

International Union of Pure and Applied Chemistry

Automation and New Technology in the Clinical Laboratory

Proceedings of the IUPAC 3rd International Congress on
Automation and New Technology in the Clinical Laboratory
held in Kobe, Japan, 5-8 September 1988

EDITED BY

KIYOSHI OKUDA

Department of Laboratory Medicine,
Osaka City University Medical School,
Japan

Blackwell Scientific Publications

OXFORD LONDON

EDINBURGH BOSTON MELBOURNE

1992
A
3977

(1990)

Contents

Preface, ix

Recent technological developments and their impact on laboratory automation, 1
C. A. BURTIS

Developments in dry chemistry, and the situation in Japan, 7
K. OKUDA

Expert systems in clinical chemistry, 13
C. TRENDELENBURG

Expert system for the evaluation of disturbances of lipid metabolism and assessment of risk for coronary heart disease, 19
H. WIELAND AND C. TRENDELENBURG

Dry chemistry on whole blood, 23
S. KAMEI

Systems using whole blood separation by centrifugal force, 31
A. TRUCHAUD AND C. BURTIS

Clinical biochemistry of erythrocytes, 37
P. A. BONINI, F. CERIOTTI, A. MOSCA AND R. PALEARI

Pulsed field gel electrophoretic snapshots of chromosomes, 43
C. L. SMITH, J. P. ABAD AND G. CONDEMINE

Separation of antibody by affinity gel electrophoresis, 47
K. TAKEO

Ionic-floating chromatography of biopolymers, 53
T. KAKUNO, B-H. KIM, J. YAMASHITA AND T. HORIO

Recent trend in progress of immunodiagnosis, 59
T. KAWAI

Time-resolved fluorescence for immunoassays and DNA-probes, 63
E. SOINI, I. HEMMILÄ AND P. DAHLÉN

Latex agglutination immunoassay, 69
K. NAKAJIMA, J. SHIRAISHI, M. ISHIDA AND T. NISHISAKO

Magnetic micro-beads EIA by utilization of fully automated random access enzyme immunoassay analyzer, AIA-1200TM, 73
M. INOUE, H. HAYASHI, H. SUZUKI AND H. NAKAMURA

The Abbott IMxTM—an automated immunochemistry system based on microparticle capture technology, 81
J. SMITH, J. MITCHELL, M. FIORE, S. SAFFORD, T. DOAN, G. BARNES, K. ZENG, M. ULANDAY, K. BURNS, R. NELSON, C. GRANDONE, D. SMITER, V. YUE, T. GUNDERSON, K. CHIRKO AND D. BERRY

Robotics in clinical laboratory medicine, 87
R. A. FELDER, J. BOYD, J. SAVORY, K. MARGREY, D. VAUGHN AND A. MARTINEZ

Critical care testing using unmanned robotic facilities, 93
J. C. BOYD, R. A. FELDER, J. SAVORY, K. S. MARGREY, A. MARTINEZ AND D. VAUGHN

How to make and manage clinical laboratory systems using robotic facilities, 97
M. SASAKI

How useful the trace metal analyses are in diagnosis and therapy, 103
Y. TANAKA

Coupled LC-AAS system for trace metal analysis of biological samples, 109
S. NOMOTO, K. YAMAUCHI, M. SATOU AND F. W. SUNDERMAN, JR.

Simultaneous determinations of essential trace metals in biological fluids and their significance, 117
K. NOMIYAMA AND H. NOMIYAMA

Simultaneous multi-elements analysis of trace elements by atomic absorption spectrometry, 123
K. OHISHI, T. OKUMOTO, A. YONETANI, M. HASHIMOTO AND K. YASUDA

Production of a transgenic mouse model for human dominantly inherited disease, 129
K. YAMAMURA, S. WAKASUGI, T. INOMOTO, T. IWANAGA, S. YI, S. MAEDA, M. NAITO, K. TAKAHASHI AND K. SHIMADA

Clinical application of restriction fragment length polymorphisms (RFLPs), 131
Y. NAKAMURA

The forensic use of DNA probes to variable number of tandem repeat loci, 139
H. C. COLEMAN, S. J. SILBERBERG, D. C. MACLAREN, C. L. FLIGNER, Y. NAKAMURA, P. O'CONNELL AND E. C. B. MILNER

Human chromosome specific probes for the analysis of genetic and neoplastic disease, 145
D. C. WARD, P. LICHTER, T. CREMER, J. BORDEN AND L. MANUELIDIS

Rapid diagnosis of clinical infections using new technology, 151
M. NAKAMURA AND S. NISHIDA

New assays for the diagnosis of viral infections, 157
R. H. YOLKEN

Recent development of nucleic acid probes in clinical microbiology, 163

T. EZAKI AND E. YABUCHI

Molecular diagnosis of rotavirus infection, 169

O. NAKAGOMI AND T. NAKAGOMI

Technological trends of the modern hemostasis laboratory, 175

J. M. WALENGA

Automated fluorogenic prothrombin time method for the evaluation of hypercoagulability in human plasma, 183

H. KATO, K. UCHIDA, K. TAKANO AND T. YAMAGUCHI

Rapid slide test for fibrin degradation products (FDP), 189

E. KITA

Ex vivo assessment of the protein C anticoagulant system by monoclonal antibody technology, 195

A. D'ANGELO, P. C. COMP, F. B. TAYLOR, JR., C. T. ESMON, P. BONINI AND S. V. D'ANGELO

Changing trends in hemostatic testing, 203

J. FAREED AND J. M. WALENGA

New diagnostic techniques using saliva: Introduction to the symposium, 211

R. HAECKEL

Clinical and research applications of salivary steroid analyses, 213

R. F. WALKER, G. F. READ, D. RIAD-FAHMY AND K. GRIFFITHS

Interpretation of salivary drug concentrations, 219

R. HAECKEL

Correlation of metabolites in the saliva and blood, 225

K. OKUDA

Sampling techniques and advantages of saliva over blood, 229

T. D. GEARY

Biosensors: principles and applications, 233

M. AIZAWA

Luminescence optical biosensor oriented to clinical analysis, 239

P. R. COULET, L. J. BLUM AND S. M. GAUTIER

New directions for decentralization, 245

M. A. GENSHAW

Impact of small instruments on laboratory organisation, 249

T. D. GEARY

Instrumentation in primary care, 253

P. M. G. BROUGHTON

The use of enhanced chemiluminescence in immunoassay, 259

T. P. WHITEHEAD

Bioluminescence and chemiluminescence in clinical microbiology and chemistry, 263

P. E. STANLEY

Recent advances in chemiluminescence immunoassay systems for clinical laboratory, 269

A. TRUCHAUD, Y. GARCERA, G. THORPE AND R. MASSEYEFF

Cell surface analysis with flow cytometry: a comparison of a single color analysis with a two color method and a proposal of a flow chart to diagnose hematological disorders, 275

K. NAKAHARA, T. NAKAMURA AND A. YONEYAMA

Flow cytometric analysis of DNA aneuploidy as a tumor marker, 281

S. TAKAMOTO

Recent advance on analysis of anti-platelet antibody—special reference to application of flow cytometry, 287

S. NOMURA AND T. KOKAWA

Introduction to new techniques in hematology, 295

K. NIITANI AND N. TATSUMI

Fully automated blood cell differential system and its application, 297

A. HASHIZUME, J. MOTOIKE AND R. YABE

The usefulness of cytochemical leukocyte differentials using the technicon H6000 system, 303

T. TAKUBO

The reticulocyte counter Sysmex R-1000, 315

K. FUJIMOTO

Human chromosome specific probes for the analysis of genetic and neoplastic disease

D.C. Ward, P. Lichter, T. Cremer, J. Borden and L. Manuelidis

Department of Human Genetics and Section of Neuropathology, Yale University School of Medicine, New Haven, CT 06510

Abstract - A method of *in situ* hybridization for visualizing individual human chromosomes from pter to qter has been developed and applied to the detection of structural aberrations in both metaphase and interphase cells. Numerical changes, deletions and chromosomal translocations were rapidly delineated in oligodendrogloma and glioblastoma cell lines which possess very complex and highly aneuploid karyotypes. A trisomic chromosome 21 karyotype, diagnostic of Down syndrome, was also readily detected using either a complete pool of insert DNA from a chromosome 21 recombinant DNA library or plasmid clones containing up to 94 kilobases of single copy DNA from band q22.3 of chromosome 21. Such *in situ* hybridization strategies provide new approaches for the prenatal diagnosis of genetic diseases and the definition of abnormal chromosomes in tumor cell populations.

INTRODUCTION

Chromosome banding techniques have facilitated the identification of specific human chromosomes and presently provide the major basis upon which chromosomal aberrations are diagnosed. The interpretation of chromosome banding patterns, however, requires skilled personnel and is often technically difficult, especially with respect to detecting minor structural changes and when analyzing complex karyotypes, such as those of highly aneuploid tumor cells (ref. 1). An additional complexity is that readable metaphase chromosome spreads are sometimes very difficult or impossible to prepare from certain cell types or tissues. Alternative methods for identifying chromosomal aberrations could augment current cytogenetic analyses, particularly if applicable to both mitotic and interphase cell populations.

Over the past few years a considerable body of evidence has been obtained which indicates that the DNA of individual chromosomes occupies focal territories, or spatially cohesive domains, within mammalian interphase nuclei (refs. 2-6). These observations indicate that chromosome-specific probe sets could be used to detect numerical or structural aberrations of chromosomal domains in non-mitotic cells. Indeed, recent *in situ* hybridization studies have demonstrated the prenatal diagnosis of trisomy-18 with interphase cells (ref. 7) using chromosome-specific repetitive DNAs as probes. Since all chromosome-specific repetitive DNAs reported to date are localized to discrete subregions of each chromosome, this class of DNA probes would be unsuitable for analyses of many types of chromosomal aberrations, e.g., translocations and deletions. However, the ability to detect uniquely the entire spectrum of sequences comprising a specific chromosome could make these analyses possible. Such a method is described below.

DECORATION OF INDIVIDUAL HUMAN CHROMOSOMES

DNA inserts from genomic DNA libraries derived from flow sorted human chromosomes (commercially available from the American Type Culture Collection) were purified and labeled with biotin by nick translation. This pool of DNA fragments was preannealed with a titrated amount of total human genomic DNA for a short time prior to hybridization with cellular or chromosomal preparations to suppress the cross-hybridization of repetitive sequences to non-targeted chromosomes. This method is referred to as "chromosomal *in situ* suppression (CISS)" hybridization. Optimized standard conditions for the preannealing step were: 5-30 μ g/ml of labeled probe DNA and 100-200 μ g/ml of human competitor DNA combined with salmon DNA such that the total DNA concentration was 1.0 mg/ml. The DNA mixture, in a conventional 50% formamide hybridization cocktail, was denatured and partially preannealed at 37°C for 10-20 minutes before addition to the specimen. Hybridization was then allowed

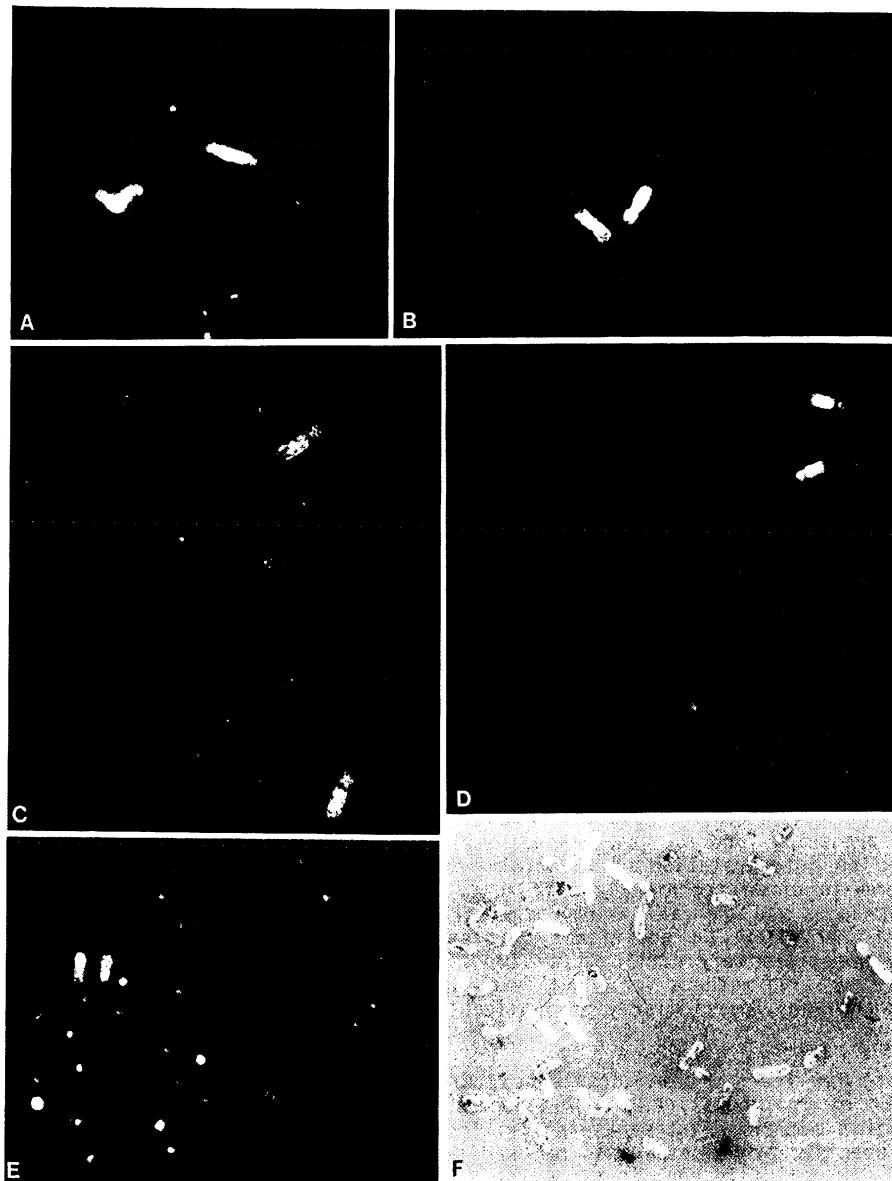


Fig. 1 A-F. Decoration of (A) chromosome 1, (B) chromosome 7, (C) chromosome 4, (D) chromosome 18, (E) chromosome 13, (F) chromosome 20 in normal human lymphocytes. Only the chromosome 13 insert DNA pool shows significant cross-hybridization to other chromosomes after the pre-hybridization suppression step. Detection was with fluorescein isothiocyanate-conjugated avidin (A-E) or with avidin-alkaline phosphatase using nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate as the enzyme substrate mixture (F). The signal of chromosome 1 (A) was amplified by the sandwich technique of Pinkel *et al.* (ref. 6)

to proceed for 8-14 hours. Following post-hybridization washes, the sites of hybridization were detected using fluorescent or enzyme labeled avidin. DNA from recombinant libraries for chromosomes 1,4,7,8,9,12,13,14,16,17,18,20,21,22 and X were assessed for their ability to decorate specifically their cognate chromosome and most libraries proved to be highly specific. Representative examples of such *in situ* hybridization results are shown in Figure 1. Note that some library DNA pools gave highly specific labeling of their cognate chromosomes (e.g., panel 1B and C) while others (e.g., panel 1E) showed various extents of non-suppressible cross-hybridization. Table 1 lists the tested libraries with scores according to their labeling specificity. All scores are positive because the chromosome of interest was always decorated. The highest score (4+) is used when no significant cross-

TABLE 1. Relative quality of specific chromosome labeling *in situ* using preannealed biotinylated library DNA

Chromosome No.	Library Used (ATTC Designation)	Relative Specificity of <i>In Situ</i> Hybridization Signal ^a
1	LA01NS01	3+
4	LL04NS01	4+
7	LA07NS01	4+
8	LL08NS02	4+
9	LL09NS01	3+ (-h) ^b
12	LA12NS01	4+
13	LA13NS03	1+
14	LL14NS01	2+
16	LA16NL02	4+
17	LL17NS02	4+
18	LL18NS01	4+
20	LL20NS01	4+
21	LL21NS02	3+
22	LA22NS03	3+ ^c
X	LAOXNL01	4+
X	LAOXNS01	4+

^aSee text for score definition; ^b(-h): using this library as probe, the centromeric heterochromatin region of chromosome 9 was not labeled; ^cunder standard preannealing conditions the chromosome 22 library gave a score of 1+; a value of 3+ was achieved only with a human competitor DNA concentration of ~ 700 µg/ml (total DNA concentration 1.0 mg/ml).

hybridization to other chromosomes was observed and the scores decrease (3+ to 1+) with an increasing amount of cross-hybridizing sequences. All attempts to reduce the additional signals on other chromosomes by varying experimental conditions failed except in experiments with chromosome 22; in this case higher concentrations of human competitor DNA (700 µg/ml) resulted in a significant improvement of signal specificity. Additional details of the CISS hybridization protocol are described by Lichter et al. (ref. 8).

DETECTION OF HUMAN CHROMOSOME ABERRATIONS

Various combinations of cloned DNA fragments from human chromosome 21, previously localized to the 21q22.3 band, were tested for their ability to specifically label the cognate chromosomal region in lymphocyte metaphase spreads and interphase nuclei after *in situ* hybridization. The maximal amount of unique-sequence DNA in the probe set was ~ 94 kb; this probe set, labeled with biotin, resulted in a clearly visible labeling of the terminal region of both chromatids of the chromosome 21 homologs in normal diploid metaphase spreads or interphase nuclei (data not shown). These signals were seen unambiguously and without exception in all metaphase spreads, even in spreads of poor quality or from prophase cells (not shown). In normal interphase cells, the majority (65-75%) of nuclei exhibited two signals, 25-30% showed one signal, and less than 5% showed no signal (for discussion of signal distribution in interphase nuclei, see refs. 8 and 9). Nuclei with three signals were found only rarely (< 0.2%) and may reflect incomplete hybridization to a few tetraploid cells in the sample. The 94 kb pool of 21q22.3 DNA permitted a fast and unambiguous diagnosis of trisomy 21 in all metaphase spreads from Down syndrome lymphocyte cultures (see Fig. 2A) as well as in interphase nuclei (Fig. 2 C and D). Furthermore, the

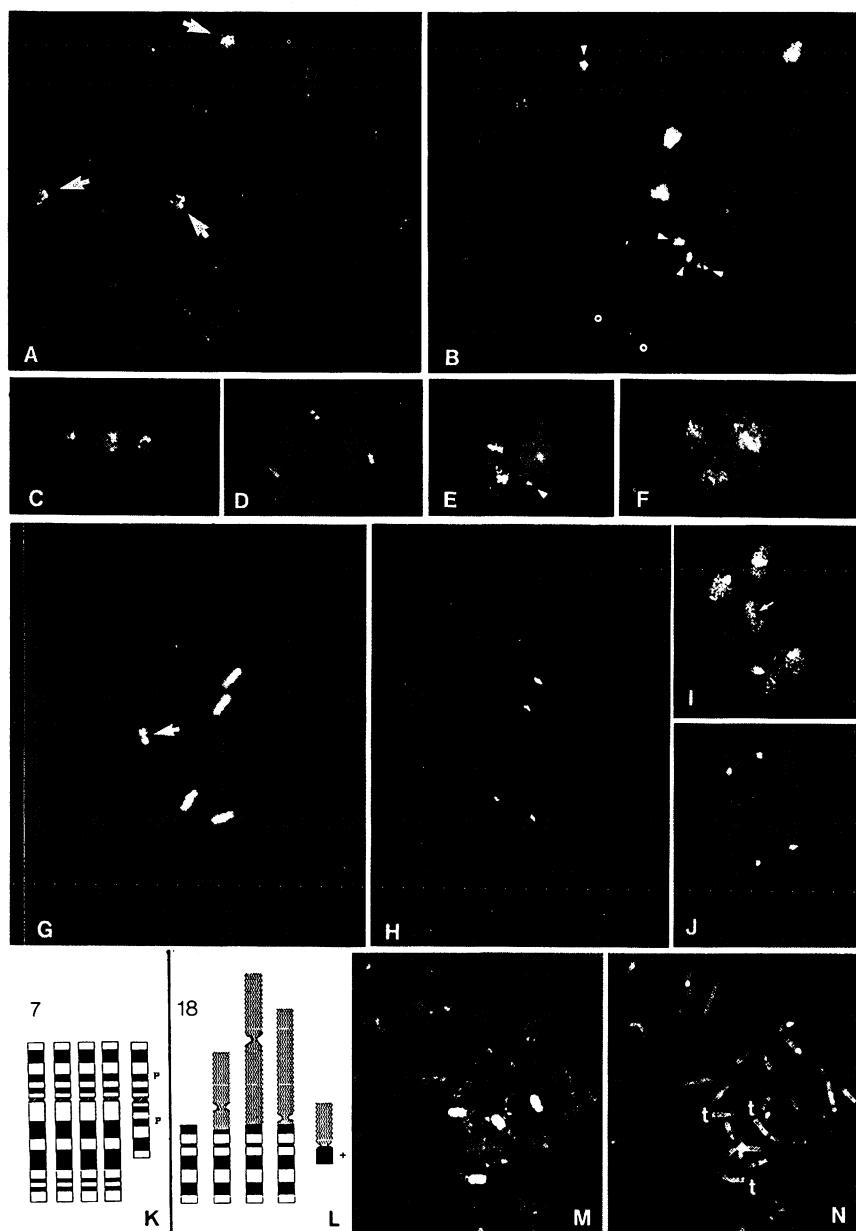


Fig. 2. Specific labeling of human chromosomes and chromosomal sub-regions by *in situ* hybridization. Signals on trisomy 21 (47, +21) lymphocyte metaphase spreads (A) after hybridization with the 94 kb probe set specifically labeling 21q22.3 and (B) after hybridization with chromosome 21 library DNA inserts using the CISS hybridization (ref. 8) protocol. Three chromosomes 21 are entirely delineated by the library inserts; additional minor signals (see text) are indicated by small arrowheads (also in E). (C-F) Labeling of trisomy 21 lymphocyte nuclei by the 94 kb probe set (C and D) and the library inserts (E and F). (G-J) Double hybridization of chromosome 7 library DNA inserts and a chromosome 7 specific alphoid repeat to the glioma cell line TC593. (G) Chromosome 7 inserts detect five entirely decorated metaphase chromosomes. Four of them are complete chromosomes 7, the fifth is an iso(7p) (see arrow). (H) The same field as G showing the chromosome 7 alphoid signals on only four decorated chromosomes; no signal is detected on the iso(7p). (I) Interphase nucleus of a TC593 cell showing five domains delineated by chromosome 7 inserts (the arrow represents the iso(7p) marker in interphase). Four of these are labeled by 7 alphoid probes (J). (K and L) Summary chromosome idiogram of complete and aberrant chromosomes detected by CISS-hybridization of chromosome library inserts 7 (K) and 18 (L) in TC593. G-bands (black) with breakpoints suggested

by data; grey regions are from other chromosomes that constitute part of the marker translocation chromosomes. A small translocation of chromosome 18 material in ~20% of TC593 metaphase spreads (+) could not be further identified. (M and N) TC593 hybridized to chromosome 18 inserts. Four decorated 18 chromosomes are shown (M) and three of them (DAPI stain in N) clearly translocated (denoted by t). All probes (with one exception) were biotinylated and detected after hybridization by FITC-conjugated avidin. The chromosome 7 alphoid repeat probe (H and J) was AAF modified and after hybridization detected via indirect immunofluorescence with rhodamine-conjugated antibodies.

quantitative distribution of hybridization signals in interphase nuclei of the same preparation, analyzed as described above, showed 55-65% of cells with three signals, 25-35% with two signals, 5-15% with one signal, and < 5% with no signal. Similar results, both qualitative and quantitative, were obtained when the chromosome 21 library was used with CISS hybridization for the detection of chromosome 21 abnormalities. Chromosome 21 was specifically and entirely decorated in normal lymphocyte metaphase spreads, although some additional minor binding sites were seen at or near the centromeric region of other acrocentric chromosomes, especially chromosome 13. Examples of the results obtained on trisomic metaphase spreads and interphase nuclei are shown in Fig. 2B and Fig. 2 E-F, respectively. Arrowheads in these panels denote the non-specific binding sites. The pool of unique DNA sequences from 21q22.3 was superior for interphase diagnosis since there are no additional signals and the signals are more focal with a better spatial resolution. Additional details on the application of these probes to the diagnosis of Down syndrome, including the detection of translocations involving chromosome 21q terminal sequences, are described by Lichter et al. (ref. 9).

Genetic changes are central to the initiation and progression of neoplasias. Some changes, such as point and insertional mutations, are submicroscopic. Other changes are quite large, and can be detected grossly in chromosome analyses. Non-random chromosomal changes, especially in hematopoietic malignancies, have been well established in recent years, and often mirror events at the molecular level. Such non-random changes may occur at an early stage in tumorigenesis and can be characteristic or even unique for specific tumor types. We have also demonstrated that it is possible to rapidly screen both mitotic and interphase tumor cells for complex numerical and structural aberrations of individual chromosomes during an analysis of oligodendrogloma and glioblastoma cell lines using several chromosome libraries under CISS hybridization conditions. Despite the fact that these lines were propagated in long term culture, they displayed several cytogenetic features common to many glioma cells. Two examples from this study, using chromosome 7 and 18 library probes and the glioma cell line TC593, are shown in Fig. 2, panels G-N. Four apparently normal chromosomes 7 and one smaller metacentric chromosome with 7 sequences (see arrow) are detected in metaphase (panel G) and interphase (panel I) cells. The comparison with the simultaneously labeled chromosome 7 alphoid repeat DNA in both metaphase (panel H) and interphase (panel J), demonstrates the lack of the alphoid sequences in the small decorated chromosome. The latter chromosome was identified as iso(7p) by DAPI staining (not shown). A more complex picture is seen with chromosome 18 DNA. Three translocation chromosomes involving chromosome 18 material were typically detected in addition to an apparently normal chromosome 18 (compare fig. 2M and N). In a minor proportion of metaphases there was a small additional translocation observed (not shown). The exact chromosomal region from which this translocated 18 material derived could not be resolved by DAPI staining. The chromosomal representation of chromosome 7 and 18 in the TC593 cell line is schematically shown in Fig. 1K and L, respectively. These data show that numerical as well as structural chromosomal aberrations can be rapidly detected by the CISS hybridization procedure.

Digitized images were used to quantitatively measure decorated areas in metaphase preparation and interphase cells where chromosomal domains were well resolved. Quantitative evaluation of chromosome equivalents indicated highly concordant numbers for interphase versus metaphase (not shown). We analyzed the chromosomal dosage in both glioma lines relative to their status of (pseudo)ploidy. Accordingly, an increase or a decrease of the chromosome copy number of 4 in the pseudotetraploid line TC593 (or 3 in the pseudotriploid line TC620) was considered an overrepresentation or underrepresentation, respectively. In spite of the fact that both glioma lines have been passaged *in vitro* for many years, an underrepresentation of chromosome 22 and an overrepresentation of chromosome 7 (specifically 7p) were observed. These observations agree with previous studies on gliomas. In addition, sequences of chromosome 4 were also found to be underrepresented, especially in TC593. These analyses indicate the power of these methods for pinpointing chromosomal segments that are altered in specific types of tumors. Additional details of the karyotypic analysis of these glioma cells are presented by Cremer et al. (ref. 10). In summary, our results demonstrate that chromosome specific DNA probes can be applied successfully to tumor cell cytogenetics and prenatal diagnosis.

REFERENCES

1. T. Cremer, D. Tesin, A.H.N. Hopman and L. Manuelidis, Exp. Cell Res. **176**, 199-200 (1988).
2. T. Cremer, C. Cremer, H. Baumann, E.K. Luedtke, K. Sperling, V. Teuber and C. Zorn, Hum. Genet. **60**, 46-56 (1982).
3. L. Hens, H. Baumann, T. Cremer, A. Sutter, J.J. Cornelis and C. Cremer, Exp. Cell Res. **149**, 257-269 (1983).
4. M. Schardin, T. Cremer, H.D. Hager and M. Lang, Hum. Genet. **71**, 281-287 (1985).
5. L. Manuelidis, Hum. Genet. **71**, 288-293 (1985).
6. D. Pinkel, T. Straume and J.W. Gray, Proc. Natl. Acad. Sci., USA **83**, 2934-2938 (1986).
7. T. Cremer, J. Landegent, A. Brückner, H.P. Scholl, M. Schardin, H.D. Hager, P. Devilee, P. Pearson and M. van der Ploeg, Hum. Genet. **74**, 346-352 (1986).
8. P. Lichter, T. Cremer, J. Borden, L. Manuelidis and D.C. Ward, Hum. Genet., in press (1988).
9. P. Lichter, T. Cremer, C.C. Tang, P.C. Watkins, L. Manuelidis and D.C. Ward, Proc. Natl. Acad. Sci., USA, in press.
10. T. Cremer, P. Lichter, J. Borden, D.C. Ward and L. Manuelidis, Hum. Genet., in press (1988).