

NOT ALL DATA ARE CREATED EQUAL - LESSONS FROM SAMPLING THEORY FOR ADAPTIVE MACHINE LEARNING

Julian Rodemann, Sebastian Fischer, Lennart Schneider, Malte Nalenz, Thomas Augustin

Department of Statistics, LMU Munich julian@stat.uni-muenchen.de

Example 1: (Causal) Bayesian Optimization

Pseudo-Code: Bayesian Optimization (BO)

- 1: create an initial design $D = \{(\boldsymbol{x}_{(i)}, \Psi_{(i)})\}_{i=1,...,n_{init}}$ of size n_{init} 2: **while** termination criterion is not met **do**
- 3: **train** a surrogate model (SM) on data D
- 4: **propose** $\boldsymbol{x}_{new} = \arg \max_{\boldsymbol{x}} AF(SM(\boldsymbol{x})), AF(\cdot)$ an acquisition function
- 5: **evaluate** Ψ on \boldsymbol{x}_{new}
- 6: **update** $D \leftarrow D \cup (\boldsymbol{x}_{new}, \Psi(\boldsymbol{x}_{new}))$
- 7: end while
- 8: **return** $\arg \min_{\boldsymbol{x} \in D} \Psi(\boldsymbol{x})$ and respective Ψ_{min}

Lesson 1: Explore-Exploit-Weights

Idea

- Inclusion probability of proposed points is analytically not available due to myopic optimization of AF
- Weight by potential gain of information at time of proposal as expressed by the surrogate model's epistemic uncertainy (= standard errors) and compare to standard errors at n randomly sampled points by empirical distribution function \rightarrow surrogate-based weights (definition 2)
- Use random forest as surrogate and include weights as drawing probability in bootstrapping
- **possible extension to causal BO:** *a posteriori* stratification (weights proportional to strata size) to estimate effects on population level.

Definition 2 (Surrogate-based Weights) Let $\mathbf{x}_1, ..., \mathbf{x}_n$ be an iid. post hoc sample and the surrogate model's standard errors $\hat{s}(\mathbf{x}) = \sqrt{\operatorname{Var}(\hat{\mu}(\mathbf{x})_t)}$, with $\mu(\cdot)_t$ the surrogate model's prediction function with date of birth (dob) t. Let $\mathbf{x}^* \in \{\mathbf{x}_{n_{init}+1}, ..., \mathbf{x}_{n_{init}+t}\}$ be a proposed point with dob t. Furthermore, let $F_{\hat{s}(\mathbf{x})}(\bullet)$ be the empirical distribution function of $\hat{s}(\mathbf{x}_1), ..., \hat{s}(\mathbf{x}_n)$. Name its value at $\hat{s}(\mathbf{x}^*)$ standard error distribution value (SED): $SED(\mathbf{x}^*) = F_{\hat{s}(\mathbf{x})}(\hat{s}(\mathbf{x}^*))$. Set $SED(\mathbf{x}_i) = 1 \ \forall \mathbf{x}_i \in \{\mathbf{x}_1, ..., \mathbf{x}_{n_{init}}\}$. The weights

Figure 1: Visualization of univariate Bayesian Optimization with Gaussian Process as Surrogate Modle. **Causal Bayesian Optimization [1]:** Prior to $\boldsymbol{x}_{new} = \arg \max_{\boldsymbol{x}} AF(SM(\boldsymbol{x}))$, an optimal set of covariates \boldsymbol{ES} based on a DAG to intervene on is returned and $\boldsymbol{x}_{new} \in \boldsymbol{ES}$. **Sampling Bias:** Global generalization suffers from the BO-induced covariate shift, see distribution of proposed points (blue) in figure 1. Moreover, some covariates vary more than others in the sample obtained by causal BO, resulting in a *de facto* stratified sample. [2], [4] and more specifically [9] discuss implications of such a feedback covariate shift for conformal prediction.

Example 2: Self-Training

Pseudo-Code: Self-Training (ST)

1: **require:** labeled data $\mathcal{D} = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \in (\mathcal{X} \times \mathcal{Y})^n$, unlabeled data $\mathcal{U} = \{(\boldsymbol{x}_i, \mathcal{Y})\}_{i=n+1}^m \in (\mathcal{X} \times 2^{\mathcal{Y}})^{m-n}$ from same distribution with \mathcal{Y} categorical and a classifier.

2: while stopping criterion is not met do

- 3: **train** classifier on D to obtain $\widehat{y(\boldsymbol{x})}$
- 4: **predict** on \mathcal{U} : $\hat{y}_i = \widehat{y(\boldsymbol{x}_i)} \quad \forall i \in \{n+1, ..., m\}$
- 5: select subset $C \subseteq \{(\boldsymbol{x}_i, \hat{y}_i)\}_{i=n+1}^m$ according to a confidence measure
- 6: **update** $D \leftarrow D \cup C$
- 7: end while
- 8: **return** final fit

with $i, j \in \{1, ..., n_{init}, n_{init} + 1, ..., n_{init} + t\}$ shall be called surrogate-based weights.

Preliminary Results

Hypothesis: Weighted Surrogates (WS) are better global (i.e., on whole parameter space) approximates of 2D synthetic functions than unweighted surrogates (US).

Experiments: We run 40 BO replications with random forest on six well-established synthetic benchmark functions and compare MSE on an *iid*. random sample (N = 10000) of weighted and unweighted surrogates with dob $t \in \{30, 60, 90, 120\}$.

Figure 4: MSEs of unweighted and weighted surrogates (random forest with case weights) with dob $t \in \{30, 60, 90, 120\}$ for Ackley, Styblinski-Tang, Cosine Mixture and Six-Hump-Camel benchmark function. AF: Expected Improvement.

Lesson 2: Sampling-Sensitive Stopping

Figure 2: Covariate scatter plot from self-training of a support vector machine. Dark blue/red: labels y_i in \mathcal{D} . Light blue/red: predicted labels \hat{y}_i in \mathcal{U} . Credits: gist.github.com/SolClover

Sampling Bias: Covariate distribution may differ from initial (and final) distribution, see figure 2. Depending on the stopping criterion, a covariate shift may harm interpretability of the model. E.g., regions in the covariate space where data is scarce are detrimental to reliable estimates of partial dependencies [5].

Definition 1 (Partial Dependencies [5]) Let $\mathcal{X} = \mathcal{X}_I \cup X_R$, where \mathcal{X}_I are the covariates of interest. $\hat{f}_I(x_I) = \int \hat{f}(x_I, X_R) d\mathbb{P}(X_R)$ is said to be a partial dependence function.

Example 3: Active Learning

Idea: Similar to self-training, except that an oracle is available, thus \hat{y} in C is replaced by ground-truth y when used to update D in line 6 of pseudo-code above. While self-training usually selects instances with high confidence, active learning queries points of high uncertainty.

Compare selected data $S = \{s_1, \ldots, s_t\} \subseteq \mathcal{X}$ and a hypothetical *i.i.d.* sample $U = \{u_1, \ldots, u_t\} \subseteq \mathcal{X}$.

Kernel Two-Sample Test: We use a non-parametric tests proposed by [6] to determine if two samples are drawn from different distributions. Its test statistic is the largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert space (RKHS), and is called the maximum mean discrepancy (MMD). An unbiased estimate of the MMD for S and U is

$$\widehat{MMD} = \left(\frac{1}{n(n-1)}\sum_{i=1}^{n}\sum_{j\neq i}^{n}k_{\sigma}(\boldsymbol{u}_{i},\boldsymbol{u}_{j}) + \frac{1}{m(m-1)}\sum_{i=1}^{m}\sum_{j\neq i}^{m}k_{\sigma}(\boldsymbol{s}_{i},\boldsymbol{s}_{j}) - \frac{2}{nm}\sum_{i=1}^{n}\sum_{j\neq i}^{m}k_{\sigma}(\boldsymbol{s}_{j},\boldsymbol{u}_{i})\right)^{\frac{1}{2}}$$

with the radial basis function kernel $k_{\sigma}(\cdot, \cdot)$ with σ set to the median euclidean distance between sample points. **Stopping Criterion:** Stop as soon as we reject the H_0 of \boldsymbol{S} and \boldsymbol{U} following the same distributions.

Experiments: We self-train a support vector machine on subsamples of the **wine** dataset [3] with varying size. We observe SVM's test accuracy and the samples' MMD, see figure 4, and identify two prototypical cases: 1. High accuracy and low covariate shift go hand in hand, see first plot. 2. High accuracy and low covariate shift are competing goals, see second plot. Plots 3 and 4 highlight situations, where the MMD helps deciding among similarly well-performing learners (e.g., from iteration 3 and 19 in plot 3).

Figure 3: Active learning of a binary classification problem (test distribution: left). Random sampling (middle) is less efficient than uncertainty sampling (right). Credits: [8]

References

- [1] Virginia Aglietti, Xiaoyu Lu, Andrei Paleyes, and Javier González. Causal Bayesian optimization. In International Conference on Artificial Intelligence and Statistics, pages 3155–3164. PMLR, 2020.
- [2] Rina Foygel Barber, Emmanuel J Candes, Aaditya Ramdas, and Ryan J Tibshirani. Conformal prediction beyond exchangeability. arXiv preprint arXiv:2202.13415, 2022.
- [3] Dheeru Dua and Casey Graff. UCI Machine Learning Repository, 2017. http://archive.ics.uci.edu/ml.
- [4] Clara Fannjiang, Stephen Bates, Anastasios N Angelopoulos, Jennifer Listgarten, and Michael I Jordan. Conformal prediction under feedback covariate shift for biomolecular design. *Proceedings of the National Academy of Sciences*, 119(43):e2204569119, 2022.
- [5] Jerome H Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29:1189–1232, 2001.
- [6] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.
- [7] Michael Langberg and Leonard J Schulman. Universal ε-approximators for integrals. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages 598–607. SIAM, 2010.
- [8] David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional data. In ACM SIGIR Forum, volume 29, pages 13–19. ACM New York, NY, USA, 1995.
- [9] Samuel Stanton, Wesley Maddox, and Andrew Gordon Wilson. Bayesian optimization with conformal coverage guarantees. arXiv preprint arXiv:2210.12496, 2022.

Figure 5: Test Accuracy of self-trained SVM and Maximum Mean Discrepancy of respective sample.

Lesson 3: Post Hoc Coresets

Motivation: Find a subsample of selected training data that balances covariate shift and predictive performance \rightarrow sacrifice ϵ performance in order to mitigate covariate shift \rightarrow Coresets, see e.g. [7].

Definition 3 ((1 + ϵ)-Coreset) Let $X \in \mathbb{R}^{n \times p}$ be a set of data points, $\mathcal{R}(\cdot)$ an empirical risk function and $\beta \in \mathbb{R}^p$ the parameters of a (parametric) learner. Then a set $S \in \mathbb{R}^{k \times p}$ is called a (1 + ϵ)-Coreset of X for $\mathcal{R}(\cdot)$ if k < n and

 $\forall \beta \in \mathbb{R}^p : |\mathcal{R}(X,\beta) - \mathcal{R}(S,\beta)| \le \epsilon \cdot \mathcal{R}(X,\beta)$

Naive Approach: Find lowest ϵ such that the above inequality holds for a subsample with inverse inclusion probabilities (estimated through selection criterion, see lesson 1) $\rightarrow expensive$

Sampling Based Coreset Constructions: Importance sampling with inverse sensitivity scores (worst-case importance for approximating the objective function on X) as inclusion probabilities [7].

Open Issue: How can we combine sensitivity scores and inverse inclusion probabilites for subsampling?