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Abstract

Objective. Gated beam delivery is the current clinical practice for respiratory motion compensation in
MR-guided radiotherapy, and further research is ongoing to implement tracking. To manage intra-
fractional motion using multileaf collimator tracking the total system latency needs to be accounted
for in real-time. In this study, long short-term memory (LSTM) networks were optimized for the
prediction of superior—inferior tumor centroid positions extracted from clinically acquired 2D cine
MRIs. Approach. We used 88 patients treated at the University Hospital of the LMU Munich for
training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated
at Fondazione Policlinico Universitario Agostino Gemelli were used as a second testing set (1.5 h). The
performance of the LSTMs in terms of root mean square error (RMSE) was compared to baseline
linear regression (LR) models for forecasted time spans of 250 ms, 500 ms and 750 ms. Both the LSTM
and the LR were trained with offline (offline LSTM and offline LR) and online schemes (offline+online
LSTM and online LR), the latter to allow for continuous adaptation to recent respiratory patterns.
Main results. We found the offline+online LSTM to perform best for all investigated forecasts.
Specifically, when predicting 500 ms ahead it achieved a mean RMSE of 1.20 mm and 1.00 mm, while
the best performing LR model achieved a mean RMSE of 1.42 mm and 1.22 mm for the LMU and
Gemelli testing set, respectively. Significance. This indicates that LSTM networks have potential as
respiratory motion predictors and that continuous online re-optimization can enhance their
performance.

1. Introduction

Magnetic resonance imaging guided radiotherapy (MR-guided RT) provides radiation-free and high soft tissue
contrast imaging, allowing for inter-fractional /intra-fractional motion management and treatment adaptation
(Paganelli et al 2018b, Kurz et al 2020). For tumors affected by respiratory motion such as lung, pancreatic or
liver and more generally for malignancies affected by inter-fractional anatomical changes, MR-guided RT offers
advantages, such as individualized planning and treatment thanks to its adaptation capabilities (Corradini et al
2019, Placidi et al 2020).

Both commercially available MR-linacs (Liney et al 2018), the MRIdian (ViewRay Inc., Oakwood Village,
Ohio, USA) and the Unity (Elekta AB, Stockholm, Sweden) provide the possibility to monitor intra-fractional
respiratory motion via 2D+t cine MR imaging (Green et al 2018, Jackson et al 2019, Menten et al 2020). For the
Unity, recent studies have investigated the usage of multileaf collimator (MLC)-tracking for intra-fractional
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motion management, showing its potential to increase the dose delivery accuracy (Menten et al 2016) and the
technical feasibility of its implementation (Glitzner et al 2019, Uijtewaal et al 2021). On the other hand,
automatic gated beam delivery by use of cine MRI has been clinically used on the MRIdian for years (Green et al
2018). Toreduce treatment time, gating on the 0.35 T MR-linac is mostly performed in combination with
breath-holds. However, not all patients can perform breath-holds or can perform them in a reproducible way
(Persson et al 2019). MLC-tracking could address this limitation and achieve similar treatment accuracy as
gating in a more-time efficient way (Keall et al 2021).

To be able to fully exploit the potential of MLC-tracking, the system latency needs to be accounted for in
real-time (Poulsen et al 2010). The total latency for MLC-tracking is defined as the time lag between the physical
target motion and the execution of the MLC motion instructions (Keall et al 2021). Recently, Glitzner et al have
experimentally quantified the total latency for 4 Hz MRI-guidance with MLC-tracking to be about 350 ms for
the Elekta Unity (Glitzner et al 2019). For the MRIdian, beam-off latencies for gating have been quantified to
about 400 ms for the Cobalt-60 version (Green et al 2018) and to about 250 ms for the linac version with 4 Hz
cine MRI (Kim et al 2020). To overcome RT system latencies, several motion prediction algorithms have been
proposed in the past (Sharp et al 2004, Krauss et al 2011, Yun et al 2012): in a recent review study by Joehl et ala
continuously re-optimized (i.e. online) linear regression (LR) model was found to perform best on average
compared to other motion predictors such as artificial neural networks or Kalman filters (Joehl et al 2020).

In the past few years, several different artificial intelligence (AI) algorithms have found relevant applications
in the field of MR-guided RT, e.g. in image segmentation, synthetic CT reconstruction or automatic online
planning (Cusumano et al 2021). Long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber 1997) are a class of Al models which were designed to efficiently capture temporal dependencies in
the input data and are therefore ideally suited for motion prediction. In fact, studies have shown the potential of
LSTMs for motion prediction in RT based on infrared real-time position management data from a standard
linear accelerator (Lin et al 2019) and on optical fiducial marker data from a robotic radiosurgery system (Wang
etal2018).

In this work, we developed LSTM networks and benchmarked their performance with LR models for the
prediction of tumor centroid positions based on 4 Hz cine MRI data acquired at two different institutes with a
MRIdian MR-Linac and a MRIdian MR-Cobalt-60. Specifically, motion curves from patients treated at the
University Hospital of the LMU Munich were used for training, validation and testing of the models.
Additionally, patients treated at the Fondazione Policlinico Universitario Agostino Gemelli in Rome were used
asindependent testing set. Both the LSTM and the LR were implemented with offline and online training
schemes, taking into account feasibility in a 4 Hz intra-fractional motion management clinical scenario. To the
best of our knowledge, this is the first study in which LSTMs were applied to MR-guided RT data and in which
the usage of continuously re-optimized LSTMs was investigated for motion prediction in RT.

2. Material and methods

2.1.Respiratory motion data

We retrospectively collected respiratory motion data from 2D+# cine MRIs across two institutions. Specifically,
cine videos from 88 patients were collected at the Department of Radiation Oncology of the University Hospital
of the LMU Munich. As the RT treatment received by every patient is usually split into several fractions and for
each fraction a cine MRI sequence is acquired, we obtained 556 videos from the 88 LMU patients. All patients
were treated with the MRIdian MR-linac using breath-hold techniques and comprised tumors in the lung (37
cases), pancreas (22), heart (6), liver (20) and mediastinum (3). At the Fondazione Policlinico Universitario
Agostino Gemelli in Rome, three patients with in total 15 cine videos were collected. For this cohort, we only
selected patients treated in free-breathing using a MRIdian MR-Cobalt-60 machine. Tumor sites comprised
lung (2) and pancreas (1).

For all cohorts, the 2D+t cine MRs were acquired at 4 Hz in a sagittal plane with a balanced steady-state free
precession sequence (TRUFI; in-plane resolution 3.5 x 3.5 mm?; field-of-view 270 x 270 mm? or 350 X 350
mm?; slice thickness of 5, 7 or 10 mm). The information on the field-of-view was used to convert the motion
amplitudes from video pixels into mm. The cine MRs were exported with target and boundary contours in the
OGV video format, as supported by the vendor. This resampled and interpolated video file was then used for
analysis. The contours are present in every exported cine MR frame as they are used for the gated beam delivery:
prior to treatment, a user defines a target structure (tumor) in a sagittal slice of the volumetric MRI, as well as a
boundary structure which defines the gating area where the beam is turned on. During treatment, the target
contour is continuously propagated to the current cine MR frame using fast deformable image registration by
the vendor’s software (Green et al 2018, Klueter 2019).

2



I0OP Publishing Phys. Med. Biol. 67 (2022) 095006

E Lombardo et al
O
200
— 400
[}
¢ X
a
600
800
0 200 400 600 800
Pixel
I—) ;
200
— 400
g eee (b)
a

800

0 200 400 600 800 400 600 800

Pixel Pixel
| 0 0

200

400

Pixel

600

800 800

Pixel * Pixel

201

101

(d)

S| motion [mm)]

Py
Sy A g

20 30 40 50
Time [s]

o
= {
o

Figure 1. Steps of centroid motion extraction from the frames of the exported cine MRI video for a selected patient with a liver tumor.
(a) Cine frames with target and boundary contours. (b) Extraction of contour pixels. (c) Filling and extraction of centroid position
(depicted by a cross). (d) Obtained motion curve. Steps (b) and (c) were also performed for the boundary contour.

2.2. Data pre-processing
2.2.1. Centroid position extraction

To obtain motion trajectories from the cine MRIs we used an in-house developed software. Figure | summarizes
the workflow of the motion extraction from the cine MR frames containing target (green) and boundary (red)
contours (a). Briefly, both target and boundary contours were extracted from the videos using thresholds in
RGB-space (b). The contours were then filled using the watershed algorithm (Roerdink and Meijster 2000).
From the filled contours we subsequently computed the superior—inferior (SI) tumor centroid position relative
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to the fixed boundary SI centroid position (c). Once the tumor SI motion curves (d) were obtained for all
patients, further pre-processing was done, as detailed in the following sections.

2.2.2. Outlier replacement and filtering

First, we replaced outliers arising from incorrect filling of contours using sliding windows of size three. In detail,
we computed the median centroid position within the current sliding window and if the absolute difference
between the central data point in the window and the median value was a larger than an optimized threshold, we
replaced that point with the median value of the window. For this step, the curves were temporarily normalized
such that a single threshold independent from the absolute motion amplitudes could be used. The
normalization was then reversed as the motion in mm is needed to exclude cine videos with small motion (see
2.2.4). After that, the curves were smoothed with a moving average filter applied on sliding windows of size three.

2.2.3. Breath-holds and image pauses exclusion

For the LMU cohort only, we then analyzed the motion trajectories to detect the breath-holds. Using sliding
windows of size 20, we considered the current window a breath-hold if the median deviation from the median
centroid position of the window was smaller than an optimized threshold. This information was then used to
exclude all breath-hold data points from the motion trajectories and keep only the free-breathing sub-
trajectories in between. Additionally, for this cohort we separated the data according to detected imaging pauses.
Cine imaging pauses are inherently part of the MRIdian MR-linac treatment: when the gantry rotates from one
irradiation angle to the next, its moving electronics interferes with the MRI causing the image quality to degrade.
These degraded cine MRI frames are automatically excluded from the exported videos by the vendor, but their
startis indicated by displaying the statement ‘imaging paused’ on the top right of the video. We automatically
detected the frames where this statement was displayed and used this information to separate the motion
trajectories into two sub-trajectories. This avoids jumps in the curves arising from an imaging pause between
data points.

2.2.4. Small motion exclusion and data normalization
For both the LMU and the Gemelli cohorts we excluded all data of cine videos for which the interquartile range
(IQR) of SI free-breathing motion was below 3.5 mm (in-plane resolution of MRIdian cine MRIs), as this
motion is more substantially affected by imaging noise. This led to the exclusion of 73 LMU and 5 Gemelli
videos. Finally, we again normalized all motion curves to the range —1 to +1 using the minimum and maximum
tumor centroid position of each cine MRI. These min/max values were saved to disk and used during evaluation
to undo the normalization of the predicted curves.

After pre-processing, we obtained 16.1 h of motion data without breath-holds (105.8 h if the breath-holds
were not excluded) for the LMU cohort and 1.5 h of free-breathing motion for the Gemelli cohort.

2.3. Motion prediction models

2.3.1. Mathematical formulation of prediction problem

Following the terminology used by Remy et al (202 1), motion prediction is about obtaining future target
positions (at time t + Af) from the current target motion (at time ¢). In general, for a given time step i, every
prediction task can be simply formulated as

i = f (), (Y]

where f() is a motion prediction algorithm, x;is the ith vector containing the input data window and , is the ith
vector with the predicted output data window. The corresponding vector y; contains the ground truth output
data window used to optimize the algorithm. In our case, x and y contain input and output SI target centroid
positions. The length of x was treated as a hyper-parameter (see section 2.4.2). On the other hand, the length of y
(and y) is automatically related to the forecasted time span. In this study, we investigated forecasts of 250 ms,

500 ms and 750 ms, corresponding to y havinglength of 1, 2 or 3, respectively, for 4 Hz imaging.

2.3.2. Linear ridge regression

Opver the last decade, several motion prediction algorithms have been proposed to account for latencies in image
guided RT. Joehl et al used motion traces from a robotic radiosurgery system to compare 18 different predictors
for 160 ms and 480 ms forecasts (Joehl et al 2020). On average, they found an (online) LR model to perform best,
so we decided to leverage it as baseline model. Mathematically, the regression function is defined as (Krauss et al
2011)

f@x) = B"x + B, (@)
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Figure 2. Sketch depicting LSTM modules in the first hidden layer of an LSTM network. The bold arrow symbolizes the flow of
information in the cell state.

where the vector 3 contains the parameters of the regression model. The loss function to be minimized to solve
the regression is given by

N
L(B) =Dy — fx)* + MIBIP, 3
i=1

where N is the number of input/output training windows and A is an L2-regularization parameter. If A = 0, the
term ridge regression is usually used.

If we define a matrix X such that its rows equal the input window vectors x;and Y a matrix with the true
output window vectors y;, the loss function L(/3) is analytically solved by the optimal parameters

B*=X'X + \)'X'Y, (4)
where I'is the identity matrix. Therefore, the LR model has a closed form solution and does not need iterative
optimization.

2.3.3. LSTM

Recurrent neural networks (RNN) are a class of machine learning algorithms ideally suited for sequential input
data (e.g. time series data). Compared to artificial neural networks or convolutional neural networks, recurrent
neural networks have an extra set of weights which connects hidden layers from one time point to the next.
However, the original RNN module comprising a simple fully connected layer was found to be limited due to
unstable gradient issues when back-propagating over longer input sequences (Shen et al 2020). Therefore, more
advanced RNN architectures have been proposed and the most widely adopted is the LSTM model (Hochreiter
and Schmidhuber 1997), which was specifically designed to more easily learn longer sequences of data.

The repeating module of LSTMs is shown in figure 2. LSTMs introduce the memory cell state ¢', which
allows a stable back-propagation of errors and straightforward flow of information. To remove or add
information to the cell state, structures called gates are used. Intuitively, the forget gate f is used to keep/discard
past information in ¢’ while the input gate i’ allows to filter information in the new memory cell state &'. The
previous gates and memory are then combined to build the final memory cell state ¢’. The final memory cell is
filtered with the output gate o’ to keep /discard some information and build the hidden state h’. Mathematically,
ataspecific time step ¢, the LSTM module is described as follows:

Forget gate: fl=oWix' + Uh'~! + by) (5)

Input gate: it = oc(Wix' + UK '+ b) (6)

New memory cell state: ¢ = tanh(W.x! + Uk ' + b,) 7)
Final memory cell state: d=flodt+itod (8)
Output gate: o' =oc(W,xt + Uh '+ b,) 9)
Hidden state: k' = o' ® tanh(c"), (10)

where b, Wand U denote the biases, input window weights and recurrent weights which are learned during the
optimization process. The symbol ® represents element-wise multiplication between matrices/vectors. The
sigmoid function o(x) was used for the gates and the hyperbolic tangent function was used to generate the states.
For each time step, the hidden state of one LSTM layer is used as input for the next LSTM layer. For the last
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Figure 3. The proposed LSTM model takes a vector x; with input motion data (black) and outputs the predicted motion §; (red). In
this example, the input window has length equal to eight (hyper-parameter) and the output window has length equal two (i.e. 500 ms
forecast given the data sampling is at 4 Hz). The mean squared error (MSE) loss between the predicted output window J, and the true
output window y; (blue) is used to optimize the LSTM.

hidden layer of the LSTM, the hidden state of the last time point #is input to a fully connected layer to build the
predicted output window

Predicted output: y. = Wech's + by, amn

where Wgc and bgc denote the weight matrix and bias vector for the fully connected layer.

In this study, a stateless LSTM was implemented, which means that during optimization the hidden state and
the cell state were cleared after every batch of data. The LSTM architecture was inspired by the one used by Lin
etal (2019). Specifically, we performed our hyper-parameter optimization based on the range of values used in
their hyper-parameter search. More details can be found in section 2.4. Figure 3 schematically shows the
working principle of the proposed LSTM. At every time point, a single SI tumor centroid position is given as
input for as many points as the length of the input data window. The LSTM modules in the hidden layer (green
boxes) process the time-dependent information as shown in figure 2 until the last LSTM module is reached. The
hidden vector which is output by the last LSTM module is mapped via a fully connected layer to the predicted
output window following equation (11). Note that in figure 3 only one hidden layer is shown whereas this
number was treated as a hyper-parameter in our optimizations (see section 2.4.2).

2.4. Model optimization

2.4.1. Data subdivision

To optimize and evaluate the models we split the LMU data into training, validation and testing sets. Specifically,
we assigned the motion trajectories belonging to 60% of the patients to the training set (52 patients), 20% to the
validation set (18 patients) and the remaining 20% to the testing set (18 patients) and did this procedure only
once at the beginning. This splitting roughly also led to 60% of the motion trajectories being in training (9.1 h),
20% in validation (4.0 h) and 20% in testing (3.0 h). As the Gemelli cohort was smaller (1.5 h) but at the same
time in free-breathing, we decided to use this dataset as an independent additional testing set. Finally, we also
applied the best models trained/validated on the LMU data without breath-holds to the LMU testing set without
excluding the breath-holds during pre-processing.

2.4.2. Hyper-parameter search

To find the optimal set of hyper-parameters for both the LSTM and the LR we repeatedly performed training and
validation while varying the parameters for all three analyzed forecasts and for all four training strategies (see
section 2.4.3) separately. For the LSTM, the following hyper-parameters were varied, based on the hyper-
parameter search performed by Lin et al:

+ Number of layers: the number of hidden layers of the LSTM was chosen among the following values {1, 3, 5, 10}.

+ Dropout: the dropout rate on the outputs of each hidden layer (but the last one) was sampled from the set
{0,0.1,0.2}.
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+ Learning rate: the learning rate of the optimizer was sampled from the set {1 x 107%,5 x 107%,1 x 1072,
5% 10,1 x 102},

* Batch size: the batch size, i.e. the number of input windows fed to the network simultaneously, can be varied
only for the offline trained LSTM (see section 2.4.3) and was set to either 64 or 128.

+ L2-regularization: the L2-regularization parameter X (also called weight decay) was sampled from the set {0,
1x107%1%x107°1 % 10%}.

All optimizations for the LSTMs were carried out using the Adam optimizer (Kingma and Ba 2015) with a
normalized mean squared error (MSE) loss function and learning rates from the set shown above. We set the
number of features in the hidden layer vector k' to 15 like Lin et al. No batch normalization was used. For the LR,
the following hyper-parameter was varied in logarithmic steps over a large range of values:

« L2-regularization: the L2-regularization parameter \ was sampled from theset {1 x 107>, 1 x 107%,1 x 1072,
1x107%1x10°%,1,10}.

Both for the LSTM and for the LR we varied the length of the input data window x between 8, 16, 24 and 32 data
points, corresponding to 2, 4, 6 and 8 seconds of past motion.

2.4.3. Training strategies

Retraining models on recent motion data has been shown to improve the predictive performance (Krauss et al
2011, Sun et al 2020). Thus, two different training strategies were investigated for the LSTM and for the LR
model.

+ Offline LSTM: the offline LSTM optimization was carried out following the typical machine learning training/
validation/testing subdivision. The model was iteratively optimized on the training set for 600 epochs while
monitoring training and validation losses. If the validation loss improved, the model weights were saved to
disk. If the validation loss did not improve for 100 epochs, the optimization was stopped, a technique know as
early stopping. For final inference, we loaded the weights and hyper-parameters of the best performing model
on the validation set and applied it unchanged to the testing set.

+ Offline+online LSTM: to allow adaptation to recent motion patterns, we continuously retrained the LSTM on
current data. Specifically, we first loaded the weights of a previously optimized offline LSTM. The LSTM was
then re-optimized on the last 20 s of validation data using a sliding set of validation input/output windows
updated with a first-in-first-out approach, as shown in figure 4. The online optimization of the LSTM was
done for 10 epochs, taking about 150 ms. This would allow an implementation in a4 Hz image acquisition
clinical scenario. To prevent the iterative optimization to introduce an additional latency, within the 250 ms
between one cine MRI frame and the next, we performed the prediction before optimizing the LSTM. To
calculate the validation loss we used the ground truth data point lying 250 ms, 500 ms or 750 ms (depending
on the forecast) in the future with respect to the last centroid position in the currently used 20 s of optimization
data. For final inference, we loaded the offline LSTM, set the hyper-parameters leading to the best result on the
validation set and continuously retrained and evaluated the model on the testing set.

+ Offline LR: the offline LR training is analogous to the offline LSTM training but for the fact the the LR is solved
analytically while the LSTM is iteratively optimized. Specifically, the LR was solved on the training set and then
applied unchanged to validation set to perform the hyper-parameter search. For final inference, as for the
offline LSTM, we loaded the weights and set the hyper-parameters of the best performing model on the
validation set and applied it unchanged to the testing set.

+ OnlineLR: on the other hand, the online LR is different from offline+online LSTM. As no iterative fine-tuning
is needed for the LR, no weights from a pre-trained offline LR were loaded. The online LR was continuously
solved ‘from scratch’ based on the last 20 s of validation data using a sliding set of validation input/output
windows updated with a first-in-first-out approach (figure 4). As solving the LR is simply a matrix
multiplication (see equation (2)), it takes less than 1 ms. As this additional latency is not significant, for the
online LR we performed the prediction affer the optimization, as illustrated in figure 4. This is advantageous as
the model’s prediction can take into account the most recently acquired data point.

As mentioned in section 2.3.1, our data was subdivided in input windows x where the number of entries len
(x)is a hyper-parameter. To obtain a set of windows with a total duration of 20 s to be used for online training,
we need several input windows. Given that every input window is shifted by one and that the cine imaging is
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Figure 4. Workflow of the online optimization for the LSTM and the LR models, shown for a forecasted time span of 500 ms. On the
top, two input windows and the corresponding predicted and true output windows are shown. As the two input windows are shifted
by one data point (sliding window approach), they are labeled x;and x; ;. Given an input window size of 8, for each optimization step,
73 input and output windows shifted by one data point are contained in the matrices X and Y, such that the total duration of training
windows amounts to 20 s (see equation (12)).

performed at a frame rate of 4 Hz, the number of input windows needed is given by
Nr. input windows = 20 - 4 — len(x) — 1. (12)

Therefore, 73 input windows are needed if we choose len(x) = 8 as in figure 4. This number corresponds to the
batch size for the offline+online LSTM, which is thus not freely selectable if we fix the duration of the online
optimization data to 20 s. The number of input windows between the last window used for optimization and the
window used for prediction is given by the current forecasted time span. For example for the 500 ms forecast
scenario shown in figure 4, this difference is equal to two (e.g. step 0: x;, is the last window in the optimization
matrix and x,,4 is the window used for prediction). For the 250 ms forecast this difference is one and for the

750 ms forecast this difference is equal to three.

2.5. Loss and evaluation metrics
Theloss function used to optimize the LSTM was the MSE, which is defined as

B
MSE = lZ(y,- -9 (13)
Bio
where Bis the batch size, y;is the vector with the true output window and ), is the vector with the predicted
output window of centroid positions. Note that the MSE was computed using normalized output windows.
The root mean squared error (RMSE) and maximum error (ME) error were used to evaluate the LSTM and
LR predictive performance on the validation and testing sets. Prior to the computation of the evaluation metrics,
the normalization of the ground truth and predicted curves was reversed, such that the metrics are in mm. The
RMSE and ME were calculated on a treatment fraction basis (one RMSE/ME per cine MRI video) and are
defined as

1 N
—E . — AA 2
Ni:l(yl yl)

ME = max{ly, — |, i = 1, 2,..., N}, (15)

RMSE = (14)
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Figure 5. Training and validation losses for an offline LSTM (left) and training losses for one step of an offline+online LSTM (right).
The best validation loss for the offline LSTM was achieved at epoch 89, as highlighted by the arrow.

where N is the number of data points in the motion curves belonging to a single cine MRI, y; is the true future

centroid position and j, is the predicted centroid position. The analysis was done using only the last element of
each output window, which is the hardest to predict (Sharp et al 2004).

Finally, we averaged over the RMSEs/ME:s of different fractions to build the mean RMSE/ME with
corresponding standard deviation.

2.6. Statistical tests

To analyze if there is a statistically significant difference between the RMSE values obtained with the different
models on the different testing sets, non-parametric Friedman tests were performed (Friedman 1937). A p-value
<0.05 was considered significant. If the Friedman test revealed a significant difference, we consecutively
performed a post-hoc Nemenyi test (Nemenyi 1963) to infer which model obtained significantly better RMSEs
in a pair-wise fashion.

2.7.Implementation details

All code used for this study was written in Python 3.8.5 and is freely available: https://github.com/LMUK-
RADONC-PHYS-RES/Istm_centroid_prediction. To build and optimize the LSTMs, the PyTorch library
(Paszke et al 2017) version 1.8.0 was used. Training for both the offline and the offline+online LSTM was carried
out on an NVIDIA Quadro RTX 8000 GPU with 48 GB of memory. The LR was built and solved using the scikit-
learn library (Pedregosa et al 2011) version 0.24.1. The LR was trained on an Intel Xeon Gold 6254 (Cascade
Lake-EP) 18-Core CPU.

3. Results

In terms of prediction speed, a forward pass with an LSTM takes about 5 ms while for the LR models less
than 1 ms.

3.1. Validation

Figure 5 shows the normalized MSE losses for an optimization of an offline LSTM and an offline+online LSTM.
For the shown offline LSTM, the best validation loss was obtained at epoch 89 which led to early stopping of the
optimization at epoch 189. On the other hand, no validation loss was monitored for the offline+online LSTM. As
shown in figure 4, within one training step we first performed the prediction and then iteratively re-optimized
the LSTM for 10 epochs (see section 2.4.3), as this is the maximum number of epochs which would still allow a
re-optimization in a 4 Hz clinical scenario.

Table 1 shows the best RMSEs obtained with the four different models on the validation set. The
corresponding set of best hyper-parameters for each model is shown in the appendix (tables A1, A2 and A3). For
all three forecasted time spans, the offline+online LSTM achieved the best performance, reaching basically the
same as the offline LSTM for the 250 ms forecast, and slightly better performance for the 500 ms and 750 ms
forecasts. The best performing LR was the offline one, however its performance was worse than both LSTM
training schemes.
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Figure 6. True versus predicted motion sub-trajectory for a regularly (lef) and an irregularly (right) breathing LM U testing patient
(data without breath-holds). Results are displayed for the offline+online LSTM in red and the offline LR in blue for the 250 ms (a), the
500 ms (b) and 750 ms (c) forecasts. The difference between the true curve and LSTM/LR predicted curve is shown below the
corresponding motion curves.

Table 1. Mean and standard deviation of RMSE:s for the validation set. The RMSE of the
best performing model is shown in bold for each forecasted time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast
RMSE [mm]

Offline LSTM 0.55 £+ 0.44 1.40 £ 1.00 2.58 £ 1.71

Offline+online LSTM 0.54 + 0.43 1.36 + 0.94 2.54 + 1.63

Offline LR 0.63 £+ 0.49 1.68 + 1.11 3.09 +1.91

Online LR 0.74 £ 0.53 1.76 £ 1.13 3.15+ 1.87

3.2. Testing

Figure 6 shows for two selected patients of the LMU testing set (data without breath-holds) ground truth versus
predicted respiratory motion trajectories for the best LSTM model (offline+online) and the best LR model
(offline LR) for all the forecasted time spans. Qualitatively, no noticeable difference is seen when comparing the
best LR and the best LSTM for the 250 ms forecast. On the other hand, both for the 500 ms forecast and for the
750 ms one can see how the LSTM outperforms the LR especially when it comes to predicting steep inhalations/
exhalations. Similar observations can be made when looking at figure 7 displaying true vs predicted curves for
Gemelli testing patients. Although we noticed that the LSTM overshoots more often than the LR, the former is
able to more quickly adapt to changes in the motion trajectories (from steeper/shallower inhalations/
exhalations to irregularities) which leads to an overall smaller error, as can be seen in the error plots in figures 6
and 7. Table 2 shows the RMSEs obtained with the four best validation models on the LMU testing set (data
without breath-holds). The offline+online LSTM was confirmed the best model for all three forecasts. These

10



10P Publishing

Phys. Med. Biol. 67 (2022) 095006 E Lombardo et al

(a) 125

E 5.0 —— True

1001 Vvt Ty 13— v— _.1¢ Y 410 Y N B R . M | |

b 2.5 LR

e +- LSTM

£ 75

] 0.0

5 50

o -2.5

s 2.5

8

p -5.0

e 5 5

E

- 0 O st estrr oot soapaittin st gy gttt it phe gt A e

e

o -5 -5
(b) E

E

- 10

2

5

c

!

- 5

[

2

8

v}

T 5

=

~ 0

2

o -5
© Ei125

E

- 10.0

°

€ 75

[

(%]

w 5.0

2

8 25

)

€ 5 5

E D Ko 0 b )

5 ° g ’h'""‘“‘ Plamfa Py

& -5 } -5 =

0 5 10 15 20 0 5 10 15 20
Time [s] Time [s]

Figure 7. True versus predicted motion sub-trajectory for a Gemelli testing patient breathing normally at first but then changing his
breathing amplitude (left) and a patient with small baseline drifts (right) (free-breathing data). Results are displayed for the offline
+online LSTM in red and the online LR in blue for the 250 ms (a), the 500 ms (b) and 750 ms (c) forecasts. The difference between the
true curve and LSTM/LR predicted curve is shown below the corresponding motion curves.

Table 2. Mean and standard deviation of RMSEs for the LMU testing set without breath-
holds. The RMSE of the best performing model is shown in bold for each forecasted

time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast
RMSE [mm)]

Offline LSTM 0.49 +£0.29 1.24 +0.70 2.34 £1.25

Offline+online LSTM 0.48 + 0.28 1.20 £ 0.65 2.20 + 1.12

Offline LR 0.54 £+ 0.30 1.42 £0.78 2.61 £ 1.38

Online LR 0.64 +0.38 1.54 +0.79 2.73 £ 141

results were confirmed also when looking at MEs, as shown in table A4 in the appendix. In general, all models
performed slightly better than during validation both in terms of mean and standard deviation of the RMSE.

When applying the Friedman test, we found a significant difference among the models for all forecasts and
testing sets. For the LMU testing set without breath-holds, the post-hoc Nemenyi test yielded the p-values shown
in table 3. The best model in terms of RMSEs, i.e. the offline+online LSTM was found to perform significantly
better than both LR models while there was no significant difference between the offline LSTM and the offline
+online LSTM for all investigated forecasts.

As shown in table 4, the results obtained on the LM U validation and testing set (data without-breath-holds)
were confirmed with the Gemelli testing set (free-breathing data). The offline+online LSTM was found to
perform best for all three forecasted time spans followed by the offline LSTM. This time, the online LR performed
better than the offline LR and reached the same RMSE as the offline LSTM for the 750 ms forecast. Table 5 shows

11
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Table 3. P-values obtained from the post-hoc Nemenyi test for the LMU testing set without breath-holds for all possible pairwise model
comparisons. Significant p-values (<5e-2) are denoted with an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast
Model 1 Model 2 p-value

Offline LSTM Offline LR 3e-1 3e-2" 2e-1
Offline LSTM Online LR 6e-1 le-1 3e-1
Offline+online LSTM Offline LR le-3" le-3" le-3*
Offline+online LSTM Online LR 2e-3" le-3* le-3*
Offline LSTM Offline+online LSTM 9e-2 6e-2 6e-2
Offline LR Online LR 9e-1 9e-1 9e-1

Table 4. Mean and standard deviation of RMSEs for the Gemelli free-breathing testing
set. The RMSE of the best performing model is shown in bold for each forecasted

time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast
RMSE [mm]

Offline LSTM 0.47 £0.12 1.14 £ 0.29 2.02 +£0.49

Offline+online LSTM 0.42 +0.13 1.00 + 0.30 1.77 £+ 0.54

Offline LR 0.57 £0.14 1.52 £+ 0.34 2.76 + 0.71

Online LR 0.53 £0.17 1.22 +£0.30 2.02 +£0.49

Table 5. P-values obtained from the post-hoc Nemenyi test for the Gemelli free-breathing testing set for all possible pairwise model
comparisons. Significant p-values (< 5e-2) are denoted with an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast
Model 1 Model 2 p-value

Offline LSTM Offline LR 3e-2" 3e-2" le-2
Offline LSTM Online LR 2e-1 8e-1 9e-1
Offline+online LSTM Offline LR le-3" le-3" le-3"
Offline+online LSTM Online LR 3e-3" 2e-2" 8e-2
Offline LSTM Offline+online LSTM 4e-1 2e-1 8e-2
Offline LR Online LR de-1 6e-2 le-2*

Table 6. Mean and standard deviation of RMSEs for the LMU testing set with breath-
holds. The RMSE of the best performing model is shown in bold for each forecasted

time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast
RMSE [mm)]

Offline LSTM 0.34 £0.17 0.83 + 0.45 1.59 £+ 0.95

Offline+online LSTM 0.30 + 0.17 0.74 + 0.39 1.34 + 0.74

Offline LR 0.36 £ 0.19 0.96 £+ 0.51 1.83 £ 1.03

Online LR 0.63 £+ 0.65 1.39 + 0.93 2.81 £ 2.12

the p-values obtained with the Nemenyi test on the Gemelli testing results. This time, the offline+online LSTM
was found to be significantly better than the offline LR for all forecasts and significantly better than the online LR
for the 250 ms and the 500 ms forecast.
Finally, we also applied the best models obtained on the LM U data without breath-holds to the LMU testing
set with breath-holds. As shown in table 6, the offline+online LSTM again outperformed all other models for all
three forecasts followed by the offline LSTM and the offline LR. While these three models substantially improved
their performance compared to the LMU testing set without breath-holds (table 2), the online LR even worsened
its performance for the 500 ms and 750 ms forecasts. When applying the Nemenyi test, we found significant
differences between all pairwise model combinations excluding the offline LSTM versus the offline LR, as shown

intable7.
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Table 7. P-values obtained from the post-hoc Nemenyi—Friedman test for the LMU testing set with breath-holds for all possible pairwise
model comparisons. Significant p-values (< 5e-2) are denoted with an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast
Model Model 2 p-value

Offline LSTM OfflineLR 3e-1 2e-3" 9e-3"
Offline LSTM Online LR le-3" le-3" le-3"
Offline+online LSTM Offline LR le-3" le-3" le-3"
Offline+online LSTM Online LR le-3" le-3* le-3*
Offline LSTM Offline+Oonline LSTM le-3" le-3" le-3"
Offline LR Online LR le-3" le-3" le-3"

Animated figures with sliding input, true output and predicted output windows for a testing patient from the
LMU set without breath-holds, the Gemelli set and the LMU set with breath-holds respectively are shown in the
online material (stacks.iop.org/PMB/67/095006 /mmedia).

4. Discussion

LSTM networks have been successfully applied for time series prediction in many fields, making them one of the
most popular versions of RNNs (Shen et al 2020). In this study, we applied LSTM:s to forecast tumor centroid
positions based on respiratory motion trajectories obtained from 0.35 T MR-linacs. The fact that the proposed
offline+online LSTM outperformed all the other models for all testing cohorts and for all forecasted time spans
confirms our hypothesis that LSTMs are well suited for motion prediction in MR-guided RT. The offline+online
LSTM was found to perform significantly better than the best performing LR in 8/9 testing scenarios. The only
scenario where the better RMSE of the offline+online LSTM was not significant compared to the best LR was for
the 750 ms forecast with the Gemelli testing data. However, the Gemelli testing set presents less data compared
to the other two testing sets, as there are less videos over which the RMSE is calculated.

As expected from literature (Murphy and Pokhrel 2009, Sun et al 2020), the offline+online LSTM achieved
better performance than the offline LSTM for all testing cohorts when looking at RMSE. Additionally, for the
LMU testing set with breath-holds this difference was statistically significant. As this testing cohort differs more
substantially from the training and validation sets than the other two, we expected this improvement. In general,
we conclude that iterative fine-tuning using the latest respiratory patterns is beneficial also for LSTMs. The
offline+online LSTM was implemented such that online optimization took about 150 ms and could therefore be
used in a4 Hz cine MRI guided RT treatment.

All models achieved better mean RMSE on the LMU testing set with breath-holds included. This is expected
since this data contains long time intervals of flat motion trajectories, which are easy to predict.

For the LMU testing set without breath-holds, the offline LR regression was found to perform better than the
online LR (see table 2), a finding in disagreement with literature (Krauss et al 2011, Uijtewaal et al 2021). However, the
difference was not significant, as shown in table 3. When comparing the mean RMSE obtained for the 500 ms forecast
with our offline LR to the mean RMSE obtained with the online LR by Uijtewaal et al for the 500 ms forecast, we can
see that both models achieved a value of about 1.5 mm. Furthermore, the online LR was found to perform better than
the offline on the Gemelli testing set, which likely differs from the LMU training set. Additionally, the free-breathing
Gemelli data might be easier to predict than the LMU data without breath-holds as the latter consists of sub-
trajectories of free-breathing motion in-between breath-holds and can thus contain irregular breathing or steep
inhalations and exhalations. This could also explain why the online LR performed better on the Gemelli testing set.

To compare the performance obtained in this study with the one obtained by the LSTM implemented by Lin
et al, we report here normalized RMSEs obtained with our offline+online LSTM for the 500 ms forecast. The
normalization was done using the min-max amplitudes saved to disk during pre-processing. We found a mean
normalized RMSE o0f 0.086 for the LMU testing set without breath-holds and 0.107 for the Gemelli testing set.
These results are in agreement with the mean testing RMSE of 0.139 found by Lin et al (2019). Furthermore, we
can approximately compare the RMSE obtained with our offline+online LSTM for the 500ms forecast with the
RMSE obtained by Wang et al using a Bi-LSTM for a 400 ms forecast (Wang et al 2018). Since they found a mean
validation normalized RMSE 0f 0.081 (no testing set was used, unlike in this study), we conclude that our offline
+online LSTM is comparable.

In general, we noticed large standard deviations of the RMSEs. This suggests that substantial performance
differences might be observed among different patients. The standard deviations for the Gemelli testing set and
the LMU testing set with breath-holds were smaller than for the LMU testing set without breath-holds. As the
Gemelli data consists of regular free-breathing and the LMU data with breath-holds largely consists of flat
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motion regions, we hypothesize that this decreased variability in the data leads to smaller standard deviations.
The fact that the mean and standard deviation of the validation RMSE were larger than the LMU testing results
(compare tables 1 and 2), might be explained by the fact that by chance, when splitting the LMU cohort in
training, validation and testing, more irregular motion curves were assigned to the validation compared to the
testing set.

As observed in several studies (Sharp et al 2004, Seregni et al 2016, Wang et al 2018, Uijtewaal et al 2021), the
predictive performance decreased with increasing forecasted time span. However, sub-resolution accuracy
(<3.5 mm) was still reached for all three forecasts. The good RMSE of about 1 mm of the offline+online LSTM
for the 500 ms forecast shows that this model could be used to successfully account for the system latencies
found by Glitzner et al (2019) when performing MLC tracking on an Elekta Unity MR-linac.

The current study has a few limitations. The first is that all models were optimized and applied on motion
curves which were normalized based on the global minimum and maximum SI centroid position of each cine
video, following (Lin etal 2019, Yu et al 2020). In clinical practice of course, the global minimum and
maximum for the entire fraction cannot be known before the treatment ends. However, with the 0.35 T MR-
linac, right before the treatment starts a preview cine MRI is acquired (Klueter 2019) for automatic selection
ofa tracking key frame, to inspect if the gating window needs to be adjusted and similar aspects. This cine
MRI could also be used to get the min-max amplitudes to be used for the normalization of the motion curves
acquired for the treatment. A small window size (equal to three) was taken for both the outlier replacement
and the moving average filter to make an implementation in a real-time clinical scenario possible. The
second limitation consists in the fact that our models only predict the future centroid position in SI direction.
While this could already be used for centroid MLC tracking in parallel direction, where the MLC shape is
shifted to the predicted SI position, latencies for deviations in anterior-posterior direction would not be
accounted for. To achieve this, a second model predicting the other direction could be run in parallel.
Alternatively, the anterior-posterior motion could be included as input, a possible extension to the models
presented in this work. However, only predicting centroid positions would not allow for more advanced
forms of dynamic MLC tracking (Ge et al 2014), where the MLC shape is adapted the predicted tumor
location and shape, possibly taking into account in-plane rotations and deformations (Keall et al 2021). Ina
future study, we plan to extend the proposed LSTM to directly predict future 2D cine MR frames, thus
allowing for dynamic MLC tracking. Finally, our model cannot predict out-of-plane motion as the cine MRIs
are acquired in a single sagittal plane. However, several methods have been proposed to obtain time-resolved
volumetric MRI (Fayad et al 2012, Stemkens et al 2016, Paganelli et al 2018a, Rabe et al 2021), which might be
combined with our motion prediction model in future studies.

5. Conclusions

In this study, we developed LSTMs for SI tumor centroid position prediction based on cine MRIs acquired with
0.35 T MRIdian machines from two different institutions and showed that they outperformed state-of-the-art
LR algorithms for all investigated forecasts (250 ms, 500 ms and 750 ms). The proposed models generalized their
predictive performance to different testing sets with different breathing patterns, ranging from free-breathing to
treatments with prolonged breath-holds. The continuously re-optimized offline+online LSTM network
achieved superior performance in all tasks compared to offline optimized models. In conclusion, LSTMs were
shown to have great potential as respiratory motion predictors to account for the system latencies present in
MR-guided RT with MLC tracking.
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Appendix

Table Al. Best hyper-parameters found for each model by repeatedly performing training and validation for the 250 ms forecast.

Model Nr. of layers Dropout rate Learning rate Batch size L2 weight Input window length
Offline LSTM 3 0 5x 107" 64 0 32
Offline+online LSTM 3 0 1x10°° Fixed 1x10°¢ 32
Offline LR — — — — 1x10°? 32
Online LR — — — — 1x107° 16

Table A2. Best hyper-parameters found for each model by repeatedly performing training and validation for the 500 ms forecast.

Model Nr. of layers Dropout rate Learning rate Batch size L2 weight Input window length
Offline LSTM 5 0 5x10°* 128 0 32
Offline+online LSTM 5 0 1x10°° Fixed 1x10°°¢ 32
Offline LR — — — — 1x 1072 32
Online LR — — — — 1x107* 8

Table A3. Best hyper-parameters found for each model by repeatedly performing training and validation for the 750 ms forecast.

Model Nr. of layers Dropout rate Learning rate Batch size L2 weight Input window length
Offline LSTM 5 0 5x 107" 64 0 32
Offline+online LSTM 5 0 1x10°° Fixed 1x10°° 32
Offline LR — — — 1x107° 32
Online LR — — — — 1x107° 8

Table A4. Mean and standard deviation of MEs for the LMU testing set without breath-holds. The ME of the best performing
model is shown in bold for each forecasted time span.

Model 250 ms forecast 500 ms forecast ME [mm)] 750 ms forecast

Offline LSTM 2.30 £ 2.04 5.12 £+ 3.99 8.19 £5.57

Offline+online LSTM 2.18 £1.95 4.81 £3.73 7.81 +5.21

Offline LR 2.43 +£2.09 5.31 +4.15 8.33 +£5.87

Online LR 2.83 £2.05 6.02 £+ 3.78 9.88 + 6.81
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