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1 Introduction

On the first sight, the massive Kalb-Ramond field theory and the Proca theory may seem
completely unrelated. The Kalb-Ramond field is an anti-symmetric two-form [1], whereas the
Proca field is a massive vector field [2]. Despite this, a number of claims of duality between
the two theories have recently appeared in the literature (see eg. [3–21]). In other words,
both theories are said to describe the same physical system [22]. Over the past fifty years,
dualities have been shown to hold the promise of greatly improving our understanding of
physical models. From the effects of bosonization and magnetic monopoles to the exchange
of weak and strong coupling, and the dynamics of topological solutions, the study of dualities
has flourished in quantum field theory, string theory, and condensed matter physics (see
eg. [23–32]).

Although Proca and Kalb-Ramond fields are intrinsically different, they both propagate
three degrees of freedom. One is a longitudinal mode and two are transversal. Moreover,
the actions of these theories are related via the dualization procedure [3–6]. Starting with
the Kalb-Ramond action, it is possible to construct a parent action where the Kalb-Ramond
field as well as its field strength are each independent fields, and with which one can restore
the equations of motion of the original theory. Integrating out the Kalb-Ramond field and
expressing its field strength in terms of its dual, one obtains the Proca theory. Using a
similar approach, it is possible to return from Proca to Kalb-Ramond theory. Given these
considerations, it might be tempting to argue that both theories describe the same physics.
However, this is not the case for their corresponding massless theories. While the massless
Kalb-Ramond field includes only one degree of freedom, the longitudinal mode, the Maxwell
theory has two degrees of freedom, the transverse modes. Furthermore, the dualization
procedure which would connect the actions of these two theories doesn’t exist. Rather,
while the massless antisymmetric two-form is dual to a scalar field, the Maxwell field is
self-dual [1, 3, 33]. To show this, one would start again from the parent action which now
contains a kinetic term and a Bianchi identity implemented by the Lagrangian multiplier, as
opposed to a massive case. As we integrate out the field strength tensor of the theory which
we dualize, the resulting action only becomes a functional of the Lagrange multiplier. This
is the dual theory, in which the Lagrange multiplier takes the role of the dual field [22]. The
contrast among the massless theories raises the question about the behavior of the massive
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theories in the massless limit. Will the transverse and longitudinal modes behave in the
same way? In order to gain an insight, we will alter the theories by a self-interaction and
compare the behavior of the degrees of freedom. We will notice that these theories share
similar properties with massive gravity and massive Yang-Mills theories.

Both linearized massive gravity with the mass term of the Fiersz-Pauli form [34], and
massive Yang-Mills theory with a mass added “by hand”, suffer from a very peculiar property.
If we perturbatively evaluate these theories, and take the massless limit, we would find a
deviation with respect to the prediction of the respective massless theories [35–39]. This
is known as the vDVZ discontinuity. The reason for the discrepancy in both theories is
the longitudinal degree of freedom, which is absent in the respective massless theories. In
the massless limit, it does not decouple from the remaining degrees of freedom. Thus, it
makes an additional contribution to the experimental predictions of the theories that is not
available in the massless case. But, we shouldn’t ignore the fact that these theories are
non-linear. According to Vainshtein, there exists a scale, known as the strong coupling scale
(or equivalently, the Vainshtein scale), where the nonlinear terms become important. On
the level of equations of motion, it is the scale at which the nonlinear terms become of
the same order as the linear terms. As soon as this scale is reached, perturbation theory
breaks down, and the field enters a strongly coupled regime. By considering these nonlinear
terms, Vainshtein has shown that for both theories the longitudinal mode enters the strong
coupling regime, where it remains for scales smaller than the Vainshtein radius [40–42]. As
a consequence, it decouples away from the rest of the matter up to a minor correction which
disappears in the massless limit [43, 44]. When the mass is set to zero, the Vainshtein radius
turns infinite, and so both general relativity and massless Yang-Mills theory are recovered.

The purpose of this paper is to study the way in which the Vainshtein mechanism applies
to the Kalb-Ramond and Proca theories. This comparison is motivated by the assertion
of duality of the two theories, which is frequently found in the literature. By adding a
quartic self-interaction to each of the theories, we shall find that the two theories suffer
from a discontinuity in the massless limit. In the case of Proca theory, the source of this
discontinuity is the longitudinal mode, which is absent in the Maxwell theory. This mode
is similar to the one of the massive Yang-Mills theory. The massive Kalb-Ramond theory
also includes a discontinuity in the massless limit. However, the source of that discontinuity
are the transverse modes. In the example of mimetic massive gravity, it was demonstrated
how the strong coupling scale can be evaluated by the minimum quantum fluctuations of the
fields [45]. Such fluctuations are a direct consequence of Heisenberg’s uncertainty principle,
which we can evaluate through the equal-time two point correlation function [46]. With
their help, we will find that the same Vainshtein scale is shared by both theories. However,
the distinction between them still remains as there are different modes entering the strong
coupling regime. For the Kalb-Ramond field, these are the transverse modes. Therefore, for a
non-zero mass, this theory will propagate just the longitudinal modes beneath the Vainshtein
scale. In contrast, the Proca theory will propagate only transverse modes since longitudinal
modes will enter the strong coupling regime. Although these theories are massive, they differ
in their characteristics. We will see that this is indicated by the minimal level of quantum
fluctuations at the level of free theory. This casts a doubt on the existence of the duality
between the two theories.

The duality claim was also extended to Stueckelberg theory, massive p-forms [47–49]
and curved spacetime [9]. In particular, in the case of Stueckelberg theory for a p = 3 form,
the theory was considered with an arbitrary potential [50]. Similarly to the case we have
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considered in this paper, it is reasonable to suspect that a similar confusion might occur for
massive p forms. They are said to be dual D − p− 1 forms, whereas massless ones are dual
to D − p − 2 forms [3, 22, 51]. In the appendix, we will demonstrate on how the analysis
presented in this work applies to a massive three-form.

2 Comparison of the free theories

In this section we will study and compare the free theories of massive Kalb-Ramond and
Proca fields. The action for the massive Kalb-Ramond theory is given by

S = 1
12

∫
d4x

(
HµνρH

µνρ − 3m2BµνB
µν
)
, (2.1)

where
Hµνρ = Bνρ,µ +Bρµ,ν +Bµν,ρ (2.2)

is the field strength tensor for the Kalb-Ramond field Bµν , which is anti-symmetric in its
indices. We will use commas to denote the derivative with respect to the corresponding
coordinate xµ throughout the paper. This theory will be compared with the Proca theory,
whose action is given by

S =
∫
d4x

(
−1

4FµνF
µν + m2

2 AµA
µ

)
, (2.3)

where
Fµν = Aν,µ −Aµ,ν (2.4)

is the field strength tensor for the vector field Aµ. Now will we analyse the content of
these theories. Following [52] we shall decompose the spatial and time components of the
Kalb-Ramond field as follows.

B0i = CTi + µ,i, CTi,i = 0
Bij = εijkBk, Bi = BT

i + φ,i, BT
i,i = 0

(2.5)

where i, j, k = 1, 2, 3. We will refer to the pseudovector BT
i as the transverse mode, and

a pseudoscalar φ as the longitudinal mode. Substituting this decomposition into (2.1), we
obtain

S = 1
2

∫
d4x

[
CTi (−∆ +m2)CTi − 2εijkCTi ḂT

k,j −m2µ∆µ

+ḂT
i Ḃ

T
i −m2BT

i B
T
i − φ̇∆φ̇−∆φ∆φ+m2φ∆φ

]
.

(2.6)

Here, the point corresponds to the time derivative. We can see that CTi and µ do not
propagate because there are no time derivatives acting on them. As we are only concerned
with the physical degrees of freedom, we will integrate them out as follows. If we vary
the action with respect to CTi and µ, we find that they satisfy the following constraints,
respectively:

(−∆ +m2)CTi = εijkḂ
T
k,j and ∆µ = 0 (2.7)

whose solution is given by

CTi = εijk
−∆ +m2 Ḃ

T
k,j and µ = 0. (2.8)
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The operator acting on the transverse modes in the first solution should be understood in
terms of Fourier modes. If we would express it as

BT
i =

∫
d3kB̃T

i (~k)ei~k~x (2.9)

this operator would act as

1
−∆ +m2B

T
i =

∫
d3k

1
|~k|2 +m2

B̃T
i (~k)ei~k~x. (2.10)

Substituting these solutions into (2.6) results in the following action:

S = −1
2

∫
d4x

[
BT
i (� +m2) m2

−∆ +m2B
T
i + φ(� +m2)(−∆φ)

]
(2.11)

This action only contains propagating fields. We can notice that the fields are not canonically
normalized. In terms of the canonically normalized variables

BT
ni =

√
m2

−∆ +m2B
T
i and φn =

√
−∆φ (2.12)

the action is given by

S = −1
2

∫
d4x

[
BT
ni(� +m2)BT

ni + φn(� +m2)φn
]
. (2.13)

The operators in (2.12) are again to be understood in terms of Fourier modes with wave
number ~k. To see how this field changes with a length scale L ∼ 1

k , where k is the magnitude
of the wavenumber, we will now consider what the minimum fluctuations for the field are. In
general, for a normalised quantum field, the typical amplitude of the quantum fluctuations
is of order

(
k3

ωk

) 1
2 , for scales k corresponding to length scales L as k ∼ 1

L [46]. Therefore,
the minimal level of quantum fluctuations at scales 1

L2 � m2 for normalised transverse and
longitudinal modes is given respectively by

δBT
nL ∼

1
L

and δφnL ∼
1
L
. (2.14)

Using (2.12,) we then find for the original transverse mode:

δBT
L ∼

1
mL2 (2.15)

As already pointed out in [52], we can see that the amplitude of the quantum fluctuations
for the transverse modes grows faster than the amplitude for the longitudinal modes in case
of a small mass. This implies that the transverse modes enter the strong coupling regime
ahead of the longitudinal modes, once one considers an interacting theory.

We shall now consider the free Proca theory. We will decompose the spatial part of the
vector field Aµ as

Ai = ATi + χ,i, with ATi,i = 0. (2.16)
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The transverse modes are now given by ATi and the longitudinal ones are given by the field
χ. If we substitute this decomposition into (2.3), we obtain

S = 1
2

∫
d4x

[
A0
(
−∆ +m2

)
A0 + 2A0∆χ̇−

(
χ̇∆χ̇−m2χ∆χ

)
+
(
ȦTi Ȧ

T
i −A

T
i,jA

T
i,j −m2ATi A

T
i

)]
.

(2.17)

Compared to the Kalb-Ramond field, which had two non-propagating fields, Proca theory
has only one component that does not propagate. It is the A0 component. Using the same
procedure as before, we now integrate it out. Varying (2.17) with respect to it, we find the
following constraint:

(−∆ +m2)A0 = −∆χ̇ (2.18)
Its solution is given by

A0 = −∆
−∆ +m2 χ̇. (2.19)

Plugging it back into the action, we obtain the action consisting only of the transverse and
longitudinal modes,

S = −1
2

∫
d4x

[
ATi (� +m2)ATi + χ(� +m2) m

2(−∆)
−∆ +m2χ

]
. (2.20)

We can notice that the kinetic term of the longitudinal mode is not canonically normalised.
Defining the normalised variable as

χn = m

√
−∆

−∆ +m2χ, (2.21)

we can express (2.20) as

S = −1
2

∫
d4x

[
ATi (� +m2)ATi + χn(� +m2)χn

]
. (2.22)

Let us see how the original fields evolve in terms of mass and scale. The fields in (2.20) are
canonically normalized. Therefore, that the minimal level of quantum fluctuations at scales
1
L2 � m2 is given for them by

δATnL ∼
1
L

and δχnL ∼
1
L
. (2.23)

Using (2.21), we obtain that the minimum of the quantum fluctuations for the original
longitudinal mode is

δχL ∼
1
mL

. (2.24)

If we divide it by the length scale L in order to compare it with the transverse modes, we
can see that it grows faster than these when the mass is small.

Up to now we saw that both theories propagate the same number of degrees of freedom.
Nevertheless, the difference between these theories lies in the minimum quantum fluctuations
for the original modes. The quantum fluctuations associated with the longitudinal mode of
the Proca theory depend on mass in the same way as the transverse modes of the Kalb-
Ramond field. Then again, the transverse modes of Proca theory and the longitudinal modes
of the Kalb-Ramond field both grow in the same way when the length scale decreases. We
shall see in the next section how this difference among the same kinds of modes leads to
different properties of the theories as soon as we modify them by an interaction.
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3 Above and beyond the strong coupling scale

Now, we will modify both of these theories by adding a quartic self-interaction. For the case
of the Kalb-Ramond field, we will consider the action

S =
∫
d4x

[
1
12HµνρH

µνρ + m2

4 BµνB
µν + g2

16 (BµνBµν)2
]
, (3.1)

which we will compare with the interacting Proca theory

S =
∫
d4x

[
−1

4FµνF
µν + m2

2 AµA
µ + g2

4 (AµAµ)2
]
. (3.2)

We will assume that the coupling constant satisfies g2 � 1, and will consider these theories on
energy scales k2 � m2. First we will perturbatively analyse the theories. We will demonstrate
how both theories suffer from a discontinuity in the massless limit. With the help of the
quantum fluctuations which we have found in the previous section, we will determine the
Vainshtein radius. This will be followed by an analysis beyond perturbation theory, where
we will study the corrections to the modes appearing in the corresponding massless theories.

3.1 Proca field

As a first step, we will reformulate the Lagrangian in terms of physical modes, proceeding
as in the free theory. Since there is no propagation of the A0 component, let us integrate it
out. Varying the action (3.2) with respect to it, we find a constraint satisfied by A0

(−∆ +m2 + g2AiAi)A0 − g2A3
0 = −∆χ̇, (3.3)

where Ai is given by (2.16). Under the assumption that

g2χ2 < 1, (3.4)

which will be verified aposteriori, we can resolve this constraint for scales k2 ∼ 1
L2 � m2 as

A0 = −∆
−∆ +m2 χ̇+ g2

−∆ +m2

[(
χ̇2 − χ,iχ,i − 2χ,iATi −ATi ATi

)
χ̇
]

+O
(
g2(mL)2χ

3

L
, g4χ

5

L

)
.

(3.5)

Here 1
L denotes a derivative acting on χ. Substituting this expression back into the action,

we arrive at the Lagrangian density

L = L0 + Lint, where (3.6)

L0 = −1
2χ(� +m2) m

2(−∆)
−∆ +m2χ−

1
2A

T
i (� +m2)ATi and

Lint = g2

4 (χ,µχ,µ)2 − g2χ,µχ
,µχ,iA

T
i −

g2

2 χ,µχ
,µATi A

T
i + g2

(
χ,iA

T
i

)2

+O
(
g2m2χ

4

L2 , g
2χ

L

(
AT
)3
)
.
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In Lint we have only kept the most relevant terms. It is clear from the kinetic term that
the longitudinal mode needs to be properly normalised. Using the normalised variables χn
defined in (2.21), we obtain for scales 1

L2 � m2

L = L0 + Lint, where now (3.7)

L0 = −1
2χn(� +m2)χn −

1
2A

T
i (� +m2)ATi and

Lint ∼
g2

4m4 (χn,µχ,µn )2 − g2

m3χn,µχ
,µ
n χn,iA

T
i −

g2

2m2χn,µχ
,µ
n A

T
i A

T
i + g2

m2

(
χn,iA

T
i

)2
.

The interacting terms indicate that there exists a discontinuity in the massless limit. However,
we should not forget that this theory has so far been treated in a perturbative way. In order
to find the scale at which the interacting terms become relevant, we first need to identify the
most dominant term among them. This will be done with the help of the minimal level of
quantum fluctuations, which we have found in the previous section. Then, we determine the
Vainshtein radius by finding the scale for which the most dominant term is of the same order
as the kinetic term. If we estimate the derivatives as ∂µ ∼ 1

L and the normalised longitudinal
and transverse modes as χn ∼ 1

L and ATi ∼ 1
L , respectively, we can evaluate the interaction

terms as follows:
g2

4m4 (χn,µχ,µn )2 ∼ g2

(mL)4L4 ,
g2

m3χn,µχ
,µ
n χn,iA

T
i ∼

g2

(mL)3L4 and

g2

2m2χn,µχ
,µ
n A

T
i A

T
i ∼

g2

m2

(
χn,iA

T
i

)2
∼ g2

(mL)2L4 .

(3.8)

Evidently, for a small mass, the first term will be the most dominant. It becomes of the same
order of magnitude as the kinetic term for the longitudinal modes at length scales

Lstr ∼
√
g

m
. (3.9)

At this scale, the longitudinal modes enters the strong coupling regime. This scale agrees
with that of [53], where it was obtained by introducing a Stueckelberg field and identifying
the interacting term with the largest singularity in the massless limit. On the other hand,
the most significant contributor to the transverse modes is the second term. It is of the same
order of magnitude as the kinetic term of the transverse modes at scales

LT ∼ g2/3

m
. (3.10)

Because this scale is smaller than the strong coupling scale of the longitudinal modes, we
cannot claim that the transverse modes enter the strong coupling regime as the perturbation
theory for the longitudinal modes is no longer reliable. Therefore, to find out what happens to
the transverse modes, we must analyse the theory beyond the strong coupling scale. However,
before we do that, we will verify the strong coupling scale on the level of the equations of
motion which define it.

The equations of motion for the longitudinal and transverse modes on scales 1
L2 � m2

with the most important terms are given by

(� +m2)χ ∼− g2

m2 (χ,µχ,µ�χ+ 2χ,µχ,νχ,µν)

+ 2g2

m2

(
χ,iA

T
i �χ+ 2χ,iµχ,µATi + χ,µχ,iA

T
i,µ

) (3.11)

– 7 –
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and
(� +m2)ATk ∼ −g2

(
δki −

∂k∂i
∆

)(
χ,iχ,µχ

µ +ATi χ,µχ
,µ − 2χ,iχ,jATj

)
(3.12)

To find the Vainhstein radius, we will develop the perturbation theory as we expand the
longitudinal and transverse modes in powers of g2

χ = χ(0) + χ(1) + . . . ,

ATi = A
T (0)
i +A

T (1)
i + . . . ,

(3.13)

where χ(0) and AT (0)
i satisfy the linear equation of motion

(� +m2)χ(0) = 0 and (� +m2)AT (0)
i = 0, (3.14)

the solution of which are plane waves. For simplicity, we will omit the exponent (0) associated
with the free fields. The corrections to the longitudinal modes satisfy

(� +m2)χ(1) ∼− 2g2

m2 χ,µχ,νχ
,µν + 2g2

m2

(
2χ,iµχ,µATi + χ,µχ,iA

T
i,µ

)
. (3.15)

By estimating χ ∼ 1
mL and ATi ∼ 1

L , we find that the first nonlinear term is more dominant
than the second one. Thus, we can calculate the corrections to the longitudinal modes as

χ(1) ∼ g2χ3

(mL)2 ∼
g2

(mL)5 . (3.16)

The perturbation theory in the longitudinal mode breaks down when the nonlinear term χ(1)

reaches the order of magnitude of the linear term. This happens at the Vainshtein radius
Lstr ∼

√
g
m , as can be observed already from the Lagrangian. We can estimate the corrections

to the transverse modes from the longitudinal modes as follows:

A
T (1)
k ∼ g2χ3

L
∼ g2

(mL)3 (3.17)

Even though these corrections seem to be troublesome at very high energies, leading to
divergences in the massless limit, one cannot trust them. This is because they become of the
same order of magnitude as the linear term at scales lower than the strong coupling scale for
the longitudinal mode.

Lastly, we can see that the assumption (3.4) is violated at scales L ∼ g
m which are also

smaller then the strong coupling scale. As a result, the expansion of the A0 constraint can
be carried out safely below the strong coupling scale.

As soon as the longitudinal modes enter the strong coupling regime, the most dominant
term for the longitudinal modes in the Lagrangian will be

Lχint = g2

4 (χ,µχ,µ)2 . (3.18)

This term specifies the new canonical normalization, where the canonically normalized vari-
able is given by

χn ∼
g√
2
χ2

L
. (3.19)

– 8 –
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Hence, the most dominant term can be written as

Lχint ∼
1
2χn,µχ

,µ
n . (3.20)

The minimal level of quantum fluctuations for the normalised mode is δχn ∼ 1
L and therefore,

for the original mode they become

δLχ ∼
1
√
g
. (3.21)

Since g < 1, it is easy to see that the assumption (3.4) will always be satisfied.
Even if the perturbation theory for longitudinal modes fails for scales L ≤ Lstr, it is still

possible to use it for the transverse modes. The most important terms for the transversal
modes are given by

LAT ∼ −
1
2A

T
i (� +m2)ATi − g2χ,µχ

,µχ,iA
T
i +O

(
g2χ

2

L2

(
AT
)2
)
. (3.22)

If we now estimate the longitudinal mode as χ ∼ 1√
g , we can see that the interaction term,

which was troublesome in the massless limit for scales L > Lstr, will always be smaller than
the kinetic term:

g2χ,µχ
,µχ,iA

T
i ∼

√
g

L4 (3.23)

In other words, as soon as the longitudinal mode enters the strong coupling regime, the
transverse mode corrections due to the longitudinal mode scale as

A
T (1)
i ∼

√
g

L
. (3.24)

We have thus seen that due to the strong coupling of the longitudinal mode, any divergences
that occur in the massless limit disappear. Below the strong coupling scale, only the two
transverse modes continue to propagate. The Vainshtein mechanism has also been considered
in the context of generalised Proca theory with derivative self-interactions, where it led to
the suppression of the longitudinal mode [54].

3.2 Kalb-Ramond field

Following the approach similar to the one used in the first part of this section, we will
now study the theory of the self-interacting Kalb-Ramond field. First, we will express the
Lagrangian only in terms of the propagating degrees of freedom. Decomposing the Kalb-
Ramond field as in the free case, we find that this system has two constraints. Varying the
action (3.1) with respect to CTi , we obtain

(−∆ +m2)CTl = εljkḂ
T
k,j − g2P Tli

[
CTi C

T
j C

T
j + 2CTi CTj µ,j + CTj C

T
j µ,i + 2CTj µ,iµ,j

+CTi µ,jµ,j − (CTi + µ,i)
(
BT
i B

T
i + 2BT

i φ,i + φ,iφ,i
)

+ µ,iµ,jµ,j
]
,

(3.25)

where
P Tij = δij −

∂i∂j
∆ (3.26)
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is the transverse projector. The constraint satisfied by µ is given by

−m2∆µ = g2∂i
[
µ,iµ,jµ,j + 2µ,iµ,jCTj + µ,jµ,jC

T
i + µ,iC

T
j C

T
j + 2µ,jCTj CTi

−(µ,i + CTi )
(
BT
j B

T
j + 2BT

j φ,j + φ,jφ,j
)

+ CTi C
T
j C

T
j

]
.

(3.27)

Up to O(g4), the first constraint can be resolved as

CTi = εijkD
(
ḂT
k,j

)
+ g2εljkP

T
il

−∆ +m2

{
D
(
ḂT
k,j

) [(
BT
s + φ,s

)2
− εsabεscdD

(
ḂT
b,a

)
D
(
ḂT
d,c

)]}
,

(3.28)

where
D(Bi) = 1

−∆ +m2 [Bi] . (3.29)

The solution of the constraint satisfied by µ up to O(g4) is given by

µ = g2εijk
m2∆ ∂i

{
D
(
ḂT
k,j

) [
BT
s B

T
s + 2BT

s φ,s + φ,sφ,s − εsabεscdD
(
ḂT
b,a

)
D
(
ḂT
d,c

)]}
. (3.30)

Substituting these into the action and keeping only the most dominant interactions we obtain
the Lagrangian density

L = L0 + Lint, where (3.31)

L0 =−1
2B

T
i (�+m2) m2

−∆+m2B
T
i −

1
2φ(�+m2)(−∆φ) and

Lint = g2

4

{[
εijkεilsD

(
ḂT
k,j

)
D
(
ḂT
s,l

)]2
−2εijkεilsD

(
ḂT
k,j

)
D
(
ḂT
s,l

)
BT
p B

T
p +

(
BT
i B

T
i

)2
}

−g2
[
εijkεilsD

(
ḂT
k,j

)
D
(
ḂT
s,l

)
BT
p φ,p−BT

i B
T
i B

T
j φ,j

]
− g

2

2

[
εijkεilsD

(
ḂT
k,j

)
D
(
ḂT
s,l

)
φ,pφ,p−BT

i B
T
i φ,jφ,j−2

(
BT
i φ,i

)2
]

+O
(
g2BTφ3

L3

)
.

As in the free theory, the longitudinal and transverse modes should be canonically normalised
according to (2.12). This determines the minimum level of quantum fluctuations for the
original modes. We can use either the original or the normalised modes for finding the strong
coupling scale, and the result will be the same irrespective of the choice. Since the normalised
modes make the terms appear more complicated, we will present the search for the Vainshtein
radius using the original fields. By considering the scales k2 ∼ 1

L2 � m2, we can estimate
the derivatives as ∂µ ∼ 1

L and the operator (3.29) as D ∼ L2. Then, the terms in each row of
Lint are proportional to one another. Representative terms of each row can be evaluated as

g2

4
(
BT
i B

T
i

)2
∼ g2

(
BT
)4
, g2BT

i B
T
i B

T
j φ,j ∼

g2
(
BT
)3
φ

L
,

g2
(
BT
i φ,i

)2
∼
g2
(
BT
)2
φ2

L2 .

(3.32)

Keeping in mind that the quantum fluctuations of the original transverse and longitudinal
modes are given by δBT

L ∼ 1
mL2 and δφL ∼ O (1) on scales k2 ∼ 1

L2 � m2, respectively, we
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can estimate these terms as

g2
(
BT
)4
∼ g2

(mL)4 L4
,

g2
(
BT
)3
φ

L
∼ g2

(mL)3 L4
,

g2
(
BT
)2
φ2

L2 ∼ g2

(mL)2 L4
. (3.33)

We can already notice the first difference to the expressions of the Proca theory (3.8). As
more longitudinal modes were involved in the interaction, the divergence in the limit m→ 0
was larger. Here the situation is reversed. The greater divergence in the mass corresponds
to the terms involving more transverse modes. Of the above terms, the first one is clearly
the most dominant for a small mass. At the level of the equation of motion for transverse
modes, this would be equivalent to a cubic term. By comparing it with the linear term,
or equivalently, by comparing the interacting term with the kinetic term for the transverse
modes in the Lagrangian, we find that the strong coupling scale is given by

Lstr ∼
√
g

m
. (3.34)

Among the nonlinear terms, the second one contributes most to the longitudinal mode. This
term becomes of the same order as the kinetic term at length-scale

Lφ ∼
g2/3

m
. (3.35)

However, this scale is not to be trusted because perturbation theory is not valid in transverse
modes below Lstr. As a first step in analyzing the theory beyond the strong coupling scale,
we will consider the theory at scales L ∼ Lstr. It turns out that at these scales the higher
order terms, suppressed for larger scales, become as dominant as the kinetic term. These
terms have the form

Lint ⊃
∞∑
n=2

g2n+2

m2n

(
BT
)2n+4

∼
∞∑
n=2

(
Lstr
L

)4n+4 1
L4 (3.36)

We shall see that the reason for their occurrence is the µ-constraint, which can not be
expanded for scales L ≤ Lstr. Thus, to analyse the theory beyond the scale of strong coupling,
we must resort to the (3.25) and (3.27) constraints. At the strong coupling scale, it is possible
to estimate

CT ∼ BT ∼ 1
√
gLstr

, µ ∼ g2Lstr
m2

(
BT
)3
∼ 1
√
g
. (3.37)

On scales 1
L2 � m2, we can estimate the constraint (3.25) as1

CT

L2
str
∼ BT

L2
str
−g2

[(
CT
)3

+
(
CT
)2 µ

Lstr
+CT

µ2

L2
str
−CT

(
BT
)2
− µ

Lstr

(
BT
)2

+ µ3

L3
str

]
. (3.38)

By substituting (3.37) into the terms on the right-hand side of this equation, it is easy to
see that each of these terms is smaller than the first term on the right-hand side. Therefore,
we can apply perturbation theory to the (3.25) constraint at the strong coupling scale and
beyond. The (3.27) constraint can be evaluated as follows:

m2µ

L2 + g2
[
µ

L2

((
BT
)2

+BTφ

)
+ µ2

L3B
T + µ3

L4

]
∼ g2

L
BT

((
BT
)2

+BTφ

)
(3.39)

1We will ignore the coefficients for each of these terms, since all that matters is how these terms scale with
g, m and L.
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Here we have replaced CT ∼ BT . For scales L > Lstr the first term on the left-hand side
dominates among all other terms on the same side. Once we reach the scales L ∼ Lstr, the
nonlinear terms have the same order of magnitude as the linear term

m2µ ∼ g2µ
(
BT
)2
∼ g2µ

2

L
BT ∼ g2 µ

3

L2 (3.40)

and we can no longer perturbatively approximate the constraint. For L < Lstr the nonlinear
terms dominate and we can estimate

µ ∼ O(1)LBT +O(1)φ+O
(

1
√
g

L

Lstr

)
. (3.41)

Bearing in mind that the perturbation theory for the constraint (3.25) holds for L < Lstr, we
obtain the Lagrangian density

L = L0 + Lint, where (3.42)

L0 = −1
2B

T
i (� +m2) m2

−∆ +m2B
T
i −

1
2φ(� +m2)(−∆φ) and

Lint ∼ g2
(
BT
)4

+ g2
(
BT
)3 φ

L
+O

(
g2
(
BT
)2 φ2

L2

)
.

Note that both terms in Lint involve temporal and spatial derivatives in a manner similar
to (3.31). However, now that we have an additional contribution from the µ constraint, here
we only present the power of the fields divided by the appropriate length scale. The first
term provides us with the canonical normalisation for the transverse modes. Thus, the new
canonically normalised variable is given by

BT
n ∼ gLBT (3.43)

and therefore, the minimal level of quantum fluctuations for the original field is given by

δLB
T ∼ 1

√
gL

(3.44)

for scales L < Lstr. Using these results, we can evaluate the corrections for the longitudinal
mode below the strong coupling scale. These are given by the second term of Lint, and can
now be estimated as

g2
(
BT
)3 φ

L
∼
√
g

L4 . (3.45)

It may be surprising that the corrections due to the strongly coupled mode remain outside
the perturbation theory. The reason for this lies in the nature of the self-interaction we
have considered. It is not gauge invariant, and hence if we were to compare the theories we
have obtained with the massless case, we would find that the corrections remain. However,
once the strongly coupled degrees of freedom enter the strong coupling regime, they lose
their linear propagator, and stop evolving. This is analogous to the Vainshtein mechanism
in massive gravity, where the longitudinal mode does not evolve beyond the strong coupling
scale. In the next section, we will summarise and discuss the key findings and implications
of the study.
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4 Discussion

The aim of this work was to study the strong coupling of the interacting massive Kalb-
Ramond and Proca theories. We saw that a similar mechanism applies to both theories
when the massless limit is taken. In the framework of perturbation theory, the theories
diverge in the massless limit due to the interactions. Since these theories were modified by
the same type of interactions, divergences appear in the same powers of mass. Once the non-
linear terms become of the order of the linear terms on the level of equations of motion, the
modes which were the source of the discontinuity enter the strong coupling regime. Because
of the same form of the interaction, the Vainshtein scale to which this corresponds is the
same for both theories and is given by Lstr ∼

√
g
m . It is worth noting that a similar type

of Vainshtein mechanism applies to massive gauge theories in general, such as the massive
gravity and the massive Yang-Mills theory, where the mass is added by hand. The reason
for the comparison between the two theories lies in the assertion of duality, which states that
both theories describe the same physics. Given that the duality exists, one would expect
the same number of degrees of freedom to behave identically. However, we have found that
the opposite is true. Due to the minimal level of quantum fluctuations, the discontinuity
and the strong coupling do not appear for the same kind of modes. In the Kalb-Ramond
theory, the transverse modes are the source of the discontinuity in the perturbative regime.
As soon as they enter the strong coupling regime, the theory propagates only the longitudinal
modes. For them the perturbation theory is valid at all scales. In the Proca theory, on the
other hand, the discontinuity appears due to the longitudinal modes. They cross the scale
of strong coupling and stop to propagate thereafter. Therefore, for scales smaller than the
Vainshtein scale, Proca theory only propagates two transverse modes. Assuming that the
coupling constant of the theory is smaller than unity, these modes never enter the strong
coupling regime. For this reason, there is a large discrepancy between these theories also for
a non-zero mass, whose origin lies in the minimal level of quantum fluctuations for the same
type of modes. This indicates that the duality between Proca and massive Kalb-Ramond
theory is not present, contrary to the numerous claims in the literature. Given that this result
was obtained in the context of self-interactions, the theories need to be further explored in a
more general framework, which will be carried out in future work.

It could be interesting to see whether the duality persists for more general p-forms in
D-dimensions. In the appendix we will present the results for massive three-forms. We have
also seen in this paper how the Vainshtein mechanism is applied to the Kalb-Ramond field.
Since this field naturally occurs in the context of massive Hermitian gravity, it would be
interesting to see how its behavior changes when gravity and non-trivial backgrounds are
taken into account.
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A The duality of the massive 3-form

It is also frequently claimed that there exists a duality between a massive 3-form and a scalar
field [3–13, 55, 56]. The action for the 3-form field is given by

S =
∫
d4x

(
− 1

48WµναβW
µναβ + m2

12 CµναC
µνα

)
(A.1)

where Wµναβ = Cναβ,µ − Cµαβ,ν + Cβµν,α − Cαµν,β is the field strength tensor and Cµνα is
totally anti-symmetric. Starting from the parent action of the three-forms, the dualization
procedure is used to obtain the action for the scalar field:

S = 1
2

∫
d4x

(
φ,µφ

,µ −m2φ2
)

(A.2)

Following the same way as before, we can see that the duality might not be present for
these theories. In order to express the 3-form action in terms of physical modes, we will
first separate the 3-form into a spatial part and a temporal part, with the spatial part being
further decomposed as

C0ij = εijk
(
CTk + µ,k

)
, CTk,k = 0 and

Cijk = εijkχ
(A.3)

and arrive at the following Lagrangian density

L = 1
2
[
m2CTi C

T
i − µ

(
−∆ +m2

)
∆µ− 2χ̇∆µ+ χ̇χ̇−m2χ2

]
. (A.4)

Integrating out the non-propagating degrees of freedom, µ and CTi , (A.4) becomes

L = −1
2χ
(
� +m2

) m2

−∆ +m2χ. (A.5)

We can notice that the difference between the two kinetic terms is that (A.4) is not canonically
normalised. The canonically normalised variable is

χn =

√
m2

−∆ +m2χ. (A.6)

After canonical normalization of the fields the two kinetic terms look the same. However,
the minimal level of quantum fluctuations for the original fields φ and χ differs for scales
1
L2 � m2. On one side we have for the scalar field

δφL ∼
1
L
, (A.7)

while on the other
δχL ∼

1
mL2 . (A.8)

The mass dependence only appears for the pseudo-scalar of the 3-form. Similarly to the
contrast between Kalb-Ramond and Proca fields, this will be the source of the distinction
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for the two interacting theories.
Now we shall add a self-interaction to of each of the theories. The actions are given by

S = 1
2

∫
d4x

(
φ,µφ

,µ −m2φ2 − g2

2 φ
4
)

(A.9)

and
S = 1

12

∫
d4x

[
−1

4WµναβW
µναβ +m2CµναC

µνα + g2

12 (CµναCµνα)2
]
. (A.10)

To begin with, we will express the action in terms of the propagating degree of freedom χ
only. In a manner similar to the Kalb-Ramond field, there are two constraints which we
obtain by the variation of the action with respect to µ and CTi :(
−∆ +m2

)
(−∆µ) = ∆χ̇+ g2∂i

[
µ,iµ,jµ,j + 2µ,iµ,jCTj + CTi µ,jµ,j

+2CTi CTj µ,j +
(
µ,i + CTi

) (
CTj C

T
j − χ2

)]
,

(A.11)

m2CTk = −g2P Tik

[
CTi C

T
j C

T
j + 2CTi CTj µ,j + CTj C

T
j µ,i + 2CTj µ,jµ,i

+
(
CTi + µ,i

) (
µ,jµ,j − χ2

)]
.

(A.12)

By perturbatively resolving these conditions and inserting the solution into (A), we obtain
the Lagrangian density

L = L0 + Lint, where (A.13)

L0 = −1
2χ
(
� +m2

) m2

−∆ +m2χ and

Lint = g2

4 [D (χ̇,i)D (χ̇,i)]2 −
g2

2 D (χ̇,i)D (χ̇,i)χ2 + g2

4 χ
4 +O

(
g4χ6

m2

)
,

where the operator D is given by (3.29). Here we have only kept the most dominant terms.
Comparing the interacting terms with the kinetic ones on scales 1

L2 � m2 and consider-
ing (A.8), we find the strong coupling scale of the mode χ which is given by

Lstr ∼
√
g

m
. (A.14)

At this scale, also the nonlinear terms of the form g2n χ2n+2

m2n−2 with n = 2, 3, . . . become dom-
inant. This is due to the CT constraint for which the perturbation expansion is no longer
valid at the strong coupling scale. Solving the constraints in a similar way as in the former
case of Kalb-Ramond field, the most dominant terms in the Lagrangian yielding the new
canonical normalization for the 3-form scalar are of the form

Lint ∼ g2χ4. (A.15)

It should be noted that this expression represents only the dependence on the longitudinal
mode with the derivatives of it omitted. While the derivatives act on χ, they cancel with
the operator D because of the dimensions. For scales below the strong coupling scale, the
longitudinal mode will be in the strong coupling regime, with the minimal level of quantum
fluctuations given by δχL ∼ 1√

gL , similarly to the transverse modes of the massive Kalb-
Ramond field. On the other hand, the scalar field φ does not enter the strong coupling region
as long as g � 1. The reason for this difference lies in the minimal quantum fluctuations of
the original fields. Thus, it is not possible to conclude that these theories are dual on the
basis of the previous arguments.
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