et al., 2018)

ht = f1 (Whhht−1 + Uxhxt) (3.13)

where Whh is a mapping across hidden states, Uxh is a mapping from input x to the hid-
den layer h and f1 is applied element-wise and is usually a tanh or sigmoid function. The
first term is based on the previous hidden state, whereas the second one takes the current
input into account. For example, this structure allows RNNs to capture the sequential
relationships between words of a sentence. Nevertheless, they struggle with long-term
dependencies, mathematically resulting in vanishing or exploding gradients because of
the recursive multiplication of the weights. This problem is tackled by LSTM, which are
a special type of RNNs.

Figure 3.2.: RNN in rolled and unrolled illustration (Olah, 2015)

12

LSTMs were first introduced by Hochreiter and Schmidhuber (1997) and solve retaining
information over longer time periods. This is achieved by implementing additional gates,
which control the influence of the last cell state and the new input on the new cell
state. Like RNNs, LSTMs also have the chain-like structure, but each unit has a more
complex composition (see Figure 3.3). The repeating module consists of four network
layers, interacting in a special way through three gates. Taking the same notation and
illustration as Goyal et al. (2018), xt represents the input in the following, Ct denotes
the cell state, ht represents the hidden state, bt denotes the bias and Wt denotes the
weights. This is always relative to the corresponding layer and time step t.

Figure 3.3.: Architecture of a LSTM (Goyal et al., 2018)

Firstly, the forget gate controls to which extent the previous hidden state ht−1 and the
input xt influences the current cell state.

ft = σ (Wf [ht−1, xt] + bf) (3.14)

13

The input gate influences the contribution of the new input it to the memory by
deciding which values will be updated via a sigmoid function, whereas the tanh layer
creates a vector of new candidate values Ċt.

it = σ (Wi [ht−1, xt] + bi)

Ċt = tanh (WC [ht−1, xt] + bc)
(3.15)

The horizontal line in the top of the figure illustrates the cell state Ct, which will be
updated pointwise in the next step based on the forget gate ft and input gate it as well
as the previous cell state Ct−1 and the candidate values Ċt.

Ct = ft · Ct−1 + it · Ċt (3.16)

Finally, through a sigmoid layer the output ot of the output gate is calculated based
on the hidden state ht−1 and the input xt. Then the cell state is put through a tanh
activation function and multiplied pointwise by ot for the final output ht.

ot = σ (Wo [ht−1, xt] + bo)

ht = ot · tanh (Ct)
(3.17)

This is the general functioning of a LSTM unit. Different modifications exist such as
the Bidirectional Long Short Term Memory Network (Bi-LSTM). Here, two individual
hidden layers are trained and coupled to the same output layer (Schuster and Paliwal,
1997; Zhu et al., 2015). The first layer processes the sequence forward, whereas the
second layer processes the information backwards.

14

3.2.3. Transformer

The transformer is a deep learning model, consisting of an encoder-decoder architecture
(see Figure 3.4). The encoder learns a latent representation of the input which is then
used by the decoder to generate the desired output (Vaswani et al., 2017). It is possible
to stack several encoders and decoders on top of each other.

Figure 3.4.: Architecture of the transformer (Vaswani et al., 2017)

The special mechanism used by transformers is called attention, which was first intro-
duced by Bahdanau et al. (2014). This method enables the model to capture long-term
dependencies without any recurrence and sequential computation as in RNNs (see Sub-
section 3.2.2). The input can be processed in parallel, reducing computing time tremen-
dously. This advantage makes the transformer an important architecture for several
tasks in NLP as well as Computer Vision. The implemented scaled dot-product atten-
tion (Vaswani et al., 2017, see Figure 3.5 on the left side) is defined as the softmax
of the dot product of a query vector Q and a key vector K scaled by their common

15

dimension dk and then multiplied by the value vector V of dimension dv as formulated
in the following in matrix notation.

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (3.18)

This form of attention captures associations between words and can handle long term de-
pendencies. In this way, shortcut connections between the different inputs that relate to
each other are created. Instead of calculating only one attention matrix, the transformer
concatenates h attention matrices, also called multi-head attention (Vaswani et al., 2017,
see Figure 3.5 on the right side).

MultiHead(Q,K, V) = Concat (head1, . . . , headh)W
O

where headi = Attention
(
QWQ

i , KWK
i , V W V

i

) (3.19)

with the parameter matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈ Rdmodel×dk ,W V
i ∈ Rdmodel×dv and

WO ∈ Rhdv×dmodel with dmodel set to the output dimension of the embedding layers. In
this way the transformer is able to consider multiple relationships between words.

Figure 3.5.: Illustration of scaled dot-product attention (left) and multi-head attention
(right) (Vaswani et al., 2017).

16

3.3. Feature engineering in NLP

NLP is a research field of Artificial Intelligence that explores different methods about how
computers can achieve human-like language understanding (Liddy, 2001). To achieve
this goal, the computer needs to learn the grammatical rules and the semantic meaning
of words. Before working with the text data, it first needs to be processed into some
numerical representation. In order to achieve this form of feature engineering, different
NLP methods can be applied.

3.3.1. TF-IDF

The term frequency - inverse document frequency (TF-IDF) is a simple count-based
approach, which encodes the vocabulary in a matrix according to the word frequencies
in the corpus. It consists of two parts. Using the notation of Karabiber et al. (2022),
the term frequency (TF) measures how often a word occurs in one document weighted
by the length of the document.

TF =
number of times the term appears in the document

total number of terms in the document
(3.20)

The second part, the inverse document frequency (IDF), calculates how important a
word is by taking the logarithmized ratio of the total number of documents and the
number of documents including the word.

IDF = log

(
number of documents in the corpus

number of documents in the corpus that contain the term

)
(3.21)

The TF-IDF score then results from the multiplication of both values.

TF-IDF = TF · IDF (3.22)

The experiments in this thesis are conducted with the TF-IDF vectorizer of scikit-learn
(Pedregosa et al., 2011). Here, the TF is not normalized and the IDF is slightly modified:

TF = number of times the term appears in the document

IDF(t) = log
1 + n

1 + df(t)
+ 1 (3.23)

where n is the total number of documents in the corpus, and df(t) denotes the number

17

of documents that contain term t. Adding one to the numerator and denominator avoids
zero division as if an extra document was seen, containing every word in the collection
exactly once. The resulting TF-IDF vector per document v = TF · IDF(t) is normalized
by the Euclidean norm

vnorm =
v

∥v∥2
=

v√
v12 + v22 + · · ·+ vn2

. (3.24)

The TF-IDF can be interpreted as a measurement of word importance. On the one
hand, TF measures commonality within a document, whereas IDF incorporates rare
words between documents (Karabiber et al., 2022). This provides a score of how impor-
tant a word is rated within a document relative to a corpus. Thus, the importance is
high when a word appears often in a given document and rarely in others.

As a result of applying TF-IDF over the whole vocabulary space on every document, a
document-term matrix is constructed of shape (number of documents × vocabulary size).
Every row corresponds to one document, each column to one word and in this way each
cell denotes the TF-IDF value. Salton et al. (1975) first utilized this method to measure
the semantic similarity of document pairs, as similar documents have similar TF-IDF
values of corresponding words. Consequently, similar rows of the document-term matrix
can be expected for similar documents. This approach is document centric, meaning
that one representation is created for every document, which can be used as input
for a classifier (Pilehvar and Camacho-Collados, 2020). For instance, in the following
classification of political texts, each row of the document-term matrix represents one
text example, which is taken as input for the logistic regression classifier (see Section
4.2). The method results in a sparse representation of the documents, meaning that the
document-term-matrix mostly consists of zero entries as the number of columns of the
matrix are given by the vocabulary size of the whole corpus. Moreover, this method
is only based on word frequencies, so that the context as well as the syntactic and
semantic relationships of words are not considered. These characteristics of language
understanding are taken into account in the following approaches.

18

3.3.2. Word2Vec

A more advanced method is Word2Vec (Mikolov et al., 2013b) which is based on the
distributional hypothesis that “a word is characterized by the company it keeps” (Firth,
1957), implying that words that occur in the same context are likely to have a similar
meaning as well (Harris et al., 1954). For instance, the words "congress" and "govern-
ment" have likewise semantics, so that they appear with similar surrounding words (e.g.
congress/ government passed a law). By evaluating the context, words that occur with
similar words will be given a similar representation. This can be achieved by creating
so-called word embeddings, which are representations of words as continuous vectors in
a multidimensional vector space, that mathematically describes the vocabulary space.
Natural language modelling (Bengio et al., 2000; Collobert et al., 2011) uses neural
networks to learn these dense word representations by a self-supervised next word pre-
diction task, so that no labeled data is needed for training. Word2Vec (Mikolov et al.,
2013b) is a predictive model based on a simple feedforward neural network architecture
(see Subsection 3.2.1). There are two different procedures to create the embeddings,
namely Continuous Bag-of-Words (CBOW) and Skip-gram. The first method infers the
current word based on the surrounding words of a defined window, whereas the latter
model works the other way round and predicts the context words given the target word.
The different architectures are illustrated in Figure 3.6. Both models consist of input,
projection and output layer and are trained via stochastic gradient descent and back-
propagation (Rumelhart et al., 1986). However, according to the different training task,
the objective functions are different.

Given the target word wt and its surrounding words wt−k, . . . , wt+k, the objective of the
CBOW is defined as (Le and Mikolov, 2014)

1

T

T−k∑
t=k

log p (wt | wt−k, . . . , wt+k) (3.25)

based on the softmax
p (wt | wt−k, . . . , wt+k) =

eywt∑
i e

yi
(3.26)

19

Figure 3.6.: Architecture of CBOW and Skip-gram (Mikolov et al., 2013a).

On the other hand, given a sequence of training words w1, w2, w3, . . . , wT Skip-gram
maximizes the average log probability of the context words wt+j given the target word
wt and the window size c (Mikolov et al., 2013b)

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p (wt+j | wt) . (3.27)

Thereby, p (wt+j | wt) is originally defined using the softmax function (Mikolov et al.,
2013b)

p (wO | wI) =
exp

(
vwO

⊤vwI

)∑W
w=1 exp (v

′
w
⊤vwI

)
(3.28)

where W denotes the number of words in the vocabulary and vw and v′w are the input
and output vector representations of w.

In practice, a hierarchical softmax (Morin and Bengio, 2005) with the structure of a
binary Huffman tree is preferred to the standard softmax function for faster training in
both cases. Another common option is negative sampling (Mikolov et al., 2013b) based
on the idea of Noise Contrastive Estimation (NCE) (Gutmann and Hyvärinen, 2012).
In this case, the Skip-Gram model learns to differentiate the true context words from

20

randomly generated noisy words by means of logistic regression. After training, the
word embeddings can be extracted as a weight matrix of the projection layer and used
for further analysis like text classification. The vector size of the word representation
equals the number of hidden units of the projection layer.

The resulting embeddings are static (Jurafsky and Martin, 2022) which means that one
fixed vector is learned for each word. Furthermore, the embeddings are able to capture
semantic relationships between words, meaning that a word embedding is close to seman-
tically similar words in space, whereas dissimilar words are far from each other. Thereby,
the similarity between embeddings can be mathematically described by vector opera-
tions such as the euclidean or cosine distance. It is even possible to meaningfully apply
vector addition and subtraction. For instance, the vector(”Queen”) can be approximated
by vector(”King”) - vector(”Man”) + vector(”Woman”) (Mikolov et al., 2013a).

3.3.3. Doc2Vec

Instead of learning word embeddings, it is also possible to create a representation of a
whole document as it is done by Doc2Vec. This method is a self-supervised machine
learning algorithm used to convert a document into a low-dimensional vector representa-
tion, which was originally introduced as paragraph vector by Le and Mikolov (2014). The
method follows a similar approach as Word2Vec (see Section 3.3.2), so that the neural
network architecture is identical apart from an added paragraph matrix and paragraph
ID which identifies each document (see Figure 3.7).

Figure 3.7.: Architectures of Doc2Vec (Le and Mikolov, 2014).

21

After training, the paragraph matrix can be extracted as a dense document representa-
tion. Similar to the CBOW method of Word2Vec, the Distributed Memory version of
Paragraph Vector (PV-DM) predicts a target word based on the surrounding words in
a specified text window and the additional paragraph ID, which are either averaged or
concatenated by a parse tree of a sentence (Socher et al., 2011), to predict the next word.
On the other hand, the Skip-gram analogy, called Distributed Bag of Words version of
Paragraph Vector (PV-DBOW), uses the paragraph ID as input for predicting words of
a randomly sampled text window of the corresponding document. PV-DBOW (exten-
sion of Skip-Gram) takes less computational time, whereas in the Word2Vec approach
the CBOW method is faster. Following the same approach as Word2Vec, the paragraph
vectors of Doc2Vec have the same characteristics on a document level (e.g. calculating
distances as similarity measurement, see the last paragraph of Section 3.3.2). Thus,
the resulting row vectors of the paragraph matrix can be used to calculate similarities
between documents by taking the cosine distance or as input of a classifier.

3.4. BERT

The Bidirectional Encoder Representations from Transformers (BERT) is a general-
purpose language model (Devlin et al., 2018), which was a major breakthrough in the
field of NLP with great results in different language tasks such as text generation, ques-
tion answering and sentence classification. BERT’s model architecture is a deep bidi-
rectional transformer encoder (see Section 3.2.3), which means that it learns deep rep-
resentations of words by considering both, left and right context (Esposito et al., 2022).
Unlike Word2Vec, BERT learns dynamic contextual embeddings, so that representations
for the same word differ based on the context. This makes it possible to tackle ambiguity
between words and handle polysemes, which are words with different meanings such as
"pupil" (e.g. pupil as part of the eye and pupil as a synonym for student).

There are two steps involved in using BERT: pre-training and fine-tuning. The first
part incorporates two self-supervised learning tasks, namely masked language mod-
elling (MLM) and next sentence prediction (NSP). These are applied on a huge un-
labeled corpus, consisting of the BooksCorpus with 800M words (Zhu et al., 2015) and
English Wikipedia with 2,500M words (Devlin et al., 2018). The first task masks ran-

22

domly 15% of the words by replacing them with a [MASK] token. Then the network is
trained to predict these hidden words of the sentence. The second task, NSP, comprises
binary classification, which predicts whether two sentences are following each other in
the corpus or not. After pre-training, the model is fine-tuned on a specific data set and
task via supervised learning. This approach is also known as a downstream task and is
part of transfer learning. The big advantage of this procedure is that time and resources
can be saved by just reusing an already existing model instead of fitting a new one from
scratch. Especially as language models are very big, applying a pre-trained model is a
huge benefit. There are different ways of fine-tuning the pre-trained model. Mostly, all
weights are adjusted during fine-tuning (e.g. default of Hugging Face implementation).
However, it is also possible to freeze some layers and fine-tune only the selected layers,
which are usually the task related stacked head layers.

Before training, the input data needs to be tokenized into three embeddings as can be
seen in Figure 3.8. The token embeddings are created by adding the [CLS] token at
the beginning of the first sentences and the [SEP] token as separator of each sentence.
The values of the token embeddings are learned during training. The [CLS] token holds
the aggregated representation of the whole sentence, so that solely this special token is
passed to the classifier for sequence classification. In the original paper, Devlin et al.
(2018) add a single-layer network and a softmax as classifier. Furthermore, the segment
embedding is used to distinguish between sentences. As the transformer is trained in
parallel and not sequentially, the third part, the position embedding, enumerates the
tokens to keep track of the word order. In this process, the WordPiece tokenizer (Wu
et al., 2016) is used to split each sentence into tokens. If a word is not present in the
vocabulary, the word is split until it is part of the vocabulary or separated in individual
characters. This is effective in handling out-of-vocabulary words. For instance, in Figure
3.8 the word "playing" is separated into "play" and "##ing". Overall, BERT comprises
a vocabulary of 30K tokens.

Depending on the configuration of BERT, the number of self-attention heads A (see
Section 3.2.3 multi-head attention), the number of encoder layers L and the number of
hidden units H differ. The two major architectures are BERTBASE with L = 12, A =

12, H = 768 and BERTLARGE with L = 24, A = 16, H = 1024 (Devlin et al., 2018).
BERTLARGE represents a more complex architecture with 340 million parameters com-
pared to BERTBASE with 110 million parameters. There are further versions of BERT

23

such as M − BERT for different languages apart from English or DistilBERT . The
latter is a slimmed-down version of BERTBASE published by Hugging Face (Sanh et al.,
2019). They reduced the size to 40% of the original model, while retaining 97% of
its language understanding capabilities and being 60% faster in their experiments. The
compression technique of knowledge distillation (Buciluǎ et al., 2006; Hinton et al., 2015)
is used for pre-training. Therefore, the student model DistilBERT is trained on the tar-
get probabilities of the original teacher model BERTBASE. Thus, the student learns to
make the same predictions as the teacher by matching the output distribution. Adding
a cosine embedding loss to the objective function is suggested to better align the hidden
state vectors of the two models (Sanh et al., 2019).

Figure 3.8.: Input representation of BERT (Devlin et al., 2018).

24

4. Implementation of NLP models

In this chapter, the introduced methods are used to train different classifiers on the
manifestos and apply them across domains on the speeches (see overview in Table 4.1).
After some pre-processing, the NLP methods TF-IDF, Word2Vec and Doc2Vec are im-
plemented to transform the texts into numeric representations. As TF-IDF and Doc2Vec
create document embodiments, logistic regression can be used for classification. On the
other hand, Word2Vec creates word embeddings, so that a LSTM architecture is applied
to process the sentences as sequential input. BERT is downloaded as a pre-trained model
and then fine-tuned on the manifestos, including the classifier in its architecture. The
different models are compared and the best one is used for further experiments across
time and country. The Python code of the analysis can be found on GitLab1. Google
Colab is used to run the deep learning models as the available GPUs speed up training
time tremendously.

Figure 4.1.: Overview of different implemented models.

1https://gitlab.lrz.de/statistics/winter22/ba_sauter

25

https://gitlab.lrz.de/statistics/winter22/ba_sauter

4.1. Pre-processing

Three different pre-processing techniques are applied to the text data. The basic cleaning
approach converts all words to lowercase and removes punctuation and stopwords. The
latter are common words that do not contribute anything to the meaning of the text
such as "a", "the" or "and" (Goyal et al., 2018). More advanced methods are stemming,
converting all words to root words, and lemmatization (Khyani et al., 2021). The last
technique additionally considers word meanings to identify the same word stems, also
known as the word’s lemma. For example, a lemmatizer recognizes that "better" can
be derived from the word "good". Using the described methods, three different pre-
processed data sets of the source and target corpus are created:

(i) Basic cleaning (lowercase; remove punctuation and stopwords)

(ii) Basic cleaning + Stemming

(iii) Basic cleaning + Lemmatization

All three data cleaning procedures are carried out by the Python library Natural Lan-
guage Toolkit (NLTK), using the pre-defined English stopwords and the methods "Porter-
Stemmer" as well as "WordNetLemmatizer" (Bird et al., 2009). The histograms of word
counts per text example for the raw and the pre-processed data sets (see Figure 4.2
and further details in Table A.2 in the appendix) show that the target data contains
longer sentences (e.g. for the unprocessed data a maximum of 4306 and a median of 66
words) than the source data (e.g. for the unprocessed data a maximum of 140 and a
median of 19 words). Moreover, the basic cleaning approach roughly halves the number
of unique tokens (see Table A.1 in the appendix). Lemmatization and stemming further
decrease the vocabulary size, but not the number of words per text example, so that the
histograms of the differently pre-processed data overlap exactly.

The word clouds in Figure 4.3 give a descriptive overlook of important keywords for the
topic "external relations" of the basic cleaned data (Mueller, 2018)2. A bigger font size
indicates that this word is more frequent than others in a cluster of a defined maximum
of 150 words. This illustration depicts similarities across the two data sets with common
key words such as "government", "international", "people", "trade", "countries", "force"
and "United Nations". An additional very important word in the target corpus seems

2https://github.com/amueller/word_cloud

26

https://github.com/amueller/word_cloud

Figure 4.2.: Word count per text example of source (left) and target corpus (right) for
the raw and pre-processed data. Note that the counts are the same for all
three pre-processed data sets.

to be the country of origin "New Zealand". On the other hand, the word cloud of
the source corpus contains several country names such as "Australia", "United States",
"Africa, "UK", "EU", "Britain", "New Zealand" and "Ireland", indicating the different
origins of the manifestos. In texts about external relations the own country name and
the other mentioned key words are used often in both data sets. The word clouds of
the other categories also result in interpretable clusters of key words, excluding the "no
topic" word cloud which is a rather random accumulation of words (see appendix in
Figure B.1 and B.2).

Figure 4.3.: Word clouds for the topic "external relations" of the source (a) and target
corpus (b).

27

4.2. Training and evaluation of the different models

In the following the different models TF-IDF + LR, Word2Vec + LSTM, Doc2Vec +
LR and BERT are trained on the source data. Therefore, the data is split into a train
(80%, 92,328 observations) and test data set (20%, 23,082 observations). The latter is
further divided into halves to create a test and validation set with 11,541 observations
respectively for the deep learning models, namely BERT and the LSTM architecture.
After splitting the data, the models are trained on the training data. In order to optimize
the performance of each model, hyperparameter tuning is carried out based on the F1
score (macro), which considers the class imbalance best. Finally, the optimized models
are used to predict the test and target data, so that the within-domain and cross-
domain classification performance can be compared with regard to accuracy and F1
score (macro). On top of this, confusion matrices of each model of the source and target
data can be found in the appendix (see Section C.3).

TF-IDF + LR
Fitting the TF-IDF + LR model on the source corpus is done similar to the paper
by Osnabrügge et al. (2021), using the scikit-learn implementations "TfidfVectorizer",
"GridSearchCV" and "LogisticRegression" with the same hyperparameters (Pedregosa
et al., 2011). Firstly, feature engineering of the corpus is applied to transform the text
data into a document-term matrix. Therefore, unigrams, bigrams and trigrams are cre-
ated, dropping punctuation and capitalization. Then, the default English stopwords and
the corpus-specific stopwords with a document frequency higher than 0.4 are removed.
Rare words with an appearance in fewer than 10 documents are excluded as well. Finally,
the TF-IDF value for each n-gram is calculated (see theory in Section 3.3.1), treating
each entry of the training data as a document. This results in a document-term matrix,
which is used as input for the multinomial LR. The hyperparameter C, which represents
the inverse of the regularization strength, and the class weights are tuned via Grid Search
in the hyperparameter space {C= [1,2,10,100], class weight= [None,’balanced’]}. The
balanced mode adjusts the weighting of the classes inversely proportional to the class
frequencies, which is otherwise set to one (Pedregosa et al., 2011). The class weights are
added as hyperparameter because the balanced mode might handle the class imbalance
of the data better. The applied Grid Search uses 3-fold cross-validation, the Newton-CG

28

optimization algorithm with L2-regularization as solver and the F1 (macro) as evaluation
metric. After determining the best parameters, the model is tested on the left-out test
set (within-domain classification) and the speeches (cross-domain classification). The
test and target data are processed in the same way as the training data by the earlier
fitted TF-IDF vectorizer to obtain the corresponding document-term matrices, which
are then used as the input of the trained LR classifier. This procedure is conducted for
the raw and all three pre-processed data sets (see Section 4.1) to see if lemmatization or
stemming improve the model. However, rounding to the second decimal lead to almost
the same results (±0.01), indicating that the different pre-processing strategies result
in the same performance outcomes. For this reason, the basic cleaned data set without
any further pre-processing such as lemmatization or stemming is used for the further
feature engineering of Word2Vec and Doc2Vec. Table 4.2 shows the evaluation of the
final model on the basic cleaned test and target data with a document term-matrix of
dimension (92328×15038) and the optimized hyperparameter C=2 and no class weights.
Detailed confusion matrices can be found in the appendix (see Figure C.1). Comparing
the evaluation scores to the results of the paper (Osnabrügge et al., 2021), the accuracy
and F1 score (macro) are almost the same (see Table 4.2). Although different evalua-
tion metrics are picked for Grid Search (paper: accuracy, here: F1 score (macro)), the
resulting hyperparameters are the same. The minimal differences in the performance
measurements can be explained by a different train-test-split with 75% in the paper and
as the document-term matrix is fitted on the whole source corpus by Osnabrügge et al.
(2021). This results in a bigger vocabulary, but slightly intersperses the separation of
training and testing data.

Own implementation Original paper

Metric Test data Target data Test data Target data

Accuracy 0.640 0.497 0.641 0.507
F1 score (macro) 0.525 0.436 0.523 0.450

Table 4.2.: Evaluation of TF-IDF + LR model on basic cleaned test and target data
compared to results of the original paper (Osnabrügge et al., 2021).

29

Word2Vec + LSTM
In the following, word embeddings are created by Word2Vec and then used as input in
a LSTM architecture to classify each text example. The general structure of the imple-
mented neural network is illustrated in Figure 4.4 below.

Figure 4.4.: General structure of the applied neural network of the model Word2Vec +
LSTM.

First, the word representations are generated via the gensim implementation of Word2Vec
on the basic cleaned training data set (Rehurek and Sojka, 2011). The created embed-
dings are looked up for every word of a sentence in the embedding layer, using an em-
bedding matrix of the dimension (vocabulary size of 30, 448 × embedding size of 100).
As the neural network expects a constant input length, short sentences need to be
padded and long sentences need to be truncated to the same length. Therefore, the pre-
processing text tokenizer of Tensorflow3 (Abadi et al., 2015) is applied to the text input.
The padding length is set to 66, which equals the maximum text example length of the
basic cleaned data. The tokenizer also creates a dictionary, assigning every unique word
to one word ID. As a result, each observation is processed to a sequence of word IDs of the
same size (see sentence example in Figure 4.5). This representation is used as input of the
LSTM. The embedding layer takes the input and the constructed word-embedding-look-
up to match the words of the sentence and the corresponding embeddings. The output of
the embedding layer is a matrix of size (padding length of 66 × embedding size of 100).

3https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer

30

https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text/Tokenizer

Figure 4.5.: Exemplary sentence processing where the last row represents the input for
the LSTM.

Different layers can be stacked on the embedding layer. An exploratory analysis is car-
ried out to find the most suitable architecture. The additional layers in Table 4.3 are
investigated and evaluated based on the accuracy and F1 (macro) on the validation set.
They are always followed by a last dense layer with eight neurons and a softmax activa-
tion function that returns the classification result. This procedure is repeated for CBOW
and Skip-Gram, using the default embedding size of 100, categorical cross entropy as loss
and the Adam Optimizer. To prevent overfitting, early stopping is implemented with a
maximum of ten and a patience of three epochs while monitoring the validation loss. The
Skip-gram method results in slightly better performance than CBOW (see Skip-Gram
results in Table 4.3 and CBOW results in the appendix in Table C.1). The different lay-
ers show very similar scores with minimal better results of the two bi-directional LSTM
layers followed by one additional dense layer. Using this architecture and extending the
embedding size of the Skip-Gram model to 300 results in a F1 (macro) of 0.510 and does
not meaningfully improve the performance of the model (see detailed results in Table
C.2 in the appendix). The (Bi-)LSTM layers are always initialized with 128 units and
the additional dense layer with 64 neurons.

After setting the architecture to "Embedding layer + Bi-LSTM + Bi-LSTM + Dense
layer + Softmax" and the embedding hyperparameters to Skip-Gram with a vector size
of 100, Grid Search is used to determine if a higher batch size or drop out can improve
the model. The hyperparameter tuning of batch size= [32, 265] and dropout rate= [0.0,
0.2] of both Bi-LSTM layers lead to the optimal parameters of a batch size of 32 and a
dropout rate of 0.2. No further hyperparameters of Word2Vec or of the neural network
are changed and set to the defaults. After processing the test and target data in the
same way as the training data, the final scores on both data sets are calculated (see
Table 4.4). The detailed confusion matrices are shown in the appendix (see Table C.2).

31

Model Loss Accuracy F1 (macro)

LSTM 1.095 0.615 0.492
Bi-LSTM 1.071 0.617 0.497
Bi-LSTM + Dense layer 1.073 0.621 0.498
Bi-LSTM + Bi-LSTM 1.063 0.626 0.503
Bi-LSTM + Bi-LSTM + Dense layer 1.053 0.629 0.507

Table 4.3.: Exploratory analysis of different architectures evaluated on the validation
set. The word embeddings are created with Skip-gram and a vector size of
100. The first layer is always an embedding layer, followed by the additional
layers described in the table and a last softmax layer for classification (see
illustration 4.4).

Metric Test data Target data

Accuracy 0.632 0.492
F1 score (macro) 0.507 0.419

Table 4.4.: Evaluation of Word2Vec + LSTM model on basic cleaned test and target
data.

Doc2Vec + LR
Doc2Vec is trained similarly to Word2Vec on the basic cleaned training data with the
gensim package (Rehurek and Sojka, 2011). However, the model learns a document
representation instead of word embeddings (see theory in Section 3.3.3). For this reason
multinomial LR can be applied as classifier. Both methods of Doc2Vec, PV-DM and
PV-DBOW, are fitted on the training data with a default vector size of 100. The
resulting document embeddings are used as input for the LR, which is optimized by
the Grid Search algorithm with the solver SAGA and a 2-fold cross-validation on the
hyperparameter space C = [10, 100, 1000]. Compared to PV-DM with a F1 score
(macro) of 0.412 and a optimized C of 1000, PV-DBOW works better with a resulting
score of 0.564 and a C of 100. As a further experiment, the vector size of PV-DBOW
is set to 300. However, this does not show any improvement with a resulting F1 score
(macro) of 0.554 and a optimal C of 100. For the final fit, the PV-DBOW method is
used with a vector size and C of 100. Because of earlier convergence problems of the
solver, the maximal number of iterations is set to 4000 instead of the default of 100 in
the final training procedure. Other possible hyperparameters of Doc2Vec or LR are set
to their defaults. The test and target data is pre-processed by the fitted Doc2Vec model
to create the document representations. The evaluation results of the trained LR on

32

both data sets can be found in Table 4.5 and the confusion matrices in the appendix
(see Table C.3).

Metric Test data Target data

Accuracy 0.588 0.398
F1 score (macro) 0.474 0.376

Table 4.5.: Evaluation of Doc2Vec + LR model on basic cleaned test and target data.

BERT
In comparison to the other models, BERT is not trained from scratch. For the implemen-
tation, the pre-trained models ’bert-base-uncased model’4 and ’distilbert-base-uncased’5

from Hugging Face are fine-tuned on the unprocessed training data set. The first model
is the implementation of BERTBASE, whereas the latter represents the DistilBERT

configuration (see theory in Section 3.4). The models are downloaded via the trans-
former package (Wolf et al., 2020). First, the data needs to be converted into token,
segment and position embeddings by the downloaded tokenizer of the corresponding
model. After that, the embeddings are used as input of the pre-trained model, that
is then fine-tuned for five epochs on the training data set with the default "Trainer"
implementation of PyTorch (Paszke et al., 2019). The best fine-tuned model is chosen
based on the F1 score (macro) of the validation set. Finally, the model is used to make
predictions on the test and target data set, which are also processed by the downloaded
tokenizer in advance. The results in Table 4.7 show that BERTBASE is slightly better
than DistilBERT . However, the latter takes about half an hour to train, whereas the
training time of BERTBASE is about an hour with a T4-GPU provided by Google Colab.

BERTBASE DistilBERT

Metric Test data Target data Test data Target data

Accuracy 0.694 0.569 0.693 0.562
F1 score (macro) 0.595 0.512 0.584 0.501

Table 4.7.: Evaluation of fine-tuned BERTBASE and DistilBERT on test and target
data

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/distilbert-base-uncased

33

https://huggingface.co/bert-base-uncased
https://huggingface.co/distilbert-base-uncased

4.3. Comparison of models

In the previous section, the four investigated models are trained on the training data
and then evaluated on the test and target data. Table 4.8 summarizes the results of each
final model ordered by its performance. Comparing the different approaches, BERTBASE

clearly outscores the other methods, including the model of the original paper by Os-
nabrügge et al. (2021). BERT’s performance is followed by the models TF-IDF + LR
and Word2Vec + LSTM. Doc2Vec + LR results in the lowest scores. This is another
success of the state-of-the-art NLP model BERT as the most suitable model for the
within-domain as well as cross-domain classification of the manifestos and speeches.
The implementation shows how transfer learning can be successfully used by taking an
existing model such as BERT and fine-tuning it on a specific task. The model achieves
an accuracy of 69% on the test set and 57% on the target data set, whereas the other
models only reach scores between 59% -64% and 40%-50% respectively. The high per-
formance is possible due to BERT’s broader language understanding that the model
learns during pre-training on the huge corpus. Another interesting finding is that the
simple count-based TF-IDF approach works better than the more sophisticated methods
Word2Vec and Doc2Vec. Overall, it is not surprising that the performance of the target
corpus is lower than that of the source corpus. Thereby, higher scores of the source cor-
pus lead to higher scores of the target corpus. All models learn patterns in the text data
and are clearly superior to just guessing, which would result in an accuracy of 0.125.

Test set BERTBASE TF-IDF + LR Word2Vec + LSTM Doc2Vec + LR

Accuracy 0.694 0.640 0.632 0.588
F1 score (macro) 0.595 0.525 0.507 0.474

Target set BERTBASE TF-IDF + LR Word2Vec + LSTM Doc2Vec + LR

Accuracy 0.569 0.497 0.492 0.398
F1 score (macro) 0.512 0.436 0.419 0.376

Table 4.8.: Comparison of different models on test (top) and target data (bottom) or-
dered by decreasing performance.

Although BERTBASE achieves the best scores, DistilBERT is used in the following
for further experiments across time and country. The performance is very similar (see
Table 4.7), but the model takes only half the time to train. Before moving to the second
research part, Figure 4.6 gives detailed information about the F1 score per category of
DistilBERT . The evaluation shows that not all categories are equally well classified.

34

Whereas "welfare and quality of life", "external relations" and "economy" show F1 scores
slightly above 70% in the source data, "political system" and "freedom and democracy"
only reach scores below 60%. Looking at the evaluation of the target data per category,
"welfare and quality of life" and "external relations" reach the highest F1 scores slightly
above 60% and "freedom and democracy" only a score of 48%. Especially the "no topic"
label is predicted incorrectly almost all the time for the source (4%) and target corpus
(0%). This suggests that DistilBERT is not finding any patterns in the "no topic"
category. Overall similar scoring patterns per category of the source and target data
are found. This can be quantified by the Spearman correlation coefficient of 0.928,
which calculates the rank correlation of the eight categories of both data sets. The
confusion matrices of the target and source data show the classification per category in
more detail and depict the same patterns (see Figure C.4 in the appendix). The other
classifiers also demonstrate similar effects per class (see confusion matrices of the other
models in Section C).

Figure 4.6.: F1 scores per category of DistilBERT for the test and the target data.
Detailed information with category sizes are given in Table C.3 in the ap-
pendix.

35

4.4. Further experiments across time and countries

In this section DistilBERT is used for domain transfer across time and country. In
order to investigate how the publishing year of the manifestos and the country of origin
affects the model, the test-train-split is changed accordingly in the following analysis.

4.4.1. Test-train split across time

In the experiment across time the trained DistilBERT model from subsection 4.2 is
used to make predictions in the future. As the training data only goes until 2018, the
manifestos published after 2018 of the extracted corpus of 2021 are used as test set
in the following. In Table 4.9 the earlier results of the test data from Table 4.7 (year
≤ 2018, 11,541 observations) and the results of the future data (year > 2018, 20,970
observations) are depicted. The latter is predicted a little bit less accurate, but there is
no big difference between the performance (accuracy: -0.018, F1 score (macro): -0.014).
This suggests that the model can also be used to make predictions for manifestos in the
future.

Metric Test data Future data

Accuracy 0.693 0.675
F1 score (macro) 0.584 0.570

Table 4.9.: Evaluation of DistilBERT on future data compared to results of previous
test set.

4.4.2. Test-train split across countries

The differences between the countries of origin of the manifestos are investigated by
splitting the extracted source data (version 2018) by country and use each split as test
set. DistilBERT is trained seven times, excluding the data of one country each fit. In
order to fine-tune the model, the training data is further randomly divided into a train
and validation set with a 85%-15% split. The test set, including the text examples of
only one country each time, is used to calculate the accuracy and F1 score (macro). The
results of the evaluation metrics per country can be found in Figure 4.7 on the right
side of each plot indicated as "Test split by country" on the x-axis. As comparison,
the same data set is also randomly split with the usual 80%-10%-10% split for training,
validation and testing. This model results in an overall accuracy of 0.691 and a F1

36

score (macro) of 0.579 on the test set. The scores are as expected almost equal to the
results of DistilBERT on the source corpus of the paper (see Table 4.7). The evaluation
metrics of this model are calculated per country and depicted in Figure 4.7 on the left
side of each plot indicated as "Random test split evaluated per country" on the x-axis.
Apart from the train-test split, nothing has been changed in the training procedure of
the different models.

Figure 4.7.: Accuracy and F1 (macro) of DistilBERT for the random test split evalu-
ated per country (result of one fitted model) and test split by country (result
of seven fitted models).

Looking at the results of the experiment (see Figure 4.7), the random test split evaluated
per country already indicates different scores per country. Comparing the two splitting
procedures, the test splits per country show overall lower scores with an accuracy range
from 0.56 (USA) to 0.63 (Australia) and a F1 score (macro) range from 0.46 (USA) to
0.52 (South Africa) than the random split with an accuracy range of 0.62 (USA) to 0.75
(Australia) and a F1 score (macro) range of 0.52 (USA) to 0.70 (South Africa). This
indicates that the performance per country decreases if the model is not trained on text
examples of the corresponding country. The finding suggests that there are differences
in the manifestos between countries. This can be seen as transfer across countries.
In all cases, the USA result in the lowest scores. Australia achieves the best accuracy in
both splitting procedures, whereas South Africa shows the best F1 score (macro). The
detailed differences per country of the two splitting approaches can be found in Table
4.10. Canada shows the smallest difference, whereas Australia shows the highest with
regard to accuracy. South Africa results in the highest difference looking at the F1 score
(macro).
This outcome is influenced by the proportion of "no topic" observations per country,
which are mostly misclassified (see Section 4.3). Canada in general as well as the test

37

split of South Africa do not include any example of this category (see Figure D.1), so
that the F1 score (macro) is calculated on seven instead of eight categories, excluding
the poorly predicted "no topic" category. South Africa contains exactly one misclassified
"no topic" observation in the test split by country, explaining the striking decline of the
F1 score (macro). The United States include the most "no topic" examples with 2%
(see Figure D.1 in the appendix).

Difference Canada USA UK Ireland South Africa New Zealand Australia

Accuracy 0.05 0.061 0.064 0.079 0.096 0.117 0.119
F1 (macro) 0.041 0.059 0.06 0.096 0.18 0.117 0.12

Table 4.10.: Difference in accuracy and the F1 score (macro) between the the two split-
ting procedures (see Figure 4.7). The values are ordered increasingly by the
accuracy difference.

Furthermore, it is important to point out that the two different splitting procedures result
in different sizes of the test sets. The random test split holds overall 11,452 examples
(10% of the data), whereas the test split by country always contains all observations
of one country. Taking the most common country New Zealand for example, 2,883
observations of this country are in the test set of the random split. On the other
hand, the test split by country contains all 28,561 observations of New Zealand. This
is visually depicted in Figure 4.8, comparing the sizes of the splits. The left plot shows
the distribution of observations per country of the random test split, whereas the right
plot depicts the seven test splits per country of the seven fitted models.

Figure 4.8.: Distribution of the countries of origin of the random test split (left) and the
whole data set (right). The latter depicts the size of the test set for each
test split per country.

38

5. Limitations and discussion

This thesis compares four different models to classify political texts in English into eight
pre-defined categories. As languages are very different with regard to vocabulary and
grammatical structure, the trained models cannot be applied to text data in another
language. This also limits the countries of origin. Apart from South Africa, the chosen
countries are all Western nations.

With regard to modelling, computational time and power are restricted within the frame-
work of this thesis. Especially with regard to hyperparameter tuning, it is avoided to
execute an exhausted search over a huge parameter grid. In further analysis, more time
could be invested in hyperparameter optimization. For instance, the number of neu-
rons of the Word2Vec + LSTM model could be tuned as well. In order to speed up
the training process, GPUs provided by Google Colab are employed for the analysis.
However, using these GPUs results in not fully deterministic implementations limiting
reproducibility.

Having a closer look at the limitations of each model, TF-IDF is restricted to word fre-
quencies and the vocabulary of the training data. The latter also holds for Word2Vec and
Doc2Vec. The LSTM architecture of Word2Vec is also limited by the padding length of
the text input. Especially as the target data consists of longer sentences than the source
data, this restrain might lead to a reduced performance across domains. Furthermore,
all three methods cannot handle ambiguity. BERT overcomes these limitations with
dynamic padding, a huge pre-trained vocabulary and contextual embeddings. Although
BERT is close to human language processing, there are still limitations. For instance,
the model struggles with commonsense reasoning (Zellers et al., 2019; Vaswani et al.,
2017) and does not have any political scientific knowledge like human coders.

Lastly, the models rely on the correct labeling by the Manifesto Project and the reliability
of the coders. Mikhaylov et al. (2012) investigate this and point out some systemic

39

problems of the coding scheme. The authors suggest that the coding scheme should
be simplified to address reliability issues. As the broader eight topics are used in the
analysis of this thesis instead of the detailed 54 categories, reliability should be ensured.

40

6. Conclusion

In the scope of this thesis, different NLP methods are used for pre-processing and sub-
sequent classification of political texts. Four models are compared based on a ma-
chine learning (TF-IDF + LR), deep learning (Word2Vec + LSTM, Doc2Vec + LR)
and transfer learning approach (BERT), where the latter one outperforms the others.
Knowledge distillation demonstrates to be an effective method to speed up the training
process while maintaining the performance of BERT. Moreover, cross-domain classifica-
tion across time, country and modality seems to be a reasonable approach, saving time
and effort by reusing an existing model. However, the decrease in accuracy compared
to within-domain classification also shows some limits of preciseness of domain transfer.
For instance, DistilBERT works better if text examples of the country of origin are
part of the training data.

In future experiments, the "no topic" category should be handled differently. The results
show that text examples of this class are almost always misclassified. This indicates that
the models do not find any text patterns within this category. A possible idea would be to
exclude this class and train a classifier on the seven remaining categories. Subsequently,
all examples with a lower probability than some threshold could be classified to the "no
topics". Another idea to improve the performance is to combine the four models into
one by using ensemble methods (Ren et al., 2016). Moreover, a multi-language model
could be used to account for texts in other languages. The model can be also further
expanded to the 44 topics of the paper (Osnabrügge et al., 2021) or the 54 categories
of the Manifesto Coding Scheme. Lastly, apart from using supervised learning, other
methods such as the unsupervised topic modeling approach LDA (Blei et al., 2003) could
be applied and compared to the results of this thesis.

41

A. Pre-processing details

Data Vocabulary of source corpus Vocabulary of target corpus

Raw text 72,333 40,188
Basic cleaning 33,280 22,539
Lemmatization 29,838 20,252
Stemming 22,706 15,513

Table A.1.: Unique tokens as vocabulary of each pre-processed data set compared to raw
text.

Source data Target data

Text cleaning Raw Pre-processed Raw Pre-processed
Maximum 140 66 4,306 2,062
Median 19 10 66 28

Table A.2.: Maximum and median of the word count per text example of the raw data
and all three pre-processed data sets.

42

B. Word clouds

Figure B.1.: Word cloud per category of the source corpus.

43

Figure B.2.: Word cloud per category of the target corpus.

44

C. Further detailed evaluation
results of models

C.1. Exploratory analysis of Word2Vec

Model Loss Accuracy F1 (macro)

LSTM 1.197 0.582 0.450
Bi-LSTM 1.166 0.588 0.468
Bi-LSTM + Dense layer 1.171 0.585 0.461
Bi-LSTM + Bi-LSTM 1.135 0.600 0.478
Bi-LSTM + Bi-LSTM + Dense layer 1.141 0.599 0.479

Table C.1.: Exploratory analysis of different architecture on validation set. The word
embeddings are created with CBOW and a vector size of 100.

Model Loss Accuracy F1 (macro)

LSTM 1.202 0.588 0.440
Bi-LSTM 1.069 0.620 0.500
Bi-LSTM + Dense layer 1.068 0.623 0.502
Bi-LSTM + Bi-LSTM 1.053 0.628 0.508
Bi-LSTM + Bi-LSTM + Dense layer 1.054 0.628 0.510

Table C.2.: Exploratory analysis of different architecture on validation set. The word
embeddings are created with Skip Gram and a vector size of 300.

45

C.2. Evaluation of BERT per category

Test data Target data

Categories F1 score support F1 score support

economy 0.728 2920 0.592 720
external relations 0.747 785 0.641 94
fabric of society 0.656 1245 0.572 432
freedom and democracy 0.584 564 0.477 545
no topic 0.041 91 0.000 192

political system 0.550 1179 0.561 1068
social groups 0.606 1149 0.504 325
welfare and quality of life 0.763 3608 0.660 789

Table C.3.: F1 scores per category for DistilBERT for test and target data.

46

C.3. Confusion matrices of models

Test data

Target data

Figure C.1.: Confusion matrices of TF-IDF + LR model for test (above) and target data
(below).

47

Test data

Target data

Figure C.2.: Confusion matrices of Word2Vec + LSTM model for test (above) and target
data (below).

48

Test data

Target data

Figure C.3.: Confusion matrices of Doc2Vec + LSTM model for test (above) and target
data (below).

49

Test data

Target data

Figure C.4.: Confusion matrices of DistilBERT for test (above) and target data (be-
low).

50

D. Further analysis per country of
origin

Figure D.1.: Distribution of "no topic" category per country of origin of the extracted
source data (version 2018). Canada and South Africa are not depicted as
Canada does not have any "no topic" examples and South Africa has only
one.

51

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,
G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,
D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,
B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,
F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.
(2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software
available from tensorflow.org.

Andonie, R. (2019). Hyperparameter optimization in learning systems. Journal of
Membrane Computing, 1(4):279–291.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bengio, Y., Ducharme, R., and Vincent, P. (2000). A neural probabilistic language
model. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Infor-
mation Processing Systems, volume 13. MIT Press.

Bird, S., Klein, E., and Loper, E. (2009). Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.".

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of
machine Learning research, 3(Jan):993–1022.

Böhmelt, T., Ezrow, L., Lehrer, R., and Ward, H. (2016). Party policy diffusion. Amer-
ican Political Science Review, 110(2):397–410.

Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model compression. In Pro-
ceedings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 535–541.

52

Burscher, B., Vliegenthart, R., and De Vreese, C. H. (2015). Using supervised ma-
chine learning to code policy issues: Can classifiers generalize across contexts? The
ANNALS of the American Academy of Political and Social Science, 659(1):122–131.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa, P. P.
(2011). Natural language processing (almost) from scratch. CoRR, abs/1103.0398.

Defazio, A., Bach, F. R., and Lacoste-Julien, S. (2014). SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. CoRR,
abs/1407.0202.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Dobson, A. J. and Barnett, A. G. (2018). An introduction to generalized linear models.
Chapman and Hall/CRC.

Esposito, M., Masala, G. L., Minutolo, A., and Pota, M. (2022). Natural language
processing: Emerging neural approaches and applications.

Fahrmeir, L., Kneib, T., Lang, S., and Marx, B. D. (2021). Regression models. In
Regression, pages 23–84. Springer.

Firth, J. R. (1957). A synopsis of linguistic theory, 1930-1955. Studies in linguistic
analysis.

Goldberg, Y. (2017). Neural network methods for natural language processing. Synthesis
lectures on human language technologies, 10(1):1–309.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Goyal, P., Pandey, S., and Jain, K. (2018). Deep learning for natural language processing.
New York: Apress.

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnor-
malized statistical models, with applications to natural image statistics. Journal of
machine learning research, 13(2).

Harris, Z. et al. (1954). Distributional hypothesis. Word World, 10(23):146–162.

53

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Hinton, G., Vinyals, O., Dean, J., et al. (2015). Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2(7).

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural networks, 2(5):359–366.

Janda, K., Harmel, R., Edens, C., and Goff, P. (1995). Changes in party identity:
Evidence from party manifestos. Party Politics, 1(2):171–196.

Jurafsky, D. and Martin, J. H. (2022). Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition.

Karabiber, F., Lewis, R., and Martin, B. (2022). Tf-idf - term frequency-inverse docu-
ment frequency. Accessed: 2022-09-18.

Khyani, D., Siddhartha, B., Niveditha, N., and Divya, B. (2021). An interpretation of
lemmatization and stemming in natural language processing. Journal of University of
Shanghai for Science and Technology.

Krause, W., Lehmann, P., Lewandowski, J., Matthieß, T., Merz, N., Regel, S., and
Werner, A. (2018). Manifesto corpus. Version:2018-2. Berlin: WZB Berlin Social
Science Center.

Larsen, J. and Hansen, L. (1994). Generalization performance of regularized neural
network models. In Proceedings of IEEE Workshop on Neural Networks for Signal
Processing, pages 42–51.

Le, Q. and Mikolov, T. (2014). Distributed representations of sentences and documents.
In International conference on machine learning, pages 1188–1196. PMLR.

Lehmann, P. (2022). Manifesto project. Accessed: 2022-10-01.

Liashchynskyi, P. and Liashchynskyi, P. (2019). Grid search, random search, genetic
algorithm: a big comparison for nas. arXiv preprint arXiv:1912.06059.

Liddy, E. D. (2001). Natural language processing.

Mikhaylov, S., Laver, M., and Benoit, K. R. (2012). Coder reliability and misclassifica-
tion in the human coding of party manifestos. Political Analysis, 20(1):78–91.

54

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013b). Distributed rep-
resentations of words and phrases and their compositionality. CoRR, abs/1310.4546.

Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural network language
model. In International workshop on artificial intelligence and statistics, pages 246–
252. PMLR.

Mueller, A. (2018). Wordcloud package. Accessed: 2022-10-05.

Olah, C. (2015). Accessed: 2022-09-18.

Osnabrügge, M., Ash, E., and Morelli, M. (2021). Cross-domain topic classification for
political texts. Political Analysis.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala,
S. (2019). Pytorch: An imperative style, high-performance deep learning library. In
Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R., editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830.

Pilehvar, M. T. and Camacho-Collados, J. (2020). Embeddings in natural language
processing: Theory and advances in vector representations of meaning. Synthesis
Lectures on Human Language Technologies, 13(4):1–175.

Rehurek, R. and Sojka, P. (2011). Gensim–python framework for vector space modelling.
NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2).

Ren, Y., Zhang, L., and Suganthan, P. (2016). Ensemble classification and regression-
recent developments, applications and future directions [review article]. IEEE Com-
putational Intelligence Magazine, 11(1):41–53.

55

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review, 65(6):386.

Royer, C. W., O’Neill, M., and Wright, S. J. (2020). A newton-cg algorithm with
complexity guarantees for smooth unconstrained optimization. Mathematical Pro-
gramming, 180(1):451–488.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal repre-
sentations by error propagation. Technical report, California Univ San Diego La Jolla
Inst for Cognitive Science.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations
by back-propagating errors. nature, 323(6088):533–536.

Salton, G., Wong, A., and Yang, C.-S. (1975). A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2019). Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Schuster, M. and Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673–2681.

Socher, R., Lin, C. C., Manning, C., and Ng, A. Y. (2011). Parsing natural scenes and
natural language with recursive neural networks. In Proceedings of the 28th interna-
tional conference on machine learning (ICML-11), pages 129–136.

Solomon, C. and Breckon, T. (2011). Fundamentals of Digital Image Processing: A
practical approach with examples in Matlab. John Wiley & Sons.

Suiter, J. and Farrell, D. M. (2011). The Parties’ Manifestos, pages 29–46. Palgrave
Macmillan UK, London.

Tavits, M. and Letki, N. (2009). When left is right: Party ideology and policy in post-
communist europe. American Political Science Review, 103(4):555–569.

Tsebelis, G. (1999). Veto players and law production in parliamentary democracies: An
empirical analysis. American political science review, 93(3):591–608.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need.

56

Wang, Y., Miller, D., and Clarke, R. (2008). Approaches to working in high-dimensional
data spaces: gene expression microarrays. British journal of cancer, 98(6):1023–1028.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault,
T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M.
(2020). Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association for Computational Linguistics.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X., Łukasz
Kaiser, Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil,
N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado,
G., Hughes, M., and Dean, J. (2016). Google’s neural machine translation system:
Bridging the gap between human and machine translation. CoRR, abs/1609.08144.

Xiao, C. and Sun, J. (2021). Introduction to Deep Learning for Healthcare. Springer
Nature.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi, Y. (2019). Hellaswag: Can
a machine really finish your sentence? arXiv preprint arXiv:1905.07830.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urtasun, R., Torralba, A., and Fi-
dler, S. (2015). Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books. In Proceedings of the IEEE international
conference on computer vision, pages 19–27.

57

Declaration of Authenticity

The work contained in this thesis is original and has not been previously submitted for
examination which has led to the award of a degree.

To the best of my knowledge and belief, this thesis contains no material previously
published or written by another person except where due reference is made.

Nadja Sauter

58

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Related work and data
	Original paper and data
	Data extraction from Manifesto Project

	Methodology
	Classification
	Within-domain and cross-domain classification
	Logistic regression
	Evaluation metrics for classification

	Neural network
	Feedforward neural network
	Recurrent neural network
	Transformer

	Feature engineering in NLP
	TF-IDF
	Word2Vec
	Doc2Vec

	BERT

	Implementation of NLP models
	Pre-processing
	Training and evaluation of the different models
	Comparison of models
	Further experiments across time and countries
	Test-train split across time
	Test-train split across countries

	Limitations and discussion
	Conclusion
	Pre-processing details
	Word clouds
	Further detailed evaluation results of models
	Exploratory analysis of Word2Vec
	Evaluation of BERT per category
	Confusion matrices of models

	Further analysis per country of origin
	References

