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Abstract
The holographic principle suggests that the Hilbert space of quantum gravity is
locally finite-dimensional. Motivated by this point-of-view, and its application
to the observable Universe, we introduce a set of numerical and conceptual tools
to describe scalar fields with finite-dimensional Hilbert spaces, and to study
their behaviour in expanding cosmological backgrounds. These tools include
accurate approximations to compute the vacuum energy of a field mode k as a
function of the dimension dk of the mode Hilbert space, as well as a paramet-
ric model for how that dimension varies with |k|. We show that the maximum
entropy of our construction momentarily scales like the boundary area of the
observable Universe for some values of the parameters of that model. And we
find that the maximum entropy generally follows a sub-volume scaling as long
as dk decreases with |k|. We also demonstrate that the vacuum energy density
of the finite-dimensional field is dynamical, and decays between two constant
epochs in our fiducial construction. These results rely on a number of non-trivial
modelling choices, but our general framework may serve as a starting point for
future investigations of the impact of finite-dimensionality of Hilbert space on
cosmological physics.
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1. Introduction

The holographic principle [44, 45] states that the maximum entropy S that can be accumulated
inside a finite region of space R (with a sufficiently regular boundary δR) equals the boundary
area of that region divided by four times the Planck area [7, 44],

S(R) � |δR|
4�2

P

. (1.1)

Since the maximum entropy that can be attained by a quantum system is proportional to the log-
arithm of the dimension of its Hilbert space, this can be interpreted such that the Hilbert space
representing the region R must be finite-dimensional [5, 11, 40]. This finite-dimensionality is
a consequence of gravity: whereas quantum field theory without gravity has infinitely many
degrees of freedom in any compact region of space, when we try to excite these degrees of
freedom in the presence of gravity, many of the resulting states would collapse the region into
a black hole. And black holes have a finite amount of entropy which scales as the area of their
horizon. Therefore, any attempts to increase the region’s entropy by creating further excitations
would only increase the size of the resulting black hole, and hence the size of its supporting
region, suggesting that the amount of entropy that can be localized in a compact region of
space is finite [2, 3, 5, 14, 22, 23, 40, 49]. This argument based on local Hilbert space factors
is oversimplified insofar as gauge theories typically do not permit spatial regions to be identi-
fied with unique Hilbert space factors [16, 20, 21, 25] (and references therein), and the more
precise statement would be that the observables associated with a finite region of space should
have support in only a finite-dimensional Hilbert space factor. This interpretation of the holo-
graphic principle asserts a local finite-dimensionality of Hilbert space, and it can be extended
to the entire (observable) cosmos by noting that in an asymptotically de-Sitter Universe the
causal patch of any observer has a finite extent [3, 22]. Invoking observer complementarity,
this means that the physics experienced by any observer in our Universe should be described
by a finite-dimensional quantum theory [22, 40].

If this reasoning is correct, then no quantum field theory based on a non-compact symmetry
group (including any group with local Lorentz symmetry) can be a fundamental description
of physics in our Universe [5, 40] because all unitary representations of such groups live
on infinite-dimensional Hilbert spaces. This also precludes conjugate variables which satisfy
Heisenberg’s canonical commutation relation (CCR; and its extensions to field theory) since
the latter can only be realized on an infinite-dimensional Hilbert space. Motivated by the lack of
finite-dimensional representations of conjugate operators satisfying the CCR [42], have used
generalised Pauli operators (GPOs) as a framework to construct finite-dimensional analogs
of conjugate Hermitian operators. These operators were then used by [11] to build a finite-
dimensional version of a scalar quantum field. They also demonstrated that the zero-point
energy of such fields is significantly reduced w.r.t. infinite-dimensional counterparts. This hints
at potentially observable consequences of finite-dimensionality for quantum fields even when
a fixed background spacetime is assumed.

Ultimately, notions of space and spacetime symmetries may be emergent phenomena of an
underlying, purely quantum theory [9, 10, 13, 14, 18, 22, 26, 46], in which case it would not
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be surprising that familiar symmetry groups are not fundamental. According to [15], quantum
fields would then only be effective descriptions of observables which are robust w.r.t. decoher-
ence in emergent system-environmentsplits that maximise notions of locality and predictability
(see also [18], for related thoughts). It remains a challenge for this ‘quantum first’ program to
construct concrete models (of e.g. cosmological physics) that incorporate these concepts of
emergence. We think that the approach of [11, 42] for constructing finite-dimensional quan-
tum fields can be a fruitful starting point for the development of such models (see e.g. [4, 12],
for different approaches).

Of course, quantum gravitational effects should not play a significant role for standard
model particle physics at energy scales at or below that of the LHC. In the context of [11,
42] this means that modes of finite dimensional quantum fields with |k| � kLHC should live on
such high dimensional Hilbert spaces that effects of finite dimensionality—such as e.g. modifi-
cations to the dispersion relation of field excitations—are rendered negligible. But even if this
is the case, cosmology may still offer opportunities to find signatures of finite dimensionality,
owing to the extremity of scales involved in it. If the late-time accelerated expansion of the
Universe is partly driven by vacuum energy density, then it probes scales far beyond the valid-
ity of the standard model. And during the early-time, inflationary expansion of the Universe
the co-moving modes of any quantum field have been stretched across at least 60 e-folds of
physical wave length. More generally, cosmology has been considered as our primary window
to the interplay between quantum physics and gravity [6, 27, 35] and we follow [5] in consid-
ering finite dimensionality as one of the consequences of this interplay. In this paper, we revisit
the framework of generalized Pauli operators to construct a finite-dimensional rendering of a
scalar field and develop the following extensions to the work of [11, 42], with an eye towards
cosmological applications:

(a) We develop a finite-dimensional model of scalar field dynamics in a flat Fried-
mann–Lemaître–Robertson–Walker (FLRW) spacetime.

(b) We investigate two distinct choices for the eigenvalue spacings of the finite-dimensional
field operators. In our fiducial construction, we choose those spacings in a way that mini-
mizes finite-dimensional effects on the ground state energy of the field. We also show that
the variance of the scalar field and the variance of its canonically conjugate momentum
field in the ground state are equally well resolved with our choice of eigenvalue spac-
ing. Both of these properties ensure that—in the ground state—our construction closely
resembles the infinite-dimensional limit (which is also a prerequisite for the emergence of
classicality in low energy physics).

(c) In an alternative construction, we choose the eigenvalue spacing of the finite-dimensional
field operators in a way that ensures an algebraic symmetry between the field and its con-
jugate momentum. We show that in this case the effect of finite-dimensionality on the
energy eigenspectrum is drastically increased.

(d) We derive accurate approximations for the ground state energy of the finite-dimensional
harmonic oscillator as a function of frequency and the dimension of its Hilbert space.
These approximations are numerically feasible for arbitrarily high dimension and agree
with the exact calculation of [42] to better than 3% accuracy for dimensions �7.

(e) We introduce a parametric model for how the dimension dk of the Hilbert space corre-
sponding to the co-moving mode k of our field depends on |k|. While that model is likely
to be overly simplistic, it allows us to qualitatively study how consistency with low energy
physics can constrain its parameter space, and how different parameter values impact the
behaviour of the finite-dimensional field. For example, we find that the maximum entropy
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attainable with our construction follows a sub-volume scaling with the size of the observ-
able Universe as long as dk is a decreasing function of |k|, and that it can momentarily
even display an area-scaling.

(f) We study the equation of state of the vacuum energy density of the finite-dimensional
scalar field as a function of the dimensionality parameters. For much of the allowed
parameter space that energy density becomes dynamical. With our fiducial choice for the
eigenvalue spacing of the conjugate field operators it is decaying between two constant
epochs with an asymptotic suppression of vacuum energy by about 40%. For our alterna-
tive choice of the eigenvalue spacing it is decaying indefinitely, easily reaching a ∼10−60

suppression compared to the infinite-dimensional calculation (with sharp UV cut-off) for
some parameter values.

We have implemented the above framework within the GPUniverse toolkit that is publicly
available at https://github.com/OliverFHD/GPUniverse. Our paper is structured as follows: in
section 2, we construct our finite-dimensional version of the scalar field in an expanding Uni-
verse and derive expressions for its vacuum energy density, with the derivation of some key
statements outsourced to A and B. In section 3, we investigate how the number of degrees of
freedom in our field scale with the size of the Universe, and we discuss a potential interpretation
of that dynamical increase of Hilbert space dimension within the context of the work of [4].
In section 4, we study the equation of state of vacuum energy density of the finite-dimensional
scalar field as a function of the parameters describing how the dimension of individual mode
Hilbert spaces depends on the absolute value |k| of those modes (cf point (e) above). We also
derive there a number of consistency requirements for those dimensionality parameters, and
we investigate how the behaviour of vacuum energy density changes if we switch from our
fiducial eigenvalue spacing of the field operators (cf point (b) above) to the alternative choice
(cf point (c)). In section 5, we discuss the assumptions and limitations of our construction as
well as possible directions for future investigation. Throughout this paper we are working with
natural units, i.e. we put h̄ = G = c = 1, unless stated otherwise.

2. A finite-dimensional scalar field and its vacuum energy density

2.1. Infinite-dimensional scalar field in an expanding box

Let us first recap the conventional, infinite-dimensional construction of a real scalar field on a
curved spacetime, with the action

S =
1
2

∫ √
−g d4x

[
gαβφ,αφ,β − m2φ2

]
, (2.1)

where g is the determinant, and gαβ are the components of the inverse of the metric tensor. In
a flat Friedmann Universe, and using the conformal form of the metric

ds2 = a2
(
dη2 − dx2

)
, [·]′ ≡ ∂

∂η
[·], (2.2)

this becomes

S =
1
2

∫
dη d3xa2

[
(φ′)2 − (∇φ)2 − m2a2φ2

]

=
1
2

∫
dη d3k
(2π)3

a2
[
|φ′

k|2 − (|k|2 + m2a2)|φk|2
]
, (2.3)

4
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where in the second line we moved to Fourier space, with k labelling a co-moving Fourier
mode. Expressing the Fourier transform of the field in terms of real and imaginary parts, φk =
Ak + iBk, we must have Ak = A−k and Bk = −B−k because φ is real. This allows us to define
a new field

qk =
√

2

{
Ak for k1 � 0
Bk for k1 > 0

(2.4)

such that the action can be re-written as [39]

S =

∫
dη d3k
(2π)3

[
a2

2
(q′

k)2 − a2(|k|2 + m2a2)
2

q2
k

]
. (2.5)

This can be interpreted as an action corresponding to a collection of harmonic oscillators with
time dependent mass a2 and time dependent frequency

√
|k|2 + m2a2 [38, 39]. To make this

analogy more explicit, let us restrict the field φ to a finite box of co-moving side length Lc,
imposing periodic boundary conditions. This modifies the action to

Sbox =

∫
dη

1
L3

c

∑
k

[
a2

2
(q′

k)2 − a2(|k|2 + m2a2)
2

q2
k

]
, (2.6)

where we have used the fact that d3k →Δk3 = (2π/Lc)3 and the sum is over all k = (k1, k2, k3)
with ki ∈ {2πn/Lc | n ∈ Z}. In order to extract the Hamiltonian from that action, let us re-write
it in terms of physical time dt = a dη (a dot over a quantity represents its derivative with respect
to physical time), i.e.

Sbox =

∫
dt

a3

L3
c

∑
k

[
1
2

(q̇k)2 − (|k|2/a2 + m2)
2

q2
k

]
≡
∫

dtLbox
(
{qk}, {q̇k}, t

)
.

(2.7)

Here the last equality serves as a definition of the Lagrangian Lbox of the discretized field. It
is literally the Lagrangian of a set of harmonic oscillators with masses a3/L3

c and frequencies√
|k|2/a2 + m2. The corresponding Hamiltonian is given by

Hbox
(
{qk}, {pk}, t

)
=
∑

k

[
L3

c

2a3
p2

k +
a3

L3
c

(|k|2/a2 + m2)
2

q2
k

]
, (2.8)

where we introduced the conjugate momenta pk = ∂Lbox/∂q̇k. To obtain the quantum theory
of this field one would usually promote qk and pk to conjugate Hermitian operators satisfying
the Heisenberg commutation relations

[q̂k, p̂k′ ] = iδk,k′ (2.9)

such that the Hamiltonian operator of the field becomes

Ĥ(t) =
∑

k

[
L3

c

2a3
p̂2

k +
a3

L3
c

(|k|2/a2 + m2)
2

q̂2
k

]
(2.10)

which at any time t has the minimum eigenvalue

λmin
[
Ĥ(t)
]
=

1
a

∑
|k|<kmax

√
|k|2 + m2a2

2
. (2.11)
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Here we have introduced a co-moving ultra-violet cut-off kmax in order to regularise this other-
wise divergent expression. Such a sharp cut-off has been criticized because it breaks Lorentz
symmetry [1, 36]. There are however reasons to believe that the breaking of Lorentz symme-
try is physical [5, 28, 37], including the premise of this paper: finite-dimensionality of Hilbert
space.

To obtain the vacuum energy density of the field we need to divide this eigenvalue by the
physical volume of the box, i.e. by

Vph = L3
ph ≡ (aLc)

3, (2.12)

where Lph = aL is the physical box size. The energy density of the vacuum is then given by

εvac =
1

a4L3
c

∑
|k|<kmax

√
|k|2 + m2a2

2
. (2.13)

For a constant co-moving box size Lc this seems to indicate that εvac ∝ a−4, which is the
behaviour of a relativistic fluid, and not that of a cosmological constant. However, it is usually
assumed that the scale regularising a QFT is some fixed physical scale ΛUV, which for the rest
of this paper we will take to be equal to the Planck mass. In an expanding Universe we would
then have kmax = aΛUV, such that equation (2.13) becomes

εvac =
1

a4L3
c

∑
|k|<aΛUV

√
|k|2 + m2a2

2
. (2.14)

For ΛUV � m the sum in this expression is proportional to a4, so that εvac is indeed constant.
This is still somewhat curious, because a direct calculation of the vacuum pressure pvac from
the vacuum stress–energy tensor yields pvac ≈ εvac/3 [1], which is again the behaviour of a rel-
ativistic fluid. Note however, that the number of modes k over which we sum in equation (2.14)
is now itself a function of time, and that this compensates for the energy loss that a relativistic
fluid would experience in an expanding Universe [37, 43]. This can be interpreted in terms of
a modified continuity equation for the vacuum energy density [43].

We want to stress an important subtlety: since the Hamiltonian in equation (2.10) is time
dependent, it is not possible for the field to remain in a state of minimum energy. Instead,
each of the qk behaves as a driven harmonic oscillator and the expansion of the Universe will
inevitably lead to particle production [38, 39]. If the period of the oscillators around the cut-
off ΛUV is much smaller than the characteristic time scales over which a changes, then particle
production will be negligible and the quantum state will undergo adiabatic evolution, i.e., stay
in the instantaneous minimum energy eigenstate to a good approximation as time evolves. We
will employ this adiabaticity assumption for the remainder of this paper. The assumption is
well justified in late-time cosmology because the time scales relevant for the recent cosmic
expansion history are much longer than the period of any cut-off scale that is relevant to well
understood particle physics.

2.2. Finite-dimensional scalar field in an expanding box

We now return to our premise that the dimension of the Hilbert space of the observable Universe
should be finite. In this case, the dimensions of the Hilbert spaces corresponding to individ-
ual modes k also need to be finite. In the conventional infinite-dimensional setting, such as
non-relativistic quantum mechanics of a single particle, classical conjugate variables q and
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p are promoted to Hermitian Hilbert space operators which obey the Heisenberg canonical
commutation relation (CCR)

[q̂, p̂] = i, (2.15)

where we have set h̄ = 1. In a quantum field theory, the field and its conjugate momentum are
operator-valued functions on spacetime which obey a continuous version of the CCR, labelled
by the field modes, as done in the previous section. The Stone–von Neumann theorem guaran-
tees that there is an irreducible representation of the Heisenberg CCR, but only on separable
(i.e., that possesses a countable dense subset) and in particular infinite-dimensional Hilbert
spaces [34]. The theorem also implies that this representation is unique and that the operators
q̂ and p̂ must have an unbounded spectrum of eigenvalues, that is, the eigenvalues will either no
upper and/or lower limit. By extension, the Stone–von Neumann theorem then implies that, on
finite-dimensional spaces, there are no irreducible representations of equation (2.9), and one
needs to consider a more general algebraic structure than the one imposed by Heisenberg’s
CCR.

Before we switch to a finite-dimensional construction, let us define convenient, dimension-
less versions of our conjugate variables as

Qk ≡ qk/L2
c, Pk ≡ pkL2

c . (2.16)

We would like to promote these to finite-dimensional, Hermitian operators Q̂k, P̂k, which sat-
isfy traditional properties of conjugate variables while also approaching the Heisenberg CCR
in the large dimensional limit. In order to achieve this we follow the ansatz of [11, 42] and
model Q̂k, P̂k in terms of generalized Pauli operators Âk, B̂k GPOs as

Âk = exp
(
−iαkP̂k

)
, B̂k = exp

(
iβkQ̂k

)
, (2.17)

which are defined on a Hilbert space of finite dimension dk and satisfy the Weyl commutation
relation [48]

ÂkB̂k = exp

(
−2πi

dk

)
B̂kÂk, (2.18)

and the closure property Âdk
k = Idk = B̂dk

k , where Idk is the identity operator on the Hilbert space
of dimension dk. Equation (2.18) above is an exponentiated form of Heisenberg’s CCR in the
sense that when the real parameters, αk and βk satisfy

αkβk =
2π
dk

, (2.19)

then equation (2.18) is equivalent to equation (2.9) in the limit dk →∞. The operators Q̂k

and P̂k defined through equations (2.17) and (2.18) do indeed admit a unitary representation
on a Hilbert space with finite dimension dk. Moreover, the representation is still unique up to
unitary equivalence via the Stone–von Neumann theorem, since a finite-dimensional Hilbert
space is separable. For example, let the dimension of Hilbert space be dk = 2lk + 1 for some
non-negative integer lk. Then the GPOs have the following matrix representation (up to unitary
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equivalence)

Âk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0
0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

dk×dk

B̂k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

exp

(
2πi
dk

lk

)
0 . . . 0

0 exp

(
2πi
dk

(lk − 1)

)
. . . 0

...
...

. . .
...

0 0 . . . exp

(
−2πi

dk
lk

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

dk×dk

,

(2.20)

which indeed satisfy equation (2.18). The construction works for even dimensions as well,
but we focus on odd values to streamline the notation. It can then be shown [42] that the
operators Q̂k and P̂k (defined from Âk and B̂k via equation (2.17)) have bounded, discrete and
linearly-spaced spectra which are given by

Spec(Q̂k) = {−�kαk, . . . , �kαk}; Spec(P̂k) = {−�kβk, . . . , �kβk}, (2.21)

i.e. the eigenvalue spacings of the two operators are given by αk and βk respectively. It can be
shown that in the limit dk →∞ the commutator of Q̂k and P̂k indeed approaches the infinite-
dimensional CCR [42].

We would now like to quantize the Hamiltonian of equation (2.8) in terms of these finite-
dimensional operators. Taking into account the re-scaling from equation (2.16), the Hamilto-
nian operator becomes

Ĥ =
∑

|k|<aΛUV

[
P̂2

k

2a3Lc
+

a3Lc(|k|2/a2 + m2)
2

Q̂2
k

]
≡

∑
|k|<aΛUV

[
P̂2

k

2M
+

MΩ2
k

2
Q̂2

k

]
, (2.22)

where we have defined M = a3Lc and Ωk =
√
|k|2/a2 + m2 to make each individual mode

formally resemble a standard quantum harmonic oscillator with time dependent mass M and
time dependent frequency Ωk. To determine the energy spectrum of this finite-dimensional
constructions, we need to fix two ingredients: the dimension dk of the Hilbert space of each
mode k, and the spacing αk of the eigenvalues of Q̂k (which via equation (2.19) also fixes the
eigenvalue spacing of P̂k).

As a proof of concept [42], have considered the situation where αk = βk = (2π/dk)1/2. We
investigate the impact of that choice on the vacuum energy of our scalar field in section 4.2,
but for our fiducial construction, we opt for a different approach to selecting αk and βk. Recall
that because of equation (2.19) any choice of αk already fixes βk. Hence, for any given values
of dk, Ωk and M, the minimum energy Emin,k of the mode k only depends on αk. Now to fix
a choice of αk, consider the time tk when the mode k enters the sum of equation (2.22), that

8



Class. Quantum Grav. 39 (2022) 235012 O Friedrich et al

is, when |k| = a(tk)ΛUV. This is the time when the mode k is initialized, and we are going to
choose αk such that it maximises Emin,k at that time,

d
dαk

Emin,k(tk) = 0. (2.23)

As we show in appendix A, the eigenvalue spacings that satisfy this criterion are exactly given
by

αk =

√
2π

dkM(tk)Ωk(tk)
, βk =

√
2πM(tk)Ωk(tk)

dk
. (2.24)

It can be shown that finite-dimensionality can only decrease Emin,k compared to its infinite-
dimensional value (cf [42] or our appendix B). Hence, the above choice for αk and βk mini-
mizes finite-dimensional effects on the low energy spectrum of the Hamiltonian at the time tk
when the mode k is initialised. Since both M and Ωk are functions of time, the Hamiltonian of
each mode will eventually move away from that sweet spot. But as long as the vacuum energy
of our field is dominated by UV modes, for which tk ≈ ttoday, our fiducial construction can be
considered as conservative w.r.t. finite-dimensional effects.

The eigenvalue spacings of equation (2.24) can also be motivated from a different, but
related point of view. The operators Q̂k and P̂k start to contribute to our scalar field and its
conjugate momentum field at tk, i.e. at the time when the mode k starts to enter the sum in
equation (2.22). Let us assume that at this moment the sub-system corresponding to mode k is
initialised in its instantaneous ground state which we denote by |0(k, tk)〉. We would like our
construction to resemble the infinite-dimensional limit as closely as possible at that time of
initialization. To achieve this, we employ a ‘resolution criterion:’ we demand that the system
at tk should have the same resolution in ‘position’- and ‘momentum’-space, i.e.

〈0(k, tk)|Q̂2
k|0(k, tk)〉

α2
k

=
〈0(k, tk)|P̂2

k|0(k, tk)〉
β2

k

(2.25)

⇒ 〈0(k, tk)|Q̂2
k|0(k, tk)〉

α4
k

=
〈0(k, tk)|P̂2

k|0(k, tk)〉
(2π)2

d2
k

⇒ α4
k =

〈0(k, tk)|Q̂2
k|0(k, tk)〉

〈0(k, tk)|P̂2
k|0(k, tk)〉

(2π)2

d2
k

. (2.26)

This criterion ensures that the spread of |0(k, tk)〉 in the eigenbasis of Q̂k is equally well resolved
by the eigenvalue spacing of Q̂k as the spread of |0(k, tk)〉 in the eigenbasis of P̂k by the eigen-
value spacing of P̂k. If this was not case, then even a seemingly high resolution in Q̂k-space
could easily be identified as deviating from infinite-dimensional behaviour in P̂k-space. This is
also in line with the infinite-dimensional case where both conjugate variables are equally well
resolved by construction, albeit infinitely well resolved.

To the best of our knowledge, in the finite-dimensional case, no closed form expressions for
the quadratic expectation values of Q̂k and P̂k are available. We can however attempt to approxi-
mate them by the corresponding expectation values of an infinite-dimensional oscillator, which
when combined with equation (2.25), results in
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〈0(k, tk)|Q̂2
k|0(k, tk)〉 ≈ 1

2M(tk)Ωk(tk)
,

〈0(k, tk)|P̂2
k|0(k, tk)〉 ≈ M(tk)Ωk(tk)

2

⇒ αk ≈
√

2π
dkM(tk)Ωk(tk)

, βk ≈
√

2πM(tk)Ωk(tk)
dk

. (2.27)

This is indeed equivalent to equation (2.24). We consider this as further demonstration that our
construction is conservative and minimizes finite-dimensional effects.

We show in appendix B that with the above choice for αk, βk, the minimum energy eigen-
value of the finite-dimensional harmonic oscillators at any time t becomes

Emin,k(t) ≈ Ωk(t)
2

erf

(
π3/2M(tk)Ωk(tk)

12M(t)Ωk(t)
dk

)
, (2.28)

which approximates the exact results of [42], making them more amenable for numerical
implementation at high dimensions dk. For M(t)Ωk(t) � M(tk)Ωk(tk) the right-hand side of
equation (2.28) can significantly deviate from the infinite-dimensional result Emin,k = Ωk(t)/2.
The minimum eigenvalue of the total Hamiltonian is then

Emin(t) ≈
∑

|k|<a(t)ΛUV

Ωk(t)
2

erf

(
π3/2M(tk)Ωk(tk)

12M(t)Ωk(t)
dk

)
(2.29)

and the corresponding vacuum energy density is

εvac(t) ≈
1

a(t)3L3
c

∑
|k|<a(t)ΛUV

Ωk(t)
2

erf

(
π3/2M(tk)Ωk(tk)

12M(t)Ωk(t)
dk

)

≈ 1
a(t)4

∫
|k|<a(t)ΛUV

d3k
(2π)3

√
|k|2 + m2a(t)2

2

× erf

(
π3/2M(tk)Ωk(tk)

12M(t)Ωk(t)
dk

)
. (2.30)

If this integral is dominated by high k ≡ |k| ≈ aΛUV, and if the mass m of the field is much
smaller than ΛUV (as must be the case for all standard model particles), then the frequency of
the modes that dominate vacuum energy is given by Ωk ≈ k/a and we can further approximate
εvac by

εvac(t) ≈
1

a(t)4

∫
k<a(t)ΛUV

dkk3

(2π)2
erf

(
π3/2M(tk)a(t)
12M(t)a(tk)

dk

)

=

∫
kph<ΛUV

dkphk3
ph

(2π)2
erf

(
π3/2M(ta(t)kph )a(t)

12M(t)a(ta(t)kph )
da(t)kph

)
, (2.31)

where kph is now physical (as opposed to co-moving) wave number. Without the error function
in the integrand of this expression, this would be the standard result for vacuum energy density

10



Class. Quantum Grav. 39 (2022) 235012 O Friedrich et al

of a scalar field with a hard UV cut-off (cf equation (2.14)). In section 4 we will see that this
modification can significantly suppress εvac(t) in a time-dependent way.

The final ingredient we are missing in order to evaluate the above result for εvac(t) is the
dimension dk of the mode Hilbert spaces. It was motivated by [11] that dk � 1/πk2 should be
an upper bound for this dimension, based on the requirement that the maximum energy in each
mode should be smaller than the Schwarzschild energy of the Universe. They however argue
that this is a rather loose bound, and furthermore, their derivation was carried out with a choice
for the eigenvalue spacings αk, βk that differs from our construction. In the following, we will
use an agnostic parametrisation of the form

dk = D(k/ΛUV)nD + dmin, (2.32)

where we take D > 0 and dmin = 2 to ensure that every mode is initialised with at least the
Hilbert space of a qubit. Division by the physical cut-off ΛUV has been introduced to keep
D a dimensionless parameter, but note that k is still co-moving wave number. Note also that
equation (2.32) should be interpreted as an approximation to what should actually be a function
with discrete, integer values. In sections 3 and 4 we investigate how different values of D and
nD impact the behaviour of our finite-dimensional field and how demanding consistency with
low energy physics can constrain the D − nD space.

2.3. Choice of IR scale

In the previous subsections we have quantized our field in a box of finite physical side length
Lph = aLc. In the following we want to interpret this length as approximating the size of the
observable Universe. This is a strong simplification since we would expect any meaningful
boundary of the Universe to be spherical. To account for such a spherical geometry we would
in principle have to change the way we discretized the field. Instead of a decomposition in terms
of Fourier modes we would e.g. need to expand the field in terms of 3D Zernicke polynomials
[32]. We do not expect such a procedure to qualitatively change the results of the remainder of
this paper, and we leave more rigorous investigation of field discretization to follow-up work.
For now, let us simply identify Lph with the radius of a spherically bounded Universe.

What should we choose this radius to be at any given time? As we argued in section 1, our
classical notion of spacetime is likely to emerge from an underlying quantum theory [9, 10,
13, 14, 18, 46], and the correct choice of Lph should be informed by that emergence map. To
work out this map is far beyond the scope of this work, but we can at least guess a number of
candidate scales. We could e.g. choose the particle horizon

Lp(t) = a(t)
∫ t

ti

dt′

a(t′)
≡ a(t)[η(t) − ηi], (2.33)

which defines the volume about which an observer can have information at time t. Other natural
choices would be the curvature scale

LR =
1√
R

, (2.34)

where R is the Ricci scalar, or the Hubble scale

LH =
1
H
. (2.35)
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We could also assume that the Universe has some constant co-moving size Lc and that its
physical size grows proportional to the scale factor, i.e.

La = aLc. (2.36)

As a proof of concept, and following [4, 11, 43], we will indeed consider that last choice, with
the constant co-moving IR scale Lc given by the asymptotic, co-moving particle horizon (i.e.
the co-moving particle horizon in the infinite future). In our dark energy dominated FLRW
Universe, this (co-moving) horizon is indeed finite and about 4.5 times as large as today’s
Hubble radius.

Choosing the co-moving IR scale to be constant brings with it a number of technical con-
veniences. For example, it results in a constant spacing 2π/Lc of the grid we used to discretize
the field, such that the sum that e.g. appears in equation (2.22) is over sub-sets of the same set
of modes k at any time. This especially means that our decomposition of the total Hilbert space
into individual mode Hilbert spaces is well defined and constant in time. Another advantage of
a constant co-moving scale Lc is that it allows us to simplify our expression for vacuum energy
density (cf equation (2.31)) to

εvac(t) ≈
∫

kph<ΛUV

dkphk3
ph

(2π)2
erf

(
π3/2a2(ta(t)kph )

12a2(t)
da(t)kph

)
(2.37)

(where we have again assumed that the mass m of the field is negligible). These are however
just technical conveniences, and some aspects of our derivation will need to be revisited if Lc

changes in time.

3. Increase in dimension and scaling of maximum entropy

Recall that the Hamiltonian of our field is given by

Ĥ =
∑

|k|<aΛUV

[
P̂2

k

2M
+

MΩ2
k

2
Q̂2

k

]
, (3.1)

In an expanding Universe the upper summation limit in this expression increases with time.
This could e.g. be interpreted such that new modes are constantly being added to the field
Hilbert space, i.e. that Hilbert space dimension itself is a function of time. To avoid such a
non-intuitive situation, we instead employ the view of [4], who have modelled an expanding,
constant co-moving volume C as a quantum circuit consisting of a number of qubits. They
assume that at any time t the overall Hilbert space of that circuit factorises as

H = Hentangled(t) ⊗Hreservoir(t) (3.2)

where Hreservoir(t) consists of all of qubits in the circuit that are not entangled with any other
qubit at time t, while each qubit in Hentangled(t) is part of an entangled state. Within their frame-
work, the entanglement of the qubits in Hentangled(t) is thought to give rise to an emergent
background manifold as well as to emergent, effective quantum fields on that background (cf
[9, 10] for a more detailed investigation of this emergence). They then model the time evo-
lution of the total Hilbert space as a sequence of quantum gates in the circuit which entangle
more and more qubits of the reservoir with qubits in Hentangled(t). This leads to an increase in
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the dimension of Hentangled(t), which [4] in turn interpret as an increase in the physical volume
of C. In an attempt to connect this picture to our construction, we could conjecture that

⊗
|k|<aΛUV

Hk ⊂ Hentangled(t) (3.3)

where Hk are the Hilbert spaces corresponding to the individual modes k, and where we con-
sider the left-hand side to be only a subset of the left-hand side in order to allow for additional
degrees of freedom that constitute the background geometry. From that point of view, the modes
with |k| ≈ aΛUV are not being newly created but they are simply carried over from the reservoir.

The effective number of qubits that are present in our field Hilbert space at any time t is
given by

Nqubit =
∑

|k|<a(t)ΛUV

log2(dk) ≈ L3
c

(2π)3

∫
|k|<a(t)ΛUV

d3k log2(dk). (3.4)

Note that this number is proportional to the maximum entropy that can be attained by our
field. To investigate how Nqubit scales with the physical size Lph(t) = a(t)Lc, let us consider the
quantity

γqubit =
d ln Nqubit

d ln a

= 4π log2(DanD + dmin)(aΛUV)3

/ ∫
|k|<a(t)ΛUV

d3k log2(dk). (3.5)

If dk was a constant function of |k|, i.e. for nD = 0, then γqubit would be equal to 3 and the
maximum entropy our field would obey a volume scaling. Since the holographic principle was
a motivational starting point of our analysis, we are instead interested in below-volume scaling,
i.e. γqubit < 3. As we show in figure 1, this is achieved by any nD < 0. The colour map in that
figure shows γqubit over a range of different values for nD and D and for a = 1, i.e. in today’s
Universe. The extend over which we plot nD and D is motivated by section 4, where we find
that this is also the parameter range, in which the vacuum energy density of our field in today’s
Universe strongly deviates from a constant.

In figure 1 we also show contours tracing the pairs (nD, D) for which γqubit = 2, i.e. for
which Nqubit scales as the horizon area bounding the observable Universe. Note however, that
for any pair (nD, D) such an area scaling can only be achieved momentarily. To demonstrate
this, we display the area scaling contour at three different times: for a = 1 (solid blue), a = 0.8
(dashed orange) and a = 0.5 (dotted green). The fact that we cannot permanently achieve an
area scaling seems to contradict the holographic principle. This problem may not be severe,
because the scalar field modes k will only constitute a small part of the overall Hilbert space
(which will also include spacetime degrees of freedom, [4, 11]) and an area scaling is only
expected from the total number of degrees of freedom. We nevertheless consider this a point
of concern. A potential way to enforce an area scaling would be to modify the density of
modes for high |k|, as was e.g. investigated by [11] for their version of the finite-dimensional
scalar field. Alternatively, it may be possible to model dk with a functional form different from
equation (2.32) such that an exact area scaling can be achieved at all times. As long as we are
ignoring spacetime degrees of freedom we are not able to motivate either of these strategies
and we choose to set aside the problem for the rest of this work.
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Figure 1. Colour map showing how the effective number of qubits in the finite-
dimensional scalar field changes with the Universe’s scale factor (cf the definition of
γqubit in equation (3.5)) over a range of different values for nD and D and for a = 1. The
solid blue contour indicates where γqubit = 2, i.e. where Nqubit follows an area scaling.
For any given parameter pair (nD, D) this area scaling can only be achieved momentar-
ily. To demonstrate this we also show the γqubit = 2 contour for a = 0.8 (dashed, orange
line) and for a = 0.5 (dotted, green line).

Returning to the comparison of our construction with the quantum circuit picture of [4],
we can interpret the rate γqubit as the logarithmic rate in which entangling quantum gates are
applied to the circuit as the Universe expands. This would constrain the way in which our
Hamiltonian of equation (3.1) is related to the Hamiltonian of the quantum circuit. The analogy
between the two pictures however remains incomplete, because our construction attempts to
model only a subset of all degrees of freedom that are present in the Universe. Also, both
constructions are only approximate frameworks, and it is not obvious that a stringent mapping
between the two should exist to begin with.

4. Equation of state of finite-dimensional vacuum energy

4.1. Fiducial construction

We had argued previously, that there are several candidate scales which could act as the physi-
cal size Lph of the Universe, and that the correct choice among those scales will depend on the
mapping through which the effective notion of space emerges from an underlying purely quan-
tum theory. Working out the details of this mapping is far beyond the scope of this work, and
as a proof of concept we simply assume that the Universe has a constant co-moving size Lc and
that Lph(t) = Lca(t), i.e. that the physical size of the Universe is proportional to the scale factor.
As explained in section 2.3, we will furthermore choose the constant co-moving IR scale Lc

to be the asymptotic, co-moving particle horizon, which in our dark energy dominated FLRW
Universe is about 4.5 times as large as today’s Hubble radius.

With a constant co-moving IR scale we can simplify our expression for εvac in
equation (2.37) even further, because the scale factor a(tk) at the time of mode entry tk can
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be calculated as

kpha(t) = k = ΛUVa(tk)

⇒ kph

ΛUV
=

a(tk)
a(t)

. (4.1)

Together with our parametrization of dk from equation (2.32) this gives

εvac(t) =
∫

kph�ΛUV

dkphk3
ph

(2π)2
erf

(
π3/2

12

[
kph

ΛUV

]2{
D

(
a(t)kph

ΛUV

)nD

+ dmin

})
, (4.2)

where, as mentioned before, we take D > 0 and dmin = 2, such that every mode is initialised
with at least the Hilbert space of a qubit. We can define an equation of state parameter
wvac = wvac(a) for this energy density through

εvac ∝ exp

(
−3
∫ a da′

a′ (1 + w)

)

⇒ wvac = −
(

1 +
1
3

d ln εvac

d ln a

)
. (4.3)

We display wvac for a = 1 as a function of D and nD in figure 2. Note that the range of D
and nD over which we plot wvac in that figure is the same as that of figure 1. So the region of
parameter space where wvac deviates most strongly from −1 seems to roughly coincide with
the region in which the maximum entropy attainable with our construction deviates most from
a volume-scaling.

The space of possible values for D and nD should be constrained by the fact that finite-
dimensional effects have not been observed on standard model scales. We have implemented
two qualitative versions of this constraint, which are displayed as grey regions in figure 2. The
first region results from demanding that at energies kLHC ≈ 10 TeV, the dimension dk of the
individual mode Hilbert spaces be larger than some number Nmin. This would require that

Nmin < D(kLHC/ΛUV)nD + dmin

⇒ ln D > ln(Nmin − dmin) − nD ln(kLHC/ΛUV). (4.4)

It is beyond the scope of our work to determine which Nmin would be sufficient to stay consis-
tent with current experimental data (e.g. regarding the dispersion relation of the Higgs, which
so far is the only scalar field of the standard model). But for the purpose of building intu-
ition, we implement the above bound with Nmin = 106 as the grey region to the very left of
figure 2. A second criterion we consider is the vacuum energy of modes with kph ≈ kLHC. Even
for large dimensions dk, that energy can significantly deviate from the infinite-dimensional
expectation kph/2, since it also depends on the eigenvalue spacings αk, βk as well as on the
parameters M and Ωk appearing in the Hamiltonian in equation (2.22). In order to ensure that
finite-dimensional effects on the vacuum energy of IR scales are small we demand that
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Figure 2. Colour map displaying the equation-of-state parameter of the vacuum energy
of our finite-dimensional scalar field as a function of the dimensionality parameters nD

and D introduced in equation (2.32). The grey regions represent areas of parameter space
we exclude in order to meet two consistency criteria: we require that on standard model
scales the field be high-dimensional (left most bound; cf discussion around (4.4)) and we
require that on standard model scales the ground state energy of each wave mode is close
to the infinite-dimensional limit (second to left most bound; cf (4.5)). Both boundaries
have been evaluated at a wave number kLHC ∼ 10 TeV (cf the discussion below (4.5) for
the impact of lower wave numbers on these bounds).

erf

(
π3/2

12

[
kLHC

ΛUV

]2[
D

(
a(t)kLHC

ΛUV

)nD

+ dmin

])
> x, (4.5)

where x is some number close to 1. It is again beyond the scope of this work to determine
realistic values for x. But as an illustration we implement the above criterion with x = 0.99 as
the second grey region to the left of figure 2. Note that both inequality (4.4) and inequality (4.5)
could be tightened further, because also many scales below kLHC should be close to infinite-
dimensional. E.g., for nD > 0, inequality (4.4) would always be violated if kLHC was replaced
by an arbitrarily small scale. Similarly, for nD > −2 inequality (4.5) could always be violated
if kLHC was replaced by an arbitrarily small scale. It is unclear, down to which energy scales
the standard model should be expected to stay accurate [8, 19, 31], so we do not attempt to
strengthen our bounds in that way.

Equation (4.2) also allows us to consider the time dependence of vacuum energy density
and we follow the evolution εvac(a) for different values of D and nD in the bottom panel of
figure 3. For any of the configurations (D, nD) shown there, the vacuum energy decays between
two epochs of constant energy density. Correspondingly, deviations from w = −1 will peak
at a certain time and then fall off again. This can be understood as follows: around the upper
integration limit kph ∼ ΛUV the integrand in equation (4.2) becomes time independent both for
a → 0 and a →∞. So if the integral is dominated by that upper limit, then εvac will become
time independent in both the asymptotic past and future. We discuss this further at the end of
section 4.2 where we also argue that equation (4.2) is indeed dominated by kph ∼ ΛUV.
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Figure 3. Evolution of vacuum energy density for different values of the dimensionality
parameters nD and D introduced in equation (2.32). The bottom panel uses our fiducial
construction with the eigenvalue spacings of the finite dimensional field operators given
by equation (2.24) while the top panel uses an extreme scenario with the eigenvalue
spacings given by equation (4.6) (cf section 4.2).

4.2. Alternative choice of eigenvalue spacing

So far we had chosen the eigenvalue spacings of our finite-dimensional conjugate operators as
in equation (2.27). As we have argued around that equation (see also appendix A) this choice
is minimizing finite-dimensional effects on the low-energy spectrum of Hamiltonian Ĥk of
each mode k at the time tk when the mode emerges (cf section 3 for an interpretation of the
emergence process). At the same time, vacuum energy density is dominated by the UV modes
for which tk is close to the present time. So our construction can be considered a conservative
estimate of the impact of finite-dimensionality on εvac.

We now want to complement this estimate by an alternative choice of αk and βk that leads
to more drastic consequences. We can do this because we take the finite-dimensional construc-
tion as more fundamental than its infinite-dimensional limit and demand only that the former
approaches the latter when actually dk →∞. For our alternative scenario we follow [42] in
choosing

αk =

√
2π
dk

= βk. (4.6)

These values for the eigenvalue spacings are treating both conjugate operators Q̂k and P̂k equal
in an algebraic sense (though we note that Q̂k and P̂k are not uniquely determined by the
infinite-dimensional limit, which was our original motivation for the resolution criterion of
equation (2.25)).
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Figure 4. Same as figure 2 but with the alternative eigenvalue spacing of the conjugate
operators as given in equation (4.6). This choice of the spacings αk and βk drastically
enhances finite-dimensional effects, with the equation-of-state parameter of vacuum
energy reaching values up to wvac = 1. For visual purposes we now indicate the sec-
ond of our consistency criteria (requiring that standard model vacuum energy be close
to infinite expressions, cf (4.5)) only as a dashed line. Note also, that the location of that
boundary has changed w.r.t. figure 2 because of the change in eigenvalue spacing.

As we show in appendix B, the vacuum energy at late time of each mode k with the new
eigenvalue spacings is given by

Emin,k(t) ≈ Ωk(t)
2

erf

(
π3/2

12M(t)Ωk(t)
dk

)
, (4.7)

where as before M = a3Lc and Ωk =
√
|k|2/a2 + m2 ≈ |k|/a. Hence, the vacuum energy den-

sity now becomes

εvac(t) =
∫

kph�ΛUV

dkphk3
ph

(2π)2
erf

(
π3/2

12a(t)3kphLc

[
D

(
a(t)kph

ΛUV

)nD

+ dmin

])
. (4.8)

The top panel of figure 3 displays εvac as a function of the scale factor a for the same values
of D and nD as we had previously considered for our fiducial construction. And figure 4 shows
the equation of state parameter corresponding to the alternative expression for εvac as a function
of D and nD. The behaviour of vacuum energy is now radically altered compared to our fiducial
construction (cf figure 2). Now, in most parts of parameter space, εvac does not act as a dark
energy at all and instead rapidly decays with wvac � 0.

To understand this strongly different behaviour, let us compare the error functions appearing
in the integrands of equations (4.2) and (4.8). As functions of physical wave number kph they
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encode the amount by which the vacuum energy of the co-moving mode k = akph is reduced
with respect to the infinite-dimensional expectation of Emin ≈ kph/2 in our two scenarios. In
our alternative scenario (i.e. the one of equation (4.8)), the error function can be approximated
in terms of a piece wise power law as

erf

⎛
⎝π3/2

[
D
(

akph
ΛUV

)nD
+ dmin

]
12a3kphLc

⎞
⎠ ∝

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 for D

(
akph

ΛUV

)nD

� kphLc

(kph)nD−1 for kphLc � D

(
akph

ΛUV

)nD

� dmin

(kph)−1 for dmin � D

(
akph

ΛUV

)nD

. (4.9)

For nD = −3.5, y = −4.0 (a point in parameter space which results in a particularly high w in
our alternative construction) and at a scale factor of a = 1 we demonstrate this behaviour in
appendix C (cf figure 7 there). We also display the above error function for a number of differ-
ent scale factors (a = 0.5, 0.8, 1.0) and on a reduced kph-range in the upper panel of figure 5.
For negative values of nD these scalings imply that deviations from the infinite-dimensional
vacuum energy are monotonically increasing with kph (i.e. the error function is monotonically
decreasing, cf figure 5) when choosing our alternative spacings for the eigenvalues of the con-
jugate operators. The wave number above which the error function starts to noticeably deviate
from 1 is approximately given by

k∗ph ≈
(

DanD

(ΛUV)nDLc

) 1
1−nD

. (4.10)

This can be seen as a threshold above which modes start to contribute significantly less to
the vacuum energy density of the field than they would in the infinite-dimensional case. For
negative nD that threshold is decreasing as a(t) increases, which explains the strongly decaying
behaviour of vacuum energy density for the alternative eigenvalue spacings of equation (4.6).

The error function of our fiducial construction behaves quite differently. Because of an
additional factor of k3

ph in its argument, it follows a piece wise scaling of

erf

⎛
⎝π

3
2 k2

ph

[
D
(

akph

ΛUV

)nD

+ dmin

]
12Λ2

UV

⎞
⎠ ∝

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 for

(
ΛUV

kph

)2−nD

� DanD

(kph)nD+2 for

(
kph

ΛUV

)2

� D

(
akph

ΛUV

)nD

� dmin

erf

(
π

3
2 dmin

12Λ2
UV

k2
ph

)
for dmin � D

(
akph

ΛUV

)nD

.

(4.11)

At least for nD < −2 this implies a non-monotonic behaviour: deviations from the infinite-
dimensional limit first increase with kph and then decrease again (i.e. the error function
decreases and then increases again, cf lower panel of figure 5). And for any nD the error function
at kph ∼ ΛUV in equation (4.2) will behave as

∼ erf

(
π

3
2 [DanD + dmin]

12

)
,
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Figure 5. Showing how the error functions appearing in the integrands of equation (4.2)
(lower panel) and equation (4.8) (upper panel) vary as a function of physical wave num-
ber kph when choosing the dimensionality parameters to be (y, nD) = (−4,−3.5) and
for a number of different scale factors a. These functions encode by how much the
vacuum energy of the co-moving mode k = akph is reduced with respect to the infinite-
dimensional expectation of Emin ≈ kph/2 in our two finite-dimensional scenarios.

which is always ∼ O(1). As a consequence, the integral in equation (4.2) is always dominated
by the UV. The resulting vacuum energy is then transitioning between two dark-energy-like
regimes, as discussed at the end of section 4.1: a regime when the error function equals 1 over
almost the entire integration range (which happens for a → 0 as long as nD is negative) and a
regime where the UV part of the integrand has approached the limit ∼ erf(π

3
2 dmin/12) (which

happens for a →∞ as long as nD is negative).
The stark difference between the behaviour of vacuum energy in our fiducial and in our

alternative construction highlights, that effects of finite-dimensionality are highly sensitive to
the details of how quantum field theory emerges from a finite-dimensional quantum theory.
Neither the fiducial construction (which minimizes the impact of finite-dimensionality) nor
the alternative construction (which attempts to treat both conjugate variables as algebraically
equal) are likely to fully capture this emergence. In the following section we summarize the
assumptions and limitations behind both scenarios and give an outlook on potential extensions
and improvements.

5. Summary of assumptions and discussion

Starting from the point of view that the overall Hilbert space of the (observable) Universe
should be finite, we have extended the framework of [11, 42] for describing scalar quantum
fields in finite Hilbert spaces. The main ingredients of this formalism are the dimensions dk of
the individual mode Hilbert spacesHk as well as the eigenvalue spacingsαk andβk of the finite-
dimensional conjugate field operators Q̂k and P̂k (which were defined through equations (2.16)
and (2.4)). We have proposed a simple parametric ansatz to model the dependence of dk on |k|,
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and we argued that the number of degrees of freedom present in our field changes with the
Universe’s size with a sub-volume scaling as long as dk is a decreasing function of |k| (and can
momentarily even display an area-scaling). For our fiducial construction, we choose αk and
βk such that it minimizes the impact of finite-dimensionality on the ground state energy of the
mode k at the moment when the mode is initialized. We furthermore show this choice is closely
tied to the requirement that both conjugate operators are equally well resolved in the ground
state, making it resemble the infinite-dimensional limit as closely as possible at the time of ini-
tialization. We have then devised accurate and numerically feasible formulae of that vacuum
energy as a function of |k|, which approximate the exact calculations of [42]. With these formu-
lae we were able to study how the vacuum energy density of our finite-dimensional scalar field
depends of the dimensionality function dk. For our fiducial choice of αk and βk—which mini-
mizes finite-dimensional effects—it is decaying between two constant epochs with an overall
suppression of vacuum energy by about 40%. And in an alternative construction, the equation
of state parameter can even become >0, hence causing a rapid decay that easily suppresses
vacuum energy density by ∼10−60 compared to the infinite dimensional result (with sharp UV
cut-off) for some parameter values. We have implemented the above framework within the
GPUniverse toolkit that is publicly available at https://github.com/OliverFHD/GPUniverse.

The finite-dimensional construction we have presented in this paper depends on the follow-
ing non-trivial assumptions and modelling choices:

• We have quantized our field in a finite box, whereas any meaningful boundary of the
observable Universe would be expected to be close to spherical (cf the discussion in
section 2.3). Furthermore, our derivations have assumed that there is no spatial curvature.

• We have assumed that the Universe is of a constant co-moving size and we have chosen
its radius to be the asymptotic future particle horizon (which has a finite co-moving size
in a dark energy dominated Universe).

• We have assumed that at any time only wave modes below a constant physical scale ΛUV

contribute to the field. This may be scrutinized both because we assume a sharp cut-off
and because we take that cut-off to be constant in time.

• We made the assumption that it is the co-moving modes of the field that should be replaced
by finite-dimensional operators. This, together with our assumption of a constant co-
moving size of the Universe, means that the spacing of our grid in k-space is constant
in time. As a result, our factorisation of Hilbert space into mode sub-spaces Hk is constant
in time. This is part of a general theme of our construction: we tried to decompose our
field into algebraic structures that stay constant in time.

• We chose to base our construction on GPOs. These are able to mimic the concept of con-
jugate operator pairs, which according to [15] play a central role in the emergence of
quasi-classical Hilbert space factorisations. But we have not investigated whether the GPO
construction is the only way to achieve this dualism in finite dimensions, nor would we
expect the emergent pointer observables of [15] to be given in terms of exact GPOs.

• To identify the version of the infinite-dimensional field operators which we want to replace
with GPOs, we re-arranged the scalar field Hamiltonian such that it resembles the Hamil-
tonian of a set of harmonic oscillators.

• We only considered two different choices for the spectral spacings of the field GPOs—the
ones displayed in equations (2.25) and (4.6). We tried to motivate those as representing
two limiting cases: minimizing finite-dimensional effects in our fiducial choice and taking
an extreme ‘quantum first’ view in our alternative choice. But an assumption common to
both constructions is that we kept the spectral spacings constant in time. If the factors of
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Hilbert space representing different modes k are indeed emergent and chosen such that
they maximise a certain notion of classicality (as in the picture promoted by [15]) then
one may speculate that the algebraic structures defined on these factors need to change
with time in order to maintain that classicality.

• We assumed that the dimension of the mode Hilbert spaces Hk as a function of |k| is
described by equation (2.32), i.e. that it consists of a power law in |k| plus a minimum
dimension dmin = 2. This assumption has allowed us to qualitatively study consistency
relations for the dimensionality of our field as well as to investigate how the dimensionality
function dk impacts the way in which the number of degrees of freedom in our field changes
with the expansion of the Universe. But equation (2.32) is clearly an ad hoc ansatz that
eventually needs to be motivated or revised by an understanding of the mapping through
which spacetime and effective field theories thereon arise from an underlying quantum
theory.

• The maximum entropy which can be attained with our construction is still much higher
than would be allowed by applying the Bekenstein bound to the entire patch of the Universe
we considered. According to [11] this may require modifying the mode density function
away from the three dimensional behaviour d3k ∼ k2 dk that is built into our model.

Furthermore, the equation of state of our field’s vacuum energy density as well as the con-
sistency boundaries we derived on the dimensionality parameters D and nD depend on a set of
additional assumptions:

• We have assumed that each field mode k is initialized in its instantaneous vacuum state at
the time when k ≈ aΛUV and that it evolves adiabatically after that, i.e. that it remains in
the (time dependent) vacuum state. This is ignoring the fact that particle production during
cosmic expansion will drive our field away from its vacuum state. We leave it for fur-
ther work to investigate the role of particle production, particularly in a finite-dimensional
paradigm, in earlier epochs of cosmological evolution.

• While we have studied the equation of state of our field’s vacuum energy during cosmic
expansion, we have not considered this energy to be a source of that expansion. In partic-
ular, the energy density we obtained for our finite-dimensional field is still many orders
of magnitude higher than the dark energy density that is needed to explain the observed
accelerating expansion of our Universe (cf [17, 41]). At the same time, it has been ques-
tioned whether quantum ground state energy indeed acts as a gravitational source (e.g.
[24, 50]).

• In the entire paper we have focussed on the late-time Universe (a�0.1). An interesting line
of future work would be to understand the role of finite-dimensional effects during infla-
tion. As we discuss in appendix B.2, this would require modifications to our calculations
because equation (2.28) is not valid for arbitrarily small a.

The plethora of assumptions and limitations we have outlined above demonstrates, that our
framework and the language we have devised to describe finite-dimensional fields still require
further development. At the same time, we think that it can be a fruitful starting point to explore
the impact of finite-dimensionality of Hilbert space on cosmological physics.
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Appendix A. Eigenvalue spacing that maximize vacuum energy

Consider the Hamiltonian

Ĥ =
P̂2

2M
+

MΩ2

2
Q̂2, (A.1)

where P̂ and Q̂ are GPOs as in [11, 42] (see also our section 2.2). In the eigenbasis of X̂ this
means that

Q̂ = α diag(−�, . . . , �); P̂ = βŜ diag(−�, . . . , �)Ŝ−1, (A.2)

where Ŝ is Sylvester’s matrix (which corresponds to discrete Fourier transform), d = 2�+ 1 is
the dimension of Hilbert space and the eigenvalue spacings α and β satisfy αβ = 2π/d. Using
this relation as well as the definition L̂ ≡ diag(−�, . . . , �) the Hamiltonian becomes

Ĥ =
1
α2

(2π)2

2Md2
ŜL̂2Ŝ−1 + α2 MΩ2

2
L̂2. (A.3)

Since Ŝ is unitary, the matrix ŜĤŜ−1 has the same eigenvalues as Ĥ. Furthermore, it can be
shown that Ŝ2L̂2Ŝ−2 = L̂2 [42]. From this it follows that the eigenspectrum of the Hamiltonian
is invariant under the replacement

α→ α̃ with α̃2 MΩ2

2
=

1
α2

(2π)2

2Md2
. (A.4)

This transformation has a fixpoint for which α = α̃ which is given by

αfix =

√
2π

MΩd
⇒ βfix =

√
2πMΩ

d
. (A.5)

Because of the spectral symmetry w.r.t. the transformation α→ α̃ this fix point must extrem-
ize the minimum eigenvalue of Ĥ. Since finite-dimensionality can only decrease the minimum
eigenvalue of the Hamiltonian compared to the vacuum energy of an infinite-dimensional har-
monic oscillator (cf [42] or our appendix B), it is reasonable to assume that αfix and βfix indeed
maximise the ground state energy of Ĥ. Hence, they would minimize finite-dimensional effects

23

https://github.com/OliverFHD/GPUniverse


Class. Quantum Grav. 39 (2022) 235012 O Friedrich et al

on the low-energy spectrum of the Hamiltonian. We were not able to strictly prove the nature
of the extremum, but a range of numerical tests support our assumption. These tests also
show that even for low dimensions d the extremum of vacuum energy lies very close to its
infinite-dimensional value Ω/2.

Appendix B. Approximating Emin(k)

B.1. General case asymptotics

Consider again the Hamiltonian of a finite-dimensional harmonic oscillator,

Ĥ =
P̂2

2M
+

MΩ2

2
Q̂2. (B.1)

Our goal in this appendix is to derive an approximation to the minimum eigenvalue of this
operator as a function of M, Ω, d andα (cf appendix A for notation) that is numerically feasible
even for large d. We had seen in appendix A, that Ĥ can be re-written as

Ĥ =
(2π)2

2Md2α2

{
ŜL̂2Ŝ−1 +

α4M2Ω2d2

(2π)2
L̂2

}
≡ (2π)2

2Md2α2

{
ŜL̂2Ŝ−1 + XL̂2

}
. (B.2)

So to calculate the lowest energy level of Ĥ we need to know the minimum eigenvalues of
operators of the form ÔX ≡ ŜL̂2Ŝ−1 + XL̂2. At the fix point α∗ we have derived in appendix A
the Hamiltonian becomes

Ĥ =
Ω

2
2π
d

{
ŜL̂2Ŝ−1 + L̂2

}
. (B.3)

At the same time, we had argued there that the fix point minimizes effects of finite-
dimensionality, such that vacuum energy comes close to its infinite-dimensional limit Ω/2
(numerical calculation confirms that this is true to high accuracy even for d as low as 5). From
that we can conclude that

λmin(ÔX≈1) ≈ d
2π

. (B.4)

To understand the situation for more general values of X, let us consider the matrix elements
of ÔX in the eigenbasis of Q̂. They are given by [42]

[ÔX]i j =
1
4

∑
n �=i, j

1

sin
(

2π�
2�+1 (n − i)

)
sin
(

2π�
2�+1 (n − j)

) + X j 2δi j, (B.5)

where all integers run from −� to � (and d = 2�+ 1 as in appendix A). In the limit X →∞ the
second term in the above bracket dominates such that the eigenvector v of ÔX with the lowest
eigenvalue becomes

[v]i ∝
{

1 for i = 0
0 else

(B.6)

with the corresponding eigenvalue
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λmin(ÔX) ≈ [ÔX]00 =
1
2

�∑
n=1

1

sin2
(

2π�
2�+1 n

) =
1
2

�∑
n=1

1

sin2
(
πn(1 − 1/d)

) . (B.7)

For d � 1 we can expand this in the small parameter x ≡ 1/d as

[ÔX]00 ≈
1

2π2x2

�∑
n=1

1
n2

≈ d2

12
. (B.8)

This is an approximation for λmin(ÔX) as X approaches infinity. By the symmetry arguments
we had employed in appendix A one can then show that λmin(ÔX) ≈ Xd2/12 as X approaches
zero. In summary, we obtain

λmin(ÔX) ≈

⎧⎨
⎩

d2/12 as X →∞
d/(2π) for X ≈ 1
Xd2/12 as X → 0

. (B.9)

These asymptotics are matched exactly by the formula

λmin(ÔX) ≈ F(
1 + X−3 + GX−3/2

)1/3 (B.10)

with

F =
d2

12
, G =

(
πd
6

)3

− 2. (B.11)

We compare that formula to the exact calculation of λmin(ÔX) in the upper panel of
figure 6—exact and approximated result agree to within ∼4% accuracy over the entire range
of X for d � 7 (and much better for most values of X). That accuracy reduces to ∼6% for d = 5
and to ∼15% for d = 3.

B.2. Expressions for late-time cosmology

We can obtain a more concise formula that directly approximates the minimum eigenvalue of
Ĥ for the late-time cosmological situation of section 4. For both constructions we considered
there, the eigenvalues spacing of Q̂ was of the form

α =

√
2π
Ad

, (B.12)

with A = M(tk)Ωk(tk) in our fiducial construction and A = 1 in section 4.2. The parameter X
then becomes X = M2Ω2/A2, which in our fiducial construction is given as a function of k and
t by

Xfid
k (t) =

M(t)2Ω(t)2

M(tk)2Ω(tk)2
≈
(

a(t)
a(tk)

)4

. (B.13)

In an expanding Universe this is clearly always larger than 1. On the other hand, in our
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alternative construction X becomes

Xalt
k (t) = L2

ca4k2 = (Lca
3kph)2. (B.14)

In the late-time Universe, a ∼ 1, this is greater than 1 as long as k� 1/Lc ≈ 3.3 × 10−34 eV,
i.e. on all scales relevant to the vacuum energy density of our scalar field. So for the late-
time expansion we have considered in this work, we are indeed fine to consider only the two
asymptotics of equation (B.9) with X � 1. In that case, and taking into account the relation
between Ĥ and ÔX , the minimum energy eigenvalue will asymptotically behave as

λmin(Ĥ) ≈ A
2M

·
{
πd/6 as MΩ/A →∞

1 for MΩ/A ≈ 1

≈ Ω

2
·
{

πAd
6MΩ

as MΩ/A →∞
1 for MΩ/A ≈ 1

. (B.15)

This behaviour can be approximately matched by the ansatz

λmin(Ĥ) ≈ Ω

2
erf

(
π3/2 Ad
12MΩ

)
. (B.16)

This is the approximation we used in order to derive the results of section 4. We compare it to
the exact calculation of λmin(Ĥ) over a limited range of d in the lower panel of figure 6. That
figure only includes results for one set of values for Ω and M and for two different values for
A. But we find that equation (B.16) agrees with the exact result to within ∼2% accuracy for a
wide range of values for (Ω, M, A) as long as d � 7. For d = 5 this reduces to ∼4% accuracy
and for d = 3 to ∼12% accuracy.

Finally, we want to note that in the early Universe the third regime of equation (B.9) can
indeed become relevant—at least in our alternative construction. There one would have X < 1
even at kph ≈ ΛUV = 1 as long as a � 3.0 × 10−21. So the approximation of equation (B.16)
would e.g. be not appropriate to calculate the behaviour of our finite-dimensional field during
inflation, and one would have to use equation (B.10) instead. Both equations (B.16) and (B.10)
and the corresponding exact calculations are all implemented within our publicly available
code package GPUniverse.

Appendix C. Error function asymptotics, alternative construction

For a = 1 we repeat the upper panel of figure 5 on a wider range of kph in figure 7 (solid blue
line in that figure). We also show that equation (4.9) is indeed an accurate description of the
asymptotic behaviour of the error function appearing in equation (4.8) (cf the black dashed line
in figure 7).
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Figure 6. Upper panel: minimum eigenvalue of the operator ÔX = ŜL̂2Ŝ−1 + XL̂2 in
d = 21 dimensions as a function of X. The blue solid line represents an exact calcula-
tion while the orange dotted line shows the approximation provided in equation (B.10).
The grey dashed lines and the red cross indicate the three asymptotic regimes of
equation (B.9). Lower panel: minimum eigenvalue of the Hamiltonian of a finite-
dimensional harmonic oscillator with (dimensionless) frequency Ω = 30 and mass M =
2 as a function of Hilbert space dimension d and for two different values of the parameter
A (which determines how the eigenvalue spacing α of the position operator Q̂ changes
as a function of d, cf equation (B.12)). The blue solid line represents the exact calcu-
lation for A = MΩ/20 and the orange dash-dotted line shows the exact calculation for
A = MΩ/100. The black dotted lines show the approximation of equation (B.16). The
agreement between approximation and exact calculation is similar over a wide range of
values for Ω, M and A.
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Figure 7. Displaying the upper panel of figure 5 for a = 1 on a wider range of kph (solid
blue line) and indicating the asymptotic behaviour stated by equation (4.9) (black dashed
lines). With the alternative eigenvalue spacings αk and βk we studied in section 4.2 (cf
equation (4.6)) the vacuum energy in each co-moving mode k = akph can strongly devi-
ate from the infinite-dimensional limit Emin = kph/2. This is in contrast to our fiducial
construction where for the same parameters these deviations stay moderate even at high
energy scales (cf lower panel of figure 5).
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