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Abstract: Several studies have implied a role of magnesium in the development of cardiovascular
disease (CVD). Thus, magnesium might serve as a potential risk marker for early CVD. Therefore,
we investigated the association of serum magnesium and dietary magnesium intake with markers
of subclinical CVD in a population-based study. We used cross-sectional data from the sub-study
of the Cooperative Health Research in the Region of Augsburg (KORA-FF4). Markers of subclinical
CVD, namely, left and right ventricular structure and function and carotid plaque and carotid wall
thickness, were derived by magnetic resonance imaging (MRI). Multivariable-adjusted regression
models were applied to assess the relationship between serum and dietary magnesium and MRI-
derived subclinical CVD markers. Among 396 included participants (mean age: 56.3 ± 9.2 years;
57.8% male), 181 (45.7%) had low serum magnesium levels (<2.07 mg/dL). Among 311 subjects
with complete dietary data (mean age: 56.3 ± 9.1 years; 56.3% male), 154 (49.5%) had low dietary
magnesium intake (≤155.2 mg/1000 kcal/day). Serum and dietary magnesium were not correlated
(p-value = 0.5). Serum magnesium was significantly associated with presence of carotid plaque (OR
1.62, p-value 0.033). Dietary magnesium was associated with higher left ventricular end-systolic and
end-diastolic volume (0.04 mL/m2, 0.06 mL/m2; p-value 0.011, 0.013, respectively), and also with a
decrease in left ventricular remodeling index and mean diastolic wall thickness (−0.001 g/mL/m2,
−0.002 mm/m2; p-value 0.004, 0.029, respectively). In summary, there was no consistent association
of serum and dietary magnesium with imaging markers of subclinical CVD.

Keywords: magnesium; preclinical atherosclerosis; early cardiac impairment; cardiac MRI

1. Introduction

Cardiovascular disease (CVD) is a major contributor to reduced quality of life and a
leading cause of mortality worldwide [1,2]. The Global Burden of Disease (GBD) Study
2019 showed that the prevalence, mortality, and disability-adjusted life years (DALYs) of
CVD have risen significantly since 1990 [2]. Heart failure prevalence is projected to rise
by 40% between 2015 and 2035 [3]. The global prevalence of carotid plaque, an indicator
of cardiovascular risk, was estimated to be 21.1% in people aged 30–79 years in 2020 [4].
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However, the prevalence of CVD and plaque burden cannot be solely explained by the
traditional cardiovascular risk factors such as hypertension and diabetes [5,6]. Thus, there
is an urgent need to identify additional markers of early CVD in order to implement
prevention and treatment strategies to limit the growing burden of CVD.

One potential candidate is magnesium, which has been reported to be implicated
in CVD development [7,8]. As the fourth most abundant mineral and the second most
abundant intracellular cation, magnesium modulates neuronal excitation, intracellular
conduction, and myocardial contraction [9]. Furthermore, magnesium plays a key role
in regulating mitochondrial function and energy production [10]. Liu et al. found that
magnesium deficiency can induce diastolic cardiomyopathy in mice with a low magnesium
diet mainly through ATP depletion, mitochondrial dysfunction, and overproduction of
reactive oxygen species [11]. Magnesium deficiency has also been shown to accelerate
atherosclerosis by promoting platelet activity and endothelial dysfunction and increasing
the production of pro-inflammatory cytokines and neuropeptides [12].

Dietary magnesium is deemed to be one of the shortfall nutrients due to the modern
Western diet characterized by a wide use of processed foods, demineralized water, and agri-
cultural practices that use soils deficient in magnesium [13]. A meta-analysis of prospective
cohort studies found that increasing dietary intake of magnesium was associated with a
22% reduction in the risk of heart failure [14]. Low magnesium intake was associated with
higher heart failure incidence and hospitalization [15,16]. However, to assess if magnesium
is a potential target for CVD prevention, it is necessary to study its relationship with early
subclinical CVD, which could be assessed with cardiovascular imaging.

Using echocardiography, serum magnesium was inversely associated with left ventric-
ular mass even after adjustment for cardiovascular risk factors [17]. Previous population-
based studies have demonstrated an inverse relationship between serum magnesium and
carotid artery intima-media thickness [18–20]. On the other hand, a systematic review and
meta-analysis of randomized clinical trials showed that magnesium supplementation may
improve endothelial function without affecting carotid intima-media thickness [21]. How-
ever, intima-media thickness is not a good measure of atherosclerotic plaque [22]. Cardiac
magnetic resonance imaging (MRI) is considered a safe, non-invasive, highly accurate, and
reproducible method that enables a detailed characterization of cardiac morphology and
function and atherosclerotic plaque [23]. We now aim to make use of the detailed cardiac
MRI data as measures of subclinical CVD and analyze the association between serum and
dietary magnesium with early cardiac impairment and preclinical atherosclerosis.

2. Materials and Methods
2.1. Study Design and Population

We used cross-sectional data from a subsample (KORA-MRI, n = 400) of a population-
based cohort in southern Germany (KORA-FF4, n = 2279). KORA-FF4 is the second follow-
up of the original baseline survey KORA-S4 (N = 4261, enrolled between 1999 and 2001).
Details on the study design, sampling method, and data collection of the KORA surveys
have been described elsewhere [24]. In the KORA-MRI sub-study, a total of 400 participants
aged 39 to 73 years without known cardiovascular disease underwent whole-body MRI.
The main aim of the study was to assess subclinical disease in individuals with prediabetes
and diabetes. Study setup, imaging protocol, and inclusion and exclusion criteria were
described in detail previously [25].

The KORA-FF4 study was approved by the Ethics Committee of the Bavarian Medi-
cal Association (Bayerische Landesärztekammer). All investigations were performed in
accordance with the Declaration of Helsinki, including written informed consent of all
participants. The MRI examination protocol was further approved by the ethics committee
of the Ludwig-Maximillian-University Hospital, Munich.
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2.2. Assessment of Serum and Dietary Magnesium

Plasma magnesium was measured in mmol/L with the Siemens Dimension Vista
(Siemens Health Care Diagnostics Inc, Newark, DE) using a modification of the methyl
thymol blue (MTB) procedure that forms a blue complex with magnesium [26]. The amount
of magnesium-MTB complex formed is proportional to the magnesium concentration and
was measured using a biochromatic (600 and 510 nm) endpoint technique. Based on a
review of the literature that adopted an evidenced-based reference interval for serum total
magnesium concentration, we used a cutoff point of <0.85 mmol/L (2.07 mg/dL) to indicate
hypomagnesemia [27].

Habitual dietary intake, including magnesium, was obtained based on a combina-
tion of up to three 24 h food lists (24H-FL) and a food frequency questionnaire (FFQ), as
described previously [28]. While the 24H-FL, consisting of 246 food items, was used to
calculate the consumption of foods over the previous day, the FFQ, consisting of 148 food
items, was used to assess the dietary habits in the past 12 months. For each participant,
the assessment of the usual dietary intake of each food item on any given day was de-
rived from the multiplication of the calculated consumption probability and consumption
amount. Consumption probability was determined by logistic mixed models adjusted for
covariates and FFQ information and the consumption amount was estimated based on
data from the Bavarian Food Consumption Survey II (BVS II). According to the EPIC-Soft
classification scheme, food items were combined into 16 food groups and 21 subgroups
for both approaches. Dietary magnesium was measured in mg/day. In order to take
the total energy consumption into account, we dichotomized dietary magnesium intake
based on the median split of the dietary density for dietary magnesium. A magnesium
intake ≤ 155.2 mg/1000 kcal/day was defined as low.

2.3. Assessment of Subclinical Cardiovascular Disease Markers by MRI

Whole-body MRI examinations were performed using a 3 Tesla Magnetom Skyra
(Siemens AG, Healthcare Sector, Erlangen, Germany) supplied with an 18-channel body
coiling system. All participants underwent imaging, within 3 months after their clinical
examination at the study center, consisting of sequences covering the entire body. For
analysis of the heart, 4-chamber view steady-state free precession (SSFP) and short-axis
stack SSFP were used. An axial black-blood T1 weighted fat-saturated (T1w fs ax) was
used to assess carotid plaque. All image analyses were performed by independent readers
blinded to the clinical covariates of the participants [25]. Missing values in MRI parameters
were due to technical malfunction, low image quality, or imaging artifacts.

2.3.1. Left Ventricular Structure and Function

Cine-SSFP sequences were evaluated semi-automatically with cvi42 (Circle Cardiovas-
cular Imaging, Calgary, Canada) software. The derived left ventricular (LV) markers [29]
included end-diastolic volume (the phase with the biggest left ventricular volume), end-
systolic volume (the phase with the smallest left ventricular volume), stroke volume
(end-diastolic volume minus end-systolic volume), ejection fraction ((stroke volume/end-
diastolic volume) * 100), left ventricular mass assessed during end diastole, cardiac output
(left ventricular stroke volume * heart rate), and left ventricular wall thickness. Presence of
late gadolinium enhancement (LGE) was assessed visually on fast low-angle shot inversion
recovery sequences. Furthermore, filling and ejection rates were quantified using dedicated
in-house software estimating peak gradients during early (passive left ventricular filling)
and late (left ventricular filling due to atrial contraction) filling [30].

2.3.2. Right Ventricular Structure and Function

Right ventricular (RV) function was assessed by manual segmentation of the right
ventricular endocardial border on axial cine-SSFP sequences using dedicated software
(cvi42, Circle Cardiovascular Imaging, Calgary, Canada). Markers included end-systolic
volume, end-diastolic volume, stroke volume, cardiac output, and ejection fraction [31].
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2.3.3. Carotid Plaque

The presence and composition of carotid plaque was determined on black-blood
T1-weighted sequences on 14 slice positions and semiautomatic software (CASCADE;
University of Washington Seattle, WA) was used to obtain vessel wall thickness and lumen
dimension [32]. According to plaque composition [33], measures were classified as type
I, type III, type IV/V, and type VI/VII plaques, and any plaque > type I was defined as
having plaque.

2.4. Assessment of Covariates

All participants underwent standardized interviews, comprehensive medical exami-
nations, and a fasting blood draw at the study center. Interviews included information on
demographic variables (e.g., age, sex), medication intake (e.g., antihypertensive and antidia-
betic medication), and health behavior (e.g., smoking and physical activity). Smoking status
was classified as never smoker, ex-smoker, and current smoker. Height, weight, BMI, and
waist circumference were assessed by trained staff according to standard protocols using
standardized instruments. Systolic and diastolic blood pressure was measured three times
on the right arm of seated participants after at least a five-minute resting period. The mean
of the second and third BP measurements was used for the analyses. Hypertension was
defined as blood pressure greater or equal to 140/90 mmHg or the use of antihypertensive
medication under the awareness of having hypertension.

Diabetes status (normoglycemia, prediabetes, or diabetes) was determined by an
oral glucose tolerance test (OGTT) according to WHO criteria [34] or as previous diabetes
diagnosed by a physician. Laboratory parameters, such as glucose, HbA1c as well as total
cholesterol, triglycerides, and low- and high-density lipoprotein cholesterol were assessed
by standardized methods as described elsewhere [35].

2.5. Statistical Analyses

Participants’ demographics, cardiovascular risk factors, and MRI outcomes are pre-
sented as means and standard deviations (SD) for continuous variables and counts and
percentages for categorical variables. Description was also stratified by serum and dietary
magnesium with cut-off points of 0.85 mmol/L (2.07 mg/dl) and 155.2 mg/1000 kcal/day,
as outlined above. Differences in continuous and categorical variables between the groups
were examined by a t-test and χ2-test, respectively. We calculated the body surface area
(BSA) according to the Du Bois formula (BSA [m2] = weight [kg]0.425 × height (cm)0.725

× 0.007184) [36] and indexed all measures of cardiac morphology and function by BSA.
Correlations between serum and dietary magnesium and correlations with MRI outcomes
were determined by Spearman’s rho correlation coefficient and corresponding p-value.

To assess the association between continuous exposures of serum and dietary mag-
nesium with continuous MRI outcomes, a linear regression model adjusted for age, sex,
BMI, systolic blood pressure, and diabetes status was calculated providing β-coefficients
with 95% confidence intervals (CIs). Serum magnesium was standardized by subtracting
its mean and dividing by its SD. For dietary magnesium intake, models were additionally
adjusted for daily caloric intake. Binary MRI outcomes (presence of LGE and presence of
plaque) were analyzed by logistic regression adjusted for the same variables. Categorical
MRI outcome (plaque-type) was analyzed by ordered logistic regression with a cumulative
logit link under the proportional odds assumption. As an additional analysis for serum
magnesium, logistic models were additionally adjusted for serum total cholesterol and
smoking status. Estimates for all logistic models are reported as odds ratios (ORs) with
95% CIs. To assess if the association of serum magnesium with presence of plaque was
mediated by serum total cholesterol, causal mediation analysis was applied. Due to the
varying number of missing values in the MRI parameters, we performed complete-case
analyses for each exposure and each MRI outcome. p values < 0.05 were considered to
indicate statistical significance. All analyses were conducted with R (Version 4.1.2).
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3. Results
3.1. Study Population

Samples sizes for the analyses of serum and dietary magnesium with the respective
MRI outcomes of LV structure and function, RV structure and function, and carotid plaque
are presented in Figure 1. Among the 400 participants who underwent whole-body MRI,
396 and 311 subjects were included in the analysis serum and dietary magnesium, respec-
tively. Data on the relationship between serum magnesium and subclinical cardiovascular
disease markers were available in 363, 333, and 245 participants for LV, RV, and carotid
plaque, respectively. Similarly, the association between dietary magnesium and subclinical
cardiovascular disease markers was available in 287, 263, and 188 individuals for LV, RV,
and carotid plaque, respectively. Differences in the clinical characteristics of the study
population between missing and complete case analysis are presented in Table S1.
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Figure 1. Participant flow diagram. LVF, left ventricular function; RVF, right ventricular function. 

Figure 1. Participant flow diagram. LVF, left ventricular function; RVF, right ventricular function.

Table 1a provides an overview of the clinical characteristics of the study popula-
tion stratified by serum magnesium levels. Out of 396 included participants (mean age:
56.3 ± 9.2 years; 57.8% male), 181 (45.7%) had low serum magnesium levels (mean age:
57.04 ± 9.65 years; 59.7% male). Individuals with hypomagnesemia had higher systolic
blood pressure, more often had diabetes, had higher blood glucose levels, with a more
frequent use of diabetic medications.

Table 1. (a): Demographic and cardiovascular risk factors by serum magnesium status; (b): demo-
graphic and cardiovascular risk factors by dietary magnesium intake.

(a)

All Mg ≤ 2.07 mg/dL Mg > 2.07 mg/dL p Value

N = 396 (99.2%) n = 181 (45.7%) n = 215 (54.3%)

Age (years) 56.34 (9.20) 57.04 (9.65) 55.75 (8.79) 0.167
Male sex 229 (57.8) 108 (59.7%) 121 (56.3%) 0.563
Weight (kg) 83.00 (16.63) 83.60 (15.96) 82.49 (17.19) 0.508
BMI (kg/m2) 28.10 (4.91) 28.21 (4.83) 28.00 (4.99) 0.67
Smoking 0.345

Never smoker 145 (36.6%) 67 (37.0%) 78 (36.3%)
Ex-smoker 171 (43.2%) 83 (45.9%) 88 (40.9%)
Smoker 80 (20.2%) 31 (17.1%) 49 (22.8%)
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Table 1. Cont.

(a)

All Mg ≤ 2.07 mg/dL Mg > 2.07 mg/dL p Value

N = 396 (99.2%) n = 181 (45.7%) n = 215 (54.3%)

Waist circumference (cm) 98.56 (14.37) 99.24 (14.17) 98.00 (14.55) 0.394
Systolic BP (mmHg) 120.54 (16.64) 122.60 (16.31) 118.81 (16.75) 0.024
Diastolic BP (mmHg) 75.24 (9.99) 75.93 (9.67) 74.67 (10.24) 0.514
Physically active 237 (59.8%) 112 (61.9%) 125 (58.1%) 0.523
Hypertension 133 (33.6%) 65 (35.9%) 68 (31.6%) 0.428
Glucose (mg/dl) 104.31 (22.63) 107.36 (25.04) 101.74 (20.08) 0.014
HbA1c (%) 5.57 (0.72) 5.63 (0.74) 5.52 (0.71) 0.121
Diabetes 0.022

No 242 (61.1%) 105 (58.0%) 137 (63.7%)
Prediabetes 102 (25.8%) 43 (23.8%) 59 (27.4%)
Diabetes 52 (13.1%) 33 (18.2%) 19 (8.8%)

Total cholesterol (mg/dl) 218.05 (36.31) 215.12 (34.54) 220.51 (37.65) 0.141
HDL-C (mg/dl) 62.00 (17.68) 62.14 (17.62) 61.89 (17.76) 0.888
LDL-C (mg/dl) 139.68 (32.98) 136.71 (31.51) 142.17 (34.04) 0.101
Triglycerides (mg/dl) 131.41 (85.12) 133.42 (92.51) 129.73 (78.54) 0.668

eGFR (ml/min/1.73 m2) 86.62 (12.96) 86.18 (13.13) 87.00 (12.83) 0.531
Serum potassium (mmol/L) 4.29 (0.28) 4.30 (0.29) 4.27 (0.28) 0.298
Serum phosphate (mmol/L) 1.04 (0.15) 1.04 (0.15) 1.05 (0.15) 0.4
Diabetic medication 30 (7.6%) 23 (12.7%) 7 (3.3%) 0.001
Antihypertensive medication 100 (25.3%) 49 (27.1%) 51 (23.7%) 0.517
Lipid lowering medication 42 (10.6%) 21 (11.6%) 21 (9.8%) 0.669
Diuretics medication 54 (13.6%) 23 (12.7%) 31(14.4%) 0.728
Anticoagulant therapy 8 (2.0%) 4 (2.2%) 4 (1.9%) 1

(b)

All Dietary Mg ≤ 155.2
mg/1000 kcal/day

Dietary Mg > 155.2
mg/1000 kcal/day p Value

N = 311 (77.9%) n = 154 (49.5%) n = 157 (50.5%)

Age (years) 56.39 (9.10) 55.86 (9.23) 56.91 (8.97) 0.311
Male sex 175 (56.3%) 118 (76.6%) 57 (36.3%) <0.001
Weight (kg) 82.23 (16.60) 85.79 (15.81) 78.74 (16.67) <0.001
BMI (kg/m2) 27.95 (4.97) 28.19 (4.64) 27.71 (5.27) 0.394
Smoking 0.495

Never smoker 115 (37.0%) 52 (33.8%) 63 (40.1%)
Ex-smoker 136 (43.7%) 70 (45.5%) 66 (42.0%)
Smoker 60 (19.3%) 32 (20.8%) 28 (17.8%)

Waist circumference (cm) 97.99 (14.56) 100.86 (13.90) 95.18 (14.69) 0.001
Systolic BP (mmHg) 120.05 (16.36) 123.13 (16.31) 117.02 (15.89) 0.001
Diastolic BP (mmHg) 74.80 (9.90) 76.30 (9.97) 73.34 (9.64) 0.008
Physically active 189 (60.8%) 88 (57.1%) 101 (64.3%) 0.237
Hypertension 108 (34.7%) 60 (39.0%) 48 (30.6%) 0.151
Glucose (mg/dl) 103.44 (18.28) 105.61 (20.96) 101.31 (14.96) 0.038
HbA1c (%) 5.53 (0.59) 5.56 (0.63) 5.51 (0.54) 0.438
Diabetes 0.531

No 192 (61.7%) 93 (60.4%) 99 (63.1%)
Prediabetes 83 (26.7%) 40 (26.0%) 43 (27.4%)
Diabetes 36 (11.6%) 21 (13.6%) 15 (9.6%)

Total cholesterol (mg/dl) 217.67 (36.18) 216.32 (37.37) 218.89 (35.05) 0.532
HDL-C (mg/dl) 62.63 (17.82) 58.89 (16.89) 66.29 (18.00) <0.001
LDL-C (mg/dl) 139.31 (33.50) 139.25 (34.12) 139.36 (32.99) 0.977
Triglycerides (mg/dl) 127.65 (79.43) 144.12 (97.15) 111.49 (52.43) <0.001
eGFR (ml/min/1.73 m2) 86.63 (13.10) 86.98 (13.34) 86.28 (12.88) 1
Energy intake (kcal/day) 1841.53 (414.39) 2004.73 (383.37) 1681.45 (380.79) <0.001
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Table 1. Cont.

(b)

All Dietary Mg ≤ 155.2
mg/1000 kcal/day

Dietary Mg > 155.2
mg/1000 kcal/day p Value

N = 311 (77.9%) n = 154 (49.5%) n = 157 (50.5%)

Dietary calcium (mg/day) 763.29 (205.97) 739.29 (193.76) 786.83 (215.30) <0.001
Dietary potassium (mg/day) 2532.28 (503.22) 2515.33 (470.74) 2548.91 (534.16) 0.557
Dietary phosphate (mg/day) 1111.75 (263.84) 1130.93 (244.04) 1092.94 (281.43) 0.205
Diabetic medication 23 (7.4%) 13 (8.4%) 10 (6.4%) 0.630
Antihypertensive medication 84 (27.0%) 45 (29.2%) 39 (24.8%) 0.458
Lipid lowering medication 34 (10.9%) 21 (13.6%) 13 (8.3%) 0.183
Diuretics medication 49 (15.8%) 22 (14.3%) 27 (17.2%) 0.583
Anticoagulant therapy 8 (2.6%) 4 (2.6%) 4 (2.5%) 1

Values are reported as mean (standard deviation) or n (%), unless otherwise indicated. BP, blood pressure; BMI,
body mass index; eGFR, estimated glomerular filtration rate.

Table 1b shows the clinical characteristics of the study participants stratified by di-
etary magnesium intake. Among 311 subjects with complete dietary data (mean age:
56.3 ± 9.1 years; 56.3% male), 154 (49.5%) had low dietary magnesium intake (mean age:
55.9 ± 9.2 years; 76.6% male). Men were more likely to have significantly lower dietary
magnesium intake in comparison to women (p-value <0.001). Furthermore, individuals
with low dietary magnesium intake were more likely to have higher body weight, waist
circumference, glucose levels, systolic and diastolic blood pressure, triglycerides, energy
intake, and lower HDL cholesterol and dietary calcium intake.

Concordance between dichotomized serum magnesium and dichotomized dietary
magnesium is shown in Table S2. Among 311 participants, 75 (24.1%) had both low serum
and dietary magnesium and 91 (29.3%) had both high serum and dietary magnesium.

Overall, mean MRI markers of subclinical cardiovascular disease within the study
sample were within normal limits (Table 2a,b).

Table 2. (a): Imaging markers of subclinical cardiovascular disease by serum magnesium status.
(b): Imaging markers of subclinical cardiovascular disease by dietary magnesium intake.

(a)

All Mg ≤ 2.07 mg/dL Mg > 2.07 mg/dL p Value

Left Ventricular Function N = 366 (91.7%) n = 168 (45.9%) n = 198 (54.1%)

Early diastolic filling rate (mL/s) 226.11 (115.89) 223.95 (115.97) 227.93 (116.09) 0.744
Late diastolic filling rate (mL/s) 225.90 (109.28) 223.95 (113.18) 227.56 (106.11) 0.754
End diastolic volume (mL/m2) 66.14 (14.90) 66.50 (16.21) 65.84 (13.73) 0.673
End systolic volume (mL/m2) 20.73 (8.65) 20.87 (9.67) 20.60 (7.70) 0.764
Stroke volume (mL/m2) 45.43 (9.42) 45.65 (10.06) 45.24 (8.85) 0.682
Cardiac output (mL/min/m2) 3009.05 (586.74) 3050.06 (617.36) 2974.25 (558.66) 0.219
Ejection fraction (%) 69.37 (7.78) 69.52 (8.45) 69.25 (7.18) 0.741
Peak ejection rate (mL/s) 354.70 (132.64) 352.74 (136.76) 356.36 (129.37) 0.795
Myocardial mass (g/m2) 71.46 (13.37) 72.46 (13.80) 70.61 (12.97) 0.188
LGE 11 (3.0%) 3 (1.8%) 8 (4.0%) 0.341
Remodeling index (g/mL/m2) 0.58 (0.15) 0.59 (0.17) 0.57 (0.14) 0.418
Mean diastolic thickness (mm/m2) 4.85 (0.67) 4.88 (0.72) 4.82 (0.61) 0.33

Right ventricular function N = 336 (84.2%) n = 85 (25.3%) n = 251 (74.7%)

End diastolic volume (mL/m2) 84.72 (17.46) 87.63 (18.54) 83.73 (17.00) 0.075
End systolic volume (mL/m2) 40.33 (11.78) 42.70 (12.16) 39.52 (11.56) 0.031
Stroke volume (mL/m2) 44.43 (9.11) 44.95 (9.45) 44.25 (9.00) 0.539
Cardiac output (mL/min/m2) 2938.74 (574.20) 3004.43 (575.29) 2916.49 (573.27) 0.223
Ejection fraction (%) 52.85 (7.01) 51.80 (6.74) 53.21 (7.08) 0.109



Nutrients 2022, 14, 4954 8 of 16

Table 2. Cont.

(a)

All Mg ≤ 2.07 mg/dL Mg > 2.07 mg/dL p Value

Carotid plaque N = 248 (62.2%) n = 76 (30.6%) n = 172 (69.4%)

Presence of plaque 50 (20.2%) 12 (15.8%) 38 (22.1) 0.333
Presence of plaque type 0.416

AHA type I 198 (79.8%) 64 (84.2%) 134 (77.9)
AHA type III 34 (13.7%) 7 (9.2%) 27 (15.7)
AHA type V 10 (4.0%) 4 (5.3%) 6 (3.5)
AHA type VI or VII 6 (2.4%) 1 (1.3%) 5 (2.9)

Wall thickness left (mm) 0.75 (0.11) 0.76 (0.13) 0.74 (0.10) 0.112
Wall thickness right (mm) 0.76 (0.10) 0.78 (0.10) 0.75 (0.10) 0.018

(b)

All Dietary Mg ≤ 155.2
mg/1000 kcal/day

Dietary Mg > 155.2
mg/1000 kcal/day p Value

Left Ventricular Function N = 287 (91.8%) n = 141 (49.1%) n = 146 (50.9%)

Early diastolic filling rate (mL/s) 229.48 (115.39) 226.99 (110.31) 231.87 (120.42) 0.721
Late diastolic filling rate (mL/s) 227.74 (110.88) 226.97 (118.89) 228.48 (102.96) 0.908
End diastolic volume (mL/m2) 66.65 (14.81) 65.83 (14.37) 67.45 (15.23) 0.355
End systolic volume (mL/m2) 20.73 (8.08) 20.48 (7.81) 20.97 (8.35) 0.607
Stroke volume (mL/m2) 45.94 (9.43) 45.38 (9.17) 46.47 (9.67) 0.327
Cardiac output (mL/min/m2) 3041.45 (574.70) 3047.67 (561.30) 3035.44 (589.22) 0.857
Ejection fraction (%) 69.53 (7.27) 69.46 (6.93) 69.60 (7.61) 0.875
Peak ejection rate (mL/s) 356.40 (133.62) 361.26 (136.96) 351.71 (130.61) 0.546
Myocardial mass (g/m2) 70.71 (12.72) 73.57 (12.56) 67.94 (12.29) <0.001
LGE 9 (3.1%) 3 (2.1%) 6 (4.1%) 0.532
Remodeling index (g/mL/m2) 0.57 (0.14) 0.58 (0.15) 0.56 (0.13) 0.091
Mean diastolic thickness (mm/m2) 4.81 (0.63) 4.88 (0.65) 4.75 (0.61) 0.090

Right ventricular function N = 263 (84.0%) n = 128 (48.7%) n = 135 (51.3%)

End diastolic volume (mL/m2) 85.66 (17.65) 85.92 (17.27) 85.41 (18.07) 0.817
End systolic volume (mL/m2) 40.52 (12.03) 41.36 (11.94) 39.72 (12.10) 0.271
Stroke volume (mL/m2) 45.18 (9.00) 44.58 (8.65) 45.74 (9.32) 0.296
Cardiac output (mL/min/m2) 2974.97 (574.37) 3000.75 (561.10) 2950.51 (587.71) 0.118
Ejection fraction (%) 53.21 (6.89) 52.37 (6.83) 54.01 (6.88) <0.001

Carotid plaque N = 188 (60.1%) n = 100 (53.2%) n = 88 (46.8%)

Presence of plaque 41 (21.8%) 23 (23.0%) 18 (20.5%) 0.807
Presence of plaque type 0.265

AHA type I 147 (78.2%) 77 (77.0%) 70 (79.5%)
AHA type III 28 (14.9%) 15 (15.0%) 13 (14.8%)
AHA type V 7 (3.7%) 6 (6.0%) 1 (1.1%)
AHA type VI or VII 6 (3.2%) 2 (2.0%) 4 (4.5%)

Wall thickness left (mm) 0.75 (0.11) 0.75 (0.12) 0.74 (0.10) 0.463
Wall thickness right (mm) 0.76 (0.10) 0.76 (0.10) 0.75 (0.11) 0.248

Values are reported as the mean (SD), n (%), unless otherwise indicated. LGE: Late Gadolinium Enhancement,
AHA: American Heart Association

3.2. Correlation between Serum and Dietary Magnesium with Clinical Characteristics and
MRI-Derived Markers

In our sample, there was no correlation between serum and dietary magnesium
(Spearman’s rho = 0.04, p = 0.5, Figure 2). Serum magnesium was negatively correlated
with systolic blood pressure and fasting blood glucose (p = 0.003, Table S3), and positively
correlated with total cholesterol and LDL-cholesterol (p < 0.05, Table S3). Regarding MRI
outcomes, serum magnesium was negatively correlated with right carotid artery wall
thickness (p = 0.037), but not with any other MRI parameter of cardiac structure and
function. On the other hand, dietary magnesium intake was positively correlated with
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systolic blood pressure and body weight (p < 0.05, Table S3). Expectedly, dietary magnesium
was highly correlated with dietary potassium and dietary phosphate (Table S3). Regarding
MRI outcomes, dietary magnesium was positively correlated with LV and RV end-systolic
and end-diastolic volume and myocardial mass, and negatively correlated with ejection
fraction, peak ejection rate, remodeling index, and mean diastolic wall thickness.
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3.3. Association between Magnesium and MRI-Derived Subclinical Cardiovascular Disease
Markers
3.3.1. Serum Magnesium

In univariate analysis, markers of early cardiac impairment and preclinical atheroscle-
rosis were similar between groups with and without hypomagnesemia (Table 2a). However,
right ventricular end-systolic volume and right carotid artery wall thickness were sig-
nificantly higher in the group with low serum magnesium levels (p-value: 0.031, 0.018,
respectively). Multivariable analysis adjusted for age, sex, BMI, systolic blood pressure, and
diabetes status revealed a significant negative association of continuous serum magnesium
with right ventricular end-systolic volume (coefficient: −1.21mL/m2; 95% CI −2.39mL/m2

to −0.04mL/m2). Higher ORs for LGE, presence, and type of carotid plaque were also
observed, which remained significant even after additionally adjusting for serum choles-
terol and smoking status (OR = 3.06, 95% CI 1.27 to 8.32; OR = 1.62, 95% CI 1.07 to 2.56;
OR = 1.58, 95% CI 1.19 to 2.11, respectively) (Table 3). We note, however, that prevalence of
LGE was low and this result has to be interpreted with caution.
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Table 3. Results of multivariable-adjusted models for the relation between serum and dietary
magnesium and imaging markers of subclinical cardiovascular disease.

Serum Magnesium Dietary Magnesium

Estimate 95% CI p Value Estimate 95% CI p Value

Left Ventricular Function N = 366 N = 287

Early diastolic filling rate (mL/s) −3.29 (−14.24, 7.67) 0.556 0.17 (−0.217, 0.556) 0.388
Late diastolic filling rate (mL/s) −0.18 (−11.17, 10.81) 0.975 0.05 (−0.347, 0.453) 0.794
End diastolic volume (mL/m2) −0.86 (−2.32, 0.58) 0.239 0.06 (0.014, 0.114) 0.013
End systolic volume (mL/m2) −0.07 (−0.94, 0.79) 0.871 0.04 (0.008, 0.065) 0.011
Stroke volume (mL/m2) −0.81 (−1.72, 0.10) 0.082 0.03 (−0.006, 0.059) 0.104
Cardiac output (mL/min/m2) −52.73 (−111.58, 6.11) 0.078 1.42 (−0.631, 3.471) 0.174
Ejection fraction (%) −0.38 (−1.16, 0.41) 0.341 −0.02 (−0.048, 0.004) 0.101
Peak ejection rate (mL/s) 5.38 (−7.66, 18.42) 0.418 −0.22 (−0.685, 0.253) 0.365
Myocardial mass (g/m2) 0.003 (−1.17, 1.18) 0.995 −0.01 (−0.052, 0.028) 0.546
LGE OR 3.06 (1.27, 8.32) 0.018 OR 1.01 (0.988, 1.036) 0.434
Remodeling index (g/mL/m2) 0.005 (−0.009, 0.019) 0.479 −0.001 (−0.001. −0.0002) 0.004
Mean diastolic thickness (mm/m2) 0.02 (−0.04, 0.08) 0.565 −0.002 (−0.004, −0.0002) 0.029

Right ventricular function (N = 336) (N = 236)

End diastolic volume (mL/m2) −1.74 (−3.50, 0.02) 0.053 0.05 (−0.011, 0.114) 0.105
End systolic volume (mL/m2) −1.21 (−2.39, −0.04) 0.043 0.03 (−0.011, 0.071) 0.171
Stroke volume (mL/m2) −0.53 (−1.47, 0.41) 0.268 0.02 (−0.011, 0.056) 0.187
Cardiac output (mL/min/m2) −32.62 (−93.93, 28.70) 0.296 1.51 (−0.852, 3.474) 0.169
Ejection fraction (%) 0.33 (−0.38, 1.04) 0.362 −0.01 (−0.034, 0.014) 0.441

Carotid plaque (N = 248) (N = 188)

Presence of plaque OR 1.62 (1.07, 2.56) 0.033 OR 0.99 (0.975,1.000) 0.056
Presence of plaque type OR 1.58 (1.19, 2.11) 0.002 OR 0.99 (0.980, 0.996) 0.004
Wall thickness left (mm) −0.003 (−0.016, 0.009) 0.66 −0.0001 (−0.0006, 0.0003) 0.562
Wall thickness right (mm) −0.008 (−0.019, 0.004) 0.211 −0.0001 (−0.0006, 0.0002) 0.381

All models are adjusted for age, sex, BMI, systolic blood pressure, and diabetes. Daily caloric intake was
additionally adjusted for models with dietary magnesium. Serum cholesterol and smoking status were additionally
adjusted for the association between serum magnesium and LGE, presence and type of plaque. Estimates represent
β-estimates from linear regression or OR from logistic regression.

In mediation analysis, the association of serum magnesium on carotid plaque was
not mediated by serum cholesterol (coefficient: 0.003 mg/dl; 95% CI −0.06 mg/dl to
0.12 mg/dl) (Figure 3).
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3.3.2. Dietary Magnesium

Table 2b presents the univariate analysis between dietary magnesium intake and MRI
markers of subclinical cardiovascular disease. Left ventricular myocardial mass was signifi-
cantly higher in individuals with low dietary magnesium intake (73.57 g/m2 ± 12.56 g/m2

vs. 67.94 g/m2 ± 12.29 g/m2, p-value < 0.001). In addition, with a decrease in dietary mag-
nesium intake, there was a decrease in right ventricular ejection fraction (52.37% ± 6.83%
vs. 54.01% ± 6.88%, p-value < 0.001). In multivariable analysis, we observed a significant
positive association between dietary magnesium intake and left ventricular end-systolic
and end-diastolic volume after adjusting for age, sex, BMI, systolic blood pressure, and
diabetes status (coefficients: 0.04 mL/m2, 0.06 mL/m2; CI 0.008 mL/m2 to 0.065 mL/m2,
0.014 mL/m2 to 0.114 mL/m2, respectively) (Table 3). Furthermore, there was an inverse
association between dietary magnesium intake and left ventricular mean diastolic thickness
and remodeling index (coefficients: −0.002 mm/m2, −0.001 g/mL/m2; CI −0.004 mm/m2

to −0.0002 mm/m2, −0.001 g/mL/m2 to −0.0002 g/mL/m2, respectively). Dietary mag-
nesium was also associated with lower risk of more severe plaque (type of carotid plaque
OR 0.99; 95% CI 0.98 to 0.99).

When stratifying the sample by both serum and dietary magnesium, no clear pattern
in the distribution of MRI markers could be observed (Table S4).

4. Discussion
4.1. Main Findings

This comprehensive investigation of the association of serum and dietary magnesium
with several imaging-derived markers of subclinical CVD burden in a population-based
cohort revealed partly contradicting directions of results. While serum magnesium was
associated with decreased right ventricular end-systolic volume, dietary magnesium intake
was associated with increased left ventricular end-systolic and end-diastolic volume. Unlike
dietary magnesium intake, serum magnesium was associated with a higher risk for carotid
plaque. We also found an inverse association between dietary magnesium intake and
left ventricular remodeling and mean left ventricular thickness. These associations were
independent of sex, age, and common cardiovascular risk factors including hypertension
and diabetes status.

4.2. Correlation between Serum and Dietary Magnesium

These inconsistent results will partly be due to the low correlation between dietary and
serum magnesium (r = 0.038, p-value = 0.501). Only 75 subjects had consistently low serum
and dietary magnesium and only 91 subjects had consistently high serum and dietary
magnesium. The poor correlation between dietary magnesium and plasma levels of this
mineral has been reported in several previous studies [37–40]. This could be explained
by the fact that the magnesium concentration is regulated by a balance between intestinal
absorption and kidney excretion. Any condition impairing intestinal absorption such as
aging, inflammation, bowel disorders, or reduced kidney function could affect magnesium
bioavailability and thus contribute to the lack of correlation between serum and dietary
magnesium [41]. Furthermore, serum magnesium constitutes only 0.3% of the total body
magnesium and thus may not necessarily reflect true body magnesium content. Indeed,
magnesium concentration is under tight hemostatic regulation and can be maintained
as normal, even if intakes are low, by reducing urinary excretion and mineral release
from bone, muscles, and internal organs [42]. This is supported by the metabolic unit
magnesium balance experiments on menopausal women, showing that serum magnesium
levels did not significantly change with the magnesium depletion–repletion protocol.
Furthermore, they found that consuming a magnesium-deficient diet for 72 to 92 days did
not markedly decrease serum magnesium concentration [43]. This indicates that normal
serum magnesium concentrations do not rule out magnesium deficiency.
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4.3. Association of Magnesium with Overt and Early Cardiac Impairment

Magnesium has been implicated as a potential marker of CVD risk. In fact, evidence
indicates that high serum and dietary magnesium are inversely associated with CVD [7,44].
There is a paucity of studies regarding the relationship of serum and dietary magnesium
with early cardiac impairment markers. A population-based longitudinal study showed
that low serum magnesium concentrations were associated with increased left ventricular
mass [17]. The Jackson Heart Study found no association between quartiles of magnesium
intake/Kg body weight and systolic function. However, dietary magnesium was inversely
associated with Doppler peak mitral E wave velocity (a surrogate for diastolic function)
and tricuspid regurgitation peak velocity (an estimate of pulmonary systolic pressures) [15].
Our results failed to demonstrate any association between serum magnesium and left
ventricular parameters. On the other hand, we found an inverse association between serum
magnesium and right ventricular end-systolic volume which could potentially imply a
protective effect of serum magnesium to subclinical pulmonary vascular resistance. This
is supported by an animal study which demonstrated that magnesium supplementation
reduced pulmonary arterial pressure, right heart hypertrophy, and media wall thickness of
pulmonary arteries [45].

Diastolic dysfunction is characterized by impaired myocardial relaxation and left
ventricular filling and distensibility, which is associated with significant morbidity and
mortality [46]. In our study, individuals with higher dietary intake of magnesium had
larger end-diastolic volumes and less remodeling, indicating better diastolic function. These
associations remained significant after multivariable adjustment. This is in good agreement
with the Jackson Heart Study [15] as well as with an animal study showing an impaired
relaxation with a decreased ratio between early and late diastolic velocity of the mitral
valve in low-magnesium fed mice, which was reversed after magnesium repletion [11].

Notably, we observed increased rates of myocardial LGE—potential markers of minor
myocardial infarction—in participants with high serum magnesium levels. It has been
shown that in patients with acute coronary syndrome, there is a higher magnesium leakage
from the infarcted myocardium leading to increased magnesium levels, with subsequent
development of malignant ventricular arrhythmia and increased in-hospital deaths [47,48].
However, this cannot explain our findings since participants were not in an acute condition.
We interpret our results with caution, since the absolute number of LGE was low.

It is crucial to note that despite the majority of observational studies favoring serum
magnesium in the prevention of CVD, causal associations using Mendelian randomization
remain inconsistent. One study found that a genetic predisposition to higher magne-
sium levels was inversely associated with coronary artery disease [49], whereas the other
found no associations between serum magnesium and type 2 diabetes, coronary artery
disease, heart failure, and atrial fibrillation [50]. Therefore, the effect of magnesium on the
development of CVD remains equivocal.

4.4. Association of Magnesium with Lipids and Preclinical Atherosclerosis

The relationship between magnesium with preclinical carotid atherosclerosis is not
novel, as this association has been described in different studies, using ultrasound for the
assessment of carotid-intima media thickness as a proxy for atherosclerosis. While some
studies found an inverse association between serum magnesium and common carotid
intima-media thickness [8,18,19], others demonstrated an effect of magnesium supplemen-
tation on improving endothelial function but not carotid intima-media thickness [21]. A
population-based study in Japan showed a significant association between low serum mag-
nesium and mean intima-media thickness and risk of ≥2 carotid plaques [20]. Our results,
however, suggested a positive association between serum magnesium and carotid plaque.
On the other hand, higher dietary magnesium in the current study was modestly associated
with decreased carotid plaque type. This is in good agreement with the study reporting
that greater magnesium intake was associated with slightly lower odds of high common
carotid artery intima-media thickness [51]. The accuracy of intima-media thickness as a
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marker of preclinical atherosclerosis is questioned since it can only measure the common
carotid artery (laminal turbulent flow), rather than the internal carotid or carotid bulb.
Furthermore, the main predictors of common carotid artery media hypertrophy are age
and hypertension rather than atherosclerosis [22]. In contrast, carotid plaque has a better
predictive ability of coronary artery disease. In fact, a meta-analysis of 11 population-based
studies found that carotid plaque has a significantly higher diagnostic accuracy for the
prediction of future myocardial infarction events in comparison to carotid intima-media
thickness [52].

The relationship between magnesium status and dyslipidemia is ambiguous and
studies present conflicting results. A study has suggested a possible magnesium–lipid
interaction in atherosclerosis. They found that high LDL-cholesterol and triglyceride levels
affect carotid intima-media thickness only when magnesium levels are low [53]. Never-
theless, we found that serum magnesium was positively associated with total cholesterol
levels. This is consistent with previous research [8,18–20,54]. In causal mediation analysis,
we found that the effect of magnesium on carotid plaque was not mediated by cholesterol.
These results point to the theory suggesting a simple binding interaction between serum
magnesium and lipoprotein particles rather than a complex physiological and pathological
process [55].

4.5. Strengths and Limitations

The strengths of our study include the availability of both serum and dietary magne-
sium as markers of magnesium concentration in the body. The accurate measurement of
various functional and structural parameters of subclinical CVD burden using an advanced
MRI technique contrary to previous studies that used echocardiography and ultrasound
was a strength of this study. Additionally, the well-designed population-based study that
included extensive measurements and assessment of the dietary intake and different con-
founding variables was also a strength. Nevertheless, we are aware that our study has
limitations that may have influenced the reported results. We had a relatively small sample
size of participants which became more prominent in complete-case analyses. This will
have reduced the statistical power to show a potential association between magnesium with
markers of subclinical CVD. Because our study design was cross-sectional, the temporality
and causality of the associations could not be concluded. Moreover, since our analysis was
performed on a selected cross-sectional sample, generalizability to other populations might
be limited.

5. Conclusions

Our results showed that serum and dietary magnesium were associated with some
markers of subclinical CVD burden among participants without manifest cardiovascular
disease, and thus may be implicated in cardiovascular disease development already at the
subclinical stage. However, the findings were inconsistent and highlighted the importance
to consider both dietary and serum magnesium since these entities do not correlate well.
Larger, well-characterized, population-based studies are required to increase statistical
power and confirm and extend our findings.
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