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Example 1: (Causal)

Pseudo-Code: Bayesian Optimization (BO)

NoT ALL DATA ARE CREATED EQUAL

- LESSONS FROM SAMPLING THEORY FOR ADAPTIVE MACHINE LEARNING

Julian Rodemann, Sebastian Fischer, Lennart Schneider, Malte Nalenz, Thomas Augustin

1: create an initial design D = {(x), V(;)) }i=1

7777 nz’m't

2: while termination criterion is not met do
3. train a surrogate model (SM) on data D
4 Propose I., = arg max, AF(SM(x)), AF(-) an acquisition function

5: evaluate ¥ on x,,.,

6:  update D < D U (e, V(Tpew))

7. end while

8 return arg min,.p V(x) and respective U,

of size Nt

Iter =1, Gap = 5.4074e+00

type
@ init

type
-y
= vyhat

Iter = 2, Gap = 4.1127e+00
25-

20-
15-

10-

A

0.4-
0.3~
0.2-

0.1- / \
00- % - 4 \/

Iter = 10, Gap = 4.8360e-02

type

type
-_—y

= yhat

Figure 1: Visualization of univariate Bayesian Optimization with Gaussian Process as Surrogate Modle.

Causal Bayesian Optimization [1]: Prior to @yey = argmax, AF(SM(x)), an optimal set
of covariates E'S based on a DAG to intervene on is returned and xne € ES.
Sampling Bias: Global generalization suffers from the BO-induced covariate shitt, see distri-
bution of proposed points (blue) in figure 1. Moreover, some covariates vary more than others
in the sample obtained by causal BO, resulting in a de facto stratified sample. [2], [4] and more
specifically [9] discuss implications of such a feedback covariate shift for conformal prediction.

Example 2: Self-Train

Pseudo-Code: Self-Training (ST)

1: require: labeled data D = {(x;,y;)},; € (X x V)", unlabeled data U = {(z;, V)}.", . €
from same distribution with ) categorical and a classifier.
2. while stopping criterion is not met do

oo

update D + DU C(C
end while
return final fit

/\

train classifier on D to obtain y(x)
predict on U: y; = y(x;,) Vi € {n+1,....,m}
select subset C' C {(x;,9;)}.-, ., according to a confidence measure
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Figure 2: Covariate scatter plot from self-training of a support vector machine. Dark blue/red: labels y; in D.
Light blue/red: predicted labels g; in U. Credits: gist.github.com/SolClover

Sampling Bias: Covariate distribution may differ from initial (and final) distribution, see

ficure 2. Depending on the stopping criterion, a covariate shift may harm interpretability of

the model. E.g., regions in the covariate space where data is scarce are detrimental to reliable
estimates of partial dependencies [5].

Definition 1 (Partial Dependencies [5]) Let X = X7 UXp, where X7 are the covariates

of interest. f[(a:[) = [ f(x1, Xp)dP(XR) is said to be a partial dependence function.

Example 3: Active Le:

Idea: Similar to self-training, except that an oracle is available, thus ¢ in C' is replaced by
oround-truth y when used to update D in line 6 of pseudo-code above. While self-trainig

usually selects instances with high confidence, active learning queries points of high uncertainty:.
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Figure 3: Active learning of a binary classification problem (test distribution: left). Random sampling (middle)
is less efficient than uncertainty sampling (right). Credits: [§]
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Lesson 1: Explore-Exploit

Idea

e Inclusion probability of proposed points is analytically not available due to myopic optimization of AF

e Weight by potential gain of information at time of proposal as expressed by the surrogate model’s epistemic
uncertainy (= standard errors) and compare to standard errors at n randomly sampled points by empirical
distribution function — surrogate-based weights (definition 2)

e Use random forest as surrogate and include weights as drawing probability in bootstrapping

e possible extension to causal BO: a posteriori stratification (weights proportional to strata size) to
estimate effects on population level.

Definition 2 (Surrogate-based Weights) Let xq,...,x, be an iid. post hoc sample and the surrogate
model’s standard errors §(x) = \/Var(i(x)s), with u(-)¢ the surrogate model’s prediction function with
date of birth (dob) t. Let * € {x, . 4+1,...,2n, +t} be a proposed point with dob t. Furthermore, let

ZaN

Fy(z)(®) be the empirical distribution function of $(x1), ..., $(&n). Name its value at $(x™) standard error

distribution value (SED): SED(x™) = F(w)(§(w*)) Set SED(x;) = 1 Vx; € {x1,...,xp, . ;. The weights

S

w o
J init+t
2'21 SED(%)

[/

with i, € {1, ..., Ninit, Winit + 1, ooy Nynit + 1} shall be called surrogate-based weights.

Preliminary Results

Hypothesis: Weighted Surrogates (WS) are better global (i.e., on whole parameter space) approximates of 2D
synthetic functions than unweighted surrogates (US).

Experiments: We run 40 BO replications with random forest on six well-established synthetic benchmark
functions and compare MSE on an #id. random sample (N = 10000) of weighted and unweighted surrogates

with dob ¢ € {30, 60,90, 120}.

MSE, Acq: El, Task: ackley MSE, Acq: El, Task: styblinski_tang MSE, Acq: El, Task: cosine_mixture MSE, Acq: El, Task: six_hump_camel

00000

unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted unweighted weighted
gggggggggggggggggggggggggggggggg

Figure 4: MSEs of unweighted and weighted surrogates (random forest with case weights) with dob ¢ € {30, 60, 90, 120} for Ackley,
Styblinski-Tang, Cosine Mixture and Six-Hump-Camel benchmark function. AF: Expected Improvement.

Lesson 2: Sampling-Sensit

Compare selected data S = {sq,...,s¢+} € X and a hypothetical i.i.d. sample U = {uq,...,uz} C X.

Kernel Two-Sample Test: We use a non-parametric tests proposed by [6] to determine if two samples are
drawn from different distributions. Its test statistic is the largest difference in expectations over functions in the
unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD).

An unbiased estimate of the MMD for S and U is

1
2
MMD =

n(nl_ 0 Z Z ko(w;, U]) + m<m1_ ¥ Z Z ko(s;, 8]> = % Z Z kg(S]’, ;)

i=1 j£i i=1 j£i i=1 j£i
with the radial basis function kernel k4 (-, -) with o set to the median euclidean distance between sample points.
Stopping Criterion: Stop as soon as we reject the Hy of S and U following the same distributions.

Experiments: We self-train a support vector machine on subsamples of the wine dataset [3| with varying size.
We observe SVM'’s test accuracy and the samples’ MMD, see figure 4, and identify two prototypical cases:

1. High accuracy and low covariate shift go hand in hand, see first plot. 2. High accuracy and low covariate
shift are competing goals, see second plot. Plots 3 and 4 highlight situations, where the MMD helps deciding
among similarly well-performing learners (e.g., from iteration 3 and 19 in plot 3).
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Figure 5: Test Accuracy of self-trained SVM and Maximum Mean Discrepancy of respective sample.

Lesson 3: Post Hoc Core

Motivation: Find a subsample of selected training data that balances covariate shift and predictive performance
— sacrifice € performance in order to mitigate covariate shift — Coresets, see e.g. [7].

Definition 3 ((1 + ¢)-Coreset) Let X € R"*P be a set of data points, R(-) an empirical risk function and
B € RP the parameters of a (parametric) learner. Then a set S € R¥*P s called a (1 + €)-Coreset of X
for R(:) if k <n and

Naive Approach: Find lowest € such that the above inequality holds for a subsample with inverse inclusion
probabilities (estimated through selection criterion, see lesson 1) — expensive

Sampling Based Coreset Constructions: Importance sampling with inverse sensitivity scores (worst-case
importance for approximating the objective function on X') as inclusion probabilities [7].

Open Issue: How can we combine sensitivity scores and inverse inclusion probabilites for subsampling?
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