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Abstract
While the ground state of magnetic materials is in general well described on the basis of spin
density functional theory (SDFT), the theoretical description of finite-temperature and
non-equilibrium properties require an extension beyond the standard SDFT. Time-dependent
SDFT (TD-SDFT), which give for example access to dynamical properties are computationally very
demanding and can currently be hardly applied to complex solids. Here we focus on the alternative
approach based on the combination of a parameterized phenomenological spin Hamiltonian and
SDFT-based electronic structure calculations, giving access to the dynamical and finite-temperature
properties for example via spin-dynamics simulations using the Landau–Lifshitz–Gilbert (LLG)
equation or Monte Carlo simulations. We present an overview on the various methods to calculate
the parameters of the various phenomenological Hamiltonians with an emphasis on the KKR
Green function method as one of the most flexible band structure methods giving access to
practically all relevant parameters. Concerning these, it is crucial to account for the spin–orbit
coupling (SOC) by performing relativistic SDFT-based calculations as it plays a key role for
magnetic anisotropy and chiral exchange interactions represented by the DMI parameters in the
spin Hamiltonian. This concerns also the Gilbert damping parameters characterizing
magnetization dissipation in the LLG equation, chiral multispin interaction parameters of the
extended Heisenberg Hamiltonian, as well as spin–lattice interaction parameters describing the
interplay of spin and lattice dynamics processes, for which an efficient computational scheme has
been developed recently by the present authors.

1. Introduction

Density functional theory (DFT) is a ‘formally exact approach to the static electronic many-body problem’
for the electron gas in the equilibrium, which was adopted for a huge number of investigations during the last
decades to describe the ground state of solids, both magnetic and non-magnetic, as well as various ground
state properties [1].

However, dealing with real systems, the properties in an out-of-equilibrium situation are of great interest.
An example for this is the presence of external perturbation varying in time, which could be accounted for by
performing time-dependent first-principles electronic structure calculations. The time-dependent extension
of density functional theory (TD-DFT) [2] is used successfully to study various dynamical processes in atoms
and molecules, in particular, giving access to the time evolution of the electronic structure in a system affected
by a femtosecond laser pulse. However, TD-DFT can be hardly applied to complex solids because of the lack
of universal parameter-free approximations for the exchange-correlation kernel. Because of this, an approach
based on the combination of simulation methods for spin- and lattice dynamics, using model spin and lattice
Hamiltonians is more popular for the moment. A great progress with this approach has been achieved during
last decade due to the availability of parameters for the model Hamiltonians calculated on a first principles
level, that is a central issue of the present contribution. As it was pointed out in reference [1], this approach has
the advantage, that the spin-related many-body effects in this case are much simpler to be taken into account
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when compared to the ab initio approach. Thus, the isotropic exchange coupling parameters Jij for the classical
Heisenberg Hamiltonian worked out Liechtenstein et al [3, 4] have been successfully used by many authors to
predict the ground state magnetic structure of material and to investigate its finite-temperature properties.
Depending on the materials, the isotropic Jij can exhibit only spatial anisotropy.

1.1. Models and Hamiltonians
Extension of the Heisenberg Hamiltonian accounting for anisotropy in spin subspace is often done by adding
the so-called Dzyaloshinskii–Moriya interactions (DMIs) and the magnetic anisotropy term,

HH,rel = −
∑

i,j

Jij (̂ei · êj) −
∑

i,j

�Dij (̂ei × êj) +
∑

i

êiK iiêi (1)

with êi(j) the orientation of the spin magnetic moment at site i( j). Alternatively, one may describe exchange
interactions in the more general tensorial form, J ij, leading to:

HH,rel = −
∑

i,j

êiJ ij
êj +

∑
i

êiK iiêi. (2)

In the second case the DMI is represented as the antisymmetric part of the exchange tensor, i.e. Dα
ij =

1
2 (Jβγij −

Jγβij )εαβγ . It should be stressed, that calculations of the spin-anisotropic exchange interaction parameters as
well as of the magnetic anisotropy parameters require a relativistic treatment of the electronic structure in
contrast to the case of the isotropic exchange parameters which can be calculated on a non-relativistic level.
Various schemes to map the dependence of the electronic energy on the magnetic configuration were suggested
in the literature to calculate the parameters of the spin Hamiltonians [5–8], depending of its form given in
equations (1) or (2).

Despite of its simplicity, the spin Hamiltonian gives access to a reasonable description of the temperature
dependence of magnetic properties of materials when combined with Monte Carlo (MC) simulations [9], or
non-equilibrium spin dynamics simulations based on the phenomenological Landau–Lifshitz–Gilbert (LLG)
equations [10, 11]

1

γ

d�M

dτ
= −�M × �Heff + �M ×

[
G̃(�M)

γ2M2
s

d�M

dτ

]
. (3)

Here �Heff is the effective magnetic field defined as �Heff = − 1
M

∂F
∂m̂ , where F is the free energy of the system and

m̂ =
�M
�Ms

with Ms the saturation magnetization treated at first-principles level, and γ is the gyromagnetic ratio

and G̃ is the Gilbert damping parameter. Alternatively, the effective magnetic field can be represented in terms

of the spin Hamiltonian in equation (2), i.e. �Heff = − 1
M

∂〈HH,rel〉T
∂m̂ , with 〈. . .〉T denoting the thermal average for

the extended Heisenberg Hamiltonian HH,rel.
The first-principles calculation of the parameters for the Heisenberg Hamiltonian as well as for the LLG

equation for spin dynamics have been reported in the literature by various groups who applied different
approaches based on ab initio methods [3–5, 7, 12–27]. Here we will focus on calculations based on the Green
function multiple-scattering formalism being a rather powerful tool to supply all parameters for the extended
Heisenberg Hamiltonian as well as for the LLG equation.

1.2. Variables and units
In this section we list in table 1 the variables and parameters which show up in the review. Conventionally, the
calculated parameters of the spin Hamiltonian are given in electronvolts (eV), while the unit Bohr magneton
(μB) is used for atomic magnetic moments, and the Bohr radius (a0) is used for interatomic distances. The
dimensionless Gilbert damping parameter is defined as αG = G̃/(γMs). The values for the basic constants
listed in table 1 are given in the SI units using in particular Tesla (T) for the magnetic field, Kelvin (K) for the
temperature, and Joule (J) for the energy.

2. Magnetic anisotropy

Let us first consider the magnetic anisotropy term in spin Hamiltonian, characterized by parameters (written
in tensorial form in equations (1) and (2)) deduced from the total energy dependent on the orientation of
the magnetization m̂. The latter is traditionally split into the magneto-crystalline anisotropy (MCA) energy,
EMCA(m̂), induced by spin–orbit coupling (SOC) and the shape anisotropy energy, ΔEshape(m̂), caused by
magnetic dipole interactions,

EA(m̂) = EMCA(m̂) +ΔEshape(m̂). (4)

2
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Table 1. Key variables and parameters.

Variable Symbol Unit

Lattice parameter a a0

Wave vector q 2πa−1
0

Interatomic distance Rij a0

Magnetic anisotropy constants κm
l eV

Exchange coupling parameters Jij eV
DMI �Dij eV
Three-spin chiral interaction (TCI) Jijk eV
Four-spin isotropic
Exchange interaction Js

ijkl eV

Six-spin exchange parameters κ
six−spin
ijklmn eV

DMI-like four-spin
Exchange interactions �Dijkl eV
Spin–lattice coupling parameters Jij,k eV/a0

Magnetic moment per atom |�Mi| μB

Magnetization |�M| μB/f.u.
Temperature T K
Gilbert damping parameter αG Dimensionless

Parameter Symbol Value

Bohr magneton μB 9.274 01 × 10−24 J T−1

Vacuum permeability μ0 4π × 10−7 T2 m3 J−1

Gyromagnetic ratio γ 1.760 86 × 1011 T−1 s−1

Bohr radius a0 5.291 77 × 10−11 m
electronvolt eV 1.602 19 × 10−19 J

Although a quantum-mechanical description of the magnetic shape anisotropy deserves separate discussion
[28] this contribution can be reasonably well estimated based on classical magnetic dipole–dipole interactions.
Therefore, we will focus on the MCA contribution which is fully determined by the electronic structure of the
considered system. In the literature the focus is in general on the MCA energy of the ground state, which can
be estimated straightforwardly from the total energy calculated for different orientations of the magnetiza-
tion followed by a mapping onto a model spin Hamiltonian, given e.g. by an expansion in terms of spherical
harmonics Ylm(m̂) [29]

EMCA(m̂) =
∑

l even

m=l∑
m=−l

κm
l Ylm(m̂). (5)

Alternative approach to calculate the MCA parameters is based on magnetic torque calculations, using the
definition

Tm̂(θû) = −∂E(m̂)

∂θû
, (6)

avoiding the time-consuming total energy calculations. This scheme is based on the so-called magnetic force
theorem (MFT) that allows to represent the MCA energy in terms of a corresponding electronic single-particle
energies change under rotation of magnetization, as follows [30]:

ΔESOC(m̂, m̂′) = −
∫ Em̂

F

dE
[

Nm̂(E) − Nm̂′
(E)
]
− 1

2
nm̂′

(Em̂′
F ) (Em̂

F − Em̂′
F )2 +O(Em̂

F − Em̂′
F )3 (7)

with Nm̂(E) =
∫ E

dE′ nm̂(E′) the integrated DOS for the magnetization along the direction m̂, and nm̂(E) the
density of states (DOS) represented in terms of the Green function as follows

nm̂(E) = − 1

π
Im Tr Gm̂(E). (8)

This expression can be used in a very efficient way within the framework of the multiple-scattering formalism.
In this case the Green function is given in terms of the scattering path operator τ (E)nn′ connecting the sites n
and n′ as follows

G0(�r,�r ′, E) =
∑
ΛΛ′

Zn
Λ(�r, E) τnn′

ΛΛ′(E) Zn′×
Λ′ (�r ′, E)

−
∑
Λ

[
Zn
Λ(�r, E) Jn×

Λ (�r ′, E)Θ(r′ − r) + Jn
Λ(�r, E) Zn×

Λ (�r ′, E)Θ(r − r′)
]
δnn′ , (9)

3
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where the combined index Λ = (κ, μ) represents the relativistic spin–orbit and magnetic quantum numbers
κ and μ, respectively [31]; Zn

Λ(�r, E) and Jn
Λ(�r, E) are the regular and irregular solutions of the single-site Dirac

equation (28) [32–34]. The scattering path operator is given by the expression

τ (E) = [m(E) − G
0
(E)]−1 (10)

with m(E) = t −1(E) and G
0
(E) the inverse single-site scattering and structure constant matrices, respectively.

The double underline used here indicates matrices with respect to site and angular momentum indices [33].
Using the Lloyd’s formula that gives the integrated DOS in terms of the scattering path operator,

equation (7) can be transformed to the form

ΔESOC(m̂, m̂′) = − 1

π
Im Tr

∫ EF

dE
(
ln τ (m̂, E) − ln τ (m̂′, E)

)
(11)

with the scattering path operator evaluated for the magnetization along m̂ and m̂′, respectively.
With this, the magnetic torque T(θ) can be expressed by means of multiple scattering theory leading for

the torque component with respect to a rotation of the magnetization around an axis û, to the expression [35]

Tm̂(θû) = − 1

π
�
∫ EF

dE
∂

∂θû

[
ln det

(
t (m̂)−1 − G 0

)]
. (12)

Mapping the resulting torque onto a corresponding parameterized expression as for example equation (5), one
obtains the corresponding parameters of the spin Hamiltonian.

However, one should note that the magnetic anisotropy of materials changes when the temperature
increases. This occurs first of all due to the increasing amplitude of thermally induced spin fluctuations
responsible for a modification of the electronic structure. A corresponding expression for magnetic torque
st finite temperature was worked out by Staunton et al [35], on the basis of the relativistic generalization of
the disordered local moment (RDLM) theory [36]. To perform the necessary thermal averaging over differ-
ent orientational configurations of the local magnetic moments it uses a technique similar to the one used to
calculate the configurational average in the case of random metallic alloys, so-called coherent potential approx-
imation (CPA) alloy theory [37, 38]. Accordingly, the free energy difference for two different orientations of
the magnetization is given by

ΔF(m̂, m̂′) = −
∫

dE fFD(E, m̂) (13)

[
〈Nm̂〉(E) − 〈Nm̂′ 〉(E)

]
. (14)

By using in this expression the configurational averaged integrated density of states [36, 39] given by Lloyd’s
formula, the corresponding expression for the magnetic torque at temperature T

Tm̂,T(θû) = − ∂

∂θû

(∑
i

∫
Pm̂

i (̂ei)〈Ωm̂〉̂ei dêi

)
(15)

can be written explicitly as:

Tm̂,T(θû) = − 1

π
Im

∫ EF

dE fFD(E, m̂)

(∑
i

∫
∂Pm̂

i (̂ei)

∂θû
ln det Mm̂

i (̂ei, E)dêi

)
. (16)

where
M m̂

i (̂ei, E) = 1 + ([t i(̂ei)]−1 − t m̂
i,c (̂ei)]

−1)τ m̂
ii,c, (17)

and
τ m̂

ii,c
= ([t m̂

i,c
(̂ei)]−1 − G

0
)−1 (18)

where the index c indicates quantities related to the CPA medium.
Figure 1 (top) shows as an example the results for the temperature-dependent magnetization (M(T)) cal-

culated within the RDLM calculations for L10-ordered FePt [40]. Figure 1 (bottom) gives the corresponding
parameter K(T) for a uni-axial magneto-crystalline anisotropy, which is obviously in good agreement with
experiment.

To complete the discussion on the magnetic anisotropy, one has to mention the shape anisotropy energy
ΔEshape, which may be a leading contribution in the case of thin magnetic films, favoring an in-plane orien-
tation of the magnetization. Its origin is usually discussed in terms of the magnetic dipole–dipole interaction

4
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Figure 1. RDLM calculations on FePt. Top: the magnetization M(T) versus T for the magnetization along the easy [001] axis
(filled squares). The full line shows the mean field approximation to a classical Heisenberg model for comparison. Bottom: the
magnetic anisotropy energy ΔESOC as a function of the square of the magnetization M(T). The filled circles show the
RDLM-based results, the full line give K(T) ∼ [M(T)/M(0)]2, and the dashed line is based on the single-ion model function.
Reprinted (figure) with permission from [40], Copyright (2004) by the American Physical Society.

of individual magnetic moments on the lattice sites, ΔEshape = Edip(�m‖) − Edip(�m⊥), and can be calculated
straightforwardly by performing the lattice summation [41]:

Edip =
1

c2

∑
i
=j

[
�Mi · �Mj

|�Rij|3
− 3

(�Mi · �Rij)(�Mj · �Rij)

|�Rij|5

]
(19)

where �Mi(j) is the magnetic moment on site i( j). On the quantum mechanical level the origin of the shape
anisotropy energy is the Breit interaction (BI) [42], i.e. one has ΔEshape = ΔEBI. Corresponding results for
the magnetic anisotropy energy ΔEBI of deposited Fe films, Fen/Au(001), calculated via the KKR Green func-
tion method [28] are compared in figure 2 with the shape anisotropy based on the classical dipole–dipole
interaction, demonstrating good agreement.

3. Inter-atomic bilinear exchange interaction parameters

Most first-principles calculations on the bilinear exchange coupling parameters reported in the literature, are
based on the MFT by evaluating the energy change due to a perturbation on the spin subsystem with respect
to a suitable reference configuration [43]. Many results are based on calculations of the spin-spiral energy ε(�q),
giving access to the exchange parameters in the momentum space, J�q[7, 14–16], followed by a Fourier trans-
formation to the real space representation Jij. Alternatively, the real space exchange parameters are calculated
directly by evaluating the energy change due to the tilting of spin moments of interacting atoms. The corre-
sponding non-relativistic expression (so-called Liechtenstein or LKAG formula) has been implemented based
on the KKR as well as LMTO Green function (GF) [3, 4, 17, 43] band structure methods. It should be noted
that the MFT provides a reasonable accuracy for the exchange coupling parameters in the case of infinitesi-
mal rotations of the spins close to some equilibrium state, that can be justified only in the long wavelength
and strong-coupling limits [44]. Accordingly, calculations of the exchange coupling parameters beyond the
MFT, represented in terms of the inverse transverse susceptibility, were discussed in the literature by various
authors [43–47]. Grotheer et al, for example, have demonstrated [45] a deviation of the spin-wave dispersion
curves away from Γ point in the BZ, calculated for fcc Ni using the exchange parameters J

�q ∼ χ−1
�q

, from the

MFT-based results for J
�q. On the other hand, the results are close to each other in the long-wavelength limit

5
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Figure 2. Magnetic anisotropy energy for the surface layer system Fen/Au(001) as function of n: total magnetic anisotropy energy
ΔE (squares) and its decomposition into the magneto-crystalline part ΔESOC (circles) and the Breit part ΔEBI (diamonds) which
is compared to its classical approximation (crosses). Reprinted from [28], Copyright (2012), with permission from Elsevier.

(see figure 3). The calculations beyond the standard DFT are done by making use of the so-called constrained-
field DFT. The latter theory was also used by Bruno [47] who suggested the ‘renormalization’ of the exchange
coupling parameters expressed in terms of non-relativistic transverse magnetic susceptibility, according to
J = 1

2 Mχ−1M = 1
2 M(χ̃−1 − I xc)M , with the various quantities defined as follows

χ̃−1
ij =

2

π

∫ EF

dE

∫
Ωi

d3r

∫
Ωj

d3r′ (20)

× Im[G↑(�r,�r ′, E)G↓(�r ′,�r, E)], (21)

Mi =

∫
Ωi

d3r m(�r ), (22)

and

Ĩxc
ij = δij

Δi

2Mi
, (23)

with Δi =
4

Mi

∑
j J̃ ij, where

J̃ ij =
1

π
Im

∫ EF

dE

∫
Ωi

d3r

∫
Ωj

d3r′ (24)

× [Bxc(�r)G↑(�r,�r ′, E)Bxc(�r
′)G↓(�r ′,�r, E)]. (25)

This approach results in a Curie temperature of 634 K for fcc Ni (vs 350 K based on the MFT) which is in good
agreement with the experimental value of (621–631 K). As was pointed out by Solovyev [44], such a corrections
can be significant only for a certain class of materials, while, for instance, the calculations of spin-wave energies
[45] and TC [47] for bcc Fe demonstrate that these corrections are quite small. As most results in the literature
were obtained using the exchange parameters based on the MFT, we restrict below to this approximation.

Similar to the case of the MCA discussed above, application of the MFT gives the energy change due to
tilting of two spin moments represented in terms of the integrated DOS [4]. Within the multiple scattering
formalism, this energy can be transformed using the Lloyd’s formula leading to the expression

ΔE = − 1

π
Im Tr

∫ EF

dE
(
ln τ (E) − ln τ 0(E)

)
(26)

with τ (0)(E) and τ (E) the scattering path operators for non-distorted and distorted systems, respectively.
As reported in reference [4], the expression for Jij representing the exchange interaction between the spin

moments on sites i and j, is given by the expression

Jij = − 1

4π
Im TrL

∫ EF

dEΔ iτ
↑
ijΔjτ

↓
ji, (27)

6
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Figure 3. Adiabatic spin-wave dispersion relations along high-symmetry lines of the Brillouin zone for Ni. Broken line:
frozen-magnon-torque method, full line: transverse susceptibility method. Reprinted (figure) with permission from [45],
Copyright (2001) by the American Physical Society.

with Δ i(j) = ([t↑]−1
i(j) − [t↓]−1

i(j)), where t↑i(j) and t↓i(j) are the spin-up and spin-down single-site scattering matri-

ces, respectively, while τ ↑
ij and τ ↓

ji are the spin-up and spin-down, respectively, scattering path operators. As
relativistic effects are not taken into account, the exchange interactions are isotropic with respect to the ori-
entation of the magnetization as well as with respect to the direction of the spin tilting. On the other hand,
spin–orbit coupling gives rise to an anisotropy for exchange interactions requiring a representation in the form
of the exchange tensor J ij with its antisymmetric part giving access to the DMI �Dij.

Udvardi et al [5] and later Ebert and Mankovsky [6] suggested an extension of the classical Heisenberg
Hamiltonian by accounting for relativistic effects for the exchange coupling (see also reference [43]). These
calculations are based on a fully relativistic treatment of the electronic structure obtained by use of of the
Dirac Hamiltonian

HD = −ic�α · �∇+
1

2
c2(β − 1) + V̄(�r ) + β �σ · �B(�r ) + e�α · �A(�r ). (28)

Here, αi and β are the standard Dirac matrices [31] while V̄(�r) and �B(�r) are the spin independent and spin
dependent parts of the electronic potential.

Considering a ferromagnetic (FM) state as a reference state with the magnetization along the z direction, a
tilting of the magnetic moments on sites i and j leads to a modification of the scattering path operator implying
the relation

ln τ − ln τ 0 = − ln
(
1 + τ [Δmi +Δmj + · · · ]

)
, (29)

with mi = t−1
i . This allows to write down the expression for the energy change due to a spin tilting on sites

i and j as follows

Eij = − 1

π
ImTr

∫ EF

dE Δmi τij Δmj τji. (30)

Within the approach of Udvardi et al [5], the dependence of the single-site inverse scattering matrix mi

on the orientation of magnetic moment êi is accounted for by performing a corresponding rotation operation
using the rotation matrix R(θ,φ), i.e., one has mi(θ,φ) = R(θ,φ)m0

i R+(θ,φ). The change of the scattering
matrix mi under spin rotation, Δmi, linearized with respect to the rotation angles, is given by the expression

Δmi = R(θi,φi)m0
i R+(θi,φi) − m0

i

= mθ
i δθi + mφ

i δφi (31)

with

mθ
i =

∂

∂θ
mi =

∂R

∂θ
miR

+ + Rmi

∂R+

∂θ
,

mφ
i =

∂

∂φ
mi =

∂R

∂φ
miR

+ + Rmi

∂R+

∂φ
. (32)

7
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To calculate the derivatives of the rotation matrix, the definition

R̂(αn̂, n̂) = eiαn̂(n̂·�̂J ) (33)

for the corresponding operator is used, with �̂J the total angular momentum operator. R̂(αn̂, n̂) describes a
rotation of the magnetic moment m̂ by the angle αn̂ about the direction n̂⊥m̂, that gives in particular R(θ, n̂)
for n̂ = ŷ and R(φ, n̂) for n̂ = ẑ.

This leads to the second derivatives of the total energy with respect to the titling angles αi = {θi,φi} and
β j = {θ j,φ j}

∂2E
∂αi∂βj

= − 1

π
ImTr

∫ EF

dEmα
i τ ijm

β
j τ ji. (34)

As is discussed by Udvardi et al [5], these derivatives give access to all elements Jμνij of the exchange tensor,
where μ(ν) = {x, y, z}. Note, however, that only the tensor elements with μ(ν) = {x, y} can be calculated
using the magnetization direction along the ẑ axis, giving access to the z component Dz

ij of the DMI. In order
to obtain all other tensor elements, an auxiliary rotation of the magnetization towards the x̂ and ŷ directions of
the global frame of reference is required. For example, the component Dx

ij if the DMI vector can be evaluated
via the tensor elements

Jzy
ij =

∂2E

∂θi∂φj
and Jyz

ij =
∂2E

∂φi∂θj
(35)

for θ = π
2 and φ = 0.

An alternative expression within the KKR multiple scattering formalism has been worked out by Ebert
and Mankovsky [6], by using the alternative convention for the electronic Green function (GF) as suggested
by Dederichs and co-workers [48]. According to this convention, the off-site part of the GF is given by the
expression:

G(�ri,�rj, E) =
∑
ΛΛ′

Ri
Λ(�ri, E)Gij

ΛΛ′(E)Rj×
Λ′(�rj, E), (36)

where Gij
ΛΛ′(E) is the so-called structural Green’s function, Ri

Λ is a regular solution to the single-site Dirac
equation labeled by the combined quantum numbers Λ [31]. The energy change ΔEij due to a spin tilting on
sites i and j, given by equation (30), transformed to the above mentioned convention is expressed as follows

ΔEij = − 1

π
Im Tr

∫
dEΔt iGijΔt jG ji, (37)

where the change of the single-site t-matrix Δt i can be represented in terms of the perturbation ΔVi(�r ) at site
i using the expression

Δti
Λ′Λ =

∫
d3rRi×

Λ′(r)ΔV(r)Ri
Λ(r) = ΔV (R)i

Λ′Λ, (38)

where the perturbation caused by the rotation of the spin magnetic moment êi is represented by a change of
the spin-dependent potential in equation (28) (in contrast to the approach used in reference [5])

ΔV(r) = Vn̂(r) − Vn̂0 (r) = β�σ(n̂ − n̂0)B(r). (39)

Using again the frozen potential approximation implies that the spatial part of the potential Vn̂(r) does not
change upon rotation of spin orientation.

Coming back to the convention for the GF used by Györffy and co-workers [49] according to equation (9)
the expression for the elements of the exchange tensor represented in terms of the scattering path operator
τ

ij
Λ′Λ(E) has the form

J
αiαj
ij = − 1

π
Im Tr

∫
dE Tαiτ ijTαjτ ji, (40)

where

Tαi
ΛΛ′ =

∫
d3rZ×

Λ(�r )βσαB(r)ZΛ′(�r ). (41)

As an example, figure 4 shows the exchange coupling parameters Jij calculated for NbS2 dichalcogenide
intercalated by 3d elements, i.e. M1/3NbS2 (M = Cr, Mn, Fe) [50]. The strongest M–M interactions occur
for the first two neighbor shells. The parameters are predominantly positive in the case of Cr1/3NbS2 and
Mn1/3NbS2, leading to a FM ordering in these systems when the DMI is not taken into account. The crit-
ical temperatures calculated by means of Monte Carlo simulations are in good agreement with experiment
(see table 2). Note in addition that the impact of the DMI discussed in reference [50] leads in the case of
Cr1/3NbS2 and Mn1/3NbS2 compounds to the formation of a helimagnetic structure.

8
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Figure 4. Isotropic exchange coupling parameters for M1/3NbS2 (M = Cr, Mn, Fe). Open symbols represent results obtained for
the experimental structure parameters, full symbols correspond to the systems with the DFT-optimized structure parameters.
Reprinted (figure) with permission from [50], Copyright (2016) by the American Physical Society.

Table 2. The Curie and Néel temperatures (in K units) calculated for
M1/3NbS2 compounds via MC simulations in comparison with experimental
results. Reprinted table with permission from [51], Copyright (2016) by the
American Physical Society.

MC EXPT

Cr1/3NbS2 115(FM) 127(FM) [51]
Mn1/3NbS2 80(FM) 65(FM)
Fe1/3NbS2 63(AFM) 47(AFM) [52], 44(AFM) [53]

When compared to the approach of Udvardi et al [5], the expression in equation (40) is given explicitly in
Cartesian coordinates. However, auxiliary rotations of the magnetization are still required to calculate all tensor
elements, and as a consequence, all components of the DMI vector. This can be avoided using the approach
reported recently [54, 81] for DMI calculations.

In this case, using the grand-canonical potential in the operator form

K = H− μN, (42)

with μ the chemical potential, the variation of single-particle energy density ΔE(�r ) caused by a perturbation
is written in terms of the electronic Green function for T = 0 K as follows

ΔE(�r) = − 1

π
Im Tr

∫ μ

dE (E − μ)ΔG(�r,�r, E). (43)

Assuming the perturbation ΔV responsible for the change of the Green function ΔG = G − G0 (the index 0
indicates here the collinear ferromagnetic reference state) to be small, ΔG can be expanded up to any order
w.r.t. the perturbation

ΔG(E) = G0ΔVG0 + G0ΔVG0ΔVG0 + G0ΔVG0ΔVG0ΔVG0

+ G0ΔVG0ΔVG0ΔVG0ΔVG0 + · · · , (44)

leading to a corresponding expansion for the energy change with respect to the perturbation as follows

ΔE = ΔE (1) +ΔE (2) +ΔE (3) +ΔE (4) + · · · (45)

Here and below we drop the energy argument for the Green function G(E) for the sake of convenience. This
expression is completely general as it gives the energy change as a response to any type of perturbation. When

9
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ΔV is associated with tiltings of the spin magnetic moments, it can be expressed within the frozen potential
approximation and in line with equation (39) as follows

ΔV(�r ) =
∑

i

β(�σ · ŝi − σz)Bxc(�r ). (46)

With this, the energy expansion in equation (45) gives access to the bilinear DMI as well as to higher order
multispin interactions [55]. To demonstrate the use of this approach, we start with the x and y components of
the DMI vector, which can be obtained by setting the perturbation ΔV in the form of a spin-spiral described
by the configuration of the magnetic moments

ŝi =
(

sin(�q · �Ri), 0, cos(�q · �Ri)
)

, (47)

with the wave vector�q = (0, q, 0). As it follows from the spin Hamiltonian, the slope of the spin wave energy
dispersion at the Γ point is determined by the DMI as follows

lim
q→0

∂E(1)
DM

∂qy
= lim

q→0

∂

∂qy

∑
ij

D y
ij sin(�q · (�Rj − �Ri))

=
∑

ij

D y
ij (�Rj − �Ri)y. (48)

Identifying this with the corresponding derivative of the energy ΔE (1) in equation (45)

∂ΔE (1)

∂qα

∣∣∣∣
q→0

=
∂E(1)

DM

∂qα

∣∣∣∣∣
q→0

, (49)

and equating the corresponding terms for each atomic pair (i, j), one obtains the following expression for the
y component of the DMI vector:

D y
ij =

(
− 1

2π

)
Im Tr

∫ μ

dE (E − μ)
[
O j(E) τ ji(E) T i,x(E) τ ij(E) − Oi(E) τ ij(E) T j,x(E) τ ji(E)

]
. (50)

In a completely analogous way one can derive the x-component of the DMI vector, Dx
ij . The overlap integrals

O j
ΛΛ′ and matrix elements Ti,α

ΛΛ′ of the operator T i,α = βσαBi
xc(�r ) (which are connected with the components

of the torque operator β[�σ × m̂]Bi
xc(�r)) are defined as follows [6]:

O j
ΛΛ′ =

∫
Ωj

d3r Zj×
Λ (�r, E) Zj

Λ′(�r, E) (51)

Ti,α
ΛΛ′ =

∫
Ωi

d3r Zi×
Λ (�r, E)

[
βσαBi

xc(�r )
]

Zi
Λ′(�r, E). (52)

As is shown in reference [55], the Dz
ij component of the DMI, as well isotropic exchange parameter Jij can

also be obtained on the basis of equations (44) and (45) using the second order term w.r.t. the perturbation,
for a spin spiral with the form

ŝi = (sin θ cos(�q · �R), sin θ sin(�q · �R), cos θ). (53)

In this case case, the DMI component Dz
ij and the isotropic exchange interaction are obtained by taking the

first- and second-order derivatives of the energy ΔE (2)(�q) (see equation (45)), respectively, with respect to�q:

∂

∂�q
ΔEH(�q )

∣∣∣∣
q→0

= −sin2 θ

N∑
i
=j

Dz
ijq̂ · (�Ri − �Rj) (54)

and
∂2

∂�q 2
ΔEH(�q )

∣∣∣∣
q→0

= sin2 θ
∑

i,j

Jij(q̂ · (�Ri − �Rj))2 (55)

with q̂ = �q/|�q| the unit vector giving the direction of the wave vector �q. Identifying these expressions again
with the corresponding derivatives of ΔE (2)(�q), one obtains the following relations for Dz

ij

Dz
ij =

1

2
(J xy

ij − J yx
ij ) (56)

10
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and for Jij

Jij =
1

2
(J xx

ij + J yy
ij ), (57)

where the tensor elements J αβ are given by equations (40) and (41).
Similar to the magnetic anisotropy, the exchange coupling parameters depend on temperature, that should

be taken into account within the finite temperature spin dynamic simulations. An approach that gives access
to calculations of exchange coupling parameters for finite temperature has been reported in reference [55]. It
accounts for the electronic structure modification due to temperature induced lattice vibrations by using the
alloy analogy model in the adiabatic approximation. This implies calculations of the thermal average 〈. . .〉T as
the configurational average over a set of appropriately chosen set of atomic displacements, using the CPA alloy
theory [56–58].

To make use of this scheme to account for lattice vibrations, a discrete set of Nv vectors Δ�Rq
v(T) is intro-

duced for each atom, with the temperature dependent amplitude, which characterize a rigid displacement of
the atomic potential in the spirit of the rigid muffin-tin approximation [59, 60]. The corresponding single-site
t-matrix in the common global frame of the solid is given by the transformation:

t q
v = U (Δ�Rv) t q,loc U (Δ�Rv)−1, (58)

with the so-called U-transformation matrix U (�s) given in its non-relativistic form by [59, 60]:

ULL′(�s) = 4π
∑

L′′
il+l′′−l′ CLL′L′′ jl′′(|�s |k) YL′′ (̂s). (59)

Here L = (l, m) represents the non-relativistic angular momentum quantum numbers, jl(x) is a spherical
Bessel function, YL (̂r) a real spherical harmonics, CLL′L′′ a corresponding Gaunt number and k =

√
E is the

electronic wave vector. The relativistic version of the U-matrix is obtained by a standard Clebsch–Gordan
transformation [31].

Every displacement characterized by a displacement vectorsΔ�Rv(T) can be treated as a pseudo-component
of a pseudo alloy. Thus, the thermal averaging can be performed as the site diagonal configurational average
for a substitutional alloy, by solving the multi-component CPA equations within the global frame of reference
[58].

The same idea can be used also to take into account thermal spin fluctuations. A set of representative
orientation vectors êf (with f = 1, . . . , Nf ) for the local magnetic moment is introduced. Using the rigid spin
approximation, the single-site t-matrix in the global frame, corresponding to a given orientation vector, is
determined by:

t q
f = R(̂ef) t q,loc R(̂ef)

−1, (60)

where t q,loc is the single-site t-matrix in the local frame. Here the transformation from the local to the global
frame of reference is expressed by the rotation matrices R(̂ef) that are determined by the vectors êf or corre-
sponding Euler angles [31]. Again, every orientation can be treated as a pseudo-component of a pseudo alloy,
that allows to use the alloy analogy model to calculate the thermal average over all types of spin fluctuations
[58].

The alloy analogy for thermal vibrations applied to the temperature dependent exchange coupling param-
eters leads to

J̄
αiαj
ij = − 1

2π
�
∫

dE Trace〈ΔV αiτ ijΔV αjτ ji〉c, (61)

where 〈. . .〉c represents the configurational average with respect to the set of displacements. In case of the
exchange coupling parameters one has to distinguish between the averaging over thermal lattice vibrations and
spin fluctuations. In the first case the configurational average is approximated as follows 〈ΔV iτ ijΔV jτ ji〉vib ≈
〈ΔV iτ ij〉vib〈ΔV jτ ji〉vib, assuming a negligible impact of the so-called vertex corrections [61]. This averaging
accounts for the impact of thermally induced phonons on the exchange coupling parameters for every temper-
ature before their use in MC or spin dynamics simulations that deal subsequently with the thermal averaging
in spin subspace. The impact of spin fluctuations can be incorporated as well within the electronic structure
calculations. For a non-polarized paramagnetic reference state, this can be done, e.g., by using the so-called
disorder local moment (DLM) scheme formulated in general within the non-relativistic (or scalar-relativistic)
framework. Magnetic disorder in this case can be modeled by creating a pseudo alloy with an occupation of
the atomic sites by two types of atoms with opposite spin moments oriented upwards, M↑ and downwards M↓,
respectively, i.e. considering the alloy M↑

0.5M↓
0.5. In the relativistic case the corresponding RDLM scheme has

to describe the magnetic disorder by a discrete set of Nf orientation vectors, and as a consequence, the average
〈τ ij〉spin has to be calculated taking into account all these orientations. A comparison of the results obtained
for the isotropic exchange coupling constants Jij for bcc Fe using the DLM and RDLM schemes is shown in
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Figure 5. Isotropic exchange coupling parameters calculated for the disordered magnetic state of bcc Fe within the
scalar-relativistic approach, using the DLM scheme (circles, SR-DLM) and within the fully-relativistic approach, using the RDLM
scheme [35, 40] (squares, RDLM).

figure 5, demonstrating close agreement, with the small differences to be ascribed to the different account of
relativistic effects, i.e. in particular the spin–orbit coupling.

Finally, it should be stressed once more that the methods for the calculation of the interatomic exchange
coupling parameters, discussed in this section, are well applicable for the so-called Heisenberg systems, i.e.
those having robust atomic magnetic moments weakly dependent on the magnetic configuration, ensuring
that way an appropriate description of their magnetic properties. However, specific properties of various
materials related to their electronic structure, may require for corresponding corrections to the exchange cou-
pling parameters, e.g., by going beyond the use of the MFT in the case of fcc Ni. For some metallic materials
composed of magnetic (M) and non-magnetic (N) elements, the M–M exchange interactions have to be re-
normalized by taking into account the M–N–M interactions mediated by the non-magnetic atoms having
induced magnetic moments. In practice, this was done using various schemes [62–64], as induced magnetic
moments may depend strongly on the magnetic configuration of the surrounding atoms and in turn on the
temperature. In the case of materials with strongly correlated electrons, the electronic structure calculations
have to be done beyond the LSDA-DFT approach. This for instance implies a description of the exchange-
correlation energy of electrons within the LSDA + U or dynamical mean field theory (DMFT), that has
to be consistently taken into account also when calculating the interatomic exchange coupling parameters
[65–67]. A rather detailed analysis of the various methods for calculating the exchange parameters has been
done recently in the review by Szilva et al [43].

4. Multi-spin expansion of spin Hamiltonian: general remarks

Despite the obvious success of the classical Heisenberg model for many applications, higher-order multi-spin
expansion Hms of the spin Hamiltonian H, given by the expression

Hms = − 1

3!

∑
i,j,k

Jijkŝi · (̂sj × ŝk),− 2

p!

∑
i,j,k,l

Js
ijkl (̂si · ŝj)(̂sk · ŝl) −

2

p!

∑
i,j,k,l

�Dijkl · (̂si × ŝj)(̂sk · ŝl) + · · · ,

= H3 + H4,s + H4,a + · · · (62)

can be of great importance to describe more subtle properties of magnetic materials [13, 19, 21, 22, 24, 68–75].
This concerns first of all systems with a non-collinear ground state characterized by finite spin tilting

angles, that makes multispin contributions to the energy non-negligible. In particular, many reports published
recently discuss the impact of the multispin interactions on the stabilization of exotic topologically non-trivial
magnetic textures, e.g. skyrmions, hopfions, etc [27, 76, 77].

Corresponding calculations of the multi-spin exchange parameters have been reported by different groups.
The approach based on the Connolly–Williams scheme has been used to calculate the four-spin non-chiral
(two-site and three-site) and chiral interactions for Cr trimers [13] and for a deposited Fe atomic chain [78],
respectively, for the biquadratic, three-site four spin and four-site four spin interaction parameters [26, 27].
The authors discuss the role of these type of interactions for the stabilization of different types of non-collinear
magnetic structures as skyrmions and antiskyrmions.

A more flexible mapping scheme using perturbation theory within the KKR Green function formalism
was only reported recently by Brinker et al [79, 80], and by the present authors [55]. Here we discuss the latter
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Figure 6. Scalar biquadratic exchange interactions Js
ijij in bcc Fe (a), hcp Co (b) and fcc Ni (Ni). For comparison, the insets show

the bilinear exchange interaction parameters calculated for the FM state with the magnetization along the ẑ-axis. Reprinted
(figure) with permission from [55], Copyright (2020) by the American Physical Society.

approach, i.e. the energy expansion w.r.t. ΔV in equation (45). One has to point out that a spin tilting in a
real system has a finite amplitude and therefore the higher order terms in this expansion might become non-
negligible and in general should be taken into account. Their role obviously depends on the specific material
and should increase with temperature that leads to an increasing amplitude of the spin fluctuations. As these
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higher-order terms are directly connected to the multispin terms in the extended Heisenberg Hamiltonian,
one has to expect also a non-negligible role of the multispin interactions for some magnetic properties.

Extending the spin Hamiltonian to go beyond the classical Heisenberg model, we discuss first the four-spin
exchange interaction terms Jijkl and �Dijkl. They can be calculated using the fourth-order term of the Green
function expansion ΔE (4) given by:

ΔE (4) = − 1

π
Im Tr

∫ EF

dE (E − EF)ΔVGΔVGΔVGΔVG

= − 1

π
Im Tr

∫ EF

dE ΔVGΔVGΔVGΔVG (63)

where the sum rule for the Green function dG
dE = −GG followed by integration by parts was used to get a more

compact expression. Using the multiple-scattering representation for the Green function, this leads to:

ΔE (4) =
∑
i,j,k,l

− 1

π
Im Tr

∫ EF

dEΔV iiτ ijΔV jjτ jkΔV kkτ klΔV llτ li (64)

with the matrix elements ΔV ii = 〈Zi|ΔV|Zi〉. Using the ferromagnetic state with �M‖ẑ as a reference state,
and creating the perturbation ΔV in the form of a spin-spiral according to equation (53), one obtains the
corresponding�q-dependent energy change ΔE (4)(�q), written here explicitly as an example

ΔE (4) = − 1

π

∑
i,j,k,l

Im Tr

∫ EF

dE sin4 θ
[

Ixxxx
ijkl cos(�q · �Ri) cos(�q · �Rj) cos(�q · �Rk) cos(�q · �Rl)

+ Ixxyy
ijkl cos(�q · �Ri) cos(�q · �Rj) sin(�q · �Rk) sin�q · �Rl)

+ Iyyxx
ijkl sin(�q · �Ri) sin(�q · �Rj) cos(�q · �Rk) cos(�q · �Rl)

+ Iyyyy
ijkl sin(�q · �Ri) sin(�q · �Rj) sin(�q · �Rk) sin(�q · �Rl)

+ Ixyxx
ijkl cos(�q · �Ri) sin(�q · �Rj) cos(�q · �Rk) cos(�q · �Rl)

+ Iyxyy
ijkl sin(�q · �Ri) cos(�q · �Rj) sin(�q · �Rk) sin�q · �Rl)

+ Iyxxx
ijkl sin(�q · �Ri) cos(�q · �Rj) cos(�q · �Rk) cos(�q · �Rl)

+ Ixyyy
ijkl cos(�q · �Ri) sin(�q · �Rj) sin(�q · �Rk) sin(�q · �Rl) + · · ·

]
(65)

where
Iαβγδijkl = T i,α(E) τ ij(E)T j,β(E) τ jk(E)T k,γ(E) τ kl(E)T l,δ(E) τ li(E). (66)

As is shown in reference [55], the four-spin isotropic exchange interaction Jijkl and z-component of the

DMI-like interactionDz
ijkl can be obtained calculating the energy derivatives ∂4

∂q4 ΔE (4) and ∂3

∂q3 ΔE (4) in the limit

of q = 0, and then identified with the corresponding derivatives of the terms H4,s and H4,a in equation (62).
These interaction terms are given by the expressions

Js
ijkl =

1

4

[
J xxxx

ijkl + J xxyy
ijkl + J yyxx

ijkl + J yyyy
ijkl

]
(67)

and

Dz
ijkl =

1

4

[
J xyxx

ijkl + J xyyy
ijkl − J yxxx

ijkl − J yxyy
ijkl )

]
, (68)

where the following definition is used:

J αβγδ
ijkl =

1

2π
Im Tr

∫ EF

dE Tα
i τijT

β
j τjkTγ

k τklT
δ
l τli. (69)

These expression obviously give also access to a special cases, i.e. the four-spin three-site interactions with
l = j, and the four spin two-site, so called biquadratic exchange interactions with k = i and l = j.

The scalar biquadratic exchange interaction parameters Js
ijij calculated on the basis of equation (67) for

the three 3d bulk ferromagnetic systems bcc Fe, hcp Co and fcc Ni have been reported in reference [55]. The
results are plotted in figure 6 as a function of the distance Rij + Rjk + Rkl + Rli. For comparison, the insets give
the corresponding bilinear isotropic exchange interactions for these materials. One can see rather strong first-
neighbor interactions for bcc Fe, demonstrating the non-negligible character of the biquadratic interactions.
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This is of course a material-specific property, and one notes as decrease for the biquadratic exchange parameters
when going to Co and Ni as shown in figures 6(b) and (c), respectively.

In order to calculate the x and y components of the four-spin and as a special case the three-site-DMI
(TDMI) and biquadratic-DMI (BDMI) type interactions, the scheme suggested in reference [55] for the cal-
culation of the DMI parameters [54, 81] can be used, which exploited the DMI-governed behavior of the
spin-wave dispersion having a finite slope at the Γ point of the Brillouin zone. Note, however, that a more
general form of perturbation is required in this case described by a 2D spin modulation field according to the
expression

ŝi =
(

sin(�q1 · �Ri) cos(�q2 · �Ri), sin(�q2 · �Ri), cos(�q1 · �Ri) cos(�q2 · �Ri)
)

, (70)

where the wave vectors�q1 and�q2 are orthogonal to each other, as for example�q1 = q1ŷ and�q2 = q2x̂.
Taking the second-order derivative with respect to the wave-vector �q2 and the first-order derivative with

respect to the wave-vectors�q1 and�q2, and considering the limit q1(2) → 0, one obtains

∂3

∂q3
2

∣∣∣∣
q2=0

H4,a =
∑
i,j,k,l

D x
ijkl (q̂2 · �Rij) (q̂2 · �Rlk)2,

and
∂

∂q1

∣∣∣∣
q1=0

∂2

∂q2
2

∣∣∣∣
q2=0

H4,a =
∑
i,j,k,l

D y
ijkl (q̂1 · �Rij) (q̂2 · �Rlk)2,

where �Rij = �Rj − �Ri and �Rlk = �Rk − �Rl.

The microscopic expressions for the x and y components of �Dijkl describing the four-spin interactions is
derived on the basis of the third-order term in equation (44)

ΔE (3) = − 1

π
Im Tr

∫ EF

dE(E − EF) G0ΔVG0ΔVG0ΔVG0. (71)

The final expression for Dα
ijkl is achieved by taking the second-order derivative with respect to the

wave-vector �q2 and the first-order derivative with respect to the wave-vectors �q1(2), considering the limit
q1(2) → 0, i.e. equating within the ab initio and model expressions the corresponding terms proportional

to (�Ri − �Rj)y(�Rk − �Rl)2
x and (�Ri − �Rj)x(�Rk − �Rl)2

x (we keep a similar form in both cases for the sake of con-
venience) gives the elements D y,x

ijkl and D y,y
ijkl , as well as D x,x

ijkl and D x,y
ijkl , respectively, of the four-spin chiral

interaction as follows

Dα,β
ijkj = εαγ

1

8π
Im Tr

∫ EF

dE(E − EF)
[
Oi τ ijT j,γ τ jkT k,β τ klT l,β τ li − T i,γ τ ijOjτ jkT k,β τ klT l,β τ li

]
+
[
Oi τ ijT j,β τ jkT k,β τ klT l,γ τ li − T i,γ τ ijT j,βτ jkT k,β τ klOl τ li

]
(72)

withα,β = x, y, and εαγ the elements of the transverse Levi-Civita tensor ε =

[
0 1
−1 0

]
. The TDMI and BDMI

parameters can be obtained as the special cases l = j and l = j, k = i, respectively, from equation (72).
The expression in equation (72) gives access to the x and y components of the DMI-like three-spin inter-

actions
Dα

ijkj = Dα,x
ijkj +Dα,y

ijkj . (73)

Finally, three-spin chiral exchange interaction (TCI) represented by first term in the extended spin Hamil-
tonian has been discussed in reference [55]. As it follows from this expression, the contribution due to this type
of interaction is non-zero only in case of a non-co-planar and non-collinear magnetic structure characterized
by the scalar spatial type product ŝi · (̂sj × ŝk) involving the spin moments on three different lattice sites.

In order to work out the expression for the Jijk interaction, one has to use a multi-Q spin modulation
[82–84] which ensure a non-zero scalar spin chirality for every three atoms. The energy contribution due to
the TCI, is non-zero only if Jijk 
= Jikj, etc. Otherwise, the terms ijk and ikj cancel each other due to the relation
ŝi · (̂sj × ŝk) = −ŝi · (̂sk × ŝj).

Accordingly, the expression for the TCI is derived using the 2Q non-collinear spin texture described by
equation (70), which is characterized by two wave vectors oriented along two mutually perpendicular direc-
tions, as for example�q1 = (0, qy, 0) and�q2 = (qx, 0, 0). Applying such a spin modulation in equation (70) for
the term H3 associated with the three-spin interaction in the spin Hamiltonian in equation (62), the second-
order derivative of the energy E(3)(�q1,�q2) with respect to the wave vectors q1 and q2 is given in the limit q1 → 0,
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Figure 7. (a) Three-spin chiral exchange interaction parameters −JΔ(γ) (‘minus’ is used to stress the relation between JΔ and
χTO

Δ ), and (bc) topological orbital susceptibility (TOS, for SOC = 0), calculated for Fe on Ir (111), as a function of the angle
between the magnetization and normal n̂ to the surface, for the smallest triangles Δ1 and Δ2. The dashed lines represent
JΔ(0)cos(γ) (a) and χTO

Δ (0) cos(γ) (b), respectively. Reprinted (figure) with permission from [85], Copyright (2021) by the
American Physical Society.

q2 → 0 by the expression

∂2

∂�q1∂�q2
H(3) = −

∑
i
=j
=k

Jijk

(
ẑ · [(�Ri − �Rj) × (�Rk − �Rj)]

)
. (74)

The microscopic energy term of the electron system, giving access to the chiral three-spin interaction in
the spin Hamiltonian is described by the second-order term

ΔE (2) = − 1

π
Im Tr

∫ EF

dE(E − EF) G0ΔVG0ΔVG0 (75)

of the free energy expansion. Taking the first-order derivative with respect to q1 and q2 in the limit q1 → 0,

q2 → 0, and equating the terms proportional to
(

ẑ · [(�Ri − �Rj) × (�Rk − �Rj)]
)

with the corresponding terms

in the spin Hamiltonian, one obtains the following expression for the three-spin interaction parameter

Jijk =
1

8π
Im Tr

∫ EF

dE(E − EF)
[
T i,x τ ijT j,y τ jkOk τ ki − T i,y τ ijT j,x τ jkOk τ ki

− T i,x τ ijOj τ jkT k,y τ ki + T i,y τ ijOj τ jkT k,x τ ki

+ Oi τ ijT i,x τ jkT k,y τ ki − Oj τ ijT i,y τ jkT k,x τ ki
]
, (76)

giving access to the three-spin chiral interaction determined as JΔ = Jijk − Jikj. Its interpretation was discussed
in reference [85], where its dependence on the SOC as well as on the topological orbital susceptibility χTO

Δ =

χTO
ijk − χTO

ikj was demonstrated. In fact that the expression for χTO
ijk worked out in reference [85] has a rather

similar form as Jijk, as that can be seen from the expression

χTO
ijk = − 1

4π
Im Tr

∫ EF

dE

[
T i,x τ ijT j,y τ jklk

z τ
ki − T i,y τ ijT j,x τ jklk

z τ
ki− T i,x τ ij lj

z τ
jkT k,y τ ki

+ T i,y τ ij lj
z τ

jkT k,x τ ki + l i
z τ

ijT j,x τ jkT k,y τ ki − li
z τ

ijT j,y τ jkT k,x τ ki

]
. (77)

For every trimer of atoms, both quantities, χTO
ijk and Jijk, are non-zero only in the case of non-zero scalar

spin chirality ŝi · (̂sj × ŝk) and depend on the orientation of the trimer magnetic moment with respect to the
trimer plain. This is shown in figure 7 [85] representing ΔJ and ΔχTO as a function of the angle between
the magnetization and normal n̂ to the surface, which are calculated for the two smallest trimers, Δ1 and Δ2,
centered at the Ir atom and the hole site in the Ir surface layer for 1ML Fe/Ir(111), respectively (figure 8).
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Figure 8. Geometry of the smallest three-atom clusters in the monolayer of 3d-atoms on M(111) surface (M = Au, Ir):
M-centered triangle Δ1 and hole-centered triangle Δ2. Reprinted (figure) with permission from [85], Copyright (2021) by the
American Physical Society.

Figure 9. (a) Three-site four-spin DMI-like interaction, Dz
ijkj and (c) three-spin chiral exchange interaction (TCI) parameters JΔ

calculated for Fe on Au (111) on the basis of equation (76) as a function of SOC scaling parameter ξSOC for the smallest triangles
Δ1 and Δ2. In figure (b), full symbols represent the results obtained when scaling the SOC for all elements in the system, while
open symbols show the results when scaling only the SOC for Au. Reprinted (figure) with permission from [85], Copyright
(2021) by the American Physical Society.

The role of the SOC for the three-site four-spin DMI-like interaction, D z
ijik, and the three-spin chiral inter-

action, JΔ is shown in figure 9. These quantities are calculated for 1ML Fe on Au (111), for the two smallest
triangles Δ1 and Δ2 centered at an Au atom or a hole site, respectively (see figure 8). Here, setting the SOC
scaling factor ξSOC = 0 implies a suppression of the SOC, while ξSOC = 1 corresponds to the fully relativis-
tic case. Figure 9(a) shows the three-site four-spin DMI-like interaction parameter, D z

ijik(ξSOC) when the SOC
scaling parameter ξSOC applied to all components in the system, shown by full symbols, and with the SOC
scaling applied only to the Au substrate. One can see a dominating role of the SOC of substrate atoms for D z

ijik.
Also in figure 9(b), a nearly linear variation can be seen for JΔ(ξSOC) when the SOC scaling parameter ξSOC

is applied to all components in the system (full symbols). Similar to D z
ijik, this shows that the SOC is an ulti-

mate prerequisite for a non-vanishing TCI JΔ. When scaling the SOC only for Au (open symbols), figure 9(b)
show only weak changes for the TCI parameters JΔ(ξSOC), demonstrating a minor impact of the SOC of the
substrate on these interactions, in contrast to the DMI-like interaction shown in figure 9(a). One can see also
that Dz

ijik is about two orders of magnitude smaller than JΔ for this particular system.
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The origin of the TCI parameters have been discussed in the literature suggesting a different interpreta-
tion of the corresponding terms derived also within the multiple-scattering theory Green function formalism
[79, 86, 87]. However, the expression worked out in reference [86] has obviously not been applied for calcu-
lations so far. As pointed out in reference [85], the different interpretation of this type of interactions can be
explained by their different origin. In particular, one has to stress that the parameters in references [85, 86] were
derived in a different order of perturbation theory. On the other hand, the approach used for calculations of
the multispin exchange parameters reported in references [79, 88] is very similar to the one used in references
[55, 85]. The corresponding expressions have been worked out within the framework of multiple-scattering
Green function formalism using the MFT. In particular, the Lloyd formula has been used to express the energy
change due to the perturbation ΔV leading to the expression

ΔE = − 1

π
Im Tr

∫ EF

dE
∑

p

1

p
Tr
[
G(E)ΔV

]p
. (78)

Using the off-site part of the GF in equation (36), as defined by Dederichs et al [48], equation (78) is
transformed to the form

ΔE = − 1

π
Im Tr

∫ EF

dE
∑

p

1

p
Tr
[
G str(E)Δt (E)

]p
. (79)

By splitting the structural Green function Gstr
ij into a spin-dependent (�Bstr

ij ) and a spin-independent (Astr
ij ) parts

according to
Gstr

ij = Astr
ij σ0 + �Bstr

ij · �σ (80)

and expressing the change of the single-site scattering matrix

Δt i(E) = (t↑i (E) − t ↓)δŝi × �σ, (81)

by means of the rigid spin approximation, the different terms in equation (79) corresponding to different num-
bers p give access to corresponding multispin terms, chiral and non-chiral, in the extended spin Hamiltonian.
In particular, the isotropic six-spin interactions, that are responsible for the non-collinear magnetic structure
of B20-MnGe according to Grytsiuk et al [86], is given by the expression

κ
six−spin
ijklmn =

1

3π
ImTr

∫ EF

dEAijt
σ
j Ajktσk Aklt

σ
l AlmtσmAmntσn Anit

σ
i . (82)

A rather different point of view concerning the multispin extension of the spin Hamiltonian was adopted
by Streib et al [89, 90], who suggested to distinguish so-called local and global Hamiltonians. According to
that classification, a global Hamiltonian implies to include in principle all possible spin configurations for
the energy mapping in order to calculate exchange parameters that characterize in turn the energy of any spin
configuration. On the other hand, a local Hamiltonian is ‘designed to describe the energetics of spin configurations
in the vicinity of the ground state or, more generally, in the vicinity of a predefined spin configuration’ [89]. This
implies that taking the ground state as a reference state, it has to be determined first before the calculating the
exchange parameters which are in principle applicable only for small spin tiltings around the reference state
and can be used e.g. to investigate spin fluctuations around the ground state spin configuration. In reference
[89], the authors used a constraining field to stabilize the non-collinear magnetic configuration. This leads
to the effective two-spin exchange interactions corresponding to a non-collinear magnetic spin configuration
[89, 90]. According to the authors, ‘local spin Hamiltonians do not require any spin interactions beyond the
bilinear order (for Heisenberg exchange as well as DMIs)’. On the other hand, they point out the limitations for
these exchange interactions in the case of non-collinear system in the regime when the standard Heisenberg
model is not valid [90], and multi-spin interactions get more important.

Thus, to summarize, one can say that the extended description of the spin–spin interaction beyond the
bilinear approximation may be crucial for some materials. The perturbative approach, we focus on here, is
especially attractive in this context as it allows a systematic extension of the interactions and in turn a corre-
sponding improvement of the results of simulations, by adding more and more higher order multispin terms
to the spin Hamiltonian without changing the contributions due to the low-order terms in the Hamiltonian.
This obviously is not the case, when the energy fitting scheme is used to estimate the parameters of the spin
Hamiltonian, although, both approaches should be equivalent in the limit when accounting for all multispin
contributions. Note also, that a restricted number of multispin terms in the extended Hamiltonian leads to a
dependence of the results on the reference state. Therefore, the reference state is often chosen according to the
problem under consideration, e.g. related to the thermodynamic properties, spin-wave excitations, etc.
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Finally, for systems with strongly correlated electrons requiring a description of their electronic structure
beyond the LSDA-DFT, the calculations of the exchange coupling parameters may need a revised scheme taking
into account many-body effects, e.g. within the DMFT approach (see, e.g. [65, 91, 92]).

5. Gilbert damping

Another parameter entering the LLG equation in equation (3) is the Gilbert damping parameter G̃ character-
izing energy dissipation associated with the magnetization dynamics.

Theoretical investigations on the Gilbert damping parameter have been performed by various groups and
accordingly the properties of GD is discussed in detail in the literature. Many of these investigations are per-
formed assuming a certain dissipation mechanism, like Kambersky’s breathing Fermi surface (BFS) [93, 94],
or more general torque-correlation models (TCM) [95, 96] to be evaluated on the basis of electronic structure
calculations. The earlier works in the field relied on the relaxation time parameter that represents scattering
processes responsible for the energy dissipation. Only few computational schemes for Gilbert damping param-
eter account explicitly for disorder in the systems, which is responsible for the spin-flip scattering process. This
issue was addressed in particular by Brataas et al [97] who described the Gilbert damping mechanism by means
of scattering theory. This development supplied the formal basis for the first parameter-free investigations on
disordered alloys [56, 57, 98].

A formalism for the calculation of the Gilbert damping parameter based on linear response theory
has been reported in reference [57] and implemented using fully relativistic multiple scattering or Kor-
ringa–Kohn–Rostoker (KKR) formalism. Considering the FM state as a reference state of the system, the energy
dissipation can be expressed in terms of the GD parameter by:

Ėmag = �Heff ·
d�M

dτ
=

1

γ2
�̇m[G̃(�m)�̇m]. (83)

On the other hand, the energy dissipation in the electronic system is determined by the underlying Hamiltonian

Ĥ(τ) as follows Ėdis =
〈

dĤ
dτ

〉
. Assuming a small deviation of the magnetic moment from the equilibrium�u(τ),

the normalized magnetization �m(τ) can be written in a linearized form �m(τ) = �m0 + �u(τ), that in turn leads
to the linearized time dependent electronic Hamiltonian Ĥ(τ)

Ĥ = Ĥ0(�m0) +
∑
μ

�uμ
∂

∂�uμ
Ĥ(�m0). (84)

As shown in reference [56], the energy dissipation within the linear response formalism is given by:

Ėdis = −π�
∑

ij

∑
μν

u̇μu̇ν

〈
ψi

∣∣∣∣ ∂Ĥ

∂uμ

∣∣∣∣ψj

〉〈
ψj

∣∣∣∣ ∂Ĥ

∂uν

∣∣∣∣ψi

〉
δ(EF − Ei)δ(EF − Ej). (85)

Identifying it with the corresponding phenomenological quantity in equation (83), Ėmag = Ėdis one obtains
for the GD parameter αG a Kubo–Greenwood-like expression:

αG
μν = − �γ

πMs
Trace

〈
∂Ĥ

∂uμ
Im G+(EF)

∂Ĥ

∂uν
Im G+(EF)

〉
c

, (86)

where αG = G̃/(γMs), and 〈. . .〉c indicates a configurational average required in the presence of chemical or
thermally induced disorder responsible for the dissipation processes. Within the multiple scattering formalism
with the representation of the Green function given by equation (9), equation (86) leads to

αG
μμ =

g

πμtot

∑
n

Trace
〈

T 0μ τ̃ 0n T nμ τ̃ n0
〉

c
(87)

with the g-factor 2(1 + μorb/μspin) in terms of the spin and orbital moments, μspin and μorb, respectively, the
total magnetic moment μtot = μspin + μorb, and τ̃ 0n

ΛΛ′ =
1
2i (τ

0n
ΛΛ′ − τ 0n

Λ′Λ) and with the energy argument EF

omitted. The matrix elements T nμ are identical to those occurring in the context of exchange coupling [6] and
can be expressed in terms of the spin-dependent part B of the electronic potential with matrix elements:

Tnμ
Λ′Λ =

∫
d3 r Zn×

Λ′ (�r)
[
βσμBxc(�r )

]
Zn
Λ(�r ). (88)

As is discussed in reference [57], for a system having chemical disorder, the configurational average is per-
formed using the scattering path operators evaluated on the basis of the coherent potential approximation
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Figure 10. The Gilbert damping parameter for (a) bcc Fe1−xVx (T = 0 K) as a function of V concentration. Full (open) symbols
give results with (without) the vertex corrections. Reprinted (figure) with permission from [57], Copyright (2013) by the
American Physical Society.

(CPA) alloy theory. In the case of thermally induced disorder, the alloy analogy model is used, which was dis-
cussed already above. When evaluating equation (87), the so-called vertex corrections have to be included [61]
that accounts for the difference between the averages 〈Tμ Im G+Tν Im G+〉c and 〈Tμ Im G+〉c〈Tν Im G+〉c.
Within the Boltzmann formalism these corrections account for scattering-in processes.

The crucial role of these corrections is demonstrated [57] in figure 10 representing the Gilbert damping
parameter for an Fe1−xVx disordered alloy as a function of the concentration x, calculated with and without
vertex corrections. As one can see, neglect of the vertex corrections may lead to the nonphysical result αG < 0.
This wrong behavior does not occur when the vertex corrections are included, that obviously account for
energy transfer processes connected with scattering-in processes.

The impact of thermal vibrations onto the Gilbert damping can be taken into account within the alloy-
analogy model (see above) by averaging over a discrete set of thermal atom displacements for a given tempera-
ture T. Figure 11 represents the temperature dependent behavior of the Gilbert damping parameter αG for bcc
Fe with 1% and 5% of impurities of Os and Pt [56, 57]. One can see a strong impact of impurities on GD. In the
case of 1% of Pt in figure 11(a), αG decreases in the low-temperature regime much steeper upon increasing the
temperature, indicating that the breathing Fermi surface mechanism dominates. When the concentration of
the impurities increases up to 5% (figure 11(a)), the spin-flip scattering mechanism takes the leading role for
the magnetization dissipation practically for the whole region of temperatures under consideration. The dif-
ferent behavior of GD for Fe with Os and Pt is a result of the different density of states (DOS) of the impurities
at the Fermi energy (see reference [57] for a discussion).

An alternative approach to elaborate the expression for the Gilbert damping tensor based on a generalized
Kubo–Středa formula was reported by Pervishko et al [99]. The authors focus on the Gilbert damping at the
interface of ferromagnetic (FM) and non-magnetic (NM) metallic subsystems. In the case of semiconduct-
ing or insulating substrates the Gilbert damping enhancement may be associated with the enhanced Rashba
spin–orbit interaction, as was demonstrated by Tu et al [100] for the CoFeB/GaAs(001) interface. However,
in the case of a metallic interface, the delocalized conduction electrons of the non-magnetic subsystem are
responsible for the enhancement of the magnetization dissipation when compared to bulk materials as was
demonstrated both experimentally [101, 102] and theoretically [98, 103–105]. Pervishko et al [99] consider a
model FM/NM bilayer system with the conduction electrons of the NM coupled via sd exchange interaction,
Δ, with the d electrons of the FM subsystem. Describing the non-equilibrium spin density of the conduction
electrons of the NM film sμ(�r, t) (driven by the time-dependent magnetization �m(�r, t) of the FM film) in terms
of the lesser Green function, G<(�rt;�rt), i.e.,

sμ(�r, t) = − i

2
Tr[σμG<(�rt;�rt)] =

∑
ν

Qμν∂tmν + · · · , (89)

the authors work out an expression for the response function Qμν = Q1
μν + Q2

μν . The first term Q1
μν is the

so-called Štreda contribution

Q1
μν =

1

4
Tr

[
σμ

∫ ∞

−∞

dE

2π
f(E)

∫
d2p

(2π)2

(
∂gR

�p

∂E
σν gR

�p − gR
�p σν

∂gR
�p

∂E
+ gA

�p σν

∂gA
�p

∂E
−

∂gA
�p

∂E
σν gA

�p

)]
, (90)
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Figure 11. Gilbert damping parameter for bcc Fe1−xMx with M = Pt (circles) and M = Os (squares) impurities as a function of
temperature for 1% (a) and 5% (b) of the impurities. Reprinted (figure) with permission from [57], Copyright (2013) by the
American Physical Society.

which involves an integration over the whole Fermi sea. The additional term Q2
μν represents the conventional

contribution due to the electrons at the Fermi level

Q2
μν =

1

4
Tr

[
σμ

∫ ∞

−∞

dE

2π
∂f(E)∂E

∫
d2p

(2π)2

(
g R
�p σν g R

�p + g A
�p σν g A

�p − 2g R
�p σν g A

�p

)]
, (91)

with g R
�p , g A

�p and g<�p the bare retarded, advanced, and lesser Green functions respectively. The diagonal and
off-diagonal elements of the response function tensor lead to a renormalization of the gyromagnetic ratio γ
and the damping parameter αG, according to

γ̄ =
γ

1 + χΔQxy
ᾱG = − χΔQxx

1 + χΔQxy
, (92)

where χ = (gμB/�)2μ0/d, g = 2 the electron g-factor and d the thickness of the nonmagnetic layer. The
authors point out that their expression for the Gilbert damping worked out on the basis of Kubo–Středa for-
mula is more accurate when compared to the Kubo–Greenwood approach discussed above, as it takes into
account the Fermi sea contribution Q1

μν missing in that theory.
Note that the expression for the Gilbert damping in terms of the response function in equations (90) and

(91) is similar to that derived previously by Freimuth et al [104] based on a one-dimensional Rashba model
Hamiltonian. According to reference [104], the Gilbert damping is given by the expression

ᾱG =
Sxx

|Axy|
, (93)

in terms of even (S(m̂) = S(−m̂)) and odd (S(m̂) = −S(−m̂)), under magnetization reversal, parts of the
linear response tensor Λμν , where

Sμν(m̂) =
1

2

[
Λμν(m̂) + Λμν(−m̂)

]
, (94)
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and

Aμν(m̂) =
1

2

[
Λμν(m̂) − Λμν(−m̂)

]
. (95)

Similar to equations (90) and (91), the linear response tensor Λμν = ΛIa
μν + ΛIb

μν + ΛII
μν is composed of the

Fermi surface ΛIa
μν ,ΛIb

μν and Fermi sea ΛII
μν terms, where

ΛIa
μν =

1

h

∫
ddk

(2π)d
Tr 〈TαGR

k (EF)TβGA
k (EF)〉, (96)

ΛIa
μν = −1

h

∫
ddk

(2π)d
ReTr 〈TαGR

k (EF)TβGR
k (EF)〉, (97)

ΛII
μν =

1

h

∫
ddk

(2π)d

∫ EF

−∞
dE Re Tr

〈
TαGR

k (EF)Tβ
GA

k (EF)

dE
− Tα

GA
k (EF)

dE
TβGR

k (EF)

〉
. (98)

Here d stands for the dimensionality (d = 1, 2 or 3), GR
k (EF) and GA

k (EF) are the retarded and advanced Green
functions, and Tα the α component of the torque operator. The authors point out that the tensor ΛII

μν is
antisymmetric under the interchange of the indices μ and ν , therefore the Gilbert damping tensor, which
is symmetric, is contributed by only ΛIa

μν and ΛIb
μν terms, although it depends also on |ΛII

μν |.
The role of the electron–phonon scattering for the ultrafast laser-induced demagnetization was investi-

gated by Carva et al [106] based on the Elliott–Yafet theory of spin relaxation in metals, that puts the focus on
spin-flip (SF) transitions upon the electron–phonon scattering. As the evaluation of the spin-dependent elec-
tron–phonon matrix elements entering the expression for the rate of the spin-flip transition is a demanding
problem, various approximations are used for this. In particular, Carva et al [106, 107] use the so-called Elliott
approximation to evaluate a SF probability Pb

S =
τ
τsf

with the spin lifetime τ sf and a spin-diagonal lifetime τ :

Pb
S =

τ

τsf
= 4〈b2〉 (99)

with the Fermi-surface averaged spin mixing of Bloch wave eigenstates

〈b2〉 =
∑
σ,n

∫
d3k|bσ�kn

|δ(Eσ
�kn

− EF). (100)

In the case of a non-collinear magnetic structure, the description of the Gilbert damping can be extended
by adding higher-order non-local contributions. The role of non-local damping contributions has been inves-
tigated by calculating the precession damping αG(�q) for magnons in FM metals, characterized by a wave vector
�q. Following the same idea, Thonig et al [108] used a torque–torque correlation model based on a tight bind-
ing approach, and calculated the Gilbert damping for the itinerant-electron ferromagnets Fe, Co and Ni, both
in the reciprocal, αG(�q), and real αG

ij space representations. The important role of non-local contributions to
the GD for spin dynamics has been demonstrated using atomistic magnetization dynamics simulations [109].
Using linear response theory for weakly-noncollinear magnetic systems it gives access to the GD parameters
represented as a function of a wave vector �q. Using the definition for the spin susceptibility tensor χαβ(�q,ω),
the Fourier transformation of the real-space Gilbert damping can be represented by the expression [110, 111]

αG
αβ(�q) =

γ

M0V
lim
ω→0

∂�[χ−1]αβ(�q,ω)

∂ω
. (101)

Here γ = gμB is the gyromagnetic ratio, M0 = μtotμB/V is the equilibrium magnetization and V is the volume
of the system. As is shown in reference [109], this expression can be transformed to the form which allows an
expansion of GD in powers of wave vector�q:

αG(
→
q ) = αG +

∑
μ

αG,μqμ +
1

2

∑
μν

αG,μνqμqν + · · · , (102)

where αG = 1
4

(
αG,++ + αG,−− − αG,+− − αG,−+

)
with the following expansion coefficients:
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Figure 12. The Gilbert damping parameters αG
xx (top) and αG,x

xx (bottom) calculated for the model multilayer system
(Cu/Fe1−xCox/Pt)n using first and second expressions in equation (103), respectively. Reprinted (figure) with permission from
[109], Copyright (2018) by the American Physical Society.

αG,0±±
αα =

g

πμtot

1

ΩBZ
Tr

∫
d3k
〈

T βτ (�k, E±
F )Tβτ (�k, E±

F )
〉

c

αG,μ±±
αα =

g

πμtot

1

ΩBZ
Tr

∫
d3k

〈
T β ∂τ (�k, E±

F )

∂kμ
T βτ (�k, E±

F )

〉
c

αG,μν±±
αα = − g

2πμtot

1

ΩBZ
Tr

∫
d3k

〈
Tβ ∂τ (�k, E±

F )

∂kμ
Tβ ∂τ (�k, E±

F )

∂kν

〉
c

. (103)

For the prototype multilayer system (Cu/Fe1−xCox/Pt)n the calculated zero-order (uniform) GD parameter
αG

xx and the corresponding first-order (chiral) αG,x
xx correction term for �q ‖x̂ are plotted in figure 12 top and

bottom, respectively, as a function of the Co concentration x. Both terms, αG
xx and αG,x

xx , increase approaching
the pure limits w.r.t. the Fe1−xCox alloy subsystem. As is pointed out in reference [109], this increase is associ-
ated with the dominating so-called breathing Fermi-surface damping mechanism due to the modification of
the Fermi surface (FS) induced by the SOC, which follows the magnetization direction that slowly varies with
time. As αG is caused for a ferromagnet exclusively by the SOC one can expect that it vanishes for vanishing
SOC. This was indeed demonstrated before [57]. The same holds also for αG,x that is caused by SOC as well.

Alternatively, a real-space extension for classical Gilbert damping tensor was proposed recently by Brinker
et al [112], by introducing two-site Gilbert damping tensor G ij entering the site-resolved LLG equation

1

γ

d�Mi

dτ
= −γ �Mi ×

⎛
⎝�Hi,eff +

∑
j

[
G ij(�M) · d�Mi

dτ

]⎞⎠, (104)

which is related to the inverse dynamical susceptibility χ
ij

via the expression

d

dω
Im[χ]αβij = δij

(
1

γMi
εαβγ

)
+
(
RiG ijR

T
j

)
αβ

, (105)

whereRi andRj are the rotation matrices to go from the global to the local frames of reference for atoms i and j,
respectively, assuming a non-collinear magnetic ground state in the system. Thus, an expression for the GD can
be directly obtained using the adiabatic approximation for the slow spin-dynamics processes. This justifies the
approximation ([χ]−1(ω))′ω ≈ ([χ

0
]−1(ω))′ω, with the un-enhanced dynamical susceptibility given in terms

of electronic Green function Gij

χαβ
ij (ω + iη) = − 1

π
Tr

∫ EF

dE
[
σαGij(E + ω + iη)σβ Im Gij(E) + σαGij(E)σβ Im Gij(E − ω − iη)

]
, (106)

with the Green function G(E ± iη) = (E −H± iη)−1 corresponding to the Hamiltonian H.
Moreover, this approach allows a multisite expansion of the GD accounting for higher-order non-local

contributions for non-collinear structures [112]. For this purpose, the Hamiltonian H is split into the on-site
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contribution H0 and the intersite hopping term tij, which is spin dependent in the general case. The GF can
then be expanded in a perturbative way using the Dyson equation

Gij = G0
i δij + G0

i tijG
0
j + G0

i tikG0
ktkjG

0
j + · · · . (107)

As a result, the authors generalize the LLG equation by splitting the Gilbert damping tensor in terms propor-
tional to scalar, anisotropic, vector-chiral and scalar-chiral products of the magnetic moments, i.e. terms like
êi · êj, (n̂ij · êi)(n̂ij · êj), n̂ij · (̂ei × êj), etc.

Note that chiral properties of the Gilbert damping in the presence of a noncollinear magnetic structure
have been discussed also by Freimuth et al [104] for a one-dimensional Rashba model, for which the authors
have demonstrated that the Gilbert damping differs between left-handed and right-handed Néel-type magnetic
domain walls.

It should be stressed that the Gilbert damping parameter accounts for the energy transfer connected with
the magnetization dynamics but gives no information on the angular momentum transfer that plays an impor-
tant role e.g. for ultrafast demagnetization processes. The formal basis to account simultaneously for the spin
and lattice degrees of freedom was considered recently by Aßmann and Nowak [113] and Hellsvik et al [114].
Hellsvik et al [114, 115] report on an approach solving simultaneously the equations for spin and lattice
dynamics, accounting for spin–lattice interactions in the Hamiltonian, calculated on a first-principles level.
These interactions appear as a correction to the exchange coupling parameters due to atomic displacements. As

a result, this leads to the three-body spin–lattice coupling parameters Γαβμ
ijk =

∂Jαβij

∂uμk
and four-body parameters

Λαβμν
ijkl =

∂Jαβij

∂uμk ∂uνl
represented by rank 3 and rank 4 tensors, respectively, entering the spin–lattice Hamiltonian

Hsl = −1

2

∑
i,j,k,αβ,μ

Γαβμ
ijk eαi eβj uμ

k − 1

4

∑
i,j,k,l,αβ,μ,ν

Λαβμν
ijkl eαi eβj uμ

k uν
l . (108)

The parameters Γαβμ
ijk in reference [114] are calculated using a finite difference method, using the exchange

coupling parameters J ij for the system without displacements (J 0
ij) and with a displaced atom k (JΔij (�uk)), used

to estimate the coefficient Γαβμ
ijk ≈

(JΔij (�uk)−J 0
ij)

uμ
.

Alternatively, to describe the coupling of spin and spatial degrees of freedom the present authors (see ref-
erence [116]) adopt an atomistic approach and start with the expansion of a phenomenological spin–lattice
Hamiltonian

Hsl = −
∑
i,j,α,β

∑
k,μ

Jαβ,μ
ij,k eαi eβj uμ

k −
∑

i,j

∑
k,l

Jαβ,μν
ij,kl eαi eβj uμ

k uν
l , (109)

that can be seen as a lattice extension of a Heisenberg model. Accordingly, the spin and lattice degrees of
freedom are represented by the orientation vectors êi of the magnetic moments �mi and displacement vectors
�ui for each atomic site i. The spin–lattice Hamiltonian in equation (109) is restricted to three and four-site
terms. As relativistic effects are taken into account, the SLC is described in tensorial form with Jαβ,μ

ij,k and Jαβ,μν
ij,kl

represented by rank 3 and rank 4 tensors, similar to those discussed by Hellsvik et al [114].
The same strategy as for the exchange coupling parameters Jij [4] or Jαβij [5, 6], is used to map the free

energy landscape F({êi}, {�ui}) accounting for its dependence on the spin configuration {êi} as well as atomic
displacements {�ui}, making use of the MFT and the Lloyd formula to evaluate integrated DOS ΔN(E). With
this, the free energy change due to any perturbation in the system is given by equation (26).

Using as a reference the ferromagnetically ordered state of the system with a non-distorted lattice, and the
perturbed state characterized by finite spin tiltings δêi and finite atomic displacements�ui at site i, one can write
the corresponding changes of the inverse t-matrix as Δs

μmi = mi(δêμi ) − m0
i and Δu

νmi = mi(uν
i ) − m0

i . This
allows to replace the integrand in equation (11) by

ln τ − ln τ 0 = − ln
(

1 + τ [Δs
μm

i
+Δu

νm
j
+ · · · ]

)
, (110)

where all site-dependent changes in the spin configuration {êi} and atomic positions {�ui} are accounted for
in a one-to-one manner by the various terms on the right-hand side. Due to the use of the MFT these blocks
may be written in terms of the spin tiltings δêμi and atomic displacements of the atoms uν

i together with the
corresponding auxiliary matrices Tμ

i and Uν
i , respectively, as

Δs
μmi = δêμi Tμ

i , (111)

Δu
νmi = uν

i U ν
i . (112)
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Figure 13. The absolute values of site-off-diagonal and site-diagonal SLC parameters: DMI |�Dx
ij,j| and isotropic SLC J iso,x

ij,j (top),

anti-symmetric diagonal components J dia−a,x
ij,j and J dia−a,x

ii,k (middle), and symmetric off-diagonal components J off−s,x
ij,j and

J off−s,x
ii,k (bottom) for bcc Fe, as a function of the interatomic distance rij. Reprinted (figure) with permission from [116],

Copyright (2022) by the American Physical Society.

Inserting these expressions into equation (110) and the result in turn into equation (26) allows us to calculate
the parameters of the spin–lattice Hamiltonian as the derivatives of the free energy with respect to tilting angles
and displacements. This way one gets for example for the three-site term:

J αβ,μ
ij,k =

∂3F
∂eαi ∂eβj ∂uμ

k

=
1

2π
ImTr

∫ EF

dE
[

Tα
i τ ijT

β
j τ jkU μ

k τ ki + Tα
i τ ikU μ

k τ kjT
β
j τ ji

]
(113)

and for the four-site term:

J αβ,μν
ij,kl =

∂4F
∂eαi ∂eβj ∂uμ

k∂uν
l

=
1

4π
ImTr

∫ EF

dE
[
U μ

k τ ki Tα
i τ ij Tβ

j τ jl U ν
l τ lk + Tα

i τ ik U μ
k τ kj Tβ

j τ jl U ν
l τ li

+ U μ
k τ ki Tα

i τ il U ν
l τ lj Tβ

j τ jk + Tα
i τ ik U μ

k τ kl U ν
l τ lj Tβ

j τ ji

]
. (114)

Figure 13 shows corresponding results for the SLC parameters of bcc Fe, plotted as a function of the distance
rij for i = k which implies that a displacement along the x direction is applied for one of the interacting atoms.

The absolute values of the DMI-like SLC parameters (DSLC) |�D|μ=x
ij,k (note thatDz,μ

ij,k = 1
2 (J xy,μ

ij,k − J yx,μ
ij,k )) show

a rather slow decay with the distance rij. The isotropic SLC parameters J iso,μ=x
ij,j , which have only a weak depen-

dence on the SOC, are about one order of magnitude larger than the DSLC. All other SOC-driven parameters
shown in figure 13, characterizing the displacement-induced contributions to MCA, are much smaller than
the DSLC.

To summarize, linear response theory describes the Gilbert damping of ferromagnetic materials well, lead-
ing to results in rather good agreement, e.g., with the results from FMR experiments [57, 117]. Nowadays,
however, many investigations are focused on the dynamical properties of non-collinear magnetic structures,
e.g. magnetic domain walls, magnetic skyrmion textures, etc, which are of great interest for various spintronic
applications. The development of appropriate theoretical methods is required, accounting for specific features
of the magnetization dissipation in non-collinear magnetic systems, as was discussed in the present sections. In
the case of ultrafast magnetization dynamics, it is of great importance to establish the demagnetization mech-
anism, which obviously may be different for different materials and depends on whether they have a metallic
or an insulating character. Several competing mechanisms discussed in the literature as those responsible for
ultrafast demagnetization, are mentioned in this section and are associated with the spin-flip electron–phonon
or magnon–phonon scattering events [118, 119]. It is however still a challenge for further investigations, which
mechanism is dominating in different materials.
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6. Summary

To summarize, we have considered a multi-level atomistic approach commonly used to simulate finite tem-
perature and dynamical magnetic properties of solids, avoiding in particular time-consuming TD-SDFT cal-
culations. The approach is based on a phenomenological parameterized spin Hamiltonian which allows to
separate the spin and orbital degrees of freedom and that way to avoid the demanding treatment of complex
spin-dependent many-body effects. As these parameters are fully determined by the electronic structure of a
system, they can be deduced from the information provided by relativistic band structure calculations based
on SDFT. We gave a short overview of the various methods to calculate these parameters entering for example
the LLG equation. It is shown that the KKR Green function formalism is one of the most powerful band struc-
ture methods as it gives straightforward access to practically all parameters of the phenomenological models. It
allows in particular to add in a very simple way further extensions to the model Hamiltonians, accounting for
example for multi-site interaction terms. Another important issue are spin–lattice interactions, that couple the
degrees of freedom of the spin and lattice subsystems. The key role of the SOC for the interaction parameters
is pointed out as it gives not only rise to the MCA but also to the Gilbert damping as well as the anisotropy of
the exchange coupling and spin–lattice interaction with many important physical phenomena connected to
these.
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[62] Ležaić M, Mavropoulos P, Enkovaara J, Bihlmayer G and Blügel S 2006 Phys. Rev. Lett. 97 026404
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