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a b s t r a c t 

Cognitive complaints of attention/concentration problems are highly frequent in older adults with subjective 
cognitive decline (SCD). Functional connectivity in the cingulo-opercular network (CON-FC) supports cognitive 
control, tonic alertness, and visual processing speed. Thus, those complaints in SCD may reflect a decrease in 
CON-FC. Frontal white-matter tracts such as the forceps minor exhibit age- and SCD-related alterations and, 
therefore, might influence the CON-FC decrease in SCD. Here, we aimed to determine whether SCD predicts an 
impairment in CON-FC and whether neurite density in the forceps minor modulates that effect. To do so, we 
integrated cross-sectional and longitudinal analyses of multimodal data in a latent growth curve modeling ap- 
proach. Sixty-nine healthy older adults (13 males; 68.33 ± 7.95 years old) underwent resting-state functional and 
diffusion-weighted magnetic resonance imaging, and the degree of SCD was assessed at baseline with the mem- 
ory functioning questionnaire (greater score indicating more SCD). Forty-nine of the participants were further 
enrolled in two follow-ups, each about 18 months apart. Baseline SCD did not predict CON-FC after three years 
or its rate of change ( p -values > 0.092). Notably, however, the forceps minor neurite density did modulate the 
relation between SCD and CON-FC (intercept; b = 0.21, 95% confidence interval, CI, [0.03, 0.39], p = 0.021), so 
that SCD predicted a greater CON-FC decrease in older adults with relatively lower neurite density in the forceps 
minor. The neurite density of the forceps minor, in turn, negatively correlated with age. These results suggest 
that CON-FC alterations in SCD are dependent upon the forceps minor neurite density. Accordingly, these results 
imply modifiable age-related factors that could help delay or mitigate both age and SCD-related effects on brain 
connectivity. 
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. Introduction 

Subjective cognitive decline (SCD) is the perceived worsening of cog-
itive abilities, unrelated to an acute event and characterized by nor-
al performance in standard neuropsychological tests ( Molinuevo et al.,
017 ). SCD is associated with changes in the functional connectivity (FC
or the observed correlations between distant regions) ( Friston, 1994 )
ithin and between the default mode network and medial temporal lobe

egions ( Viviano and Damoiseaux, 2020 ). Relative to other large-scale
etworks, such as the default-mode or frontoparietal networks (which
Abbreviations: BOLD, blood oxygenation level-dependent signal; CON-FC, cingulo-  

tructural connectivity; fMRI, functional magnetic resonance imaging; LGCM, laten  

rientation dispersion and density imaging; SCD, subjective cognitive decline. 
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e have studied previously; e.g., Viviano et al. 2019 , Viviano and
amoiseaux 2021 ), much less is known about SCD-related differences

n other potentially relevant networks such as the ‘cingulo-opercular’
etwork (CON). The CON is relevant because its FC decreases in ag-
ng and mild cognitive impairment ( He et al., 2014 ; Ruiz-Rizzo et al.,
019 ). CON-FC supports cognitive control, tonic alertness, and visual
rocessing speed ( Dosenbach et al., 2007 ; Ruiz-Rizzo et al., 2018 ;
adaghiani and Kleinschmidt, 2016 ) that are all vulnerable to decline
n aging (e.g., McAvinue et al. 2012 , Ruiz-Rizzo et al. 2019 ). As cogni-
ive complaints related to attention/concentration problems are highly
tober 2022 
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1 For each response x of the 33 factor items: (8 - x) / 33. 
requent in older adults with SCD ( La Joie et al., 2016 ; Valech et al.,
018 ), CON-FC might also be associated with SCD. Accordingly, here
e specifically focus on the CON to fill this gap in the literature on
CD. The pattern of observed differences in FC has been proposed to
ary according to the time since SCD onset (e.g., increases at the start
f SCD and decreases if approaching a mild cognitive impairment stage;
iviano and Damoiseaux, 2020 ). Accordingly, only with a longitudinal
pproach can we set an individual’s putative SCD onset and baseline FC.
hen, FC changes can more clearly be determined. In the present study,
e evaluated SCD-related differences in CON-FC integrating both cross-

ectional and longitudinal analyses in a latent growth curve modeling
pproach. 

Although strong FC can exist between brain regions with no direct
hite matter connection (i.e., there is no exact, one-to-one correspon-
ence between FC and white-matter pathways), structural connections
o constrain and provide a global ‘physical substrate’ to FC ( Honey et al.,
009 ; Raichle, 2015 ; Wang et al., 2015 ). For example, deep neural net-
orks trained with structural connectivity data can accurately predict
C both at both the group and individual levels, indicative of structure-
unction coupling in the human connectome (although prediction accu-
acies are considerably lower and more variable for individual FC than
roup-averaged FC) ( Sarwar et al., 2021 ). Thus, the white matter in
racts connecting some of the CON regions (i.e., structural connectivity,
C – or the modeled diffusion direction of water molecules; Assaf et al.,
019 ) might modulate the magnitude of SCD-related differences in CON-
C. Particularly for CON, FC-guided tractography has shown that its SC
ainly connects the anterior cingulate cortex with other CON regions

e.g., middle frontal gyrus, anterior insula; Figley et al., 2015 ). Both
educed CON-SC (i.e., lower fractional anisotropy; Figley et al., 2015 )
nd CON-FC (e.g., Onoda et al. 2012 , Ruiz-Rizzo et al. 2019 ) are ob-
erved with more advanced age. The forceps minor, a major commis-
ural tract formed from the projections from the genu of the corpus callo-
um ( Wakana et al., 2004 ), connects the medial (i.e., anterior cingulate
ortex) and lateral surfaces of the frontal lobes and can be identified in
umans in vivo with diffusion-weighted imaging ( Abe et al., 2004 ). Thus,
e studied the forceps minor as a candidate proxy of CON-SC for three
ain reasons. First, as a major white-matter tract, it can be more eas-

ly identified in different samples (as compared to smaller, exploratory,
ample-specific white-matter tracts), and no assumption about a uni-
ary function-to-structure regional correspondence is required. Second,
t is a major frontal structural pathway that has been shown to con-
ect core regions in the CON. And third, its diffusion properties can be
easured in vivo . 

The particular relevance of the forceps minor white matter in SCD is
llustrated by a recent study which reported that fractional anisotropy
nd mean diffusivity of the forceps minor exhibit alterations in SCD and
ild cognitive impairment (e.g., Luo et al. 2020 ). In addition, lower

ractional anisotropy and higher mean diffusivity of commissural tracts,
ncluding the forceps minor, have been observed with increasing age
 de Groot et al., 2015 ). The degree of fractional anisotropy in the forceps
inor relates to performance in executive function ( Ohlhauser et al.,
019 ) and visual attention ( Tu et al., 2018 ) tasks in SCD and/or mild
ognitive impairment – i.e., cognitive functions in which complaints are
requent in SCD ( Valech et al., 2018 ). Lastly, in carriers of autosomal
lzheimer’s disease mutations, increased mean diffusivity in the for-
eps minor appears to precede symptom onset ( Araque Caballero et al.,
018 ). Accordingly, we hypothesized that individual differences in dif-
usion metrics of the forceps minor modify the relationship between SCD
nd CON-FC. We focused on the neurite density of the forceps minor,
n particular, because neurite density has been proposed to be a more
ensitive and specific marker of pathology than other white-matter dif-
usion metrics to which it contributes (e.g., fractional anisotropy) – as
ifferent combinations of neurite density and orientation dispersion can
ield a particular value of fractional anisotropy ( Zhang et al., 2012 ). 

In the present study, we aimed to evaluate SCD-related differences
n CON-FC and whether CON-SC modulates that effect, by using longi-
2 
udinal, multimodal data. More specifically, we analyzed CON-FC and
ON-SC across three time points, ∼ 18 months apart, in a sample of
ealthy older adults in which the degree of SCD was quantified at base-
ine. We used latent growth curve modeling to provide a flexible es-
imation of variability between individuals in the patterns of change
ithin individuals ( Curran et al., 2010 ), which is particularly relevant
hen not all individuals follow the same trajectory or exhibit the same

ate of change, as is the case in aging. Notably, growth modeling is
exible regarding accommodating complex patterns of missing data or
ompound-shaped trajectories ( Curran et al., 2010 ), which is common
n longitudinal data as well as in aging-related processes. Moreover, in
he framework of structural equation modeling, latent factors that rep-
esent unobserved growth trajectories can also be incorporated in the
rowth model ( Curran et al., 2010 ). As, in this framework, variables can
e simultaneously studied as ‘independent’ and ‘dependent’, questions
elated to antecedents and consequences can be adequately addressed
 Duncan and Duncan, 2009 ). For these reasons we used latent growth
urve modeling to test the following two hypotheses: (i) baseline SCD
redicts a decrease in CON-FC over three years, and (ii) the decrease in
ON-FC is more pronounced in older adults with relatively lower CON-
C as obtained from the neurite density in the forceps minor. 

. Materials and method 

.1. Participants 

Sixty-nine healthy older participants (13 males; mean age: 68.33
 7.95 years; age range: 50 - 85 years; 78% self-identified as Black)
nderwent neuropsychological testing and resting-state functional and
iffusion-weighted magnetic resonance imaging (MRI) at baseline. Par-
icipants were volunteers recruited from the community of Metro Detroit
MI, USA). Forty-nine of those 69 participants were enrolled in a lon-
itudinal study, which consisted of two follow-ups, each approximately
8 months apart (mean: 18.5 ± 1.39 months). Thirty-four (69%) of the
9 participants returned for the first follow-up and 29 (55%) for the
econd follow-up. CON-SC data were missing for 8 participants at base-
ine and 1 participant at the last follow-up, and MFQ was missing for 1
articipant at baseline. Little’s MCAR test was not significant ( 𝜒2 (108,
 = 69) = 100, p = 0.690, missing patterns = 9), supporting the con-
lusion that data were missing at random. The attrition of CON-FC or
ON-SC longitudinal data was not associated with age at baseline, sex,
acial ethnicity, SCD status or complaints, education, global cognition,
epressive symptoms, or IQ ( F (9, 54) = 1.15, p = 0.343). All partici-
ants were right-handed and fulfilled the selection criteria, including
o recent or past history of psychiatric disorders, neurological disease,
r head trauma, no current use of psychoactive medication, and no con-
raindications for MRI. The Institutional Review Board of Wayne State
niversity approved all the procedures used in this study, which fol-

owed the ethical principles of the World Medical Association Declara-
ion of Helsinki. All participants gave written informed consent before
heir participation in the study. Demographic data for each measure-
ent occasion are listed in Table 1 . The longitudinal functional MRI

nd the baseline diffusion-weighted MRI data used in the current study
ave been reported previously ( Viviano et al., 2019 ; Viviano and Damoi-
eaux, 2021 ). 

.2. SCD, behavioral, and neuropsychological measures 

SCD was quantified with the General Frequency of Forgetting fac-
or of the Memory Functioning Questionnaire (MFQ; Gilewski et al.,
990 ). These scores were inverted 1 to obtain a more intuitive inter-
retation of them, with higher scores indicating a greater degree of
CD. Depressive symptoms were measured with the Geriatric Depression
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Table 1 

Demographic variables across the three time points. 

Variable Baseline ( n = 69) Follow-up 1 ( n = 34) Follow-up 2 ( n = 29) 

Age at baseline 68.33 ± 7.95 67.41 ± 8.95 66.28 ± 9.40 
Sex [ n (%)] F / M 56 (81.2%) / 13 (18.8%) 29 (85.3%) / 5 (14.7%) 19 (65.5%) / 10 (34.5%) 
Education level 
High school 24 (35.3%) 12 (38.7%) 11 (40.7%) 
Associate degree 18 (26.5%) 7 (22.6%) 5 (18.6%) 
University 26 (38.2%) a 12 (38.7%) c 11 (40.7%) b 

Family history of dementia (yes / no) 34 (50.7%) / 33 (49.3%) b 19 (55.9%) / 15 (44.1%) 11 (39.3%) / 17 (60.7%) a 

Time since previous measurement (months) – 18.62 ± 1.17 17.13 ± 5.10 a 

Number of missing data points = 
a 1 
b 2 
c 3 

Table 2 

SCD, behavioral, and neuropsychological measures across the three time points. 

Variable Baseline ( n = 69) Mean ± SD 18-mos Follow-up ( n = 34) Mean ± SD 36-mos Follow-up ( n = 29) Mean ± SD 

SCD 

MFQ - General Frequency of Forgetting 2.99 ± 0.91 a 2.95 ± 0.95 a 2.91 ± 0.79 a 

Behavioral 

Geriatric Depression Scale 3.82 ± 3.93 b 3.62 ± 3.70 3.71 ± 3.71 a 

Big Five Inventory – Conscientiousness 37.36 ± 5.49 c 37.35 ± 4.61 c 36.75 ± 4.57 a 

Big Five Inventory – Neuroticism 17.41 ± 6.00 c 17.29 ± 5.39 c 17.89 ± 5.74 a 

Global cognition 

Mini-Mental State Examination 28.33 ± 1.97 b 28.84 ± 1.16 c 28.86 ± 1.30 a 

General IQ 98.09 ± 11.45 a 101.87 ± 12.93 c 100.96 ± 13.03 a 

Attention 

Trail Making Test A [time (s)] 47.43 ± 21.00 e 50.01 ± 31.53 c 55.77 ± 32.29 a 

Digit Symbol Substitution (total score) 39.78 ± 11.41 d 41.71 ± 10.89 c 43.86 ± 13.06 a 

Memory 

Rey Auditory Verbal Learning (total) 46.43 ± 9.31 b 48.90 ± 8.87 d 47.64 ± 10.03 a 

WMS Auditory Memory Index 0.47 ± 0.12 c 0.55 ± 0.11 c 0.54 ± 0.13 a 

WMS Visual Memory Index 0.54 ± 0.11 f 0.55 ± 0.12 c 0.57 ± 0.15 a 

WMS Visual Working Memory Index 0.40 ± 0.12 d 0.42 ± 0.11 d 0.41 ± 0.15 a 

WMS Immediate Memory Index 0.55 ± 0.10 f 0.58 ± 0.10 c 0.58 ± 0.12 a 

WMS Delayed Memory Index 0.47 ± 0.11 e 0.51 ± 0.12 c 0.53 ± 0.14 a 

Executive Function 

Trail Making Test B [time (s)] 124.18 ± 82.67 d 103.51 ± 59.62 c 109.91 ± 67.67 a 

Stroop Test Ratio Score 1.98 ± 0.45 g 1.87 ± 0.26 h 2.00 ± 0.41 g 

Language 

Verbal Fluency (total score) 36.55 ± 7.46 d 39.74 ± 7.82 c 38.04 ± 8.79 a 

Number of missing data points = 
a 1 
b 2 
c 3 
d 4 
e 5 
f 6 
g 7 
h 8 
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cale ( Yesavage et al., 1982 ), and the Big Five Inventory ( John et al.,
991 ) was used to measure personality traits of neuroticism and con-
cientiousness. Global cognition was assessed through the Mini-Mental
tate Examination (MMSE; Folstein et al., 1975 ) and the Wechsler Ab-
reviated Scale of Intelligence II ( Wechsler, 2011 ). To assess attention,
e used the Trail Making Test (TMT; Reitan and Wolfson, 1986 ), part
, and the digit symbol-coding subtest of the Wechsler Adult Intelli-
ence Scale III ( Wechsler, 1997 ). The Rey Auditory Verbal Learning
ask ( Rey, 1958 ) and the adult battery of the Wechsler Memory Scale-
V ( Wechsler, 2009 ) were used to assess memory. Executive function
easures were obtained through the TMT, part B, and the Stroop test

 Stroop, 1935 ). Finally, a measure of language was obtained through
 semantic fluency task (animals and occupations). Average group per-
ormance in all neuropsychological measures is presented in Table 2 ,
eparately for each measurement occasion. To evaluate measurement
nvariance in neuropsychological assessments across study occasions
nd SCD, linear mixed-effects models were fitted to the data using the
3 
me4 package in R (v. 4.1.0; R Core Team 2022 ; R Studio Team, 2022 ;
ttps://www.R-project.org/ ). Model parameters were assessed by 95%
onfidence intervals (CI), which if not overlapping zero support the in-
erpretation of the effect size. Pearson correlations and analysis of vari-
nce were used to assess the associations with CON-SC and, respectively,
continuous and categorical) demographic variables. 

.3. MRI data acquisition 

Structural MRI data were acquired on a Siemens Magnetom Verio
-Tesla scanner (Siemens Healthcare, Erlangen, Germany) located at
he Wayne State University MR Research Facility (Detroit MI, United
tates), using a 32-channel Head Matrix coil. A high-resolution anatom-
cal image was obtained through a T1-weighted 3D magnetization-
repared rapid gradient-echo (MP-RAGE) sequence, with the follow-
ng parameters: 176 slices parallel to the bicommissural line, slice
hickness = 1.3 mm, repetition time (TR) = 1680 ms, echo time

https://www.R-project.org/


A.L. Ruiz-Rizzo, R.P. Viviano, A.M. Daugherty et al. NeuroImage 263 (2022) 119662 

(  

w  

v  

s
 

(  

t  

T  

g  

t  

i  

t  

(  

(
 

r  

q  

m  

H  

s  

r  

t  

p
 

q  

p  

r  

s  

r  

e  

s

2

 

i  

F  

c  

t  

U  

(  

c  

t  

h  

b  

r  

s  

s  

w  

f  

a  

d

2

 

i  

i  

(  

t  

r  

d  

i  

s  

s  

a  

w  

c  

c  

t  

s

2

2

 

l  

B  

U  

a  

t  

(  

t  

w  

d  

f  

w  

p  

a  

2
 

(  

t  

r  

D  

i  

m  

s  

f  

e  

c  

v  

s  

v  

d  

w  

(  

r  

p  

t  

p  

t  

i  

e  

s  

m  

o

2

 

t  

g  

f  

t  

i  

a  

R  

2 For each individual, a residualized functional image was obtained after the 
voxelwise regression of the demeaned and detrended whole-brain signal (a time 
course vector resulting from the average across all brain voxels) on the de- 
meaned and detrended ICA-AROMA output. 
TE) = 3.51 ms, inversion time = 900 ms, flip angle = 9°, band-
idth = 180 Hz/pixel, GRAPPA acceleration factor = 2, field of
iew (FOV) = 256 mm, matrix size = 384 × 384, and voxel
ize = 0.7 × 0.7 × 1.3 mm. 

Diffusion-weighted MRI data were acquired through a multiband
acceleration factor = 3) echo-planar imaging (EPI) sequence, with
he following parameters: 84 axial slices, slice thickness = 2 mm,
R = 3500 ms, TE = 87 ms, flip angle = 90°, refocus flip an-
le = 160°, bandwidth = 1724 Hz/pixel, GRAPPA acceleration fac-
or = 2, FOV = 200 mm, matrix size = 100 × 100, voxel size = 2.00 mm
sotropic, phase encoding = anterior to posterior, diffusion direc-
ions = 96 (6 without diffusion weighting, b = 0), b-values = 1000
30 directions) & 1800 (60 directions) s/mm 

2 , total time of acquisition
TA) = 6 min 1 s. 

Resting-state functional MRI data were acquired through a high-
esolution multiband (acceleration factor = 3) T2 ∗ -weighted EPI se-
uence, with the following parameters: 75 slices, slice thickness = 2
m, TR = 2000 ms, TE = 30 ms, flip angle = 73°, bandwidth = 1698
z/pixel, GRAPPA acceleration factor = 2, FOV = 256 mm, matrix

ize = 128 × 128, voxel size = 2 mm isotropic, phase encoding = ante-
ior to posterior, 220 volumes, TA = 7 min 36 s. Participants were asked
o remain with their eyes closed during the resting-state functional MRI
rocedure. 

A field map for susceptibility-derived distortion correction was ac-
uired through two multiband (acceleration factor = 3) spin-echo echo-
lanar images of opposing phase encoding directions (anterior to poste-
ior and posterior to anterior), with the following parameters: 75 slices,
lice thickness = 2 mm, TR = 2412 ms, TE = 51 ms, flip angle = 90°,
efocus flip angle = 180°, bandwidth = 1698 Hz/pixel, GRAPPA accel-
ration factor = 2, FOV = 256 mm, matrix size = 128 × 128, and voxel
ize = 2 mm isotropic. 

.4. Diffusion-weighted MRI data preprocessing 

Prior to preprocessing, the high-resolution, T1-weighted
mages were anatomically segmented with Freesurfer (v.6.0;
ischl, 2012 ) ( http://surfer.nmr.mgh.harvard.edu/ ). Prepro-
essing of diffusion-weighted MRI data was done using
he TRActs Constrained by UnderLying Anatomy (TRAC-
LA; https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula ) tool
 Yendiki et al., 2011 ) in Freesurfer. Preprocessing included eddy-
urrent distortion correction based on FMRIB Software Library (FSL)
ools (v.5.0.8; Jenkinson et al., 2012 ) ( https://fsl.fmrib.ox.ac.uk ) and
ead motion correction by registering the diffusion-weighted to the
 = 0 images. Next, the b = 0 image was registered to the high-
esolution, T1-weighted image by an affine registration method and,
ubsequently, to the Montreal Neurological Institute (MNI) standard
pace template. Finally, the anatomical priors for white-matter tracts
ere computed by incorporating prior knowledge of the pathways

rom a set of training subjects ( Yendiki et al., 2011 ). All ensuing
nalyses of these data were conducted in participants’ native (i.e.,
iffusion-weighted) space. 

.5. Resting-state fMRI data preprocessing 

Resting-state fMRI data were preprocessed as described
n Viviano and Damoiseaux (2021) . Briefly, preprocess-
ng was conducted using FSL FEAT ( Woolrich et al., 2001 )
 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT ), and included removal of
he first five volumes, head motion correction ( Jenkinson et al., 2002 ),
emoval of non-brain structures ( Smith, 2002 ), susceptibility-derived
istortion correction ( Smith et al., 2004 ), co-registration to the anatom-
cal image and, subsequently, to the MNI 2-mm standard space, spatial
moothing (4-mm full width at half maximum), and 4D grand-mean
caling. An independent component analysis (ICA)-based strategy for
utomatic removal of motion artifacts (ICA-AROMA; Pruim et al., 2015 )
4 
as used to detect and regress motion artifacts. In short, ICA-AROMA
lassifies independent components as ‘motion’ based on high-frequency
ontent, correlation with realignment parameters, edge fraction, and
he cerebrospinal fluid fraction ( Pruim et al., 2015 ). Finally, the global
ignal was regressed out from the resting-state functional MRI data 2 . 

.6. Connectivity analyses 

.6.1. Structural connectivity 

Major white-matter tracts were automatically reconstructed and
abeled in participants’ native space using TRACULA, an automated
ayesian global tractography algorithm ( Yendiki et al., 2011 ). TRAC-
LA uses the “ball-and-stick ” model of diffusion ( Behrens et al., 2007 )
nd anatomical priors for tract reconstruction, both of which yield a pos-
erior probability for each tract given the diffusion-weighted MRI data
 Yendiki et al., 2011 ). More specifically, FSL’s bedpostX (Bayesian Es-
imation of Diffusion Parameters Obtained using Sampling Techniques)
as used to fit the ball-and-stick model to the diffusion-weighted MRI
ata at every voxel. Next, the probability distributions were generated
or each participant and each tract by fitting the shape of each path-
ay to the results of the ball-and-stick model of diffusion and to the
rior knowledge of the pathway anatomy obtained from the manually
nnotated set of training subjects in the TRACULA atlas ( Yendiki et al.,
011 ). 

The posterior probability distribution map for the forceps minor
thresholded to 0.20 of the maximum probability value – default set-
ings) was used as a region of interest (ROI) to obtain its average neu-
ite density. To do so, we used the Neurite Orientation Dispersion and
ensity Imaging (NODDI) method ( Zhang et al., 2012 ), as implemented

n the AMICO (Accelerated Microstructure Imaging via Convex Opti-
ization) Python module ( Daducci et al., 2015 ). NODDI follows a tis-

ue model of three microstructural compartments that affect water dif-
usion differently: intracellular (space bounded by neurite membranes),
xtracellular (space around the neurites), and CSF (space occupied by
erebrospinal fluid) ( Zhang et al., 2012 ). Neurite density refers to the
olume fraction of the intracellular compartment and might be a sen-
itive marker of pathology ( Zhang et al., 2012 ). After obtaining the
oxelwise neurite density map for each participant, the mean neurite
ensity was computed for the forceps minor. The mean neurite density
as weighted by each voxel’s posterior probability of tract membership

as in Viviano et al. 2019 ): voxels toward the center had greater poste-
ior probabilities and voxels farther from the center had lower posterior
robabilities. Thus, voxels closer to the boundary of white and gray mat-
er contributed less to the weighted mean. Such an approach reduces the
ossible contribution of partial volume effects to the results. We used
he mean neurite density of the forceps minor as a measure of CON-SC
n the present study. A separate mean neurite density was obtained for
ach time point. These values were then averaged to form a single mea-
ure of CON-SC for the latent growth curve modeling analysis to reduce
odel complexity and the number of parameters to be estimated given

ur sample size. 

.6.2. Functional connectivity 

We selected five ROIs of the CON, namely, the anterior cingulate cor-
ex (ACC), left and right anterior insula, and left and right middle frontal
yrus, and obtained the average time course of each ROI using FSL’s
slmeants command (also see Supplementary Material ). These ROIs were
aken from a parcellation of the human cerebral cortex that combined
nformation from sharp changes in architecture, function, connectivity,
nd topography ( Glasser et al., 2016 ). More specifically, each of these
OIs was composed of several multimodal areas ( Table 3 ). These areas

http://surfer.nmr.mgh.harvard.edu/
https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula
https://fsl.fmrib.ox.ac.uk
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT
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Table 3 

Multimodal areas comprising the CON-FC ROIs. 

Region Areas CON ROI 

19 “Anterior Cingulate and 
Medial Prefrontal Cortex ”

RH: 60, 62, 179 ACC 
LH: 240, 242, 359 

12 “Insular and Frontal 
Opercular Cortex ”

RH: 108, 112 Anterior insula 
LH: 288, 292 

22 “Dorsolateral Prefrontal 
Cortex ”

RH: 84, 86 Middle frontal 
gyrus LH: 264, 266 

Region naming and area numbering correspond to that in 
Glasser et al. (2016) . ACC: anterior cingulate cortex; LH: left hemi- 
sphere; RH: right hemisphere; ROI: region of interest. 
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ere selected based on the descriptions presented in the supplemen-
ary neuroanatomical results of Glasser et al. (2016) . To create the ROIs
or the present study, the selected multimodal areas in MNI space were
rst extracted from the original map of 360 areas [ https://github.com/
rainspaces/glasser360/blob/master/glasser360MNI.nii.gz ] and bina-
ized (as all voxels had as intensity value the area number). As these
OIs were available in volume space, no transformations between sur-

ace or volume space or vice versa were required. Next, the selected ar-
as were added together, resampled from 1-mm to 2-mm-isotropic voxel
ize (i.e., the functional images’ voxel size), thresholded (cutoff = 0.3),
nd binarized. Finally, we extracted the time courses of each ROI by first
eslicing each ROI to each participant’s functional space, which gave
ach voxel of the ROI a different value depending on the warping. Then,
 weighted mean time course was computed across all voxels of the ROI,
sing the ROI voxels’ values (range: 0 – 1) as weights. ROIs’ time courses
ere obtained for each participant, separately per time point. Pearson’s

orrelation was first computed between the five ROI’s time series (i.e.,
0 pairs), and the r -values were then Fisher’s r -to- z transformed. Finally,
he mean CON-FC was calculated from the z -values across the 10 ROI
airs. 

.7. Latent growth curve modeling 

Hypotheses were tested using a latent growth curve model (LGCM;
cArdle, 2009 ) in a longitudinal structural equation model framework.

GCMs allow estimating between-person differences in within-person
atterns of change over time ( Curran et al., 2010 ). Specifically, for each
ndividual, the mean and variance of two (unobserved) factors can be
btained, namely, the latent intercept and the latent slope, respectively.
he growth model contains both fixed (i.e., mean of all individual tra-

ectories) and random (i.e., variance around the group means) effects for
ach of these factors ( Curran et al., 2010 ). Accordingly, relevant vari-
bles (i.e., those that might be associated with the random components
f growth) can also be included in the model with the aim of predicting
andom variability in the intercept or slope ( Curran et al., 2010 ). One
emarkable advantage of LGCM within the structural equation modeling
ramework is that hypotheses are tested with latent (i.e., unobserved)
ariables estimated independently of the effects of measurement error
n the observed variables ( Bollen and Noble, 2011 ; Curran et al., 2010 ).
bserved data were thus standardized (i.e., mean-centered and scaled
y the standard deviation of each exogenous variable; in the case of la-
ent variable indicators, the mean and standard deviation of the last
ime point was used for the standardization) prior to model fit. The
atent intercept corresponds to the last follow-up. Accordingly, the la-
ent slope weights used were -2, -1, and 0, for baseline, first, and sec-
nd follow-up, respectively. The pattern of data missingness was exam-
ned for indications of data missing at random and further tested with
ittle’s ( Little, 1988 ) test as implemented in the mcar_test function of
he naniar package in R. Multivariate normality was verified through
enze-Zirkler’s multivariate normality test as implemented in the MVN

 package, which also includes Anderson-Darling’s univariate normal-
ty test. The model was thus estimated with full information maximum
5 
ikelihood (FIML), a method that allows all available data to be used
or parameter estimation under the assumptions of data missing at ran-
om and multivariate normality ( Enders and Bandalos, 2001 ). When
ssumptions are met, FIML estimation is the recommended practice
or good external validity in longitudinal analysis with attrition (e.g.,
ittle et al. 2014 ). The LGCM was estimated using the ‘lavaan’ package
v. 0.6-9; Rosseel, 2012 ) ( https://lavaan.ugent.be/ ) in R. Model param-
ter estimates are reported as standardized. 

.8. Longitudinal measurement invariance 

Longitudinal measurement invariance was confirmed by no change
n the comparative fit index (CFI) and the root mean square error of
pproximation (RMSEA) when imposing model constraints to be equal
cross time points, and by non-significant results in the Chi-squared
ifference test between three nested measurement models that grad-
ally increased the constraints imposed on them (see Supplementary
able S4). Multivariate (HZ = 0.84, p -value = 0.547) and univariate
Anderson-Darling statistic range = 0.22 – 0.69, p -values > 0.062) nor-
ality was confirmed for baseline age, baseline SCD, CON-FC for each

ime point, and CON-SC averaged across time points. 

.9. Conditional CON-FC LGCM 

A conditional LGCM tested whether SCD (as indexed by the inverse
core of the MFQ) at baseline predicts CON-FC (averaged across all
ON-FC ROIs) at the last follow-up (latent intercept) and/or the rate
f change towards the last follow-up of CON-FC (latent slope) (second
pper square from left to right and corresponding arrows in Fig. 1 ).
ON-FC was obtained by averaging over all ROIs to have a single mea-
ure for the entire network, given that no differential effects of SCD
ere expected for specific ROI pairs. The latent intercept of CON-FC
as centered at the last time point (i.e., as denoted by the -2.00, -1.00,
.00 factor loadings, from left to right, next to the dotted line arrows in
ig. 3 ) – similar to the approach used in Daugherty and Raz (2016) . The
nteraction between CON-SC and SCD was included to test the moder-
tion of CON-SC on the effect of SCD on CON-FC as a predictor of the
atent intercept of CON-FC (leftmost upper square in Fig. 1 ). As CON-SC
as obtained by averaging across all time points, its direct effect was
lso included in the model, i.e., by pointing towards the latent slope of
ON-FC (rightmost upper square in Fig. 1 ). For completeness, an alter-
ative model was tested in which the moderation and direct effects of
ON-SC were swapped with respect to the latent intercept and slope of
ON-FC (i.e., with the moderation pointing to the slope and direct ef-

ect pointing to the intercept). Effects were considered significant at a
onferroni-corrected 𝛼-level = 0.025 (i.e., to account for the two models
ested). Age at baseline was used as a (time-invariant) control covariate,
nd all observed measures were centered at 0 with a standard deviation
f 1. 

.10. Model evaluation 

As there is ‘error’ (or unexplained variance) inherently associated
ith the measurement required to estimate CON-FC on each occasion,
e ensured good consistency of measurement across study occasions to

upport the validity of the latent variables. Accordingly, invariance over
ime was assessed in the measurement model (latent variables and their
hree indicators; middle and lower part of Fig. 1 ) and ensured in the
tructural model ( Fig. 1 ) by estimating variances within a latent con-
truct and constraining them to be equal across time ( van de Schoot
t al., 2012 ). Model fit was determined by examining the Chi-square
 𝜒2 ) statistic (a non-significant value for acceptance), the comparative
t index (CFI ≥ .95 for acceptance), the root mean square error of ap-
roximation (RMSEA < .08 for acceptance), and the standardized root
ean square residual (SRMR ≤ .08 for acceptance) ( Schreiber et al.,
006 ). 

https://github.com/brainspaces/glasser360/blob/master/glasser360MNI.nii.gz
https://lavaan.ugent.be/
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Fig. 1. Conditional latent growth curve model path diagram. Model to test the effect of subjective cognitive decline, measured with the Memory Functioning 
Questionnaire (MFQ), on the latent intercept (‘IFC’) and slope (‘SFC’) of the functional connectivity averaged across regions of interest of the cingulo-opercular 
network (‘AvrFC’) for each measurement occasion. The model also includes the effect of structural connectivity (‘SC’) of the forceps minor and the interaction 
between MFQ and SC (‘MFQ:SC’). The directional effects of ‘SC’ and ‘MFQ:SC’ were also tested on the latent intercept and slope, respectively. Exogenous or predictor 
variables are on the top. Black arrows indicate that the effects were estimated, whereas gray, dotted arrows indicate that the effects were fixed. Squares represent 
manifest variables, while circles latent variables. Straight arrows indicate the directionality of a direct effect. Curved, double-headed arrows represent correlations 
or residual variances. 
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.11. Data availability 

The structured summary data in tabular form and scripts used to gen-
rate the results reported here are openly available and can be down-
oaded from https://osf.io/zaef2/ . 

. Results 

.1. Behavioral and neuropsychological measures 

All behavioral and neuropsychological measures across the three
ime points are listed in Table 2 . Linear mixed model analyses revealed
hat depressive symptoms increased and conscientiousness scores de-
reased across time points and with higher baseline SCD (see Supple-
entary Tables S2 and S3). There was also a time point × SCD inter-

ction for both depressive symptoms and conscientiousness. For both
epressive symptoms and conscientiousness, this interaction indicated
 reduced association with SCD at the second follow-up. For depres-
ive symptoms, the association became less positive with time, whereas
or conscientiousness, the association became less negative with time.
o other behavioral or neuropsychological measure varied across time
oints or with the degree of SCD. Age and SCD at baseline were not
orrelated ( r 68 = 0.14, 95% CI [-0.11, 0.36], p = 0.269). 

.2. CON structural and functional connectivity 

The ROIs from which the respective connectivity values were ex-
racted for the LGCM are shown in Fig. 2 A (CON-SC) and Fig. 2 C (CON-
C). The line plots in Fig. 2 B (CON-SC) and Fig. 2 D (CON-FC) further
llustrate the mean and variability in those values in the present sam-
le across time points. CON-SC (averaged across time points) was neg-
tively correlated with age at baseline ( r 67 = -0.35, 95% CI [-0.55, -
6 
.12], p = 0.003). CON-SC tended to correlate negatively with baseline
CD ( r 66 = -0.22, 95% CI [-0.44, 0.02], p = 0.072). CON-SC did not dif-
er across levels of education [ F (4, 61) = 1.79, p = 0.143] or between
ales and females [ F (1, 65) = 2.66, p = 0.108]. 

.3. CON-SC modifies the effect of SCD on CON-FC 

The conditional LGCM of CON-FC had adequate fit ( 𝜒2 (9,
 = 69) = 8.52, p = 0.483, CFI = 1.0, RMSEA = 0.0, and SRMR = 0.097).
n average, SCD (as indexed by a higher MFQ) did not predict CON-FC
fter three years (latent intercept: 𝛽 = -0.36, b = -0.19, Standard Error,
E = 0.15, 95% CI [-0.49, 0.12], p = 0.211) or its rate of change (latent
lope: 𝛽 = -0.53, b = -0.17, SE = 0.10, 95% CI [-0.38, 0.03], p = 0.093),
ontrary to what was hypothesized. However, CON-SC (averaged across
ll time points) moderated the relation between baseline SCD and CON-
C after three years ( 𝛽 = 0.49, b = 0.21, SE = 0.09, 95% CI [0.03, 0.39],
 = 0.021; Fig. 3 A), indicating that high baseline SCD predicts lower
ON-FC after 3 years given a relatively low level of CON-SC throughout
he 3-year time period ( Fig. 3 B). Neither the effect of CON-SC on the
atent slope of CON-FC (95% CI [-0.19, 0.08], p = 0.399) nor the effect
f age on the latent intercept (95% CI [-0.33, 0.23], p = 0.711) or on
he slope of CON-FC (95% CI [-0.17, 0.22], p = 0.812) were significant.

For completeness, an alternative model was tested in which the mod-
ration and direct effects of CON-SC were swapped with respect to the
atent intercept and slope of CON-FC – that is, CON-SC may plausibly
oderate the rate of change (i.e., slope) of CON-FC. The model had ad-

quate fit ( 𝜒2 (9, n = 69) = 6.61, p = 0.678, CFI = 1.0, RMSEA = 0.0,
nd SRMR = 0.079), and there was no evidence to suggest moderation;
herefore, the alternative hypothesis of CON-SC moderation of the rela-
ionship between baseline SCD and the rate of change in CON-FC was
ejected (95% CI [-0.20, 0.02], p = 0.111) (see Supplementary Fig. S3).
 marginal, nominally significant effect was observed for CON-SC on the

https://osf.io/zaef2/
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Fig. 2. Individual and mean values of structural (SC) and functional (FC) connectivity of the cingulo-opercular network (CON). (A) Reconstructed forceps 
minor map in an exemplary participant. Neurite density (i.e., intracellular volume fraction, ICVF) values were obtained from this region of interest (ROI) for each 
participant and each time point as our measure of SC. (B) Individual and mean (thicker line) ICVF values of the forceps minor for each time point. The y -axis scale 
was chosen to facilitate the visualization of individual lines. (C) ROIs that composed the CON. To measure FC, correlations were computed between these ROIs (see 
Table 3 ) and an average was obtained for each participant and each time point. (D) Individual and mean (thicker line) FC values of the CON for each time point. The 
differing voxel intensity values in the ROIs were used to compute weighted averages of neurite density and time series in A and C, respectively. Error bars represent 
the standard errors of the respective means. 

Fig. 3. Conditional LGCM of CON-FC. (A) The effects of SCD (indexed by the inverted scores in the MFQ) on the latent intercept (‘IFC’) and slope (‘SFC’) of CON-FC 
were tested as well as the moderation of CON-SC on the relationship between MFQ and IFC (‘MFQ:SC’; arrow from the left-most top square). The moderation effect 
is illustrated in (B). (B) CON-SC, represented by the forceps minor neurite density, moderated the relationship between baseline SCD and CON-FC after 3 years. Note 
that the division into high and low CON-SC is for illustrative purposes only; the analysis was performed using CON-SC as a continuous variable. Unstandardized 
estimates are shown. ∗ p < 0.025. 
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atent intercept of CON-FC that did not survive family-wise error correc-
ion ( 𝛽 = 0.76, b = 0.24, SE = 0.12, 95% CI [0.01, 0.47], p = 0.036, ns at
he Bonferroni-corrected 𝛼-level). As with the previous model, neither
CD (intercept: 95% CI [-0.45, 0.13], p = 0.278; slope: 95% CI [-0.36,
.03], p = 0.092) nor age (intercept: 95% CI [-0.25, 0.29], p = 0.882;
lope: 95% CI [-0.14, 0.23], p = 0.662) predicted the latent intercept or
lope of CON-FC. 

. Discussion 

In the present study, we tested whether baseline SCD predicts a de-
rease in CON-FC over three years and whether the decrease in CON-FC
s more pronounced in older adults with relatively lower neurite den-
ity in the forceps minor (denoted as ‘CON-SC’, for simplicity). We used
GCM to study individual differences in CON functional and structural
onnectivity in a sample of healthy older adults. We found that greater
CD predicts lower CON-FC after 3 years in individuals with relatively
ow neurite density in the forceps minor. However, greater SCD did
ot directly predict lower CON-FC after three years or a greater rate
f change in CON-FC over this period. Together, these results both in-
icate that CON-FC alterations in SCD are dependent upon the forceps
inor neurite density and support the complex effect of SCD on FC. 

Our main finding is that the neurite density in the forceps minor
oderated the effect of SCD on CON-FC. SCD is a behavioral pheno-

ype with multiple causes and trajectories in relation to cognitive func-
ion ( Jessen et al., 2020 ; Rabin et al., 2017 ). Our finding thus indicates
hat one trajectory of SCD leading to functional brain changes such as
ecreased CON-FC depends on the neurite density of, at least, one ma-
or frontal white-matter tract, the forceps minor. This is not to say that
ther major (or minor) white-matter tracts are of lesser importance or
o relevance for the CON-FC, given that an exhaustive exploration of
ON-SC was beyond the scope of the present study (see Supplementary

aterial ). Nevertheless, our finding does indicate that neurite density in
he forceps minor might be a potential candidate biomarker for func-
ional brain changes in individuals with SCD. The functional relevance
f the frontal white matter, including the genu of the corpus callosum,
as been implied by the cross-sectional association between fractional
nisotropy in the frontal white matter and processing speed in healthy
lder adults ( Hong et al., 2015 ). Future longitudinal studies could help
lucidate whether decreased visual processing speed, one of the cogni-
ive functions supported by the CON-FC ( Ruiz-Rizzo et al., 2019 ), de-
ends on the neurite density in, specifically, the forceps minor in SCD. 

Our analyses revealed that the neurite density of the forceps minor
as negatively correlated with age, in line with previous reports for

ractional anisotropy and mean diffusivity ( de Groot et al., 2015 ), vox-
lwise neurite density ( Merluzzi et al., 2016 ), and overall diffusion met-
ics from atlas-based tracts of interest ( Raghavan et al., 2021 ). Neither
ducation nor sex was associated with the neurite density of the forceps
inor in the present sample, also in line with previous reports (e.g.,
aghavan et al. 2021 ). The association observed with age helps us bet-

er understand the moderating role of CON-SC in the effect of SCD on
ON-FC, found in the present study. Specifically, the effect of SCD on
ON-FC appears to be stronger for older adults who are more sensitive
o age effects on CON-SC. Aging is associated with a high load of white
atter hyperintensities, which tend to accumulate, mostly, in the frontal

obes ( Raz et al., 2007 ). White matter hyperintensities are indicative of
mall vessel disease ( Wardlaw et al., 2015 ) and have been shown to be
ssociated with lower neurite density of, mainly, corpus callosum (i.e.,
ncluding the forceps minor) and association (e.g., superior longitudinal
asciculus) fibers ( Raghavan et al., 2021 ). Accordingly, it appears plau-
ible that vascular risk factors or particular age-related vascular dam-
ge in frontal regions might contribute to a neurite density reduction in
he forceps minor. Although education level did not particularly relate
o CON-SC in the present sample, it is possible that other indicators of
rain reserve or maintenance (e.g., cognitive, social, or physical activity)
ight influence vascular risk factors or overall neurite density reduction
8 
n the white matter. In line with previous studies (e.g., Wang et al. 2012 ,
en et al. 2019 ), we observed a negative but non-significant correlation

etween SCD and CON-SC. Larger sample sizes or a longer follow-up pe-
iod in future studies might help determine whether there indeed is a
irect association between SCD and CON-SC. Regardless, our results im-
ly that CON-SC might allow identifying individuals with SCD in whom
revention strategies (e.g., aimed at reducing vascular risk factors, such
s through dietary or physical activity interventions) may counteract
unctional brain decreases. 

The LGCM approach used in the present study allowed us to separate
he effect of the interaction between CON-SC and SCD on CON-FC at a
articular time throughout the 3-year measurement period. Contrary to
hat was observed for the latent intercept, CON-SC did not moderate

he effect of SCD on the rate of change of CON-FC (latent slope). A po-
ential explanation is that the biological rate of change is slower than
he period observed. However, our 18-month follow-up intervals are
ongruent with those of larger multicenter studies on SCD, i.e., annual
chemes ( Jessen et al., 2018 ). The observed tendency was an overall de-
rease with greater SCD, independently of the level of neurite density in
he forceps minor. In previous studies, greater SCD has been found asso-
iated with a more pronounced cognitive decline in memory functions
cross follow-ups spanning substantially larger follow-up periods, i.e.,
11 years ( Hohman et al., 2011 ). Similarly, rates of cognitive decline
ave been shown to differ between older adults with and without SCD
nly after 6 years from baseline ( Koppara et al., 2015 ). Accordingly, and
ssuming a similar effect for FC, a measurement period > 3 years might
elp ascertain whether CON-SC does also modulate the rate of decrease
f CON-FC or, more generally, whether SCD influences the rate of de-
rease of CON-FC. In this context, testing potential non-linear change
rajectories is an interesting consideration for future studies. Overall,
ur results suggest that CON-SC is relevant for the prediction of the
evel of CON-FC after three years, in individuals with the subjective im-
ression of a decline in their cognitive functions. 

Our results should be interpreted taking some limitations into ac-
ount. For example, our sample size is small for LGCM approaches,
hich work best with sample sizes ≥ 100 (e.g., Curran et al. 2010 ).
evertheless, our study can set the ground for future longitudinal stud-

es that combine FC and SC measures in a theory-driven manner in the
ontext of SCD. Additionally, both MRI-based functional and structural
onnectivity are both proxy indicators of the biological and physiologi-
al mechanisms we are interested in, which, moreover, are not always
losely related (i.e., there is no one-to-one correspondence between the
wo). Despite this limitation, our study showed that combining both
an offer a more comprehensive understanding of the changes in brain
rganization that might occur with SCD. Moreover, the impact of par-
icular analytical approaches for FC, such as volume- vs. surface-based,
ight also be explicitly tested in the future. Depressive symptoms and

onscientiousness scores increased with SCD and time in our sample,
hereby raising the possibility that they can partly explain the associa-
ions found between SCD and brain connectivity. However, subclinical
epressive symptoms (i.e., a score < 5 on the GDS; Bijl et al., 2006 ) and
articular personality factors (such as high neuroticism or conscientious-
ess) often co-occur with SCD and might either result from SCD or share
he same underlying cause as SCD ( Jenkins et al., 2019 ; Jessen et al.,
020 ). Our sample was composed of mostly females across time points
more accentuated at baseline and at the first follow-up), which may
imit the generalization of our findings and conclusions to male older
dults (also see Supplementary Material regarding the influence of sex
nd education on our conclusions). Finally, averaging CON-SC across
ll time points required making assumptions that could not be directly
ested in the present study (e.g., measurement invariance, interchange-
bility of observations, and interpretation of the average) but that merit
 deeper investigation in the future (e.g., with more complex approaches
ike parallel growth modeling, given sufficient sample size). 

To conclude, we found that SCD predicts lower CON-FC over three
ears in individuals with relatively lower neurite density of the forceps
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inor, a major frontal white-matter tract. Advanced age can have an im-
act on the neurite density of the forceps minor. Together, these findings
mply modifiable age-related factors that could help delay or mitigate
oth age and SCD-related effects on brain connectivity. 
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