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Example 1: (Causal) Bayesian Optimization

Pseudo-Code: Bayesian Optimization (BO)

1: create an initial design D = {(x(i),Ψ(i))}i=1,...,ninit of size ninit

2: while termination criterion is not met do
3: train a surrogate model (SM) on data D
4: propose xnew = argmaxxAF (SM(x)), AF (·) an acquisition function
5: evaluate Ψ on xnew

6: update D ← D ∪ (xnew,Ψ(xnew))
7: end while
8: return argminx∈DΨ(x) and respective Ψmin
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Figure 1: Visualization of univariate Bayesian Optimization with Gaussian Process as Surrogate Modle.

Causal Bayesian Optimization [1]: Prior to xnew = argmaxxAF (SM(x)), an optimal set
of covariates ES based on a DAG to intervene on is returned and xnew ∈ ES.
Sampling Bias: Global generalization suffers from the BO-induced covariate shift, see distri-
bution of proposed points (blue) in figure 1. Moreover, some covariates vary more than others
in the sample obtained by causal BO, resulting in a de facto stratified sample. [2], [4] and more
specifically [9] discuss implications of such a feedback covariate shift for conformal prediction.

Example 2: Self-Training

Pseudo-Code: Self-Training (ST)

1: require: labeled data D = {(xi, yi)}ni=1 ∈ (X × Y)n, unlabeled data U = {(xi,Y)}mi=n+1 ∈
(
X × 2Y

)m−n
from same distribution with Y categorical and a classifier.

2: while stopping criterion is not met do

3: train classifier on D to obtain ŷ(x)

4: predict on U : ŷi = ŷ(xi) ∀i ∈ {n + 1, ...,m}
5: select subset C ⊆ {(xi, ŷi)}mi=n+1 according to a confidence measure
6: update D ← D ∪ C
7: end while
8: return final fit

Figure 2: Covariate scatter plot from self-training of a support vector machine. Dark blue/red: labels yi in D.
Light blue/red: predicted labels ŷi in U . Credits: gist.github.com/SolClover

Sampling Bias: Covariate distribution may differ from initial (and final) distribution, see
figure 2. Depending on the stopping criterion, a covariate shift may harm interpretability of
the model. E.g., regions in the covariate space where data is scarce are detrimental to reliable
estimates of partial dependencies [5].

Definition 1 (Partial Dependencies [5]) Let X = XI ∪XR, where XI are the covariates
of interest. f̂I(xI) =

∫
f̂ (xI , XR)dP(XR) is said to be a partial dependence function.

Example 3: Active Learning

Idea: Similar to self-training, except that an oracle is available, thus ŷ in C is replaced by
ground-truth y when used to update D in line 6 of pseudo-code above. While self-trainig
usually selects instances with high confidence, active learning queries points of high uncertainty.

Figure 3: Active learning of a binary classification problem (test distribution: left). Random sampling (middle)
is less efficient than uncertainty sampling (right). Credits: [8]
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Lesson 1: Explore-Exploit-Weights

Idea

• Inclusion probability of proposed points is analytically not available due to myopic optimization of AF

• Weight by potential gain of information at time of proposal as expressed by the surrogate model’s epistemic
uncertainy (= standard errors) and compare to standard errors at n randomly sampled points by empirical
distribution function −→ surrogate-based weights (definition 2)

• Use random forest as surrogate and include weights as drawing probability in bootstrapping

• possible extension to causal BO: a posteriori stratification (weights proportional to strata size) to
estimate effects on population level.

Definition 2 (Surrogate-based Weights) Let x1, ...,xn be an iid. post hoc sample and the surrogate
model’s standard errors ŝ(x) =

√
Var(µ̂(x)t), with µ(·)t the surrogate model’s prediction function with

date of birth (dob) t. Let x∗ ∈ {xninit+1, ...,xninit+t} be a proposed point with dob t. Furthermore, let
Fŝ(x)(•) be the empirical distribution function of ŝ(x1), ..., ŝ(xn). Name its value at ŝ(x∗) standard error

distribution value (SED): SED(x∗) = Fŝ(x)(ŝ(x
∗)). Set SED(xi) = 1 ∀xi ∈ {x1, ...,xninit}. The weights

wj =
SED(xj)∑ninit+t

i=1 SED(xi)

with i, j ∈ {1, ..., ninit, ninit + 1, ..., ninit + t} shall be called surrogate-based weights.

Preliminary Results

Hypothesis: Weighted Surrogates (WS) are better global (i.e., on whole parameter space) approximates of 2D
synthetic functions than unweighted surrogates (US).
Experiments: We run 40 BO replications with random forest on six well-established synthetic benchmark
functions and compare MSE on an iid. random sample (N = 10000) of weighted and unweighted surrogates
with dob t ∈ {30, 60, 90, 120}.

Figure 4: MSEs of unweighted and weighted surrogates (random forest with case weights) with dob t ∈ {30, 60, 90, 120} for Ackley,
Styblinski-Tang, Cosine Mixture and Six-Hump-Camel benchmark function. AF: Expected Improvement.

Lesson 2: Sampling-Sensitive Stopping

Compare selected data S = {s1, . . . , st} ⊆ X and a hypothetical i.i.d. sample U = {u1, . . . ,ut} ⊆ X .
Kernel Two-Sample Test: We use a non-parametric tests proposed by [6] to determine if two samples are
drawn from different distributions. Its test statistic is the largest difference in expectations over functions in the
unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD).
An unbiased estimate of the MMD for S and U is

M̂MD =
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with the radial basis function kernel kσ(·, ·) with σ set to the median euclidean distance between sample points.

Stopping Criterion: Stop as soon as we reject the H0 of S and U following the same distributions.

Experiments: We self-train a support vector machine on subsamples of the wine dataset [3] with varying size.
We observe SVM’s test accuracy and the samples’ MMD, see figure 4, and identify two prototypical cases:
1. High accuracy and low covariate shift go hand in hand, see first plot. 2. High accuracy and low covariate
shift are competing goals, see second plot. Plots 3 and 4 highlight situations, where the MMD helps deciding
among similarly well-performing learners (e.g., from iteration 3 and 19 in plot 3).

Figure 5: Test Accuracy of self-trained SVM and Maximum Mean Discrepancy of respective sample.

Lesson 3: Post Hoc Coresets

Motivation: Find a subsample of selected training data that balances covariate shift and predictive performance
−→ sacrifice ϵ performance in order to mitigate covariate shift −→ Coresets, see e.g. [7].

Definition 3 ((1 + ϵ)-Coreset) Let X ∈ Rn×p be a set of data points, R(·) an empirical risk function and
β ∈ Rp the parameters of a (parametric) learner. Then a set S ∈ Rk×p is called a (1 + ϵ)-Coreset of X
for R(·) if k < n and

∀β ∈ Rp : |R(X, β)−R(S, β)| ≤ ϵ · R(X, β)

Naive Approach: Find lowest ϵ such that the above inequality holds for a subsample with inverse inclusion
probabilities (estimated through selection criterion, see lesson 1) −→ expensive

Sampling Based Coreset Constructions: Importance sampling with inverse sensitivity scores (worst-case
importance for approximating the objective function on X) as inclusion probabilities [7].

Open Issue: How can we combine sensitivity scores and inverse inclusion probabilites for subsampling?
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