
Physics in Medicine & Biology
     

PAPER • OPEN ACCESS

Offline and online LSTM networks for respiratory
motion prediction in MR-guided radiotherapy
To cite this article: Elia Lombardo et al 2022 Phys. Med. Biol. 67 095006

 

View the article online for updates and enhancements.

You may also like
Spatio-temporal warping for myoelectric
control: an offline, feasibility study
Milad Jabbari, Rami Khushaba and
Kianoush Nazarpour

-

High-precision time delay estimation of
narrowband radio signal by PHAT-LSTM
Shunyu Yao, Qiao Meng, Congyan Chen
et al.

-

Long exposure convolutional memory
network for accurate estimation of finger
kinematics from surface electromyographic
signals
Weiyu Guo, Chenfei Ma, Zheng Wang et
al.

-

This content was downloaded from IP address 212.114.229.224 on 16/12/2022 at 12:09

https://doi.org/10.1088/1361-6560/ac60b7
/article/10.1088/1741-2552/ac387f
/article/10.1088/1741-2552/ac387f
/article/10.1088/1361-6501/abd8a5
/article/10.1088/1361-6501/abd8a5
/article/10.1088/1741-2552/abd461
/article/10.1088/1741-2552/abd461
/article/10.1088/1741-2552/abd461
/article/10.1088/1741-2552/abd461
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsv7FQjoPDFdkhsOY5ovL1hiFTUuCFeHU2fliXD80njOamz-hdGr0H1XQvQMSqKBa3aSCVllv3tDfiCINHcPhFsyQ16n5I4FpVEiPREjafoKgBAwLpx4vtjbDR9x8aeUDMIIiIRHQsEP52g-FYpVbOAYHBEDLTy2hlXEqZVvrjlCu9qZbak3y6-YJQRuKL3rk_vAzYmiGQGXMM3rGYasPD3aQWWJ2gnEx5lFi6aRXmI5zASVEcLzknp3gnIrHP1C4_EW5TBUTrSwVY1sjXbFGo34Eguu51YUlHL5OmGwJoMJ1Q&sai=AMfl-YS5l9QbbuoCRg-MHs_rHTrGE00NIDFA7JQzpRcGj3OEvj6yV1JSx6NRwcZKpmpPhj_B1iOw3qVwVYluV261ng&sig=Cg0ArKJSzC0B_wqy5kO1&fbs_aeid=[gw_fbsaeid]&adurl=https://www.ptwdosimetry.com/en/products/veriqa/rt-montecarlo-3d/


Phys.Med. Biol. 67 (2022) 095006 https://doi.org/10.1088/1361-6560/ac60b7

PAPER

Offline and online LSTM networks for respiratory motion prediction in
MR-guided radiotherapy

Elia Lombardo1 ,Moritz Rabe1 , YuqingXiong1, LukasNierer1, DavideCusumano2 , LorenzoPlacidi2,
Luca Boldrini2, Stefanie Corradini1,MaximilianNiyazi1, Claus Belka1,3,MarcoRiboldi4 ,
ChristopherKurz1 andGuillaume Landry1

1 Department of RadiationOncology, UniversityHospital, LMUMunich,Munich,D-81377, Germany
2 Fondazione PoliclinicoUniversitario AgostinoGemelli IRCCS, Rome, I-00168, Italy
3 GermanCancer Consortium (DKTK), Partner SiteMunich,Munich,D-81377, Germany
4 Department ofMedical Physics, Faculty of Physics, Ludwig-Maximilians-UniversitätMünchen, Garching, D-85748, Germany

E-mail: guillaume.landry@med.uni-muenchen.de

Keywords:AI, long short-termmemory networks, time series prediction, respiratorymotion,MR-linac,MRI-guidance

Supplementarymaterial for this article is available online

Abstract
Objective.Gated beamdelivery is the current clinical practice for respiratorymotion compensation in
MR-guided radiotherapy, and further research is ongoing to implement tracking. Tomanage intra-
fractionalmotion usingmultileaf collimator tracking the total system latency needs to be accounted
for in real-time. In this study, long short-termmemory (LSTM)networks were optimized for the
prediction of superior–inferior tumor centroid positions extracted from clinically acquired 2D cine
MRIs.Approach.Weused 88 patients treated at theUniversityHospital of the LMUMunich for
training and validation (70 patients, 13.1 h), and for testing (18 patients, 3.0 h). Three patients treated
at Fondazione PoliclinicoUniversitario AgostinoGemelli were used as a second testing set (1.5 h). The
performance of the LSTMs in terms of rootmean square error (RMSE)was compared to baseline
linear regression (LR)models for forecasted time spans of 250ms, 500ms and 750ms. Both the LSTM
and the LRwere trainedwith offline (offline LSTMand offline LR) and online schemes (offline+online
LSTMand online LR), the latter to allow for continuous adaptation to recent respiratory patterns.
Main results.We found the offline+online LSTM to performbest for all investigated forecasts.
Specifically, when predicting 500ms ahead it achieved ameanRMSE of 1.20mmand 1.00mm,while
the best performing LRmodel achieved ameanRMSE of 1.42mmand 1.22mm for the LMUand
Gemelli testing set, respectively. Significance.This indicates that LSTMnetworks have potential as
respiratorymotion predictors and that continuous online re-optimization can enhance their
performance.

1. Introduction

Magnetic resonance imaging guided radiotherapy (MR-guided RT) provides radiation-free and high soft tissue
contrast imaging, allowing for inter-fractional/intra-fractionalmotionmanagement and treatment adaptation
(Paganelli et al 2018b, Kurz et al 2020). For tumors affected by respiratorymotion such as lung, pancreatic or
liver andmore generally formalignancies affected by inter-fractional anatomical changes,MR-guided RToffers
advantages, such as individualized planning and treatment thanks to its adaptation capabilities (Corradini et al
2019, Placidi et al 2020).

Both commercially availableMR-linacs (Liney et al 2018), theMRIdian (ViewRay Inc., OakwoodVillage,
Ohio, USA) and theUnity (Elekta AB, Stockholm, Sweden) provide the possibility tomonitor intra-fractional
respiratorymotion via 2D+t cineMR imaging (Green et al 2018, Jackson et al 2019,Menten et al 2020). For the
Unity, recent studies have investigated the usage ofmultileaf collimator (MLC)-tracking for intra-fractional
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motionmanagement, showing its potential to increase the dose delivery accuracy (Menten et al 2016) and the
technical feasibility of its implementation (Glitzner et al 2019,Uijtewaal et al 2021). On the other hand,
automatic gated beamdelivery by use of cineMRI has been clinically used on theMRIdian for years (Green et al
2018). To reduce treatment time, gating on the 0.35 TMR-linac ismostly performed in combinationwith
breath-holds. However, not all patients can performbreath-holds or can perform them in a reproducible way
(Persson et al 2019).MLC-tracking could address this limitation and achieve similar treatment accuracy as
gating in amore-time efficient way (Keall et al 2021).

To be able to fully exploit the potential ofMLC-tracking, the system latency needs to be accounted for in
real-time (Poulsen et al 2010). The total latency forMLC-tracking is defined as the time lag between the physical
targetmotion and the execution of theMLCmotion instructions (Keall et al 2021). Recently, Glitzner et al have
experimentally quantified the total latency for 4HzMRI-guidance withMLC-tracking to be about 350 ms for
the ElektaUnity (Glitzner et al 2019). For theMRIdian, beam-off latencies for gating have been quantified to
about 400 ms for theCobalt-60 version (Green et al 2018) and to about 250ms for the linac versionwith 4Hz
cineMRI (Kim et al 2020). To overcomeRT system latencies, severalmotion prediction algorithms have been
proposed in the past (Sharp et al 2004, Krauss et al 2011, Yun et al 2012): in a recent review study by Joehl et al a
continuously re-optimized (i.e. online) linear regression (LR)model was found to performbest on average
compared to othermotion predictors such as artificial neural networks or Kalman filters (Joehl et al 2020).

In the past few years, several different artificial intelligence (AI) algorithms have found relevant applications
in the field ofMR-guidedRT, e.g. in image segmentation, synthetic CT reconstruction or automatic online
planning (Cusumano et al 2021). Long short-termmemory (LSTM)networks (Hochreiter and
Schmidhuber 1997) are a class of AImodels whichwere designed to efficiently capture temporal dependencies in
the input data and are therefore ideally suited formotion prediction. In fact, studies have shown the potential of
LSTMs formotion prediction in RT based on infrared real-time positionmanagement data from a standard
linear accelerator (Lin et al 2019) and on opticalfiducialmarker data from a robotic radiosurgery system (Wang
et al 2018).

In this work, we developed LSTMnetworks and benchmarked their performancewith LRmodels for the
prediction of tumor centroid positions based on 4Hz cineMRI data acquired at two different institutes with a
MRIdianMR-Linac and aMRIdianMR-Cobalt-60. Specifically,motion curves frompatients treated at the
UniversityHospital of the LMUMunichwere used for training, validation and testing of themodels.
Additionally, patients treated at the Fondazione PoliclinicoUniversitario AgostinoGemelli in Romewere used
as independent testing set. Both the LSTMand the LRwere implementedwith offline and online training
schemes, taking into account feasibility in a 4Hz intra-fractionalmotionmanagement clinical scenario. To the
best of our knowledge, this is the first study inwhich LSTMswere applied toMR-guidedRT data and inwhich
the usage of continuously re-optimized LSTMswas investigated formotion prediction in RT.

2.Material andmethods

2.1. Respiratorymotion data
We retrospectively collected respiratorymotion data from2D+t cineMRIs across two institutions. Specifically,
cine videos from88 patients were collected at theDepartment of RadiationOncology of theUniversityHospital
of the LMUMunich. As the RT treatment received by every patient is usually split into several fractions and for
each fraction a cineMRI sequence is acquired, we obtained 556 videos from the 88 LMUpatients. All patients
were treatedwith theMRIdianMR-linac using breath-hold techniques and comprised tumors in the lung (37
cases), pancreas (22), heart (6), liver (20) andmediastinum (3). At the Fondazione PoliclinicoUniversitario
AgostinoGemelli in Rome, three patients with in total 15 cine videoswere collected. For this cohort, we only
selected patients treated in free-breathing using aMRIdianMR-Cobalt-60machine. Tumor sites comprised
lung (2) and pancreas (1).

For all cohorts, the 2D+t cineMRswere acquired at 4Hz in a sagittal planewith a balanced steady-state free
precession sequence (TRUFI; in-plane resolution 3.5× 3.5mm2;field-of-view 270× 270mm2 or 350× 350
mm2; slice thickness of 5, 7 or 10 mm). The information on thefield-of-viewwas used to convert themotion
amplitudes from video pixels intomm.The cineMRswere exportedwith target and boundary contours in the
OGVvideo format, as supported by the vendor. This resampled and interpolated video file was then used for
analysis. The contours are present in every exported cineMR frame as they are used for the gated beamdelivery:
prior to treatment, a user defines a target structure (tumor) in a sagittal slice of the volumetricMRI, as well as a
boundary structure which defines the gating area where the beam is turned on.During treatment, the target
contour is continuously propagated to the current cineMR frame using fast deformable image registration by
the vendor’s software (Green et al 2018, Klueter 2019).
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2.2.Data pre-processing
2.2.1. Centroid position extraction
To obtainmotion trajectories from the cineMRIswe used an in-house developed software. Figure 1 summarizes
theworkflowof themotion extraction from the cineMR frames containing target (green) and boundary (red)
contours (a). Briefly, both target and boundary contourswere extracted from the videos using thresholds in
RGB-space (b). The contourswere thenfilled using thewatershed algorithm (Roerdink andMeijster 2000).
From thefilled contourswe subsequently computed the superior–inferior (SI) tumor centroid position relative

Figure 1. Steps of centroidmotion extraction from the frames of the exported cineMRI video for a selected patient with a liver tumor.
(a)Cine frameswith target and boundary contours. (b)Extraction of contour pixels. (c) Filling and extraction of centroid position
(depicted by a cross). (d)Obtainedmotion curve. Steps (b) and (c)were also performed for the boundary contour.

3
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to thefixed boundary SI centroid position (c). Once the tumor SImotion curves (d)were obtained for all
patients, further pre-processingwas done, as detailed in the following sections.

2.2.2. Outlier replacement and filtering
First, we replaced outliers arising from incorrect filling of contours using slidingwindows of size three. In detail,
we computed themedian centroid positionwithin the current slidingwindow and if the absolute difference
between the central data point in thewindow and themedian valuewas a larger than an optimized threshold, we
replaced that point with themedian value of thewindow. For this step, the curves were temporarily normalized
such that a single threshold independent from the absolutemotion amplitudes could be used. The
normalizationwas then reversed as themotion inmm is needed to exclude cine videos with smallmotion (see
2.2.4). After that, the curves were smoothedwith amoving average filter applied on slidingwindows of size three.

2.2.3. Breath-holds and image pauses exclusion
For the LMUcohort only, we then analyzed themotion trajectories to detect the breath-holds. Using sliding
windows of size 20, we considered the current window a breath-hold if themedian deviation from themedian
centroid position of thewindowwas smaller than an optimized threshold. This informationwas then used to
exclude all breath-hold data points from themotion trajectories and keep only the free-breathing sub-
trajectories in between. Additionally, for this cohort we separated the data according to detected imaging pauses.
Cine imaging pauses are inherently part of theMRIdianMR-linac treatment: when the gantry rotates fromone
irradiation angle to the next, itsmoving electronics interferes with theMRI causing the image quality to degrade.
These degraded cineMRI frames are automatically excluded from the exported videos by the vendor, but their
start is indicated by displaying the statement ‘imaging paused’ on the top right of the video.We automatically
detected the frameswhere this statement was displayed and used this information to separate themotion
trajectories into two sub-trajectories. This avoids jumps in the curves arising froman imaging pause between
data points.

2.2.4. Small motion exclusion and data normalization
For both the LMUand theGemelli cohorts we excluded all data of cine videos forwhich the interquartile range
(IQR) of SI free-breathingmotionwas below 3.5 mm (in-plane resolution ofMRIdian cineMRIs), as this
motion ismore substantially affected by imaging noise. This led to the exclusion of 73 LMUand 5Gemelli
videos. Finally, we again normalized allmotion curves to the range−1 to+1 using theminimumandmaximum
tumor centroid position of each cineMRI. Thesemin/max values were saved to disk and used during evaluation
to undo the normalization of the predicted curves.

After pre-processing, we obtained 16.1 h ofmotion datawithout breath-holds (105.8 h if the breath-holds
were not excluded) for the LMUcohort and 1.5 h of free-breathingmotion for theGemelli cohort.

2.3.Motion predictionmodels
2.3.1.Mathematical formulation of prediction problem
Following the terminology used byRemy et al (2021), motion prediction is about obtaining future target
positions (at time t+Δt) from the current targetmotion (at time t). In general, for a given time step i, every
prediction task can be simply formulated as

=y xf , 1i iˆ ( ) ( )

where f () is amotion prediction algorithm, xi is the ith vector containing the input data window and yî is the ith
vector with the predicted output data window. The corresponding vector yi contains the ground truth output
data windowused to optimize the algorithm. In our case, x and y contain input and output SI target centroid
positions. The length of xwas treated as a hyper-parameter (see section 2.4.2). On the other hand, the length of ŷ
(and y) is automatically related to the forecasted time span. In this study, we investigated forecasts of 250 ms,
500 ms and 750 ms, corresponding to ŷ having length of 1, 2 or 3, respectively, for 4Hz imaging.

2.3.2. Linear ridge regression
Over the last decade, severalmotion prediction algorithms have been proposed to account for latencies in image
guidedRT. Joehl et alusedmotion traces from a robotic radiosurgery system to compare 18 different predictors
for 160 ms and 480 ms forecasts (Joehl et al 2020). On average, they found an (online) LRmodel to performbest,
sowe decided to leverage it as baselinemodel.Mathematically, the regression function is defined as (Krauss et al
2011)

b b= +x xf , 2T
0( ) ( )
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where the vectorβ contains the parameters of the regressionmodel. The loss function to beminimized to solve
the regression is given by

åb bl= - +
=

xL y f , 3
i

N

i i
1

2 2( ) ( ( )) ∣∣ ∣∣ ( )

whereN is the number of input/output trainingwindows andλ is an L2-regularization parameter. Ifλ≠ 0, the
term ridge regression is usually used.

If we define amatrixX such that its rows equal the inputwindow vectors xi andY amatrix with the true
outputwindow vectors yi, the loss function L(β) is analytically solved by the optimal parameters

*b l= + -X X I X Y , 4T T1( ) ( )

where I is the identitymatrix. Therefore, the LRmodel has a closed form solution and does not need iterative
optimization.

2.3.3. LSTM
Recurrent neural networks (RNN) are a class ofmachine learning algorithms ideally suited for sequential input
data (e.g. time series data). Compared to artificial neural networks or convolutional neural networks, recurrent
neural networks have an extra set of weights which connects hidden layers fromone time point to the next.
However, the original RNNmodule comprising a simple fully connected layer was found to be limited due to
unstable gradient issues when back-propagating over longer input sequences (Shen et al 2020). Therefore,more
advancedRNNarchitectures have been proposed and themostwidely adopted is the LSTMmodel (Hochreiter
and Schmidhuber 1997), whichwas specifically designed tomore easily learn longer sequences of data.

The repeatingmodule of LSTMs is shown infigure 2. LSTMs introduce thememory cell state ct, which
allows a stable back-propagation of errors and straightforward flowof information. To remove or add
information to the cell state, structures called gates are used. Intuitively, the forget gate ft is used to keep/discard
past information in ct−1 while the input gate it allows tofilter information in the newmemory cell state c t˜ . The
previous gates andmemory are then combined to build thefinalmemory cell state ct. Thefinalmemory cell is
filteredwith the output gate ot to keep/discard some information and build the hidden stateht.Mathematically,
at a specific time step t, the LSTMmodule is described as follows:

s= + +-f W x U h bForget gate: 5t
f

t
f

t
f

1( ) ( )

s= + +-i W x U h bInput gate: 6t
i

t
i

t
i

1( ) ( )

= + +-c W x U h bNew memory cell state: tanh 7t
c

t
c

t
c

1˜ ( ) ( )

 = +-c f c i cFinal memory cell state: 8t t t t t1 ˜ ( )

s= + +-o W x U h bOutput gate: 9t
o

t
o

t
o

1( ) ( )

=h o cHidden state: tanh , 10t t t( ) ( )

where b,W andU denote the biases, input windowweights and recurrent weights which are learned during the
optimization process. The symbole represents element-wisemultiplication betweenmatrices/vectors. The
sigmoid functionσ(x)was used for the gates and the hyperbolic tangent functionwas used to generate the states.
For each time step, the hidden state of one LSTM layer is used as input for the next LSTM layer. For the last

Figure 2. Sketch depicting LSTMmodules in the first hidden layer of an LSTMnetwork. The bold arrow symbolizes the flowof
information in the cell state.

5

Phys.Med. Biol. 67 (2022) 095006 E Lombardo et al



hidden layer of the LSTM, the hidden state of the last time point tf is input to a fully connected layer to build the
predicted outputwindow

= +y W h bPredicted output: , 11i
t

FC FCfˆ ( )

whereWFC and bFC denote theweightmatrix and bias vector for the fully connected layer.
In this study, a stateless LSTMwas implemented, whichmeans that during optimization the hidden state and

the cell state were cleared after every batch of data. The LSTMarchitecture was inspired by the one used by Lin
et al (2019). Specifically, we performed our hyper-parameter optimization based on the range of values used in
their hyper-parameter search.More details can be found in section 2.4. Figure 3 schematically shows the
working principle of the proposed LSTM.At every time point, a single SI tumor centroid position is given as
input for asmany points as the length of the input data window. The LSTMmodules in the hidden layer (green
boxes) process the time-dependent information as shown infigure 2 until the last LSTMmodule is reached. The
hidden vector which is output by the last LSTMmodule ismapped via a fully connected layer to the predicted
outputwindow following equation (11). Note that infigure 3 only one hidden layer is shownwhereas this
numberwas treated as a hyper-parameter in our optimizations (see section 2.4.2).

2.4.Model optimization
2.4.1. Data subdivision
To optimize and evaluate themodels we split the LMUdata into training, validation and testing sets. Specifically,
we assigned themotion trajectories belonging to 60%of the patients to the training set (52 patients), 20% to the
validation set (18 patients) and the remaining 20% to the testing set (18 patients) and did this procedure only
once at the beginning. This splitting roughly also led to 60%of themotion trajectories being in training (9.1 h),
20% in validation (4.0 h) and 20% in testing (3.0 h). As theGemelli cohort was smaller (1.5 h) but at the same
time in free-breathing, we decided to use this dataset as an independent additional testing set. Finally, we also
applied the bestmodels trained/validated on the LMUdatawithout breath-holds to the LMU testing set without
excluding the breath-holds during pre-processing.

2.4.2. Hyper-parameter search
Tofind the optimal set of hyper-parameters for both the LSTMand the LRwe repeatedly performed training and
validationwhile varying the parameters for all three analyzed forecasts and for all four training strategies (see
section 2.4.3) separately. For the LSTM, the following hyper-parameters were varied, based on the hyper-
parameter search performed by Lin et al:

• Number of layers: the number of hidden layers of the LSTMwas chosen among the following values {1, 3, 5, 10}.

• Dropout: the dropout rate on the outputs of each hidden layer (but the last one)was sampled from the set
{0, 0.1, 0.2}.

Figure 3.The proposed LSTMmodel takes a vector xiwith inputmotion data (black) and outputs the predictedmotion yî (red). In
this example, the input windowhas length equal to eight (hyper-parameter) and the output windowhas length equal two (i.e. 500 ms
forecast given the data sampling is at 4Hz). Themean squared error (MSE) loss between the predicted outputwindow yî and the true
output window yi (blue) is used to optimize the LSTM.
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• Learning rate: the learning rate of the optimizer was sampled from the set {1× 10−4, 5× 10−4, 1× 10−3,
5× 10−3, 1× 10−2}.

• Batch size: the batch size, i.e. the number of input windows fed to the network simultaneously, can be varied
only for the offline trained LSTM (see section 2.4.3) andwas set to either 64 or 128.

• L2-regularization: the L2-regularization parameterλ (also calledweight decay)was sampled from the set {0,
1× 10−6, 1× 10−5, 1× 10−4}.

All optimizations for the LSTMswere carried out using theAdamoptimizer (Kingma andBa 2015)with a
normalizedmean squared error (MSE) loss function and learning rates from the set shown above.We set the
number of features in the hidden layer vector ht to 15 like Lin et al. No batch normalizationwas used. For the LR,
the following hyper-parameter was varied in logarithmic steps over a large range of values:

• L2-regularization: the L2-regularization parameterλwas sampled from the set {1× 10−5, 1× 10−4, 1× 10−3,
1× 10−2, 1× 10−1, 1, 10}.

Both for the LSTMand for the LRwe varied the length of the input datawindow x between 8, 16, 24 and 32 data
points, corresponding to 2, 4, 6 and 8 seconds of pastmotion.

2.4.3. Training strategies
Retrainingmodels on recentmotion data has been shown to improve the predictive performance (Krauss et al
2011, Sun et al 2020). Thus, two different training strategies were investigated for the LSTMand for the LR
model.

• Offline LSTM: the offline LSTMoptimizationwas carried out following the typicalmachine learning training/
validation/testing subdivision. Themodel was iteratively optimized on the training set for 600 epochswhile
monitoring training and validation losses. If the validation loss improved, themodel weights were saved to
disk. If the validation loss did not improve for 100 epochs, the optimizationwas stopped, a technique know as
early stopping. For final inference, we loaded theweights and hyper-parameters of the best performingmodel
on the validation set and applied it unchanged to the testing set.

• Offline+online LSTM: to allow adaptation to recentmotion patterns, we continuously retrained the LSTMon
current data. Specifically, wefirst loaded theweights of a previously optimized offline LSTM. The LSTMwas
then re-optimized on the last 20 s of validation data using a sliding set of validation input/outputwindows
updatedwith afirst-in-first-out approach, as shown infigure 4. The online optimization of the LSTMwas
done for 10 epochs, taking about 150 ms. This would allow an implementation in a 4Hz image acquisition
clinical scenario. To prevent the iterative optimization to introduce an additional latency, within the 250 ms
between one cineMRI frame and the next, we performed the prediction before optimizing the LSTM. To
calculate the validation loss we used the ground truth data point lying 250 ms, 500 ms or 750 ms (depending
on the forecast) in the futurewith respect to the last centroid position in the currently used 20 s of optimization
data. For final inference, we loaded the offline LSTM, set the hyper-parameters leading to the best result on the
validation set and continuously retrained and evaluated themodel on the testing set.

• Offline LR: the offline LR training is analogous to the offline LSTM training but for the fact the the LR is solved
analytically while the LSTM is iteratively optimized. Specifically, the LRwas solved on the training set and then
applied unchanged to validation set to perform the hyper-parameter search. For final inference, as for the
offline LSTM,we loaded theweights and set the hyper-parameters of the best performingmodel on the
validation set and applied it unchanged to the testing set.

• Online LR: on the other hand, the online LR is different from offline+online LSTM.As no iterative fine-tuning
is needed for the LR, noweights from a pre-trained offline LRwere loaded. The online LRwas continuously
solved ‘from scratch’ based on the last 20 s of validation data using a sliding set of validation input/output
windows updatedwith a first-in-first-out approach (figure 4). As solving the LR is simply amatrix
multiplication (see equation (2)), it takes less than 1 ms. As this additional latency is not significant, for the
online LRwe performed the prediction after the optimization, as illustrated infigure 4. This is advantageous as
themodel’s prediction can take into account themost recently acquired data point.

Asmentioned in section 2.3.1, our data was subdivided in inputwindows xwhere the number of entries len
(x) is a hyper-parameter. To obtain a set of windowswith a total duration of 20 s to be used for online training,
we need several input windows. Given that every inputwindow is shifted by one and that the cine imaging is
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performed at a frame rate of 4Hz, the number of input windows needed is given by

= - -xNr. input windows 20 4 len 1. 12· ( ) ( )

Therefore, 73 inputwindows are needed if we choose len(x)= 8 as infigure 4. This number corresponds to the
batch size for the offline+online LSTM,which is thus not freely selectable if we fix the duration of the online
optimization data to 20 s. The number of input windows between the last windowused for optimization and the
windowused for prediction is given by the current forecasted time span. For example for the 500 ms forecast
scenario shown infigure 4, this difference is equal to two (e.g. step 0: x72 is the last window in the optimization
matrix and x74 is thewindowused for prediction). For the 250 ms forecast this difference is one and for the
750 ms forecast this difference is equal to three.

2.5. Loss and evaluationmetrics
The loss function used to optimize the LSTMwas theMSE,which is defined as

å= -
=

y y
B

MSE
1

, 13
i

B

i i
1

2( ˆ ) ( )

whereB is the batch size, yi is the vector with the true outputwindow and yî is the vector with the predicted
outputwindowof centroid positions. Note that theMSEwas computed using normalized outputwindows.

The rootmean squared error (RMSE) andmaximumerror (ME) errorwere used to evaluate the LSTMand
LRpredictive performance on the validation and testing sets. Prior to the computation of the evaluationmetrics,
the normalization of the ground truth and predicted curves was reversed, such that themetrics are inmm. The
RMSE andMEwere calculated on a treatment fraction basis (oneRMSE/MEper cineMRI video) and are
defined as

å= -
=N

y yRMSE
1

14
i

N

i i
1

2( ˆ ) ( )

= - =y y i NME max , 1, 2 ,..., , 15i i{∣ ˆ ∣ } ( )

Figure 4.Workflowof the online optimization for the LSTMand the LRmodels, shown for a forecasted time span of 500 ms.On the
top, two input windows and the corresponding predicted and true output windows are shown. As the two input windows are shifted
by one data point (slidingwindow approach), they are labeled xi and xi+1. Given an input window size of 8, for each optimization step,
73 input and output windows shifted by one data point are contained in thematricesX andY, such that the total duration of training
windows amounts to 20 s (see equation (12)).
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whereN is the number of data points in themotion curves belonging to a single cineMRI, yi is the true future
centroid position and yî is the predicted centroid position. The analysis was done using only the last element of
each outputwindow,which is the hardest to predict (Sharp et al 2004).

Finally, we averaged over the RMSEs/MEs of different fractions to build themeanRMSE/MEwith
corresponding standard deviation.

2.6. Statistical tests
To analyze if there is a statistically significant difference between the RMSE values obtainedwith the different
models on the different testing sets, non-parametric Friedman tests were performed (Friedman 1937). A p-value
<0.05was considered significant. If the Friedman test revealed a significant difference, we consecutively
performed a post-hocNemenyi test (Nemenyi 1963) to infer whichmodel obtained significantly better RMSEs
in a pair-wise fashion.

2.7. Implementation details
All code used for this studywaswritten in Python 3.8.5 and is freely available: https://github.com/LMUK-
RADONC-PHYS-RES/lstm_centroid_prediction. To build and optimize the LSTMs, the PyTorch library
(Paszke et al 2017) version 1.8.0was used. Training for both the offline and the offline+online LSTMwas carried
out on anNVIDIAQuadroRTX8000GPUwith 48GBofmemory. The LRwas built and solved using the scikit-
learn library (Pedregosa et al 2011) version 0.24.1. The LRwas trained on an Intel XeonGold 6254 (Cascade
Lake-EP) 18-CoreCPU.

3. Results

In terms of prediction speed, a forward pass with an LSTM takes about 5 mswhile for the LRmodels less
than 1 ms.

3.1. Validation
Figure 5 shows the normalizedMSE losses for an optimization of an offline LSTMand an offline+online LSTM.
For the shown offline LSTM, the best validation loss was obtained at epoch 89which led to early stopping of the
optimization at epoch 189.On the other hand, no validation loss wasmonitored for the offline+online LSTM.As
shown infigure 4, within one training stepwefirst performed the prediction and then iteratively re-optimized
the LSTM for 10 epochs (see section 2.4.3), as this is themaximumnumber of epochswhichwould still allow a
re-optimization in a 4Hz clinical scenario.

Table 1 shows the best RMSEs obtainedwith the four differentmodels on the validation set. The
corresponding set of best hyper-parameters for eachmodel is shown in the appendix (tables A1, A2 andA3). For
all three forecasted time spans, the offline+online LSTMachieved the best performance, reaching basically the
same as the offline LSTM for the 250 ms forecast, and slightly better performance for the 500 ms and 750 ms
forecasts. The best performing LRwas the offline one, however its performancewasworse than both LSTM
training schemes.

Figure 5.Training and validation losses for an offline LSTM (left) and training losses for one step of an offline+online LSTM (right).
The best validation loss for the offline LSTMwas achieved at epoch 89, as highlighted by the arrow.
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3.2. Testing
Figure 6 shows for two selected patients of the LMU testing set (datawithout breath-holds) ground truth versus
predicted respiratorymotion trajectories for the best LSTMmodel (offline+online) and the best LRmodel
(offline LR) for all the forecasted time spans.Qualitatively, no noticeable difference is seenwhen comparing the
best LR and the best LSTM for the 250 ms forecast. On the other hand, both for the 500 ms forecast and for the
750 ms one can see how the LSTMoutperforms the LR especially when it comes to predicting steep inhalations/
exhalations. Similar observations can bemadewhen looking at figure 7 displaying true vs predicted curves for
Gemelli testing patients. Althoughwe noticed that the LSTMovershootsmore often than the LR, the former is
able tomore quickly adapt to changes in themotion trajectories (from steeper/shallower inhalations/
exhalations to irregularities)which leads to an overall smaller error, as can be seen in the error plots infigures 6
and 7. Table 2 shows the RMSEs obtainedwith the four best validationmodels on the LMU testing set (data
without breath-holds). The offline+online LSTMwas confirmed the bestmodel for all three forecasts. These

Figure 6.True versus predictedmotion sub-trajectory for a regularly (left) and an irregularly (right) breathing LMU testing patient
(datawithout breath-holds). Results are displayed for the offline+online LSTM in red and the offline LR in blue for the 250 ms (a), the
500 ms (b) and 750 ms (c) forecasts. The difference between the true curve and LSTM/LRpredicted curve is shown below the
correspondingmotion curves.

Table 1.Mean and standard deviation of RMSEs for the validation set. TheRMSE of the
best performingmodel is shown in bold for each forecasted time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.55 ± 0.44 1.40 ± 1.00 2.58 ± 1.71

Offline+online LSTM 0.54 ± 0.43 1.36 ± 0.94 2.54 ± 1.63

Offline LR 0.63 ± 0.49 1.68 ± 1.11 3.09 ± 1.91

Online LR 0.74 ± 0.53 1.76 ± 1.13 3.15 ± 1.87
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results were confirmed alsowhen looking atMEs, as shown in table A4 in the appendix. In general, allmodels
performed slightly better than during validation both in terms ofmean and standard deviation of the RMSE.

When applying the Friedman test, we found a significant difference among themodels for all forecasts and
testing sets. For the LMU testing set without breath-holds, the post-hocNemenyi test yielded the p-values shown
in table 3. The bestmodel in terms of RMSEs, i.e. the offline+online LSTMwas found to perform significantly
better than both LRmodels while therewas no significant difference between the offline LSTMand the offline
+online LSTM for all investigated forecasts.

As shown in table 4, the results obtained on the LMUvalidation and testing set (datawithout-breath-holds)
were confirmedwith theGemelli testing set (free-breathing data). The offline+online LSTMwas found to
performbest for all three forecasted time spans followed by the offline LSTM. This time, the online LR performed
better than the offline LR and reached the sameRMSE as the offline LSTM for the 750 ms forecast. Table 5 shows

Figure 7.True versus predictedmotion sub-trajectory for aGemelli testing patient breathing normally atfirst but then changing his
breathing amplitude (left) and a patient with small baseline drifts (right) (free-breathing data). Results are displayed for the offline
+online LSTM in red and the online LR in blue for the 250 ms (a), the 500 ms (b) and 750 ms (c) forecasts. The difference between the
true curve and LSTM/LRpredicted curve is shown below the correspondingmotion curves.

Table 2.Mean and standard deviation of RMSEs for the LMU testing set without breath-
holds. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.49 ± 0.29 1.24 ± 0.70 2.34 ± 1.25

Offline+online LSTM 0.48 ± 0.28 1.20 ± 0.65 2.20 ± 1.12

Offline LR 0.54 ± 0.30 1.42 ± 0.78 2.61 ± 1.38

Online LR 0.64 ± 0.38 1.54 ± 0.79 2.73 ± 1.41
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the p-values obtainedwith theNemenyi test on theGemelli testing results. This time, the offline+online LSTM
was found to be significantly better than the offline LR for all forecasts and significantly better than the online LR
for the 250 ms and the 500 ms forecast.

Finally, we also applied the bestmodels obtained on the LMUdatawithout breath-holds to the LMU testing
set with breath-holds. As shown in table 6, the offline+online LSTMagain outperformed all othermodels for all
three forecasts followed by the offline LSTMand the offline LR.While these threemodels substantially improved
their performance compared to the LMU testing set without breath-holds (table 2), the online LR evenworsened
its performance for the 500 ms and 750 ms forecasts.When applying theNemenyi test, we found significant
differences between all pairwisemodel combinations excluding the offline LSTMversus the offline LR, as shown
in table 7.

Table 4.Mean and standard deviation of RMSEs for theGemelli free-breathing testing
set. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.47 ± 0.12 1.14 ± 0.29 2.02 ± 0.49

Offline+online LSTM 0.42 ± 0.13 1.00 ± 0.30 1.77 ± 0.54

Offline LR 0.57 ± 0.14 1.52 ± 0.34 2.76 ± 0.71

Online LR 0.53 ± 0.17 1.22 ± 0.30 2.02 ± 0.49

Table 5.P-values obtained from the post-hocNemenyi test for theGemelli free-breathing testing set for all possible pairwisemodel
comparisons. Significant p-values (< 5e-2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model 1 Model 2 p-value

Offline LSTM Offline LR 3e-2* 3e-2* 1e-2

Offline LSTM Online LR 2e-1 8e-1 9e-1

Offline+online LSTM Offline LR 1e-3* 1e-3* 1e-3*

Offline+online LSTM Online LR 3e-3* 2e-2* 8e-2

Offline LSTM Offline+online LSTM 4e-1 2e-1 8e-2

Offline LR Online LR 4e-1 6e-2 1e-2*

Table 6.Mean and standard deviation of RMSEs for the LMU testing set with breath-
holds. TheRMSE of the best performingmodel is shown in bold for each forecasted
time span.

Model 250 ms forecast 500 ms forecast 750 ms forecast

RMSE [mm]

Offline LSTM 0.34 ± 0.17 0.83 ± 0.45 1.59 ± 0.95

Offline+online LSTM 0.30 ± 0.17 0.74 ± 0.39 1.34 ± 0.74

Offline LR 0.36 ± 0.19 0.96 ± 0.51 1.83 ± 1.03

Online LR 0.63 ± 0.65 1.39 ± 0.93 2.81 ± 2.12

Table 3.P-values obtained from the post-hocNemenyi test for the LMU testing set without breath-holds for all possible pairwisemodel
comparisons. Significant p-values (<5e-2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model 1 Model 2 p-value

Offline LSTM Offline LR 3e-1 3e-2* 2e-1

Offline LSTM Online LR 6e-1 1e-1 3e-1

Offline+online LSTM Offline LR 1e-3* 1e-3* 1e-3*

Offline+online LSTM Online LR 2e-3* 1e-3* 1e-3*

Offline LSTM Offline+online LSTM 9e-2 6e-2 6e-2

Offline LR Online LR 9e-1 9e-1 9e-1
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Animated figureswith sliding input, true output and predicted output windows for a testing patient from the
LMU set without breath-holds, theGemelli set and the LMU set with breath-holds respectively are shown in the
onlinematerial (stacks.iop.org/PMB/67/095006/mmedia).

4.Discussion

LSTMnetworks have been successfully applied for time series prediction inmany fields,making themone of the
most popular versions of RNNs (Shen et al 2020). In this study, we applied LSTMs to forecast tumor centroid
positions based on respiratorymotion trajectories obtained from0.35TMR-linacs. The fact that the proposed
offline+online LSTMoutperformed all the othermodels for all testing cohorts and for all forecasted time spans
confirms our hypothesis that LSTMs are well suited formotion prediction inMR-guided RT. The offline+online
LSTMwas found to perform significantly better than the best performing LR in 8/9 testing scenarios. The only
scenariowhere the better RMSEof the offline+online LSTMwas not significant compared to the best LRwas for
the 750 ms forecast with theGemelli testing data.However, theGemelli testing set presents less data compared
to the other two testing sets, as there are less videos over which the RMSE is calculated.

As expected from literature (Murphy and Pokhrel 2009, Sun et al 2020), the offline+online LSTMachieved
better performance than the offline LSTM for all testing cohorts when looking at RMSE. Additionally, for the
LMU testing set with breath-holds this difference was statistically significant. As this testing cohort differsmore
substantially from the training and validation sets than the other two, we expected this improvement. In general,
we conclude that iterative fine-tuning using the latest respiratory patterns is beneficial also for LSTMs. The
offline+online LSTMwas implemented such that online optimization took about 150 ms and could therefore be
used in a 4Hz cineMRI guidedRT treatment.

Allmodels achieved bettermeanRMSEon the LMU testing set with breath-holds included. This is expected
since this data contains long time intervals offlatmotion trajectories, which are easy to predict.

For theLMUtesting setwithoutbreath-holds, the offlineLR regressionwas found toperformbetter than the
onlineLR (see table 2), afinding indisagreementwith literature (Krauss et al2011,Uijtewaal et al2021).However, the
differencewasnot significant, as shown in table 3.When comparing themeanRMSEobtained for the 500ms forecast
withour offlineLR to themeanRMSEobtainedwith the onlineLRbyUijtewaal et al for the 500ms forecast,we can
see that bothmodels achieved a valueof about 1.5mm.Furthermore, the onlineLRwas found toperformbetter than
the offlineon theGemelli testing set,which likely differs from theLMUtraining set. Additionally, the free-breathing
Gemelli datamight be easier topredict than theLMUdatawithout breath-holds as the latter consists of sub-
trajectories of free-breathingmotion in-betweenbreath-holds and can thus contain irregular breathingor steep
inhalations and exhalations. This could also explainwhy theonlineLRperformedbetter on theGemelli testing set.

To compare the performance obtained in this studywith the one obtained by the LSTM implemented by Lin
et al, we report here normalized RMSEs obtainedwith our offline+online LSTM for the 500 ms forecast. The
normalizationwas done using themin-max amplitudes saved to disk during pre-processing.We found amean
normalized RMSEof 0.086 for the LMU testing set without breath-holds and 0.107 for theGemelli testing set.
These results are in agreementwith themean testing RMSEof 0.139 found by Lin et al (2019). Furthermore, we
can approximately compare theRMSE obtainedwith our offline+online LSTM for the 500ms forecast with the
RMSEobtained byWang et al using a Bi-LSTM for a 400 ms forecast (Wang et al 2018). Since they found amean
validation normalized RMSEof 0.081 (no testing set was used, unlike in this study), we conclude that our offline
+online LSTM is comparable.

In general, we noticed large standard deviations of the RMSEs. This suggests that substantial performance
differencesmight be observed among different patients. The standard deviations for theGemelli testing set and
the LMU testing set with breath-holds were smaller than for the LMU testing set without breath-holds. As the
Gemelli data consists of regular free-breathing and the LMUdatawith breath-holds largely consists offlat

Table 7.P-values obtained from the post-hocNemenyi–Friedman test for the LMU testing set with breath-holds for all possible pairwise
model comparisons. Significant p-values (< 5e-2) are denotedwith an asterisk.

Comparison 250 ms forecast 500 ms forecast 750 ms forecast

Model Model 2 p-value

Offline LSTM Offline LR 3e-1 2e-3* 9e-3*

Offline LSTM Online LR 1e-3* 1e-3* 1e-3*

Offline+online LSTM Offline LR 1e-3* 1e-3* 1e-3*

Offline+online LSTM Online LR 1e-3* 1e-3* 1e-3*

Offline LSTM Offline+Oonline LSTM 1e-3* 1e-3* 1e-3*

Offline LR Online LR 1e-3* 1e-3* 1e-3*
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motion regions, we hypothesize that this decreased variability in the data leads to smaller standard deviations.
The fact that themean and standard deviation of the validation RMSEwere larger than the LMU testing results
(compare tables 1 and 2), might be explained by the fact that by chance, when splitting the LMUcohort in
training, validation and testing,more irregularmotion curves were assigned to the validation compared to the
testing set.

As observed in several studies (Sharp et al 2004, Seregni et al 2016,Wang et al 2018,Uijtewaal et al 2021), the
predictive performance decreasedwith increasing forecasted time span.However, sub-resolution accuracy
(<3.5 mm)was still reached for all three forecasts. The goodRMSEof about 1 mmof the offline+online LSTM
for the 500 ms forecast shows that thismodel could be used to successfully account for the system latencies
found byGlitzner et al (2019)when performingMLC tracking on an ElektaUnityMR-linac.

The current study has a few limitations. The first is that all models were optimized and applied onmotion
curves which were normalized based on the globalminimum andmaximum SI centroid position of each cine
video, following (Lin et al 2019, Yu et al 2020). In clinical practice of course, the globalminimum and
maximum for the entire fraction cannot be known before the treatment ends. However, with the 0.35 TMR-
linac, right before the treatment starts a preview cineMRI is acquired (Klueter 2019) for automatic selection
of a tracking key frame, to inspect if the gating window needs to be adjusted and similar aspects. This cine
MRI could also be used to get themin-max amplitudes to be used for the normalization of themotion curves
acquired for the treatment. A small window size (equal to three)was taken for both the outlier replacement
and themoving average filter tomake an implementation in a real-time clinical scenario possible. The
second limitation consists in the fact that ourmodels only predict the future centroid position in SI direction.
While this could already be used for centroidMLC tracking in parallel direction, where theMLC shape is
shifted to the predicted SI position, latencies for deviations in anterior-posterior direction would not be
accounted for. To achieve this, a secondmodel predicting the other direction could be run in parallel.
Alternatively, the anterior-posteriormotion could be included as input, a possible extension to themodels
presented in this work. However, only predicting centroid positions would not allow formore advanced
forms of dynamicMLC tracking (Ge et al 2014), where theMLC shape is adapted the predicted tumor
location and shape, possibly taking into account in-plane rotations and deformations (Keall et al 2021). In a
future study, we plan to extend the proposed LSTM to directly predict future 2D cineMR frames, thus
allowing for dynamicMLC tracking. Finally, ourmodel cannot predict out-of-planemotion as the cineMRIs
are acquired in a single sagittal plane. However, severalmethods have been proposed to obtain time-resolved
volumetricMRI (Fayad et al 2012, Stemkens et al 2016, Paganelli et al 2018a, Rabe et al 2021), whichmight be
combined with ourmotion predictionmodel in future studies.

5. Conclusions

In this study, we developed LSTMs for SI tumor centroid position prediction based on cineMRIs acquiredwith
0.35 TMRIdianmachines from two different institutions and showed that they outperformed state-of-the-art
LR algorithms for all investigated forecasts (250 ms, 500 ms and 750 ms). The proposedmodels generalized their
predictive performance to different testing sets with different breathing patterns, ranging from free-breathing to
treatments with prolonged breath-holds. The continuously re-optimized offline+online LSTMnetwork
achieved superior performance in all tasks compared to offline optimizedmodels. In conclusion, LSTMswere
shown to have great potential as respiratorymotion predictors to account for the system latencies present in
MR-guided RTwithMLC tracking.
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