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Abstract
We propose a new method for obtaining an effective Fried-
mann–Lemaître–Robertson–Walker (FLRW) cosmology from the quantum
gravity dynamics of group field theory (GFT), based on the idea that an
FLRW universe is characterised by a few macroscopic observables. Rather
than relying on assuming a particular type of quantum state and computing
expectation values in such a state, here we directly start from relations between
macroscopic observables (defined as one-body operators) and formulate
dynamics only for those observables. We apply the effective approach to
constrained quantum systems (as developed by Bojowald and collaborators) to
GFT, providing a systematic expansion in powers of h̄. We obtain a kinematical
phase space of expectation values and moments, which does not require an a
priori choice of clock variable. We identify a gauge fixing of the system which
corresponds to choosing one of the cosmological variables (with the role of
extrinsic curvature) as a clock and which allows us to rewrite the effective
dynamics in relational form. We show necessary and sufficient conditions for
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the resulting dynamics of expectation values to be compatible with those of
classical FLRW cosmology and discuss the impact of quantum fluctuations.

Keywords: quantum gravity, cosmology, relational dynamics

1. Introduction

Many modern approaches to quantum gravity suggest that the classical continuum notions of
space and time are emergent concepts, to be obtained from an underlying fundamental descrip-
tion in terms of different quantum degrees of freedom. Extracting continuum physics from such
theories is generally a very complicated task, because of both conceptual and technical prob-
lems. Some of the most important outstanding issues, in relation to this task, are the problem
of time, the problem of Hilbert space and the problem of the classical limit [1, 2]. There are of
course many other issues, such as the implementation of diffeomorphism invariance in a dis-
crete formalism [3] or the reliance on preferred foliations, but in the following we will focus
only on these three. They are present in one form or another in any formulation of quantum
gravity, but they are particularly visible in a canonical formalism.

The problem of time refers to the fact that, due to the diffeomorphism invariance of general
relativity, there are no external structures with respect to which one can define (time) evolution.
As a result, the Hamiltonian of general relativity (or, more in general, of any background inde-
pendent theory) is forced to vanish in absence of boundaries [4–6]. At the quantum level, the
vanishing of the Hamiltonian results in ‘frozen’ dynamics, where states do not evolve in ‘time’.
Change and evolution can however still be defined in terms of internal physical quantities. This
is the relational strategy, which is based on the use of evolving constants of motion [7, 8] (see
[9] for a review), i.e. Dirac observables encoding correlations between the physical variable
chosen as a clock and the remaining ones. Though these observables can be formally defined
in the classical theory [10, 11], their explicit construction, especially at the quantum level,
is extremely complicated. One main reason is that one has in general very little control over
the physical Hilbert space on which they should be represented. The construction of a Hilbert
space by endowing the space of solutions to the quantum constraint with an appropriate inner
product is a poorly understood issue; this is the Hilbert space problem mentioned above. Lastly,
the problem of the classical limit refers to the extraction of (semi)classical physics from full
quantum gravity, which has been often addressed through an explicit construction of specific
classes of states. Semiclassicality is however not a sharp notion, and it is therefore important to
clarify which results are general to semiclassical states and which ones are instead only valid
for the states considered. Moreover, in approaches (like group field theory (GFT) or spin foam
models or lattice quantum gravity) in which the basic structures of the theory are discrete, the
semiclassical approximation leading to general relativity is necessarily accompanied by some
form of continuum approximation, implemented via coarse graining or renormalisation group
techniques. The two kinds of approximations are conceptually and technically distinct [12],
albeit intertwined.

Effective techniques, describing quantum systems in terms of (a finite set of) expectation
values and moments of observables associated to a given state, may play a crucial role in order
to practically bypass the above difficulties, while still allowing to extract physical semiclassical
predictions from the theory. These techniques have been employed already in the context of
simple quantum systems for instance in [13–18]. In principle, in order to apply the framework
developed in [13, 15] to quantum gravity, it should be generalised to a field theoretic context,
which will in general pose formidable technical challenges. However, in quantum gravity one
is often not interested in all degrees of freedom in the theory, but rather in situations where
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only some degrees of freedom are relevant. In particular, the relevant physical scales where
quantum gravity effects might be seen are far away from the microscopic Planck scale, and
will thus involve a form of collective or coarse-grained characterisation of the fundamental
quantum gravity theory. One may then develop an effective framework only for those observ-
ables which are most relevant at this coarse-grained (‘hydrodynamic’) level: this extends the
effective framework in a more minimal way, essentially replacing the algebra of observables of
the quantum particle with a similarly finitely generated algebra of collective and macroscopic
observables. Expectation values and moments of these observables are then the quantities in
terms of which the effective hydrodynamic description is defined. This focus on such a coarse-
grained regime can also be seen as a way to implement a continuum approximation, as part of
the extraction of semiclassical physics via the chosen effective framework.

In quantum gravity, a system which can be characterised by a few collective observables
is the homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) universe
[19]. The hydrodynamic description of the fundamental quantum gravity dynamics to cap-
ture homogeneous and isotropic cosmology has been employed especially in the context of
GFTs [20]. GFTs can be seen as quantum field theories whose fundamental quanta are three-
dimensional discrete chunks of space, i.e. quantum tetrahedra, whose geometric properties are
encoded in group variables (these variables are equivalent to the data on open spin networks
in loop quantum gravity (LQG) [21]). Continuum spacetime notions are expected to emerge
from these theories only after an appropriate coarse-graining is performed. Their Fock space
structure is perfectly suited for the construction of non-perturbative collective states, such as
coherent states, which have an interpretation in terms of continuous and homogeneous three-
geometries [22, 23]. Using these states and mean field methods one can obtain (in the weak
interaction limit) an effectively hydrodynamic description characterised by Friedmann dynam-
ics with a quantum bounce for the averaged volume of the universe [24–27]. These results have
sparked further works addressing for instance the role of quantum fluctuations, especially for
late times and around the bounce [28, 29] and the definition of relational evolution in such
emergent quantum gravity theories [25, 30].

In this paper, we aim to provide a new perspective on the derivation of cosmological dynam-
ics from GFT by extending the effective techniques developed in [13–15] to the GFT setting.
As in [24] and many subsequent papers, we consider a GFT model minimally coupled with
a massless scalar field, and assume that the self-interactions of the GFT field are negligible
in the regime of interest. As mentioned above, the effective techniques were developed for
a quantum algebra generated by a finite set of operators. We propose to use a suitable finite
set of one-body GFT operators5. In particular, the quantum constraint of [13] is given by the
integrated (free) equation of motion in our set-up. Truncating the system in this manner is
motivated by the interest in only some collective (hydrodynamic) variables, and is the most
crucial approximation that we perform; we see it as a requirement to be imposed on the kind
of states employed in the effective description. One important consequence of this assumption
is that the number operator of GFT quanta6 trivially commutes with the constraint, so that its
expectation value and all its moments will be constant. The quantum algebra thus obtained
allows to construct a quantum phase space coordinatised by expectation values and moments
of the relevant operators, according to standard techniques [13, 15, 31]. By imposing that the
states of interest are also semiclassical, one can truncate the hierarchy of moments to a desired

5 By ‘one-body operator’ we mean an operator which can be written as an integral over a single combination of creation
and annihilation operators.
6 Note that this is the fundamental number operator and not the effective relational number operator, a function of a
relational clock value, typically used in GFT cosmology [24].
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order in h̄. The quantum constraint then produces a finite set of effective constraints, generat-
ing gauge flows on the variables of the truncated quantum phase space. Similarly to [15–17],
all but one of these gauge flows are fixed so that one of the geometric operators in the algebra
(here chosen to classically match the extrinsic curvature) is effectively classical, and can be
used as a proper clock. Through this procedure, one ends up with a relational description of a
reduced system of variables which effectively represents the physical Hilbert space.

We show how to recover the Friedmann dynamics of a flat FLRW universe at the level of
expectation values. Moreover, assuming that quantum fluctuations are small at small curvature,
they remain under control also large curvature, a feature shared with loop quantum cosmology
(LQC) models [32, 33]. We compare these results on fluctuations with previous works [28, 29]
which stressed the importance of a changing particle number in order to suppress or enhance
quantum fluctuations. This is in contrast with our approach here in which the particle num-
ber is constant (keeping in mind that the notions of dynamics and time dependence differ in
these different papers—see next paragraph). Our results also provide additional insights into
the role of relational dynamics in emergent quantum gravity theories, emphasising the impor-
tance of coarse-graining (in our case given by explicit truncation) before defining a notion of
relationality, as suggested in [25].

Our method for implementing relational dynamics in GFT differs from what was done in
previous papers such as [24, 25, 27]. More precisely, while the approach proposed in this paper
shares with [25] the fact that relational evolution is defined only in an effective sense, in con-
trast to [25] it does not require a specific form of states. In [24], instead, a relational notion of
dynamics was implemented by defining ‘relational operators’ (which however need smearing
in order to be well-defined [25, 34]), while [27] employed a deparametrised framework from
the start (the two last approaches are connected in [30]). In our approach, we do not attempt to
define microscopic relational observables, nor we try to construct a reduced physical Hilbert
space; these difficulties are in fact bypassed by the effective approach and the notion of rela-
tionality is defined in the usual sense of constrained dynamics on a phase space. A complete
understanding of how these approaches to relational dynamics are related to each other is still
missing, and certainly deserves more study.

Finally, let us stress again that in order to obtain our results one does not need to spec-
ify a state—only general semiclassicality and ‘hydrodynamic’ conditions are assumed—thus
suggesting that the connection between GFTs and cosmological solutions may go beyond the
choice of coherent states (as in the simpler setting of [29]).

2. Review of the effective approach

In this section we review the effective approach to constrained systems [14, 15] and to relational
dynamics [16] (see also [17, 18]). While there are many fascinating aspects of this approach
that deserve to be discussed at length, we touch only the points necessary for the understanding
of the procedure developed in this paper, referring to [14–18] for more details.

2.1. Effective constraints

The effective approach to quantum constrained systems is formulated in the quantum phase
space, which can be constructed from first principles as follows [35, 36].

The starting point is a set of elements Âi with i = 1, . . . , n generating an associative unital
algebra A (which contains all finite polynomials in the Âi) and satisfying the commutation
relations

[Âi, Â j] = ih̄ f i j
kÂk (2.1)
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for some real constants f i j
k. One usually assumes that this is an involutive algebra, i.e. there

is a ∗ operation corresponding to the adjoint (where the generators are often thought of as
self-adjoint).

Monomials of the form Âm1
1 Âm2

2 . . . Âmn
n with mi � 0 form a linear countable basis for A.

Now a quantum state ψ can be seen as a linear functional on A, i.e. a map ψ : A→ C, with the
conventional notation 〈Âi〉ψ = ψ(Âi) (and with 〈1̂〉ψ = 1). From an algebraic viewpoint this is
the definition of the notion of state. One connection between this algebraic framework and the
canonical description in terms of operators acting on Hilbert spaces is provided by the Gelfand,
Naimark and Segal (GNS) theorem [37, 38] according to which, given any algebraic state α,
it is always possible to construct an Hilbert space Hα on which the algebra of observables
act as an algebra of linear bounded operators πα(Âi), such that πα is a ∗-representation of A.
This Hilbert spaceHα contains a cyclic vector |α〉 ∈ Hα such thatα(Âi) = 〈α|πα(Âi)|α〉. More
generally, one may start from a Hilbert space H on which the elements in A act as operators;
then one can again think of each ψ ∈ H as a linear functional by defining ψ(Âi) = 〈ψ|Âi|ψ〉.
In either viewpoint, the statement relevant in the effective approach is that one is interested
in elements of Ā, the dual vector space to A. A subtle point here is that the existence of a
Hilbert space representation would imply that 〈Â∗

i Âi〉ψ � 0 but it is mentioned in [35, 36] that
this condition need not hold in the more general algebraic framework.

Because of linearity, any ψ ∈ Ā is determined by the values it assigns to a linear basis of
A. So, one could coordinatise Ā through the expectation values 〈Âi〉 with i = 1, . . . , n and
moments

Δ(Am1
1 . . .Amn

n ) =
〈(

Â1 − 〈Â1〉
)m1

. . .
(

Ân − 〈Ân〉
)mn

〉
Weyl

, (2.2)

where the subscript indicates a total symmetrisation of the product of operators inside the
expectation value above, and where

∑n
i=1 mi � 2. This choice of coordinatisation proves espe-

cially useful in effective approaches, where the states chosen are such that there is a clear
hierarchy of moments, as we will discuss below.

The Poisson structure turning the state space Ā coordinatised by expectation values and
moments into the quantum phase space is directly inherited from the commutation relations
of the elements in A: one defines7{

〈Â〉, 〈B̂〉
}
= (ih̄)−1

〈
[Â, B̂]

〉
(2.3)

for any Â, B̂ ∈ A (it is enough to demand this for monomials in the generators Âi). For con-
strained systems, the quantum phase space corresponds to a kinematical Hilbert space, since
no constraint has been imposed yet. In this sense, variables in A are kinematical quantum
variables.

In the algebraic framework, we can now define a quantum constraint Ĉ as an algebra element
satisfying8 〈ÂĈ〉 = 0 for any Â ∈ A [15]. In other words, the constraint can be characterised
by requiring that its expectation value and all of its fluctuations are zero:

C(〈Âi〉,Δ(. . . )) = 〈Ĉ〉 = 0 , (2.4a)

Cpol(〈Âi〉,Δ(. . . )) =
〈(

p̂ol − 〈p̂ol〉
)

Ĉ
〉
= 0 , (2.4b)

7 This form of Poisson brackets can also be motivated by the geometrical formulation of quantum mechanics [31].
8 This can be seen as the algebraic counterpart of the Dirac condition Ĉ|ψ〉 = 0 for any state |ψ〉 in a Hilbert space,
the connection between algebraic and Dirac formulation being provided by the GNS construction discussed above.
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with p̂ol being a polynomial in the algebra elements. The notation here emphasises that the
constraint functions should be expressed in terms of expectation values and moments9. Notice
that, contrary to what is done for moments, the quantum constraints are not defined by a sym-
metric ordering. In turn, this implies that the quantum constraint functions can take complex
values. This was however shown not to be an issue for deparametrisable systems, basically
because the moments appearing in the constraints are kinematical moments and do not need to
be restricted to real values. On the other hand, physical expectation values and moments must
be real10 [15, 17].

The reason for this ordering choice is that a symmetric ordering would not in general lead
to a first class system of constraints [15]. On the other hand, with the definition above it is easy
to show that for any Cpol and Cpol′ defined as in (2.4b) we have

{Cpol, Cpol′ } = (ih̄)−1〈[p̂olĈ, p̂ol′Ĉ]〉 ≈ 0,

where≈ is Dirac’s ‘weak equality’ (equality up to functions that are multiplied by constraints),
and so the system closes. As a consequence, these quantum constraint functions induce quan-
tum gauge transformations on their solution space through their Hamiltonian flows. The pres-
ence of gauge flows even after solving the quantum constraint functions in the quantum phase
space approach can be understood again as an effect of working with kinematical variables,
which are indeed affected by gauge even at the classical level. Moments and expectation values
of Dirac observables, instead, are gauge invariant also from this effective quantum phase space
perspective. Indeed, if Ô is a Dirac observable, the flow of its expectation value,

〈Ô〉′(τ ) = {〈Ô〉, 〈(p̂ol − 〈p̂ol〉)Ĉ〉}

= (ih̄)−1[〈(p̂ol − 〈p̂ol〉)[Ô, Ĉ]〉+ 〈[Ô, p̂ol](Ĉ − 〈Ĉ〉)〉], (2.5)

where τ is parametrising the flow, vanishes weakly. The same of course is true for moments of
Dirac observables. In this approach, the difficulty in solving the quantum constraint and explic-
itly constructing a physical Hilbert space has been traded for an infinite set of variables and
constraint functions. These are in general intractable, unless one can identify some approxima-
tion that allows to reduce them to a finite set, neglecting subdominant contributions, and thus
characterising the approach as an effective one. An example of such approximations is the semi-
classical one, where it is assumed that moments of higher order are also higher order in h̄. More
precisely, for the semiclassical expansion one assumes thatΔ(Am1

1 . . .Amn
n ) ∼ h̄(m1+···+mn)/2. At

a given order in h̄, only a finite number of constraints and moments are relevant. By construc-
tion this hierarchy is also preserved by the Poisson structure. Indeed, one can show from (2.3)
that the Poisson bracket of a moment of order h̄m/2 and a moment of order h̄n/2 is of order
h̄(m+n−2)/2.

In the following, we will assume that a truncation at order h̄ captures the dynamics of
suitable semiclassical states to a good approximation. This means that we will neglect all
terms explicitly proportional to h̄3/2 or higher and all third or higher order moments. For
an algebra generated by n elements Âi, we then have n + 1 constraints C = 〈Ĉ〉 = 0 and
CAi = 〈(Âi − 〈Âi〉)Ĉ〉 = 0 and n + n(n + 1)/2 = n(n + 3)/2 expectation values and moments.

9 For non-polynomial constraints, this can be achieved via a Taylor expansion.
10 Notice that in the usual Hilbert space approach, Ĉ|ψ〉 = 0 likewise only implies that ÂĈ|ψ〉 = 0 for any Â but not

necessarily
(

ÂĈ + ĈÂ
)
|ψ〉 = 0, which could lead to an analogous discussion.
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The extension of the Poisson bracket (2.3) for an algebra with commutation relations (2.1)
is, at the given truncation to order h̄, given by the relations

{〈Âi〉,Δ(A jAk)} = f i j
lΔ(AlAk) + ( j ↔ k), (2.6a)

{Δ(AiA j),Δ(AkAl)} =
(

f ik
m〈Âm〉Δ(A jAl) + (i ↔ j)

)
+ (k ↔ l). (2.6b)

2.2. Effective relational dynamics

Within the effective framework described above, the way physical variables are selected is
through an effective local deparametrisation of the system [15, 17]. This is obtained via a par-
tial gauge fixing of the aforementioned gauge freedom (Zeitgeist), leading to a projection into
a classical ‘time’, and consequently to the definition of transient relational observables called
fashionables. In [15, 17] most of the features of this effective approach to relational dynamics
are explained through different (classical deparametrisable and non-deparametrisable) exam-
ples. Here we will try to provide a general summary of such features, most of which will also be
true for the system we aim to study in the rest of this paper. An important feature of the effec-
tive approach explained above is that the quantum phase space generically has a degenerate
Poisson structure, i.e. is not symplectic. Indeed, moments of any arbitrary order are charac-
terised, in general, by a degenerate Poisson tensor11. A crucial consequence of this degeneracy
of the Poisson structure is that even though the constraints Cpol, C are independent, the gauge
flows generated by them are generally not. The Poisson geometry of constrained systems is
discussed in [39].

In the examples studied in [17], at order h̄ there are n + 1 constraints, but only n gauge
flows generated by them are independent. This means that of the n(n + 3)/2 variables relevant
at that order, 2n variables can be eliminated using the constraints (n + 1 conditions) and n − 1
by fixing all the gauge flows but one. This leaves n(n + 3)/2 − 2n = n(n − 1)/2 remaining
variables. The importance of this counting can be understood when one is interested, as we
have mentioned above, in an effective deparametrisation of the system. Classically, such a
deparametrisation would result in the complete elimination of a (possibly canonical) pair of
variables. At the effective level, eliminating all variables related to a pair of operators having
closed non-trivial commutation relations among themselves leads to a total of (n − 2)(n +
1)/2 = n(n − 1)/2 − 1 variables. So, by appropriately fixing n − 1 gauge flows and using the
n + 1 constraints (see below), one could obtain a set of (n − 2)(n + 1)/2 physical variables and
one classical ‘clock variable’, all of them subject to the remaining, unfixed gauge flow. In turn,
this allows constructing local relational observables (fashionables) describing the evolution of
the physical variables with respect to the clock.

Let us discuss in more detail how this procedure can be realised concretely. The theory
is entirely clock neutral, since all physical variables are treated on equal footing. The partial
gauge fixing mentioned above, or Zeitgeist, has exactly the purpose of choosing a specific
clock, projecting the quantum clock we are interested in onto a classical parameter. Of course,
such a clock, say T̂, needs to have non-trivial commutation relations with Ĉ, i.e. the clock may
not be a Dirac observable since otherwise it is constant (cf. (2.5)).

We will assume this, and we will again further restrict to an order h̄ truncation. If the clock
also forms a closed subalgebra with another operator, say P̂ (which is the situation studied in

11 As an example, consider a canonical pair q̂, p̂. At order h̄, we have three moments, so the space is odd-dimensional
and the Poisson structure of second order moments must be degenerate.
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[15, 17] and considered below), the n − 1 conditions

φα = Δ(TAα) = 0, α ∈ A\{P̂}, (2.7)

fix n − 1 gauge flows at order h̄, and make the clock classical on the space of physical variables.
Then, if the expectation value and the n moments of the variable P̂ can be eliminated using
the n + 1 effective constraints12, one indeed arrives at a physical description involving the
(n − 2)(n + 1)/2 expectation values and order h̄ moments of the remaining n − 2 variables,
and 〈T̂〉.

Once the gauge fixing conditions (2.7) are imposed, one is left with a mixture of first and
second class constraints. However, since

{φα,φβ}=
1
ih̄

〈[
(T̂ − 〈T̂〉)(Âα − 〈Âα〉), (T̂ − 〈T̂〉)(Âβ − 〈Âβ〉)

]〉
=

1
ih̄

〈
(T̂ − 〈T̂〉)2

[
Âα − 〈Âα〉, Âβ − 〈Âβ〉

]〉
= fαβ

γ
〈

(T̂ − 〈T̂〉)2Âγ

〉
� fαβ

γ〈Âγ〉Δ(T2) ≈ 0,

where in the third line we have neglected higher order terms, we notice that the matrix of
Poisson brackets Δi j = {χi,χ j}, where χi include first order constraints and the gauge fixing
conditions (2.7), is actually off-block diagonal, with non-zero values only involving physical
constraints and gauge fixing conditions. This, together with the fact that the n(n − 1)/2 remain-
ing variables have weakly vanishing Poisson brackets with the gauge fixing constraints (which
can be proven in an analogous way), shows that the Dirac brackets

{ f , g}Dirac = { f , g} − { f ,χi}Δi j{χ j, g}, Δi j = (Δ−1)i j (2.8)

for the n(n − 1)/2 remaining variables are identical to the Poisson brackets introduced above.
Notice that the remaining moments must, at this point, be real, contrary to what may happen
for moments of P̂ (see for instance [15, 17]) or for the expectation value of T̂ itself (see [17]).

Once a Zeitgeist has been chosen, for instance T = 〈T̂〉 as specified above, one looks for
the remaining gauge flow that preserves the gauge fixing conditions and, through that, one
constructs relational quantities of the form 〈Âα〉 ◦ T−1 and Δ(AαAβ) ◦ T−1. These observables
are transient in nature, since they can only be meaningful as long as the clock does not reach
any turning point and maintains a monotonic evolution. When this is the case, one is forced to
move from one Zeitgeist to another one; correspondingly, these observables may ‘fall out of
fashion’. As such, these ‘fashionables’ can only be state dependent. We refer again to [16, 17]
for more details on this topic, and [18] for an explicit example of a model that does not have
a globally defined clock. In the case we will be interested in, we will choose a clock variable
with globally monotonic evolution, so that the Zeitgeist is valid globally.

2.3. Extending the effective approach to field theory

The effective approach to constrained systems is usually applied to quantum-mechanical sys-
tems of a finite number of degrees of freedom, often with a single constraint Ĉ. The generators
Âi of A then usually represent the quantum analogue of phase space coordinates for a classical
system one proposes to quantise (e.g. positions and momenta of a system of particles). We saw

12 This for instance happens if the quantum constraint is linear in the variable P̂, which will be a case of interest in the
following.
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above that the quantum phase space Ā can be identified with an (algebraically constructed) set
of quantum states on the algebra A, or with a Hilbert space that the elements of A could be
seen as acting on.

In this paper, we want to extend the application of this approach to a field theory setting.
A quantum field theory can be seen as the quantisation of a system with already classically
infinitely many degrees of freedom, and would therefore be associated with a very large observ-
able algebra AQFT (as is the starting point, e.g. in algebraic quantum field theory). We will
however restrict to a much smaller algebra representing only a few coarse-grained observables
we are interested in. That is, our algebra A will only be a very small subalgebra of the full
AQFT. It then follows that the quantum phase space Ā of interest to us is much smaller than
the field theory quantum phase space ĀQFT. The smaller Ā can then perhaps still be identified
with some Hilbert space, but this will not be the Hilbert space of the field theory HQFT, which
is much larger. Indeed there are in general different elements of HQFT that would be identified
with the same element of Ā in the effective approach; these are states that agree on expectation
values and moments of macroscopic observables even though their microscopic definition may
be different13.

Since the effective approach as reviewed here starts from the algebra A and a set of con-
straints only involving elements in A, the question of how the quantum phase space Ā might
sit inside a much larger Hilbert space is not of direct relevance for its application. In this sense,
we will not need to give an explicit construction of Ā as a subspace of HQFT which in our case
will be the GFT Fock space. Our interpretation is that Ā is a quantum phase space resulting
from a coarse graining of the field theory, which leads to an effective description characterised
by a few operators (among the infinitely many that can be constructed out of the field operators)
whose expectation values and moments coordinatise an effective quantum phase space.

3. Truncating the dynamics to one-body operators

In this paper we apply the effective approach outlined in the previous section to the dynamics
of GFT, in order to obtain a systematic semiclassical expansion that does not require specifying
either a particular state or a particular relational clock. Instead, we will only assume that the
state is sufficiently semiclassical for an h̄ expansion to make sense, and we will construct a
clock using the strategy of deparametrisation and gauge fixing by a Zeitgeist explained above.

As we already outlined at the end of the previous section, out of the infinitely many inde-
pendent observables that can be constructed out of the GFT field operators we will only study
a few ‘global’ one-body operators, and truncate the dynamics to a system of equations that
only makes reference to those operators. Clearly the choice of operators in our algebra is to
some extent determined by the dynamics of the theory. We implicitly assume that those few
global quantities are sufficient to capture the most relevant dynamical information of the field
theory. Such an assumption is conceptually similar to assuming a homogeneous cosmology in
general relativity, which amounts to the assumption that a few global quantities (the volume
of space, a homogeneous energy density, etc) capture the dynamics of the universe. Here we
see this truncation as representing a coarse-grained description of the field theory in which one
is only interested in some macroscopic variables, which is justified for states for which the
coarse-grained description is ‘reasonably close’ to the full microscopic dynamics of the field
theory. This viewpoint is then the quantum analogue of the classical perspective that a homoge-
neous, isotropic universe in classical cosmology is not a very symmetric solution to the Einstein

13 This is consistent with a coarse-graining interpretation of the reduction to an observable sub-algebra.
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equations but should rather be seen as obtained from averaging over inhomogeneities on small
scales [40, 41]. In the setting of quantum field theory, understanding the conditions for this
truncation to be valid is a more challenging problem.

3.1. Effective GFT quantum constraint

We now introduce the details of our effective approach to GFT dynamics. First, we introduce
the type of field theories we are studying. We consider GFT models with domain G4 × R,
where G is a Lie group representing gravitational degrees of freedom and R represents a scalar
matter field. Writing the field as ϕ(gI ,χ) the dynamics are then schematically defined by an
action

S[ϕ, ϕ̄] =
∫

d4g dχ ϕ̄(gI,χ)Dϕ(gI,χ) + I[ϕ, ϕ̄], (3.1)

where D is a differential operator on G4 × R and I[ϕ, ϕ̄] is the ‘interaction’ part of the action
which includes terms of higher than second order in the fields. We will focus on the free part
and mostly neglect the contribution from interaction terms in the following. Such an action
gives rise to equations of motion

Dϕ(gI ,χ) +
δI[ϕ, ϕ̄]
δϕ̄(gI,χ)

= 0 (3.2)

and the complex conjugate equation for ϕ̄, but rather than solving this local equation (either at
the full quantum level or in a mean-field approximation) we can multiply from the left with a
conjugate field and integrate to obtain∫

d4g dχ ϕ̄(gI,χ)Dϕ(gI,χ) + higher order = 0, (3.3)

i.e. the quadratic part of the GFT action has to vanish if we again neglect the effect of higher
order contributions. (3.3), with the higher order parts assumed to be negligible, is our starting
point.

We can now specify the form of D further in order to make the form of the resulting dynam-
ics more explicit. A minimal non-trivialD would include a ‘mass term’ and second derivatives
with respect to the group arguments, i.e.

D = m2 +
h̄2

4

4∑
I=1

ΔgI + λh̄2∂2
χ, (3.4)

where ΔgI is a Laplace–Beltrami operator on G, acting on the argument I (the reason for the
factor 1

4 will be clear shortly). (3.4) is a standard form for the kinetic term of a GFT model,
which has been studied in previous papers on GFT cosmology such as, e.g. [22, 42, 43]. It can
be motivated by results from GFT renormalisation which show that Laplace–Beltrami opera-
tors with respect to group arguments are generated by radiative corrections [44, 45], even if one
started with a pure mass term as is often done in the spin foam literature [46]. It could also be
motivated by an effective field theory expansion in derivatives, with the further assumption that
the theory should be invariant with respect to arbitrary translations in G4 × R so that explicit
dependence on gI or χ is excluded. We will consider (3.4) for now but discuss possible exten-
sions below. Notice the appearance of factors of h̄ associated to each derivative, which are
standard in quantum mechanics but often dropped in quantum field theory by setting h̄ = 1. In
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our setting we will perform a semiclassical expansion in powers of h̄ so it is important to keep
these powers manifest.

The discussion so far was classical. In the quantum theory, we would expect any physical
state |ψ〉 to satisfy(

m2 +
h̄2

4

4∑
I=1

ΔgI + λh̄2∂2
χ

)
ϕ̂(gI,χ)|ψ〉 = 0 (3.5)

but we will now replace this local condition by a much weaker, integrated version

Ĉ|ψ〉 =
∫

d4g dχ ϕ̂†(gI,χ)

(
m2 +

h̄2

4

4∑
I=1

ΔgI + λh̄2∂2
χ

)
ϕ̂(gI,χ)|ψ〉 = 0 (3.6)

which we can see as a constraint equation Ĉ|ψ〉 = 0 for a certain one-body operator Ĉ.
It is clear that (3.6) is only one out of an in principle infinitely long list of similar

conditions14, obtained by integrating the local equation of motion with different operators
from the left15. Having made this truncation, the next step is an expansion in powers of h̄ in
which the still fully-quantum mechanical condition (3.6) is replaced by a series of statements
about expectation values. This expansion is the essence of the effective approach which we are
importing into the GFT setting.

3.2. Defining the observable algebra A

In the discussion of section 2 we presented the construction of a quantum phase space as starting
from an observable algebra A generated by a finite number of elements; quantum constraints
were constructed from the elements of A. In the field theory setting of GFT, it is advantageous
to proceed in the opposite direction: having defined a constraint (3.6) we now introduce a
number of one-body operators whose dynamics are controlled by (3.6). This set should be large
enough to capture at least some physically interesting and non-trivially evolving quantities, but
still small enough to keep calculations under control. We will find that this balance between
making non-trivial statements about effective dynamics and keeping the complexity of the
approach under control will already impose quite stringent limitations on how many quantities
we can and should include. The basic operators we define are then the Âi appearing in (2.1),
i.e. the generators of A.

The form of (3.6) suggests the definitions

N̂ =

∫
d4 gdχ ϕ̂†(gI,χ)ϕ̂(gI,χ), (3.7a)

Λ̂I = −h̄2
∫

d4g dχ ϕ̂†(gI ,χ)ΔgI ϕ̂(gI,χ), (3.7b)

Π̂2 = −h̄2
∫

d4g dχ ϕ̂†(gI ,χ)∂2
χϕ̂(gI ,χ). (3.7c)

N̂ corresponds to the GFT number operator. As a further simplification we will assume that
the state |ψ〉 we are working with satisfies Λ̂I |ψ〉 = Λ̂J|ψ〉 for any I and J (which one might

14 It can be seen as the counterpart of the infinite set of Schwinger–Dyson equations.
15 Here, due to the linearity of (3.5), the constraints obtained by this procedure only relate operators constructed out
of the same number of field operators: each integrated constraint only involves n-body operators with the same n.
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interpret as a notion of isotropy). We will then simply write Λ̂ instead of Λ̂I , given that all
equations involving any of the operators Λ̂I will be independent of the label I, and the sum over
I will cancel the factor 1

4 in (3.9). With these considerations the quantum constraint operator
defined in (3.6) is given by

Ĉ = m2N̂ − Λ̂− λΠ̂2 . (3.8)

We will later replace the operator equation Ĉ|ψ〉 = 0 by a series of constraints for expecta-
tion values and higher moments, based on the effective approach introduced in section 2. This
set of equations corresponds to a semiclassical expansion in powers of h̄. At lowest order h̄0,
we have the non-trivial requirement that the sum of expectation values

C = 〈Ĉ〉 = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉 (3.9)

should vanish.
The one-body operators we have defined so far all commute with each other, and thus are

not governed by any non-trivial dynamics. We therefore also introduce a one-body operator

X̂ =

∫
d4g dχχϕ̂†(gI ,χ)ϕ̂(gI,χ) (3.10)

which we will interpret as corresponding to the value of a matter scalar field (summed over
all quanta in a state, since this is an extensive quantity). If we assume the commonly used
canonical commutation relations

[ϕ̂(gI,χ), ϕ̂†(g′
I,χ

′)] = δ(χ− χ′)
∫

dh
4∏

I=1

δ(gIh(g′
I)
−1) (3.11)

for the field operators, where the slightly unusual integration over h ensures that this commu-
tator is compatible with the gauge invariance property [22]

ϕ̂(gI ,χ) = ϕ̂(gIh,χ) ∀ h ∈ SU(2), (3.12)

we find

[X̂, Π̂2] = 2ih̄

(
−ih̄

∫
d4g dχ ϕ̂†(gI,χ)∂χϕ̂(gI ,χ)

)
= 2ih̄Π̂1 (3.13)

so that Π̂1 defined by this equation also needs to be added to our algebra of one-body operators.
We then also find

[X̂, Π̂1] = ih̄N̂, (3.14)

while all other commutators among quantities we have considered so far (including all com-
mutators of N̂ or Λ̂) are zero. We also add a one-body operator K̂ which has a non-trivial
commutator with Λ̂ but commutes with all other operators, such that the full set of opera-
tors forms a closed algebra. We will interpret the operator K̂ as corresponding to a notion of
extrinsic curvature. The precise form of the commutator is unspecified for now; later on, we
will constrain it by physical arguments and find explicit realisations of such an operator in
particular examples.

The six one-body operators we have defined provide the basis for the extraction of effective
cosmological dynamics. The operators are subject to a single constraint (3.8). In general, it is
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easy to find examples of systems of one-body operators subject to more than one constraint16,
but the specific form of the equations of motion and the algebra defined above guarantee that
(3.8) is the only constraint that involves operators in the algebra alone. Indeed, consider an
action on (3.5) from the left resulting in an integrated constraint which features an operator
included in the above algebra but different from N̂, Λ̂, and Π̂2 (e.g. K̂). This new constraint
would inevitably involve also new operators whose matrix elements depend both on the group
and the scalar field variables, which are however not included in the algebra of operators
of interest. In this sense, we are considering a minimal self-consistent set of operators and
dynamical relations.

Notice again that in this approach there is no dependence on any time parameter, nor a
viewpoint that any of these operators define by themselves a notion of relational observable.
Any notion of relational dynamics will only arise from comparing the dynamics of these oper-
ators to each other. Importantly, and in line with the philosophy of the effective approach, we
make no explicit assumption about the quantum state, only that it is sufficiently semiclassi-
cal (with respect to these global observables). We do however see our approximation (of not
solving local field equations but only demanding that our one-body operators satisfy certain
‘averaged’ relations) as an implicit condition on the quantum state.

3.3. Fixing the free commutator by analogy with classical Friedmann cosmology

The lowest-order truncation to the full quantum constraint would be to only require that the
expectation value of the constraint vanishes. This leads to the constraint

C = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉 ≈ 0 (3.15)

that we already defined in (3.9). At the same level of truncation, the dynamics of our six quan-
tum one-body operators can be reduced to the dynamics of the expectation values of these
operators. The resulting dynamical system is then equivalent to a classical constrained sys-
tem: the expectation values represent phase space variables subject to a single Hamiltonian
constraint. The constraint generates gauge transformations, which we will assume can be inter-
preted as reparametrisation in time or as the time evolution flow generated by a Hamiltonian
built from this constraint.

We can then demand as a minimal requirement that this system corresponds to the dynamics
of a homogeneous isotropic FLRW universe in general relativity or a modified version of it
which includes higher-curvature corrections. We will use this minimal requirement to fix the
so far unspecified commutator between Λ̂ and K̂.

The flow generated by (3.15) is

〈N̂〉′(t) = 〈Π̂1〉′(t) = 〈Π̂2〉′(t) = 〈Λ̂〉′(t) = 0 (3.16)

so that we immediately have four constants of motion, and

〈X̂〉′(t) = −2λ〈Π̂1〉(t), 〈K̂〉′(t) =
{
〈Λ̂〉, 〈K̂〉

}
(t). (3.17)

As we have stated when introducing it, the variable X̂ represents a matter scalar field whose
value is summed over all quanta in a GFT state. Normally we would have to worry about the

16 For instance, consider a hypothetical GFT model with quantum field equation ( f (gI ,χ) + 1)ϕ̂(gI ,χ) = 0, and con-
sider the operators N̂, F̂+ =

∫
d4g dχ ϕ̂†(gI ,χ) f (gI ,χ)ϕ̂(gI ,χ) and F̂− =

∫
d4g dχ ϕ̂†(gI ,χ) f−1(gI ,χ)ϕ̂(gI ,χ). The

equations of motion would then imply two separate constraints F̂+ + N̂ = 0 and N̂ + F̂− = 0.
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fact that this is an extensive variable and perhaps divide by the average particle number to
obtain an intrinsic notion of matter scalar field. In our framework here, the variable 〈N̂〉 is
always a constant of motion, since the operator N̂ commutes with all other one-body operators
we consider, hence we do (for now) not have to worry about the distinction between intensive
and extensive quantities.

An immediate consequence from (3.16) and (3.17) is then that the evolution of 〈X̂〉 is
monotonic if we assume that the expectation value 〈Π̂1〉 does not vanish, indeed we have

〈X̂〉(t) = 〈X̂〉(0) − 2λ〈Π̂1〉(0)t. (3.18)

〈X̂〉 can then be seen as a good clock, very similar to the way massless scalar fields often appear
as clocks in quantum gravity and quantum cosmology.

Let us now compare this system explicitly with the dynamics of a flat FLRW universe filled
with a massless scalar field in general relativity. For this system, the Hamiltonian is (see, e.g.
[47])

HGR = N

(
−2πG

3
p2

a

a
+

p2
ϕ

2a3

)
, (3.19)

where a is the scale factor, pa is its canonical momentum and pϕ is the conjugate momentum
of the scalar field ϕ. A convenient lapse choice, N = a3, transforms this to the Hamiltonian

HGR|N=V = −6πGV2 p2
V +

p2
ϕ

2
, (3.20)

where we switch to a volume variable V = a3 with conjugate momentum pV . The equation of
motion for the scalar field is now ϕ̇ = pϕ and pϕ is a constant of motion, a similar form to
the first equation in (3.17). This similarity would motivate further the identification of 〈X̂〉 as
corresponding to a matter scalar field. How about the equations for the spacetime geometry?
We have

V̇ = {V ,HGR|N=V} = −12πG(V pV )V (3.21)

so that, taking into account that VpV is clearly a constant of motion, on-shell we have V̇ = cV
for some constant of motion c, leading to exponential solutions. Very similarly we have

ṗV = {pV ,HGR|N=V} = 12πG(V pV)pV (3.22)

and again exponential solutions (with inverse sign in the exponent, again ensuring that VpV is
a constant of motion). Notice that from the vanishing of (3.20) we have V pV = ±pϕ/

√
12πG

where the sign is determined by initial conditions.
The explicit solutions for the scalar field ϕ and extrinsic curvature pV are then given by

ϕ(t) = pϕt + ϕ(0) , (3.23a)

pV (t) = pV (0) exp(±
√

12πGpϕt) , (3.23b)

where pϕ and the sign ± are constants of motion. This explicit form shows in particular that
ϕ and pV are globally monotonic functions, and so either of them could be used as a clock for
the other degrees of freedom. If we are only interested in comparing the variables ϕ and pV to
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each other, we can give the relation between the two as

(ϕ ◦ p−1
V )(pV) = ± 1√

12πG
log

(
pV

pV (0)

)
+ ϕ(0) , (3.24a)

(pV ◦ ϕ−1)(ϕ) = pV (0) exp
(
±
√

12πG(ϕ− ϕ(0))
)
. (3.24b)

Notice that pV cannot change sign, so the logarithm in the first relation is always well-defined.
We now want to reproduce these classical cosmological solutions, expressed in relational

language. Comparing (3.22) with the second equation in (3.17), if we assume that the quantity
〈K̂〉 is analogous to pV in the classical cosmological model, and hence represents extrinsic
curvature, dynamics analogous to those of general relativity will be obtained from assuming
that {

〈Λ̂〉, 〈K̂〉
}
∝ 〈K̂〉. (3.25)

In the example of general relativity, this proportionality is only given on-shell (identifying the
phase space variable VpV with a conserved quantity) so a priori it would make sense to assume
that also (3.25) only holds on-shell. However, the basic premise of our effective approach is to
assume that the commutator of two elementary variables is a linear combination of elementary
variables, as in (2.1). The proportionality factor in (3.25) then needs to be just a numerical
constant, which we will denote by α; we then add the commutator

[Λ̂, K̂] = ih̄αK̂ (3.26)

to our algebra of basic operators. This commutator would also suggest that 〈Λ̂〉 is analogous
to VpV in the classical theory, consistent with the fact that 〈Λ̂〉 is constant (cf (3.16)).

For completeness, we also discuss the most general case in which the commutator takes the
form

[Λ̂, K̂] = ih̄
∑
a∈V

αaâ, (3.27)

where V is a set of labels (‘variables’), V = {N,Π1,Π2, X,Λ, K}. Interestingly, even this most
general form can be solved exactly, with the solution to (3.17) in the case of αK �= 0 given by

〈K̂〉(t) =
(

x
αK

− αX

α2
K

2λ〈Π̂1〉(0)

)
(eαKt − 1) + 〈K̂〉(0)eαKt +

αX

αK
2λ〈Π̂1〉(0)t (3.28)

and in the case αK = 0 by the expression

〈K̂〉(t) = 〈K̂〉(0) + xt − αXλ〈Π̂1〉(0)t2, (3.29)

where in both cases we defined

x = αN〈N̂〉(0) + αΠ1〈Π̂1〉(0) + αΠ2〈Π̂2〉(0) + αX〈X̂〉(0) + αΛ〈Λ̂〉(0) . (3.30)

This result would suggest that a more general form of the commutator between Λ̂ and K̂ could
lead to a modified effective cosmology, different from the classical case. In principle, this is
what we would expect: the effective cosmology of a quantum gravity theory such as GFT
does not need to exactly reproduce classical Friedmann cosmology, and high-energy correc-
tions such as those leading to a bounce [24, 29, 48] are expected and desirable. In the closely
related setting of LQC, the expression for the extrinsic curvature also receives such corrections
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compared to the classical case, and is proportional to arctan(exp(±
√

12πGφ)) rather than the
classical exponential (3.24b) [49, 50], and these corrections are responsible for the resolution
of the cosmological singularity.

However, if we at least require the resulting effective dynamics to reduce to classical cos-
mology when curvature is low, so that there is a regime for t in which 〈K̂〉(t) asymptotically
approaches eαKt � 1, we do obtain quite stringent constraints from (3.28): we must have

x = αX = 0 . (3.31)

The first condition x = 0 can be satisfied by fine-tuning initial conditions or, if one requires it
to hold for generic initial states, by setting

αN = αΠ1 = αΠ2 = αΛ = 0 (3.32)

reducing us to the case (3.26), which we will therefore assume in the following. It would be
interesting to study in future work whether the more general solution (3.28) can be given a
physical interpretation perhaps in terms of a modified theory of gravity.

We conclude this section with a few remarks about the operator K̂. Firstly, the above dis-
cussion tentatively puts forward an identification of K̂ with the extrinsic curvature. However, it
should also be possible to motivate the operator representing extrinsic curvature by considering
the microscopic degrees of freedom. Note that such a motivation from microscopic degrees of
freedom has been employed previously in GFT where the definition of the volume operator
has been imported from LQG [24, 48]. In our framework this would mean that we are able to
specify the integral kernel in the definition

K̂ =

∫
d4g d4g′ dχ dχ′ ϕ̂†(gI ,χ)K(gI, g′

I,χ,χ′)ϕ̂(g′
I ,χ

′). (3.33)

Since such one-body operators describe local quantities from the perspective of an LQG spin
network, the identification of curvature degrees of freedom is not straightforward (see, e.g.
the discussion in [22]). A starting point could be the twisted geometries parametrisation of
the LQG phase space, which identifies a discrete analogue of extrinsic curvature for each spin
network link [51].

Secondly, it is not possible to find operators representing the algebra (3.26) on compact
spaces. To see that this is true, note that on a compact space the eigenbasis of the Laplacian
will be countable. Assume that we have Hermitian matrices Ki j and Λi j = Λiδi j representing
the algebra on this countable eigenbasis of the Laplacian. Then the commutator gives

(Λi − Λ j)Ki j = ih̄αKi j (3.34)

which implies that Ki j = 0. In our GFT setting, this argument would imply that a representation
of (3.26) only exists if the Lie group G chosen to define the GFT model is non-compact.

Let us stress, however, how crucial the specific form of the microscopic dynamics is also
for this interpretation of K̂ as an extrinsic curvature operator. Indeed, as an example consider,
instead of (3.5), the constraint equation(

m(gI)2 +
h̄2

4

4∑
I=1

ΔgI + λ(gI)h̄2∂2
χ

)
ϕ̂(gI,χ)|ψ〉 = 0 , (3.35)
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where both m(gI)2 andλ(gI) are non-trivial17 and non-singular functions of the group variables,
such that their ratio is a constant, m(gI)2/λ(gI) = λ̃. We could then consider the one-body
quantum constraint

ˆ̃C = N̂ − ˆ̃Λ− λ̃Π̂2 (3.36)

with

ˆ̃Λ = −h̄2
∫

d4g dχ ϕ̂†(gI,χ)m(gI)
−2ΔgI ϕ̂(gI,χ). (3.37)

The dynamics generated by the expectation value of the above constraint would be the same

as before (putting m2 = 1), thus implying that an operator ˆ̃K such that[
ˆ̃Λ, ˆ̃K

]
= ih̄α ˆ̃K (3.38)

could be interpreted classically as extrinsic curvature. This operator, however, would be sub-

stantially different from K̂ introduced above: since ˆ̃Λ would not be diagonal on the Laplacian

eigenbasis, one could not exclude a representation of ˆ̃K on a compact Lie group G on the basis
of the argument given above for K̂.

This should make clear that the precise geometric interpretation of both fundamental and
effective observables is a non-trivial matter and should be taken with some caution.

4. One-body relational cosmology

We now apply the effective approach reviewed in section 2 to the one-body GFT model
introduced in section 3.18 The quantum constraint is given in (3.8),

Ĉ = m2N̂ − Λ̂− λΠ̂2 , (4.1)

and the quantum algebra is generated byA = {â}a∈V , whereV is the set of labels introduced in
(3.27). In the following it sometimes proves useful to make an identification Π0 = N allowing
for a very compact notation. This further necessitates the introduction of the symbolΠ−1 which
however will always be multiplied by zero.

Following the arguments from classical cosmology, we now assume that the non-trivial
commutation relations of the algebra are given by

[X̂, Π̂1] = ih̄N̂, (4.2a)

[X̂, Π̂2] = ih̄2Π̂1, (4.2b)

[Λ̂, K̂] = ih̄αK̂. (4.2c)

We will assume that an expansion in orders of moments corresponds to an expansion in orders
of h̄, as anticipated, and truncate the quantum phase space at second order moments. The result-
ing quantum phase space is therefore 27-dimensional, consisting of six expectation values and

17 The dependence of m2 and λ on the group variables is generally expected for GFTs constructed by path-integral
identification with simplicial gravity models minimally coupled with a free massless scalar field [52]. This dependence
actually encodes the non-trivial coupling between matter and geometry degrees of freedom.
18 We performed the calculation using Wolfram Mathematica. A Mathematica package and a program containing the
calculations of this section are available at https://gitlab.com/qggftc/effective-constraints.
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21 moments. The Poisson structure on the quantum phase space is given by the Poisson bracket
induced by the commutator as in (2.3). We collect the explicit form of the resulting Poisson
structure in appendix A. The seven effective constraints, as defined in (2.4), are given by

C = m2〈N̂〉 − 〈Λ̂〉 − λ〈Π̂2〉, (4.3a)

CN = m2Δ(N2) −Δ(NΛ) − λΔ(NΠ2), (4.3b)

CΠ1 = m2Δ(NΠ1) −Δ(Π1Λ) − λΔ(Π1Π2), (4.3c)

CΠ2 = m2Δ(NΠ2) −Δ(Π2Λ) − λΔ(Π2
2), (4.3d)

CX = m2Δ(NX) −Δ(XΛ) − ih̄λ〈Π̂1〉 − λΔ(Π2X), (4.3e)

CΛ = m2Δ(NΛ) −Δ(Λ2) − λΔ(Π2Λ), (4.3f)

CK = m2Δ(NK) +
ih̄
2
α〈K̂〉 −Δ(ΛK) − λΔ(Π2K). (4.3g)

Although the algebra considered here does not have any canonically conjugate pair, we will
nevertheless closely mimic the treatment of a system with a canonical pair as discussed in
section 2. As a ‘clock’ we choose the operator K̂ and as the ‘conjugate’ we choose Λ̂. From
the effective constraints C and Ca, a ∈ V , it is then possible to eliminate the expectation value
〈Λ̂〉 and the six moments Δ(Λa), a ∈ V . Likewise, we choose a gauge in which all but one of
the moments of the operator K̂ vanish. This can be achieved by the gauge fixing conditions

Ga = Δ(Ka) = 0, a ∈ V\{Λ}. (4.4)

To see that this does fix the gauge sufficiently, we compute the following Poisson brackets for
any a ∈ V\{Λ} (with the identification Π0 = N),

{Ga, C} ≈ 0, (4.5a)

{Ga, CΠn} ≈ (1 − δaK)α〈K̂〉
(
Δ(Πna) − δaX

ih̄
2

n〈Π̂n−1〉
)

(4.5b)

{Ga, CX} ≈ (1 − δaK)α〈K̂〉
(
Δ(Xa) + δaΠn

ih̄
2

n〈Π̂n−1〉
)

, (4.5c)

{GΠn , CΛ} ≈ α〈K̂〉
(
m2Δ(NΠn) − λΔ(Π2Πn)

)
, (4.5d)

{GX, CΛ} ≈ α〈K̂〉
(

m2Δ(NX) − λΔ(Π2X) − 3ih̄λ〈Π̂1〉
)

, (4.5e)

{GK, CΛ} ≈ 2ih̄α2〈K̂〉2, (4.5f)

{Ga, CK} ≈ 0. (4.5g)

From this we see that both C and CK remain unfixed by our choice of gauge. However,
it turns out that only C has a non-trivial flow on the gauge-fixed constraint hypersur-
face. Therefore, we may study the flow generated by C on the gauge-fixed constraint
hypersurface and interpret this as the dynamics of the system. After imposing the
seven effective constraints (cf (4.3)) and the five gauge fixing conditions (cf (4.4)), the
reduced quantum phase space has coordinates given by the 27 − 7 − 5 = 15 variables
Ṽ = {〈N̂〉, 〈Π̂1〉, 〈Π̂2〉, 〈X̂〉, 〈K̂〉,Δ(N2),Δ(NΠ1),Δ(Π2

1),Δ(NΠ2), Δ(Π1Π2), Δ(Π2
2),Δ(NX),

Δ(Π1X),Δ(Π2X),Δ(X2)}.
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We now study the flow generated by the constraint which has not been fixed by our choice
of gauge. That is, we are interested in solving the set of differential equations

a′(t) = {a, C}(t) , a ∈ Ṽ . (4.6)

The equations with non-vanishing right-hand side are given by

〈X̂〉′(t) = −2λ〈Π̂1〉(t) , (4.7a)

〈K̂〉′(t) = α〈K̂〉(t) , (4.7b)

Δ(NX)′(t) = −2λΔ(NΠ1)(t) , (4.7c)

Δ(Π1X)′(t) = −2λΔ(Π2
1)(t) , (4.7d)

Δ(Π2X)′(t) = −2λΔ(Π1Π2)(t) , (4.7e)

Δ(X2)′(t) = −4λΔ(Π1X)(t) . (4.7f)

The variables which are non-constant under the gauge flow have the following dependence on
the gauge flow parameter:

〈X̂〉(t) = 〈X̂〉(0) − 2λ〈Π̂1〉(0)t , (4.8a)

〈K̂〉(t) = 〈K̂〉(0)eαt , (4.8b)

Δ (NX) (t) = Δ (NX) (0) − 2λΔ (NΠ1) (0)t , (4.8c)

Δ (Π1X) (t) = Δ (Π1X) (0) − 2λΔ
(
Π2

1

)
(0)t , (4.8d)

Δ (Π2X) (t) = Δ (Π2X) (0) − 2λΔ (Π1Π2) (0)t , (4.8e)

Δ
(
X2

)
(t) = Δ

(
X2

)
(0) − 4λΔ (Π1X) (0)t + 4λ2Δ

(
Π2

1

)
(0)t2 . (4.8f)

All the remaining variables remain constant along the flow. It is interesting to note that both

(4.8a) and (4.8b) can be inverted. Hence both
〈
X̂
〉

and
〈

K̂
〉

could be viewed as a ‘clock’

from a relational point of view, in the sense that their values can be used to parametrise all
other dynamical variables. Of course, there is still a difference between the two since we used

a gauge fixing of moments following the perspective presented in section 2 in which
〈

K̂
〉

is

seen as the clock, so that in our gauge the variable X has non-trivial quantum fluctuations. If we
want to interpret (4.8a) and (4.8b) as representing effective cosmological dynamics constructed
from our set of one-body operators, which would be analogous to the classical Friedmann cos-

mology discussed in section 3.3, we could view either
〈
X̂
〉

as a function of
〈

K̂
〉

or vice versa;

since the relation between the two is a globally invertible function both functional relations are
equivalent.

Concretely, we can express
〈
X̂
〉

as a function of
〈

K̂
〉

,

( 〈
X̂
〉
◦
〈
K̂
〉−1

)(〈
K̂
〉)

=
〈
X̂
〉

(0) −
2λ

〈
Π̂1

〉
α

log

⎛⎝
〈

K̂
〉

〈
K̂
〉

(0)

⎞⎠ (4.9)
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which can be compared with the classical solution we found in section 3.3,

(ϕ ◦ p−1
V )(pV) = ϕ(0) ± 1√

12πG
log

(
pV

pV (0)

)
. (4.10)

The classical solution for a flat FLRW cosmology is hence reproduced by the solutions
(4.8a) and (4.8b) of our effective one-body dynamics if we identify

〈
X̂
〉

with a constant mul-

tiple of ϕ and
〈

K̂
〉

with a constant multiple of pV . The ratio λ/α, which is determined by the

GFT dynamics and by the operators appearing in the algebra (4.2), corresponds to Newton’s
constant in classical cosmology, with the relation between the two determined by the con-

served quantity
〈
Π̂1

〉
and the identification between

〈
X̂
〉

and the classical ϕ. (Recall from the

discussion below (3.17) that we need to define an intensive quantity from the extensive
〈
X̂
〉

in order to justify the interpretation as a physical scalar field.) If one identifies the quotient〈
X̂
〉
/
〈
Π̂1

〉
of two extensive quantities with the classical scalar field ϕ and the parameters λ

and/or α are chosen appropriately, arbitrary initial conditions of our effective equations lead
to a solution of classical FLRW cosmology. This is the analogue of the recovery of (modi-
fied) Friedmann cosmologies in previous work on GFT cosmology such as [24, 29, 48], where
a similar identification of parameters of the fundamental theory with an emergent Newton’s
constant is made19.

An interesting property of the system of equations (4.8a)–(4.8e) is that expectation val-
ues and moments are entirely decoupled: the inclusion of O(h̄) moments does not alter at all
the dynamics of the original variables in V which correspond to O(h̄0). Indeed, the solutions
(4.8a) and (4.8b) are exactly the ones already discussed in section 3.3 where we fixed the form
of the commutator involving K̂. This behaviour is due to the linearity of the initial constraint
in all variables, and one might see it as representing an unphysical aspect of the truncation we
have been using. Indeed, it would seem to imply that semiclassicality properties of the fun-
damental state are mostly irrelevant to the extraction of interesting cosmological dynamics.
We should point out, however, that our results here are fully compatible with previous deriva-
tions of effective cosmological Friedmann equations from GFT dynamics as, e.g. given in [29]:
also in this previous work, effective Friedmann equations can be derived for general states and
only depend on expectation values of a few elementary operators, without any dependence on
quantum fluctuations or higher moments in general.

The criterion of semiclassicality, as studied in terms of relative fluctuations in [28, 29],
should then be seen as an additional requirement for a meaningful physical interpretation of
the resulting effective Friedmann equations (derived from the dynamics of expectation values
of relevant operators), even if these equations themselves are unaffected by the magnitude of
quantum fluctuations. A quantum cosmology with large quantum fluctuations in macroscopic
cosmological observables would not describe the universe we observe, even if such observables
happen to satisfy the correct (Friedmann-like) dynamics in mean value. In this respect, it is
important to emphasise that if relative quantum fluctuations are required to be small at small

curvature (|
〈

K̂
〉

(t)/
〈

K̂
〉

(0)| � 1), in our context they turn out to be also small when the

curvature is large (|
〈

K̂
〉

(t)/
〈

K̂
〉

(0)| � 1). Both these limits are characterised by |t| →∞,

19 That gravitational and, more generally, effective field theory couplings like Newton’s constant or the cosmologi-
cal constant are in fact a function of microscopic parameters of the underlying non-spatiotemporal quantum gravity
dynamics is something to be expected in any formalism in which spacetime itself is emergent.
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so that the asymptotic behaviour of the relative fluctuations

σ2
aa′ =

Δ(aa′)
〈â〉 〈â′〉 (4.11)

is identical20, as we can see explicitly from (4.8a)–(4.8e). The fact that quantum fluctuations
can be relatively small even when curvature is large is a feature shared with LQC models
[32, 33]. A crucial property of our approach is that the (averaged) particle number remains
constant, as we have emphasised several times above, in sharp contrast to previous results on
quantum fluctuations in GFT cosmology [28, 29] where the (average) particle number had a
non-trivial relational evolution21. In these works, it was shown that the evolution of the particle
number crucially affects the evolution of relative quantum fluctuations, suppressing them at
large volume (when N � 1) and possibly enhancing them at small volume if N � 1. This
mechanism of suppression and enhancement of fluctuations is of course absent here, which
may be one of the reasons why quantum fluctuations can remain small even in a high curvature
regime, provided they are small at low curvature.

5. Conclusions and discussion

In this paper we presented a novel way to obtain an effective cosmological dynamics from
GFT, motivated by the interpretation of cosmology as quantum gravity hydrodynamics [19, 22].
Contrary to what was done in previous works, this approach does not depend explicitly on a
specific choice of states. In order to achieve this, we extended the effective approach developed
in [15–17] to describe the behaviour of a finite set of collective GFT observables, assumed
to capture macroscopic cosmological physics. That is, we extended this approach to a field-
theoretic setting. The dynamics of these observables are governed by a one-body constraint,
obtained by integrating the microscopic equation of motion of the model. Similarly to [24]
and many subsequent works, this model includes matter in the form of a minimally coupled
massless scalar field, and is characterised by negligible interactions. This is reflected also at
the level of our algebra of one-body operators of interest, which splits into a geometric two-
dimensional subalgebra and a four-dimensional one generated by ‘matter observables’ and the
number operator.

From the algebra of operators and the one-body constraint we obtained a quantum phase
space which can be coordinatised by a finite set of expectation values and moments. We consid-
ered only moments up to second order in powers of h̄, obtaining an effectively 27-dimensional
space, described by six expectation values and 21 moments. At this order, the quantum con-
straint produces seven effective constraints, which in turn generate six independent gauge flows
in the truncated quantum phase space. We fixed five of these six gauge flows by requiring that
the operator K̂ that we identify classically with the extrinsic curvature has vanishing moments.
The quantum phase space variables related to the other operator generating the geometric subal-
gebra were then expressed in terms of the remaining variables through the effective constraints.

20 Notice that relative quantum fluctuations are not necessarily small at all times, since they may diverge when the
denominator of (4.11) goes to zero. This does not signal that the system is affected by strong quantum fluctuations, but
rather that they should not be measured by relative quantities. A more sensible option in this case would be to define
a threshold below which fluctuations are considered small, see [53] for a more detailed discussion.
21 Notice again that these previous results refer to different notions of relational dynamics in GFT. The number operator
in [29] is the ‘time-dependent version’ of (3.7a). On the other hand, the (relational) number operator in [25] is the same
as in (3.7a), although relational evolution is defined only for a specific choice of states (and with respect to a different
relational clock).
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In this way we obtained an effectively reduced phase space parametrised by 15 variables: 14
expectation values and moments related to the four-dimensional ‘matter’ subalgebra and one

expectation value
〈

K̂
〉

. We could use the remaining gauge flow to express the evolution of the

14 non-geometric variables in terms of
〈

K̂
〉

. Since K̂ by construction has vanishing quantum

fluctuations (they are gauge-fixed to zero), this amounts to an effective relational description of
the evolution of matter degrees of freedom with respect to the extrinsic curvature clock. This
is a refreshing change of perspective for cosmological applications of relational dynamics in
quantum gravity, where it is usually matter degrees of freedom that are used as physical clocks
(and rods) [54]. In the framework we developed, choosing a geometric clock was the most nat-
ural choice, since an analogous elimination of matter variables resulting in a reduced quantum
phase space of only geometric quantities (and possibly the expectation value of a matter clock)
could not be achieved by the methods explained above.

The way relational evolution is obtained in this framework emphasises the idea that in order
to define a notion of relational dynamics in an emergent spacetime context as the one we con-
sidered here, some prior coarse-graining process is necessary [25]. Here, this coarse-graining
is represented by the assumption that the physics of the system is adequately captured by a
finite set of macroscopic observables and one collective quantum constraint. This is however
still not enough to define a ‘good clock’ and consequently a notion of relational dynamics anal-
ogous to the classical theory: it is also necessary to be able to find a gauge (the ‘Zeitgeist’ of
[16, 17]) in which quantum fluctuations of the clock can be set to zero.

At the level of expectation values, the resulting relational evolution is in agreement with
a classical flat FLRW universe. Interestingly, this result does not depend on the magnitude of
quantum fluctuations which evolve independently and, if they are required to be relatively small
at low curvature, remain small at high curvature. We argue that this feature, shared also with
LQC models [32, 33], may be due to the constancy of the number operator. In the framework
presented in this paper, the number operator is constant because the quantum constraint is a
one-body operator and, as such, trivially commutes with the number operator. In most previous
attempts to extract cosmological physics from GFT the particle number is time-dependent, and
this time dependence can crucially enhance or suppress quantum fluctuations [28, 29].

The methods employed in this work, and thus all the aforementioned results, rely on two
important assumptions.

The first one is related to the choice of states. While we remark again that no specific state
choice is necessary within this framework, the states we considered are required to satisfy two
important conditions: (i) they should be such that the system is characterised by a few macro-
scopic observables (hydrodynamiccondition); and (ii) moments of operators computed in these
states should naturally produce a hierarchy characterised by different powers of h̄ (semiclas-
sicality condition). Without the first requirement one would have to take into account the fact
that a field theory is characterised by infinitely many operators and ‘constraints’ (the quantum
equations of motion), while without the second one would have to consider the infinitely many
moments coordinatising the quantum phase space, even for finite-dimensional systems.

The second assumption is related to the choice of the fundamental observables, which
depends on the features of the physical system being considered. In our case, we introduced the
‘curvature operator’ K̂ by requiring it to satisfy certain commutation relations which classically
allow for a cosmological interpretation of the system. However, a microscopic description of
such an operator is missing and requires further studies. In fact, we showed that such an opera-
tor cannot be represented on a compact group, suggesting that, at least for the type of dynamics
we defined here (which is very much simplified compared to the one corresponding to more
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realistic quantum gravity models), GFT models with non-compact ‘gravitational gauge group’
would be preferred.

Even when these assumptions are made, there are some general limitations to the framework
used here. Computations become more and more involved as either the number of fundamental
elements of the quantum algebra increase or the commutation relations between the opera-
tors become more complicated (e.g. non-linear). These computational problems are the main
reason why considering a system of operators and dynamics for which the particle number
can vary is complicated. Indeed, in order to do so, one would have to consider an additional
n-body constraint (n > 1) with non-trivial commutation relations with the number operator.
An example would be, of course, a dynamical constraint incorporating the contribution from
GFT interactions. This would however force us to include many other operators (with possibly
more complicated commutation relations) in order to obtain a closed algebra, which would
significantly enlarge the quantum phase space.

Despite these limitations, the method we employed allowed us to (i) obtain effective cos-
mological dynamics from GFT, (ii) gain insights about the notion of relational dynamics in an
emergent quantum gravity scenario, and (iii) study the impact of quantum fluctuations, by mak-
ing only broad assumptions on the states of interest. The relative simplicity in which the above
results were obtained within a well-defined framework illustrates the importance of effective
methods for extracting continuum physics from quantum gravity, and in particular suggests
that the connection between GFTs (in their hydrodynamic approximation) and cosmological
physics may go beyond the choice of specific (condensate) states.
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Appendix A. Quantum Poisson structure

In this section we collect the non-vanishing Poisson brackets of the quantum phase space con-
sidered in section 4. In the formulas below we identify N = Π0 and introduce the ‘fake’ variable
Π−1 = 0. Unless specified otherwise, a ∈ {N,Π1,Π2, X,Λ, K}.

Using (2.6) one can verify the following commutation relations which we computed using
Wolfram Mathematica,{〈

Λ̂
〉

,Δ (Ka)
}
= (1 + δaK)αΔ (Ka) , (A1){〈

K̂
〉

,Δ (Λa)
}
= −(1 + δaΛ)αΔ (Ka) , (A2){〈

X̂
〉

,Δ (Πna)
}
= (1 + δaΠn)nΔ (Πn−1a) , a �= Πm�=n , (A3)
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{〈
X̂
〉

,Δ (ΠnΠm)
}
= nΔ (Πn−1Πm) + mΔ (ΠnΠm−1) , (A4){〈

Π̂n

〉
,Δ (Xa)

}
= −(1 + δaX)nΔ (Πn−1a) , (A5)

{Δ (ΛX) ,Δ (Ka)} = (1 + δaK)α
〈

K̂
〉
Δ (Xa) , a �= Πn , (A6)

{Δ (ΛX) ,Δ (Πna)} = (1 + δaΠn)n
〈
Π̂n−1

〉
Δ (Λa) , a �= K,Πm�=n , (A7)

{Δ (ΛX) ,Δ (KΠn)} = n
〈
Π̂n−1

〉
Δ (ΛK) + α

〈
K̂
〉
Δ (XΠn) , (A8)

{Δ (ΛX) ,Δ (ΠnΠm)} = n
〈
Π̂n−1

〉
Δ (ΛΠm) + m

〈
Π̂m−1

〉
Δ (ΛΠn) , (A9)

{Δ (KX) ,Δ (Λa)} = −(1 + δaΛ)α
〈

K̂
〉
Δ (Xa) , a �= Πn , (A10)

{Δ (KX) ,Δ (Πna)} = (1 + δaΠn)n
〈
Π̂n−1

〉
Δ (Ka) , a �= Λ,Πm�=n , (A11)

{Δ (KX) ,Δ (ΛΠn)} = n
〈
Π̂n−1

〉
Δ (KΛ) − α

〈
K̂
〉
Δ (XΠn) , (A12)

{Δ (KX) ,Δ (ΠnΠm)} = n
〈
Π̂n−1

〉
Δ (KΠm) + m

〈
Π̂m−1

〉
Δ (KΠn) , (A13)

{Δ (ΛΠn) ,Δ (Ka)} = (1 + δaK)α
〈

K̂
〉
Δ (Πna) , a �= X , (A14)

{Δ (ΛΠn) ,Δ (Xa)} = −(1 + δaX)n
〈
Π̂n−1

〉
Δ (Λa) , a �= K , (A15)

{Δ (ΛΠn) ,Δ (KX)} = −n
〈
Π̂n−1

〉
Δ (Λa) + α

〈
K̂
〉
Δ (Πna) , (A16)

{Δ (KΠn) ,Δ (Λa)} = −(1 + δaΛ)α
〈

K̂
〉
Δ (Πna) , a �= X , (A17)

{Δ (KΠn) ,Δ (Xa)} = −(1 + δaX)n
〈
Π̂n−1

〉
Δ (Ka) , a �= Λ , (A18)

{Δ (KΠn) ,Δ (ΛX)} = −n
〈
Π̂n−1

〉
Δ (Ka) − α

〈
K̂
〉
Δ (Πna) , (A19){

Δ
(
K2

)
,Δ (Λa)

}
= −(1 + δaΛ)2α

〈
K̂
〉
Δ (Ka) , (A20){

Δ
(
Λ2

)
,Δ (Ka)

}
= (1 + δaK)2α

〈
K̂
〉
Δ (Λa) , (A21)

{Δ (ΛK) ,Δ (Ka)} = α
〈

K̂
〉
Δ (Ka) , a �= Λ , (A22)

{Δ (ΛK) ,Δ (Λa)} = −α
〈

K̂
〉
Δ (Λa) , a �= K , (A23){

Δ
(
X2

)
,Δ (Πna)

}
= (1 + δaΠn)2n

〈
Π̂n−1

〉
Δ (Xa) , a �= Πm�=n , (A24){

Δ
(
X2

)
,Δ (ΠnΠm)

}
= 2(n

〈
Π̂n−1

〉
Δ (ΠmX) + m

〈
Π̂m−1

〉
Δ (ΠnX)) , (A25)

{Δ (XΠn) ,Δ (Πma)} = (1 + δaΠm)m
〈
Π̂m−1

〉
Δ (Πna) , a �= X,Πl �=m , (A26)

{Δ (XΠn) ,Δ (ΠmΠl)} = m
〈
Π̂m−1

〉
Δ (ΠnΠl) + l

〈
Π̂l−1

〉
Δ (ΠnΠm) , (A27)
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{Δ (XΠn) ,Δ (Xa)} = −(1 + δaX)n
〈
Π̂n−1

〉
Δ (ΠnΠl) , a �= Πm , (A28)

{Δ (ΠnΠm) ,Δ (Xa)} = −(1 + δaX)(n
〈
Π̂n−1

〉
Δ (Πma) + m

〈
Π̂m−1

〉
Δ (Πna)) .

(A29)
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