
Master’s Thesis

Learning One-shot Relations in
Temporal Knowledge Graphs

Department of Statistics
Ludwig-Maximilians-Universität München

Author: Bailan He
Supervisor: Prof. Dr. Volker Tresp

Munich, October 24th, 2022

DECLARATION

This thesis is a presentation of my original research work. Wherever contribu-
tions of others are involved, every effort is made to indicate this clearly, with due
reference to the literature, and acknowledgement of collaborative research and dis-
cussions. The work was done under the guidance of Prof. Dr. Volker Tresp and
PhD candidate Zifeng Ding, at the Datenbanksysteme und Data Mining, Ludwig-
Maximilians-Universität München.

Abstract

Knowledge graphs (KGs) provide a principled method of representing structural
relations between entities, and are widely used in various artificial intelligence
applications, such as recommendation systems, intelligent customer service, and
question answering. By introducing time information into KGs, temporal knowl-
edge graphs (TKGs) can describe the ever-changing facts of the world. Similar to
KGs, TKGs are also known to be highly incomplete, which draws huge attention to
developing TKG reasoning methods for link prediction on TKGs. To better model
the knowledge graph representations, most of previous methods require a sufficient
amount of data for each relations. However, it has been noticed that sparse rela-
tions (i.e., relations occur for very few times) are quite common in both KGs and
TKGs. To solve this problem, few-shot learning method is used. Few-shot learning
employs a meta-learning framework and the model needs to learn to predict the
unseen links of one sparse relation with only few observed events. In this thesis,
we aim to predict new facts under a challenging setting where only one training
sample is available. We revisit the previous works related to few-shot relational
learning in KGs and extend two existing TKG reasoning tasks, i.e., interpolated
and extrapolated link prediction, to the one-shot setting and propose four new
large-scale datasets for these two tasks. Our new datasets have a substantial num-
ber of associated TKG facts, which greatly alleviate instability in model training
and evaluation. Furthermore, we propose a model learning meta representations
of one-shot relations for solving both tasks in TKGs (MOST). MOST employs
a meta-information extractor for learning contextualized time-aware entity repre-
sentations and a meta-representation learner to compute meta representations for
sparse relations. Furthermore, MOST employs a metric function to calculate the
plausibility scores of TKG quadruples. Additionally, we fix the unfair evaluation
settings employed by previous KG few-shot learning methods. Finally, we evalu-
ate MOST on all four newly-proposed datasets and compare MOST with a large
group of baselines on both TKG link prediction tasks. The experiment results
show that MOST achieves state-of-the-art performance on both interpolation and
extrapolation tasks while keeping a low time cost.

Keywords: temporal knowledge graphs, few-shot learning, link prediction.

I

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Method Introduction . 4

1.2.1 Temporal Knowledge Graph Link Prediction 4

1.2.2 Few-Shot Learning . 4

1.2.3 Episodic Training . 5

1.3 One-Shot Temporal Knowledge Graph Link Prediction Setup 6

1.4 Contribution . 7

1.5 Outline of the Thesis . 8

2 Background and Related Work 9

2.1 Knowledge Graph Embedding Methods 9

2.1.1 Translation Models . 9

2.1.2 Factorization Models . 10

2.1.3 Neural Network Models . 11

2.1.4 Rotation Models . 12

2.2 Deep Neural Networks . 13

2.3 Graph Neural Networks . 14

2.4 Graph Convolutional Networks . 16

2.4.1 Spectral-based Graph Convolutional Network 16

2.4.2 Spatial-based Graph Convolutional Networks 17

2.5 Graph Attention Networks . 18

II

2.5.1 Graph Attention Network 18

2.5.2 Gated Attention Network 19

2.6 Multi-Relational Graph Convolutional Networks 20

2.7 Temporal Knowledge Graph Embedding Methods 22

2.8 Few-shot Relational Learning Methods for Knowledge Graphs . . . 22

3 Meta Representations of One-shot Relations 23

3.1 Meta-information Extractor . 24

3.2 Meta-representation Learner . 26

3.3 Metric Function . 26

3.4 Parameter Learning . 27

4 Experiments 28

4.1 Datasets . 29

4.1.1 Problem with Previous Datasets 29

4.1.2 Our Datasets . 30

4.2 Baseline Methods . 32

4.2.1 Few-shot Relational Learning Methods 32

4.2.2 Temporal Knowledge Graph Embedding Methods 32

4.3 Implementation Details . 33

4.4 Evaluation Metrics . 35

4.5 Experiment Results . 36

4.5.1 Unfair Evaluation for Static KG FSL Methods 36

4.5.2 Model Results . 37

III

4.5.3 Ablation Study . 40

4.5.4 Performance over Different Sparse Relations 42

4.5.5 Performance over Different Support-Query Time Differences 43

4.5.6 Time Cost Analysis . 43

5 Conclusion and Limitations 48

5.1 Conclusion . 48

5.2 Limitations . 49

References 50

IV

List of Figures

1 An example of Knowledge Graph. 1

2 An example of Temporal Knowledge Graph. 2

3 Example of One-Shot TKG LP task. 5

4 Time span of meta learning sets (Tmeta−train,Tmeta−valid,Tmeta−test)
for the extrapolated LP. 8

5 TransE score function [5]. 9

6 RotatE score function [36]. 12

7 An example of Neuron. 13

8 An example of two layer neural network. 14

9 An example of Graph G. 15

10 CNN convolution and GNN convolution [16]. 18

11 Overview of MOST. 24

12 Sparse Relation frequency comparison between ICEWS-one ext and
ICEWS17; GDELT-one ext and GDELT. 29

13 Performance comparison between MOST and baselines over differ-
ent support-query time differences |tq − t0| on ICEWS-one int. (a)
MOST-TA vs. FAAN on ICEWS-one int; (b) MOST-TA vs. TeLM
on ICEWS-one int; (c) MOST-TA vs. FAAN on GDELT-one int;
(d) MOST-TA vs. TeLM on GDELT-one int. 44

14 Performance comparison between MOST and baselines over dif-
ferent support-query time differences |tq − t0| on ICEWS-one ext.
(a) MOST-TD vs. FAAN on ICEWS-one ext; (b) MOST-TD vs.
xERTE on ICEWS-one ext; (c) MOST-TD vs. FAAN on GDELT-
one ext; (d) MOST-TD vs. xERTE on GDELT-one ext. 45

15 Training time comparison among MOST and the strongest baselines
on ICEWS-based datasets. 46

V

16 Training time comparison among MOST and the strongest baselines
on GDELT-based datasets. 46

VI

List of Tables

1 Dataset statistics. 32

2 Hyperparameter searching strategy. 33

3 GPU memory usage. 34

4 Best hyperparameter settings on each dataset. 34

5 Hyperparameter settings of interpolation baselines. 35

6 Hyperparameter settings of extrapolation baselines. 35

7 Interpolated LP results on collapsed unweighted KGs. Evaluation
metrics are MRR and Hits@1/3/5/10 (%). 36

8 Extrapolated LP results on collapsed unweighted KGs. Evaluation
metrics are MRR and Hits@1/3/5/10 (%). 36

9 Interpolated LP results for one-shot relational learning on ICEWS-
one int and GDELT-one int. Evaluation metrics are MRR and
Hits@1/3/5/10. The best results are marked in bold. 37

10 Extrapolated LP results for one-shot relational learning on ICEWS-
one ext and GDELT-one ext. Evaluation metrics are MRR and
Hits@1/3/5/10. The best results are marked in bold. 38

11 Ablation studies of MOST-TA variants on ICEWS-one int and ICEWS-
one ext. The best results are marked in bold. 39

12 Ablation studies of MOST-TD variants on ICEWS-one int and ICEWS-
one ext. The best results are marked in bold. 39

13 One-shot TKG interpolated LP performance over each sparse rela-
tion on ICEWS-one int and GDELT-one int. The best results are
marked in bold. The second best results are underlined. 42

14 One-shot TKG extrapolated LP performance over each sparse rela-
tion on ICEWS-one ext and GDELT-one ext. The best results are
marked in bold. The second best results are underlined. 43

VII

15 Test time (min) comparison among MOST and the strongest base-
lines on ICEWS-based datasets. 43

16 Test time (min) comparison of all methods on interpolation datasets. 47

17 Test time (min) comparison of all methods on extrapolation datasets. 47

VIII

1 Introduction

1.1 Motivation

Integrating human knowledge into the computing system was an important idea.
In the 1990s, the World-Wide Web [4] was designed to serve as a collection of hu-
man knowledge, which provides an opportunity for widespread knowledge sharing.
On this basis, in order to include more significant content, the semantic web [3]
has expanded the World-Wide Web with specific structures. In 2012, the idea of
knowledge graphs (KGs) was proposed by Google. A Knowledge Graph is defined
as a large-scale semantic network knowledge, that expresses and stores in the form
of a directed graph, which has the advantages of semantic richness, friendly struc-
ture, and ease of understanding. Formally, KGs represent a collection of facts as a
set of triplets in the form of (s, r, o), where s, o, r mean subject entity, object entity
and relation between them, respectively. In recent years, due to the great charac-
teristics in expressing human prior knowledge [28], knowledge graphs have drawn
great attention and have been widely and successfully applied in many fields such
as natural language processing, question-answering systems, and recommendation
systems.

Figure. 1. An example of Knowledge Graph.

In knowledge graphs, we usually use the term ”Entity” to express the nodes in a

1

graph and ”Relation” to express the ”edges” in a graph. Entities refer to things
in the real world, such as people, places, concepts, drugs, companies, etc., and are
normally represented by circles or ellipses. Relations are used to express the certain
connection between different entities and are represented by directed arrows. The
direction of the arrow is usually from subject to object. Figure. 1 shows an example
of a KG. Five entities and five kinds of relations are specified in this KG. More
specifically, in this KG, the fact that Jonathan Nolan directed the Revenant is
represented by a triplet (Jonathan Nolan, directed, Revenant). Jonathan Nolan
and Revenant are two entities, directed is the relation between them, denoted with
a directed arrow and labeled with a character name.

Human knowledge is often time-sensitive. In the KG example mentioned above, the
fact that Jonathan Nolan directed the Revenant does not hold forever. However,
static KGs do not include temporal information. To capture the temporal aspect,
time information t is added in KGs. Such KGs are called temporal knowledge
graphs (TKGs). A fact of TKGs can be expressed in a quadruple in the form of
(s, r, o, t).

Figure. 2. An example of Temporal Knowledge Graph.

Figure. 2 shows an example of a TKG. In this TKG, Jonathon Nolan directed
the Revenant in January 2016. However, in October 2016, the relation directed,
between Jonathon Nolan and Revenant no longer existed because he had al-
ready finished directing Revenant and started directing Westworld. The facts
about Jonathon Nolan are different at the different timestamps. In our example,
(Jonathan Nolan, directed, Revenant) is transformed into (Jonathan Nolan, di-
rected, Revenant, Oct.2.2016). TKGs can encode the ever-changing knowledge by
incorporating time information.

2

Knowledge graph embedding (KGE), also known as knowledge representation
learning (KRL), is a crucial research direction that paves the way for many knowl-
edge acquisition tasks and downstream applications, e.g., link prediction and ques-
tion answering. The key goal of KGE is to learn the low-dimensional embedding of
entities and relations and find a suitable score function to measure the plausibility
of KG facts.

As knowledge graphs are often incomplete, new triples must be continuously added
to the knowledge graph, as well as missing entities or relations need to be inferred
from existing graphs. This results in a task called knowledge graph completion
(KGC). Preliminary researchers mainly focus on building embedding-based models
to solve this task. However, these models often fail to capture multi-hop relations.
Recently, researchers have incorporated logical rules or explored multi-hot relation
paths to address this issue.

TKG representation learning can be seen as a branch of KRE. By extending the
triple (s, r, o) to a quadruple (s, r, o, t), we can get the embedding containing the
time information can be obtained, namely temporal information embedding. Sim-
ilar to KGs, TKGs are also known to be highly incomplete. There have been
several works aiming to propose TKG reasoning models to infer missing links ([20,
26, 21]). Most of these reasoning models require a huge amount of data to learn
an expressive temporal information embedding. However, Xiong et al. [46] and
Mirtaheri et al. [27] find a large part of KG and TKG relations are long-tail dis-
tributed (long-tail means some relations only occur for a few times), which leads to
the degenerative performance of existing reasoning methods. A series of works [46,
8, 52, 34] employ the few-shot learning (FSL) methods to address this issue. Few-
shot learning is a machine learning method in which the training dataset contains
limited resources. Humans are very good at recognizing a new object from a tiny
sample. For example, a child can recognize a ’zebra’ or a ’rhinoceros’ with just a
few pictures in a book. By using few-shot learning, a model can learn from a few
examples like humans. On top of this these methods, Mirtaheri et al. [27] develop
a method to alleviate these problems for TKGs by considering temporal dependen-
cies between facts. They formulate a one-shot extrapolated link prediction (LP)
task for TKGs and propose new datasets based on benchmark TKG databases
ICEWS [6], and GDELT [22]. In this work, we focus on both interpolated and
extrapolated LP tasks under the one-shot setting.

3

1.2 Method Introduction

1.2.1 Temporal Knowledge Graph Link Prediction

Let E , R and T represent a finite set of entities, relations, and timestamps. A
temporal knowledge graph (TKG), G = {(s, r, o, t)|s, o ∈ E , r ∈ R, t ∈ T } ⊆
E × R × E × T is a relational graph that consists of a set finite of facts denoted
with quadruples in the form of (s, r, o, t). A complete TKG G contains both the
observed facts Gobs and the unobserved true facts Gun. Two types of facts are
independent, i.e., G = Gobs ∪Gun, where Gobs ∩Gun = ∅. There are two types of LP
tasks, i.e.

Given the observed facts Gobs, TKG LP aims to predict the ground truth object (or
subject) entities of LP queries (sq, rq, ?, tq) (or (?, rq, oq, tq)), where (sq, rq, oq, tq) ∈
Gun. In the interpolated LP, the prediction is based on all the observed facts
{(s, r, o, ti)|ti ∈ T } ⊆ Gobs, while in the extrapolated LP, the prediction can only
be based on the observed facts {(s, r, o, ti)|ti < tq} ⊆ Gobs appearing before the
query timestamp tq. TKG interpolated LP is also named as TKG completion and
TKG extrapolated LP is also named as TKG forecasting or TKG link forecasting.

1.2.2 Few-Shot Learning

As a machine learning problem, Few-shot learning (FSL) asks models to perform
well on test examples for each class, with only a few (usually a small number,
e.g., 1 or 3) labeled class-specific training examples. When the number of labeled
examples equals 1, FSL problems become one-shot learning problems. Traditional
machine learning methods fail to perform well in FSL problems since they require
a large amount of training data concerning each class to achieve good performance.
However, several approaches, e.g., metric learning, data augmentation, and meta-
learning have shown success in addressing FSL problems. [42, 25]. In this paper, we
use meta-learning framework to solve the FSL problem. Meta-learning approaches
aim to quickly learn novel concepts by generalizing from previously encountered
learning tasks, which fit well with solving the problems in the few-shot setting.

4

1.2.3 Episodic Training

Episodic training [40] is a meta-learning framework to solve FSL problems. Dif-
ferent from the traditional training process, models are trained over episodes in
episodic training. Each episode can be considered as a mini-training process on a
training task T , where a number of ”training data” (denoted as the support set S)
and ”test data” (denoted as the query set Q) are sampled. Then, loss function lθ is
calculated over the query set conditioned on the support set. θ denotes the model
parameters. A model is trained over a large dataset of training tasks with episodic
training. For a given support set, the model needs to minimize a loss over a batch of
examples in the query set. Assume there is a large set of training tasks T = {Ti}Ni=1,
where Ti = {Si,Qi} and N is the total number of the training tasks, the training

objective of a model is given as θ = argminθ ETi∼T

[
1

|Qi|
∑

q∈Qi
[lθ(q|Si)]

]
. q denotes

a data example in the query set Qi. Episodic training manages to simulate the
few-shot situation when there are only a small number of data examples sampled
to form the support set of each training task T . For example, to solve one-shot
learning problems, only one data example is sampled to form the support set of
each task T .

Figure. 3. Example of One-Shot TKG LP task.

Figure. 3 presents one example for each of the one-shot TKG LP tasks. Models
are trained over a number of training tasks, then evaluated with validation and
test tasks (we omit validation tasks in the figure for brevity). Each training (or
validation, test) task Tr corresponds to a sparse relation r and consists of a support
quadruple and a number of query quadruples that contain r. As shown in the
examples, the timestamp of Tr’s support quadruple is smaller than the minimum
timestamp of Tr’s query quadruples in the one-shot extrapolation setting, while
there is no such constraint in the one-shot interpolation setting.

5

1.3 One-Shot Temporal Knowledge Graph Link Prediction
Setup

Similar to the setting of few-shot KG LP [46], the one-shot TKG LP tasks (both
interpolation and extrapolation) are taken as one-shot learning problems. Fur-
thermore, we can formulate the one-shot TKG LP tasks into meta-learning prob-
lems and solve them with meta-learning approaches. First, we define the newly-
proposed task, i.e., one-shot TKG interpolated LP. And we also redefine the one-
shot TKG extrapolated LP task as it is flawed and unclear in [27].

For a TKG G, we divide all its relations R into two groups, i.e., frequent relations
Rfreq and sparse relations Rsp, where Rfreq ∩ Rsp = ∅ and R = Rfreq ∪ Rsp.
A background graph G ′ ⊆ E × Rfreq × E × T is constructed by including all the
quadruples concerning frequent relations, where G ′ ⊆ G.

Definition 1 (One-Shot TKG Interpolated Link Prediction). Assume only
one quadruple (s0, r, o0, t0) corresponding to each sparse relation r is observed,
where r ∈ Rsp, s0, o0 ∈ E and t0 ∈ T . Given (s0, r, o0, t0) and the whole background
graph G ′, one-shot TKG interpolated LP aims to predict the missing entity of each
LP query, i.e., (sq, r, ?, tq) or (?, r, oq, tq), derived from the unobserved quadruples
containing r, where sq, oq ∈ E and tq ∈ T .

Definition 2 (One-Shot TKG Extrapolated Link Prediction). Assume only
one quadruple (s0, r, o0, t0) corresponding to each sparse relation r is observed,
where r ∈ Rsp, s0, o0 ∈ E and t0 ∈ T . Given (s0, r, o0, t0), together with a set of
observed TKG facts that appear before t0 and belong to the background graph G ′,
one-shot TKG extrapolated LP aims to predict the missing entity of each LP query,
i.e., (sq, r, ?, tq) or (?, r, oq, tq), derived from the unobserved quadruples containing
r, where sq, oq ∈ E , tq ∈ T and tq > t0.

Both subject and object entity prediction are of great importance in traditional
KG and TKG LP, but previous work regarding few-shot link prediction on both
KGs and TKGs [46, 8, 52, 34, 27] only consider object entity prediction. In this
paper, we consider both subject and object entity prediction to make the task
settings more reasonable and comprehensive.

We further define the one-shot TKG LP tasks with meta-learning framework.
Following [46, 27], a background graph G ′ = {(s, r, o, t)|s, o ∈ E , r ∈ Rfreq, t ∈ T }
is constructed by including all the quadruples concerning frequent relations, and it
is also observable to the TKG reasoning model. We also assume that we have access
to a set of training tasks for episodic training. Each training task Tr corresponds

6

to a sparse relation r ∈ Rtrain
sp (Rtrain

sp ⊂ Rsp). Tr = {Sr,Qr}, where Sr is the
support set of Tr containing only one support quadruple (s0, r, o0, t0), and Qr =
{(sq, r, oq, tq)} is the query set of Tr containing a number of r-related quadruples
other than (s0, r, o0, t0). The set of all training tasks is denoted as the meta-training
set Tmeta−train. We use the loss function lθ((sq, r, oq, tq)|Sr) to indicate how well
the TKG reasoning model works on the query quadruple (sq, r, oq, tq), given the
support set Sr. The training objective of the model is given as:

θ = argmin
θ

ETr∼Tmeta−train

[
1

|Qr|
∑
q∈Qr

[lθ(q|Sr)]

]
, (1)

where θ denotes the model parameters, q represents a query quadruple (sq, r, oq, tq).
Tr is sampled from the meta-training set Tmeta−train, and |Qr| denotes the number
of the query quadruples regarding the sparse relation r. For every sparse relation r,
we want our model to accurately predict the missing entities of all the LP queries
(sq, r, ?, tq) (or (?, r, oq, tq)) derived from query quadruples (sq, r, oq, tq) ∈ Qr, with
only one observed r-specific support quadruple (s0, r, o0, t0) from Sr.

After training, model will be evaluated on a meta-validation set Tmeta−valid and
a meta-test set Tmeta−test, where Rvalid

sp ⊂ Rsp,Rtest
sp ⊂ Rsp and Rtrain

sp ∩ Rvalid
sp =

ϕ,Rtrain
sp ∩ Rtest

sp = ϕ,Rvalid
sp ∩ Rtest

sp = ϕ. Similar to meta-training, for each sparse
relation in meta-validation and meta-test, only one associated quadruple is added
in the support set, and all the links in its query set are to be predicted.

In the interpolated LP, no constraint exists for the timestamp t0 of its support
quadruple (s0, r, o0, t0) regarding sparse relation r and we assume that the whole
background graph is always observable, while in the extrapolated LP, we imposed
temporal constraint: t0 < min({tq|(sq, r, oq, tq) ∈ Qr}) and only the background
graph before the one-shot support quadruple is observable. Following the extrap-
olation setting in [27], we keep the non-overlapped time span (Figure 4) of meta-
learning sets (Tmeta−train, Tmeta−valid, Tmeta−test). The maximum timestamp of the
quadruples in Tmeta−train is smaller than the minimum timestamp of the quadru-
ples in Tmeta−valid, and the maximum timestamp of the quadruples in Tmeta−valid
is smaller than the minimum timestamp of the quadruples in Tmeta−test.

1.4 Contribution

Our work’s main contribution is summarized as follows:

• We propose the one-shot TKG interpolated LP task. To the best of our

7

Figure. 4. Time span of meta learning sets (Tmeta−train,Tmeta−valid,Tmeta−test) for
the extrapolated LP.

knowledge, this is the first work generalizing TKG interpolated LP to the
one-shot setting for sparse relations LP tasks;

• We redefine the one-shot TKG extrapolated LP task and we conduct both
subject and object entity prediction on the quadruples regarding sparse re-
lations;

• We propose four new large-scale datasets for one-shot relational learning on
TKGs. For every sparse relation, we have a substantial number of associ-
ated TKG facts, which greatly alleviates instability in model training and
promotes reliable evaluation;

• We propose a model learning meta representations of one-shot relations for
solving both tasks in TKGs (MOST). We evaluate our model on all four
new datasets and compare it with a bunch of baselines. Our model achieves
state-of-the-art performance on all datasets in both tasks.

1.5 Outline of the Thesis

After the introduction, Chapter 2 reviews the background knowledge and the re-
lated works. Chapter 3 explains how we design our datasets and model. Details of
the datasets and the results of our model experience will be introduced in Chapter
4. Finally, the conclusion is drawn and the outlook for future research is provided
in Chapter 5.

8

2 Background and Related Work

2.1 Knowledge Graph Embedding Methods

Knowledge graph embedding (KGE) learns the embedding representation of enti-
ties and relations in a knowledge graph and serves as a key driver for KG reasoning
tasks, e.g. KG link prediction. A line of KGE methods treat relations as trans-
lations between subject and object entities [5, 24, 35, 1], while another series of
models calculate the plausibility of potential semantics of entities and relations
based on tensor factorization[30, 51, 2]. On top of them, because graph neu-
ral networks (GNNs)[9, 19] can utilize structural information of KGs, a group
of researchers develop neural-based relational graph encoders for KGE [33, 38].
Moreover, some researchers consider that multiple kinds of relations exist in the
knowledge graph, and develop a line of rotation models, which treat relations as a
rotation between the subject and object entities [36, 47]. We then introduce the
representative models in each category separately.

2.1.1 Translation Models

For a KG triplet (s, r, o), translation model calculates the distance between the
translated subject s and the object o by comparing the embedding representations
hs + hr with ho where hs, ho and hr denote the embedding representation of
subject s, object o and relation r in the KG triplet (s, r, o), respectively. Figure.
5 shows how the earliest translation model, TransE [5], calculate the distance.

Figure. 5. TransE score function [5].

The yellow, blue and red arrows represent the embedding representation of subject

9

hs, object ho and relation hr, respectively. The green arrow denotes the translated
subject representation hs + hr. TransE considers the relation r as the translation
relation between the subject and object entities, the distance is calculated by
hs + hr − ho, which represents the plausibility of the KG triplet (s, r, o). The
scoring function is defined as:

f(s, r, o) = ∥hs + hr − ho∥ (2)

with the optimization objective of minimizing the scoring function and the norm
can be either L1 norm or L2 norm. The smaller value represents higher plau-
sibility of the KG triplet (s, r, o). TransE is able to solve the 1-1 category of
relations, but not well for the 1-N, N-1, N-N relations. When the subject entity
and the relation are the same, TransE assumes that all object entities have the
same embedding information. For example, for the two triples (Jonathan Nolan,
directed, Revenant) and (Jonathan Nolan, directed, Westworld), two object en-
tities Revenant and Westworld have the same representation by TransE as the
two triplets have the same subject entity and relation. To address this problem,
TransR [43] introduces separated spaces for entities and relations. After projec-
tion, the embedding information of the object entity will be different, even though
the subject entity and the relation are the same.

In addition to TransE and TransH, there are other Trans models that take into
account the probabilistic and sparse nature of entities and relations. In general,
Trans models treat relations as translations between subject and object entities,
solving the N-to-N problem that exists in knowledge graphs.

2.1.2 Factorization Models

KGE models can be decomposed as three-way tensor X from the perspective of
factorization. With relation matrix Mr, an overall principle of tensor factorization
can be referred to as:

f(s, r, o) = hs
TMrho (3)

Nickel et al. [30] proposed the three-way rank-r factorization model RESCAL.
RESCAL represents relations using full-rank matrices. The information of entities
and relations can deeply interact. However, RESCAL is prone to overfitting and
can be very complex as the dimensionality of the relation matrix increases, making
it difficult to apply to large-scale knowledge graphs. DistMult [51] relaxes the
constraints on the relational matrix by representing the relational matrix Mr using

10

a diagonal matrix, and redefine the loss function:

f(s, r, o) = hs
Tdiag(Mr)ho (4)

However, DisMult oversimplifies the RESCAL model, resulting in only being able
to solve the symmetric relations that exist in the knowledge graph. ComplEx [37]
extends DisMult to a complex space and defines the scoring function as:

f(s, r, o) = Re
(
hs

Tdiag(Mr)ho

)
(5)

where all hs, ho are represented by complex numbers, h̄s denotes the conjugate
complex, and Re(·) denotes the real part of the complex obtained. ComplEx can
solve both symmetric and asymmetric relations by projecting embeddings into
complex vector space.

Models in the factorization family such as RESCAL, DistMult, and ComplEx can
be transformed from one into another with certain constraints [41].

2.1.3 Neural Network Models

Most translation models and factorization models are proposed before 2016. In
recent years, with the popularity of neural networks, there are also models that
use neural networks to solve KGE problems, including ConvE, CapsE.

ConvE first converts the head entities and relations into vectors, then uses the
convolutional and fully connected layers to obtain interaction information. After
that, ConvE uses it with the matrixW and tail entities to compute the plausibility
score of the current events. ConvE employs the score function:

f (vec(f([hs,hr] ∗ w))W)ho (6)

where hs,hr and ho denote the representation of subject, relation and object, w
is the convolutional kernel, W is the weight matrix, and vec is the vectorization
operator.

As an emerging direction, Graph neural networks (GNNs) show a great potential
in non-Euclidean data. And GNNs also have a natural connection with KGE. We
will discuss this in the later sections.

11

2.1.4 Rotation Models

rotation models hold the opinion that there are multiple types of relations in the
knowledge base, such as symmetry(e.g., marriage), antisymmetry(e.g., filiation),
inversion(e.g., hypernym and hyponym), composition(e.g., my mother’s husband is
my father) relations [36] , but previous models such as TransE[5], and RESCAL[30]
are unable to resolve these relations.

Figure. 6. RotatE score function [36].

As Figure 6 shows, RotatE proposes modeling in complex space, treating the
relation as a rotation between subject and object entities, and the score function
is defined as:

fr(hs,ho) = ||hs ◦ hr − ho|| (7)

where {hs,hr,ho} = eiθ = cosθ + isinθ. RotatE has been theoretically proven
to be able to solve different relations, e.g. symmetric, antisymmetric, flip. In
addition, RotatE also believes that many triples are obviously wrong during the
training process, thus RotatE proposes a self-adversarial negative sampling method
to make the wrong samples more obvious.

RotatE project the embedding space in a two-dimensional complex plane space, so
it can be naturally extended to a higher-dimensional complex plane space. QuatE
[53] uses quaternions for rotation and defines the score function as:

fr(hs,ho) = hs ⊗ ||hr|| ∗ ho (8)

hs,hr,ho are all quaternion and || · || is the norm operator, ⊗,∗ represent the
Hamilton product and inner product, respectively.

12

It can be seen from the RotatE and QuatE that the characteristics of rotation are
useful when solving the symmetric/antisymmetric, flip, and combination relations
in the knowledge base.

2.2 Deep Neural Networks

Deep Neural Network (DNN) is now one of the most representative models in the
field of artificial intelligence due to its outstanding performance on a wide range of
different tasks. The deep belief networks [14] proposed by Geoffrey E. Hinton et
al. in 2006 can be seen as the foundation of modern DNN models. In the human
brain, there are 100 billion neurons to receive and send electric signals. DNN try
to imitate this process by using the basic component, the neuron.

Figure. 7. An example of Neuron.

An example of a neuron is shown in Figure 7 and the computation in a neuron
consists of three steps, i.e. weighted sum, add bias, and non-linear transformation.

y = σ

(
M∑
k=1

wkxk + b

)
(9)

For each input x, it will be multiplied with a weight w, then a bias term b will be
added in the weighted sum. The intermediate number

∑M
k=1wkxk + b is a linear

combination of all the inputs. With an activation function σ(·), the non-linearity
is introduced to the linear combination, which is more suitable for complex tasks.

13

A neural network is formed with a number of neurons. Figure 8 shows an example
of three layer neural network with one hidden layer. More general, each neural
network has an input layer, several hidden layers and an output layer. The output
of the neural network can be computed in the following way:

y = σ
(
W T

2 σ(W
T
1 x+ b1) + b2

)
(10)

where x denotes all inputs and W1, W2, b1, b2 denote the learnable parameters,
i.e. weight and biases, in each layer of the neural network.

Figure. 8. An example of two layer neural network.

In real world cases, the number of the hidden layers is greatly larger than one.
This makes the neural network deeper and a neural network becomes a DNN.

2.3 Graph Neural Networks

Over the past few years, the rise and application of deep learning (DL) have suc-
cessfully driven research in pattern recognition and data mining. Although tradi-
tional deep learning methods have been applied to extract features from Euclidean
space data with great success, many real-world application scenarios generate data

14

from non-Euclidean spaces. Traditional deep learning methods still struggle to per-
form satisfactorily with non-Euclidean space data. For example, in e-commerce, a
graph-based learning system can use the interaction between users and products
to make very accurate recommendations [45].

Figure. 9. An example of Graph G.

Figure 9 shows an example of a graph. The graph G has eight nodes and the edges
between nodes are denoted with lines. It can be observed that nodes in G have
both dependent and independent relations. As for the red node N2, we mark its
neighbor with blue and the neighbor is defined as the set of nodes that connect
with N2. The neighbor size of N2 is two, since the neighbor of it consists of two
nodes. As for node N8, it is independent with any other nodes in G.

However, compared to text and images, this network type of unstructured data is
very complex and the difficulties in dealing with it include:

• The size of the graph is arbitrary, the topology of the graph is complex and
there is no spatial localization as in the case of images.

• Each graph has an unordered node with variable size and each node in the graph
has a different number of neighboring nodes, which makes important operations
(e.g. convolution) no longer suitable for direct use.

• Graphs are often dynamic and contain multi-modal features.

15

These problems have led to the emergence and development of graph neural net-
works (GNNs). GNNs take advantage of this special graph data structure and
have flourished in recent years.

2.4 Graph Convolutional Networks

Due to the special data structure, we can not directly apply convolution operation
in graph data. GCNs extend convolution operations from traditional data (e.g.
images) to graph data. The main idea is to learn a mapping of function f(·),
through which a node in the mapping graph can aggregate its own features with
those of its neighbors to generate a new representation of the node. GCNs are
the basis for many complex graph neural network models. GCNs can be further
divided into two main categories, spectral-based and spatial-based. Spectral-based
methods define graph convolution by introducing filters from the perspective of
graph signal processing, where the graph convolution operation is interpreted as
removing noise from the graph signal. The spatial-based approach represents graph
convolution as the aggregation of feature information from the neighborhood, and
when the algorithm of the graph convolution network operates at the node level,
the graph pooling module can be interleaved with the graph convolution layer to
coarsen the graph into high-level substructures.

2.4.1 Spectral-based Graph Convolutional Network

Given a graph G = (N , E), where N , E denote nodes and edges in the graph,
respectively. In spectral-based graph neural networks, graphs are assumed to be
undirected graphs, and a robust mathematical representation of undirected graphs
is the regularized graph Laplacian matrix, i.e.

L = I−D−1/2AD−1/2 (11)

where D is the diagonal matrix and Dii =
∑

j(Ai,j), A ∈ R|N |×|N | is the adjacency
matrix of G. regularised Laplacian matrices have the property of being real sym-
metric and semi-positive definite. Using this property, the regularised Laplacian
matrix can be decomposed into:

L = UΛUT (12)

16

U = [u0, u1, ..., un−1] ∈ R|N |×|N | is a diagonal matrix where the values on the
diagonal are the eigenvalues of L. The eigenvectors of the regularized Laplacian
matrix form a set of orthogonal bases.

Generally, spectral-based graph convolutional networks can be represented:

Lk+1 = UfilterU
TLk (13)

In the kth graph convolutional layer, the inputs Lk will first be projected onto
an orthogonal space whose base is composed of the eigenvectors of the Laplacian
matrix by multiplying by UT . After that, a filter Ufilter will be used to process the
projected inputs. In the end, the processed inputs will be projected back to the
original space. Existing spectral-based graph convolution network models, e.g.,
Spectral CNN [7], Chebyshev Spectral CNN (ChebNet) [9] and Adaptive Graph
Convolution Network (AGCN) [23] all follow this pattern. The key difference
between them lies in the different filters chosen.

A common disadvantage of spectral-based graph convolution neural network ap-
proaches is that they require the entire graph to be loaded into memory in order
to perform graph convolution, which is not efficient when processing large graphs.

2.4.2 Spatial-based Graph Convolutional Networks

The idea of spatially based graph convolutional neural networks is mainly derived
from traditional convolutional neural networks for image convolution operations,
the difference is that spatially based graph convolutional neural networks define
the graph convolution based on the spatial relation of the nodes. Figure 10 depicts
the difference between the two convolutions.

An image can be regarded as a special form of graphs, where each pixel represents
a node, as shown in left part of Figure 10, we use a pixels matrix to illustrate a part
of an image. Each pixel is directly connected to the pixels in its neighborhood.
Through a 3 x 3 filter (kernel), the neighborhood of each node is the eight pixels
around it. The eight blue pixels represent the read node’s neighbors. A filter is
then applied to this 3×3 window by applying a weighted average to the pixel values
of the central red node and its neighboring nodes on each channel. Due to the
specific order of neighboring nodes, trainable weights can be shared at different
locations. Similarly, for a general graph, space-based graph convolution aggregates
the central node representation and the neighboring node representation to obtain

17

Figure. 10. CNN convolution and GNN convolution [16].

a new representation of that node, as shown in the right part of Figure 10. The
hidden layer representation of each node v is computed by the following equation:

hk+1
v = σ

(∑
u∈Nv

1

cv
Wkhku

)
(14)

where 1
cv

is the regularization constants, hv, hu, W are representations for the
central node and its neighbors, and the weight between them, respectively.

2.5 Graph Attention Networks

The attention mechanism [39] is now widely used in sequence-based tasks and
has the advantage of being able to amplify the impact of the most important
parts of the data. This feature has proved useful for many tasks, such as machine
translation and natural language understanding.

2.5.1 Graph Attention Network

Graph Attention Network is a spatially based graph convolutional network that
uses the attention mechanism [39] to determine the weights of node neighbor-

18

hoods when aggregating feature information. The graph convolutional operation
is defined as:

Lkv = σ

(∑
u∈Nv

αkvuW
kLk−1

u

)
(15)

where Lk−1
u is the output last layer and αvu is the attention weight, which repre-

sents the strength of the connection between neighbor u and central node v. To
learn the attention weights in different subspaces, GAT can also use multi-head
attention:

Lkv = ||Nn=1σ

 ∑
u∈N(v)∪v

αnkvuW
kLk−1

u

 (16)

where N is the number of attention head, αnkvu is the nth attention weight between
node v and node u in the kth layer.

2.5.2 Gated Attention Network

While a multi-head attention aggregator can explore multiple representation sub-
spaces between a central node and its neighborhood, not all of these subspaces are
equally important. Some subspaces may not even exist at some nodes. Inputting
an output that captures the attention of a useless representation can mislead the
final prediction of the model.

The Gated Attention Network (GAAN) also employs a multi-head attention mech-
anism to update the hidden state of nodes, it further calculates an additional soft
gate between 0 (low importance) and 1 (high importance), assigning a different
importance to each head. The update rule is defined as:

yv = ϕθ0

(
xv ⊕ ∥Nn=1(f

n
v

∑
u∈Nv

wnv,uϕ
h
θnv
(zu))

)
fv = ψf (xv, zu∈Nv)

(17)

where N is the number of attention head, wnv,u is the nth attention weight between
nodes v and its neighbor node u, fv, a scalar, is the gate value at the nth head of

19

node v. To ensure that the added gate does not introduce too many additional
parameters, GAAN use a convolutional network ψf (·), which takes the features of
the central node and neighboring nodes to generate the gate values.

Both GAT and GAAN can be considered as spatial-based graph convolutional
networks. It is an advantage that they are able to learn the importance weights
of their neighbors adaptively. However, the computational cost and memory con-
sumption increase rapidly with the computation of attention weights between each
pair of neighbors.

2.6 Multi-Relational Graph Convolutional Networks

In the real world, knowledge graphs are multi-relational graphs. Traditional GCN
algorithms are widely used for homogeneous graphs, which are far from adequate
for knowledge graph needs.

To solve this problem, Michael et al. propose R-GCN [5] by learning the relation
representation together with node representations in multi-relational graphs. In
traditional GCN, the weight Wk in 14, is shared with all the nodes. In contrast, R-
GCN adopts different weights for different relations, and nodes that share the same
relation type use the same mapping weight Wr. The hidden layer representation
of each node v is updated:

hk+1
v = σ

Wk
0h

k
v +

∑
r

∑
u∈Nr

v

1

cv,r
Wk

rh
k
u

 (18)

where cv,r is a constant, Nr
v denotes the set of neighbor of node v that share the

same relation r, h denotes the node representations, Wr is the specific weight for
the relation r, and W0 is the weight for the self-connection of each node.

However, R-GCN has a huge drawback of introducing too many relationship matrix
Wr as the number of relations increases. This leads to an explosion of parameters
thus the model can not be trained.

On top of R-GCN, COMPGCN learns entity and relation representations for multi-
relational graphs in the following way:

20

hk+1
v = f

∑
r

∑
u∈Nr

v

Wk
λrϕ(h

k
u,h

k
r)

 (19)

where ϕ(·) denotes a composition operators andWk
λr

is the weight matrix to encode
the relations.

Three different composition operator are introduced:

• Subtraction: ϕ(hu,hr) = hu − hr

• Multiplication: ϕ(hu,hr) = hu ∗ hr

• Circular-correlation: ϕ(hu,hr) = hu ⋆ hr

Subtraction, multiplication and circular-correlation correspond to TransE [5], Dist-
Mult [51] and HolE [29], respectively. In terms of experimental results, TransE is
the fastest but least effective and HolE is the slowest but most effective. Besides
the forward relation r, COMPGCN also adds inverse and self-connect relations to
enhance the model. Weight matrix Wλr is defined as:

• Forward: Wλr = WO, r ∈ R

• Inverse: Wλr = WI , r ∈ Rinv

• Self-connect: Wλr = WS, r = self-connect

whereR denotes the set of relations r, Rinv denotes all the inverse relations r−1. In
each layer of iteration, in addition to updates to the node embedding, the relation
embedding also needs to be updated. COMPGCN uses a relatively simple way to
update the relation embedding by introducing Wrel.

hk+1
r = Wk

relh
k
r (20)

COMPGCN uses the encoder-decoder framework proposed by R-GCN. As for de-
coders, COMPGCN adopts existing KG models, e.g. ConvE [10] and Distmult
[51]. Since COMPGCN introduces relation embedding in the encoder stage, it
performs better on KG link prediction task.

21

2.7 Temporal Knowledge Graph Embedding Methods

In recent years, an increasing interest has been shown in developing temporal
KGE methods for TKGs. Many existing methods derive time-aware KG scoring
functions. Lacroix et al. [20] propose TComplEx by extending the ComplEx em-
bedding model with new regularization components that take into account the
temporal information. Ma et al. [26] propose a pattern to generalize static knowl-
edge graphs to temporal knowledge graphs. Leblay et al. [21] show the importance
of incorporating side information in the learning process.

Another series of methods employ recurrent modules to autoregressively encoder
temporal dependencies between TKG events. RE-NET [17] uses a recurrent event
encoder to model the time-conditional joint probability distribution of event se-
quences and equips the event encoding with a neighborhood aggregator to model
concurrent events within the time window associated with each entity. It infers
graphical sequences of future timestamps by sequentially sampling from the learned
joint distribution. Experiments demonstrate a significant advantage of RE-NET
for multi-step inference of future timestamps. In TKGs, temporal information is
sparse and the distribution of entity is with great variance. Wu et al. [44] propose
TeMP to explicitly solve the problem with temporal dynamics models combined
with graph neural networks and data imputation.

Apart from them, it has been proven to be effective to sample temporal neigh-
boring graph for TKG entities and learn contextualized time-aware entity repre-
sentations. Han et al. [12] propose the model xERTE, which can reason about
query-related subgraphs of the TKG and jointly model graph structure with tem-
poral contextual information, ultimately predicting links of future events. T-GAP
[18] proposes a new encoder that can efficiently capture query-related information
from the temporal knowledge graph. Ding et al. [11] propose a parameter-efficient
model TARGCN to utilize the information from the whole temporal context. By
considering temporal information, temporal KGE methods outperform static KGE
methods in TKG reasoning tasks, e.g., TKG completion.

2.8 Few-shot Relational Learning Methods for Knowledge
Graphs

Classification of relations between entities is an important part of the Knowledge
Graph Completion (KGC) task. The current approach assumes that a large num-
ber of training samples exist for each relations for training, but in reality, there are

22

a large number of long-tailed relations in the knowledge graph training set, which
makes training not as effective as expected. Moreover, predictions for arbitrary
new relations can not be made without sufficient training data. To solve this prob-
lem, Xiong et al. [46] propose a meta-learning based method Gmatching as the first
work introducing few-shot relational learning into the context of KG. Gmatching
employs a neighbor encoder to learn a representation of the target entity through
the one-hop structure of the knowledge graph. The matching processor uses a
matching metric function that can compute the similarity score between the query
samples and the support sample. On top of Gmatching, Chen et al. [8] follow
the meta-learning framework and propose MetaR. Instead of obtaining relation
representation through the process of knowledge graph encoder, MetaR employs a
relation-meta learner to learn relational meta-information from subject and object
entities. Sheng et al. [34] propose a few-shot relation learning model (FSRL) to
solve the small samples link prediction task. FSRL first employs a relation-aware
heterogeneous neighbor encoder to learn the entities representations, then a recur-
rent autoencoder network is designed to model the relations between small samples
of entities. After obtaining the representation of reference set , a matching network
can eventually be used to find similar entity pairs. Based on Gmatching, FAAN
[34] presents an adaptive neighbor encoder for entities to extract information from
the examples. It further employs a transformer based encoder to learn adaptive
query-aware entity representations, which helps to better differentiate supporting
information from entities’ neighborhoods. Similar to FAAN, GANA [31] presents
a gated attentional aggregator for learning contextualized entity representations.
A novel MTransH scoring function is designed for modeling complex relations and
it contributes greatly to the model performance.

OAT [27] is the first method developed for one-shot relational learning for TKGs.
A Transformer-based [39] history encoder is employed to encode historical informa-
tion and generate time-aware entity representations. Coupled with a multi-layer
feed-forward neural network, entity representations of the one-shot example are
used to compute the plausibility scores of TKG facts. In this work, Mirtaher et al.
propose an extrapolation LP task for TKGs in the one-shot setting, together with
two datasets constructed from the subsets of two benchmark TKG databases, i.e.,
ICEWS [6] and GDELT [22].

3 Meta Representations of One-shot Relations

We propose a metric-based meta-learning model, i.e., meta representations of one-
shot relations (MOST), to solve both one-shot TKG interpolated and extrapo-

23

lated LP. MOST consists of three components: (1) Meta-information extractor,
(2) Meta-relational decoder and (3) Metric function.

Figure. 11. Overview of MOST.

Figure 11 shows the overview of MOST. Given a support quadruple (s0, r, o0, t0) of
the sparse relation r, MOST extracts the meta-information from the time-aware
representations of support entities s0, o0 with a meta-information extractor, and
uses a meta-representation learner to learn r’s meta-representation based on the
support quadruple. Then MOST employs a metric function to compute the plau-
sibility scores of TKG quadruples concerning r. Assume we have a sparse relation
Appeal for change in leadership, an associated support quadruple (Iraq, Appeal for
change in leadership, Nuri al-Maliki, 2013-01-15) ∈ Sr and an associated query
quadruple (Protestor (Egypt), Appeal for change in leadership, Head of Govern-
ment (Egypt), 2013-01-23) ∈ Qr. In Time-aware relational graph encoder, MOST
computes contextualized time-aware representations of the nearest observable tem-
poral neighbors of support entities, i.e., Iraq and Nuri al-Maliki. Then MOST
generates a meta-representation for the sparse relation by concatenating support
entity representations and going through the meta-representation learner. When
the model derives a link prediction query (Protestor (Egypt), Appeal for change in
leadership, ?, 2013-01-23), all candidate entity representations are updated with a
time encoder and the scoring function will compute the plausibility scores of the
quadruples with different candidates. We then introduce more details about each
component below.

3.1 Meta-information Extractor

For all the relations R = {Rsp,Rfreq} in a TKG, Rsp denotes all the sparse
relations and Rfreq denotes all the frequent relations. For a meta learning task

24

Tr, we have a support quadruple (s0, r, o0, t0) ∈ Sr, and several query quadruples
(sq, r, oq, tq) ∈ Qr. First we infer the representation of r with the support quadruple
by utilizing the contextualized entity representation of s0 and o0. To learn the
contextualized time-aware entity representations of support entities, MOST first
employs a time-aware relational graph encoder to find the temporal neighbors for
every support entity (s0 or o0) by searching for available background facts whose
object entity corresponds to the support entity. e.g., s0’s temporal neighborhood
is denoted as Ns0 = {(e′, r′, t′)|r′ ∈ Rfreq, (e

′, r′, s0, t
′) ∈ G ′}.

We keep a fixed number of temporal neighbors nearest to the support timestamp
t0.(The kept neighbors are prior to t0 for one-shot TKG extrapolated LP) and we
set the number of sampled neighbors as a tunable hyperparameter. We denote the
filtered neighborhood as Ñs0 and Ño0 . By aggregating the information provided by
their temporal neighbors, MOST calculates the time-aware entity representations
h(s0,t0), h(o0,t0) of s0, o0 as follows:

h(s0,t0) = hs0 + δ1σ(
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

Wg (f(he′∥Φ(t′)) ◦ hr′)),

h(o0,t0) = ho0 + δ1σ(
1

|Ño0|

∑
(e′,r′,t′)∈Ño0

Wg (f(he′∥Φ(t′)) ◦ hr′)).
(21)

where d is the dimension of the representations. hs0 ∈ Rd and ho0 ∈ Rd denote
the time-invariant entity representations of s0 and o0. hr′ ∈ Rd denotes the rela-
tion representation of the frequent relation r′. ◦, ∥ represent Hadamard product
and concatenation operation, respectively. Wg ∈ Rd×d is a weight matrix that
processes the information in the graph aggregation. f : R2d 7→ Rd is a layer of
feed-forward neural network. δ1 is a trainable parameter indicating how much
information from the temporal neighbors is included in updating entity represen-
tations. σ is an activation function. Φ(t′) denotes the time encoding function that

encodes timestamp t′ as Φ(t′) =
√

1
d
[cos(ω1t

′ + ϕ1), . . . , cos(ωdt
′ + ϕd))], where

ω1 . . . ωd and ϕ1 . . . ϕd are trainable parameters. We call our model with this time
encoder as MOST-TA. Besides, we also design another model variant MOST-TD
by inputting t0 − t′ instead of absolute t′ into the time encoder.

h(s0,t0) = hs0 + δ1σ(
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

Wg (f(he′∥Φ(to − t′)) ◦ hr′)),

h(o0,t0) = ho0 + δ1σ(
1

|Ño0 |

∑
(e′,r′,t′)∈Ño0

Wg (f(he′∥Φ(t0 − t′)) ◦ hr′)).
(22)

25

After obtaining h(s0,t0) and h(o0,t0), we calculate the meta-information of r as fol-
lows:

hmeta
(s0,r,o0,t0)

= h(s0,t0)∥h(o0,t0). (23)

hmeta
(s0,r,o0,t0)

∈ R2d represents the meta-information of r, given the support quadruple

(s0, r, o0, t0).

3.2 Meta-representation Learner

MOST employs the meta-representation learner to derive the meta-representation
of r given the meta-information. hmeta

(s0,r,o0,t0)

hr = fproj
(
hmeta
(s0,r,o0,t0)

+ f 2
r

(
σ
(
f 1
r

(
hmeta
(s0,r,o0,t0)

))))
, (24)

where f 1
r : R2d 7→ R4d, f 2

r : R4d 7→ R2d, fproj : R2d 7→ R d
2 are three single layer

neural networks. The meta-representation hr ∈ R d
2 will then be used in the metric

function to compute the scores of the TKG quadruples.

3.3 Metric Function

MOST employs the metric function to compute the plausibility score for the query
quadruple (sq, r, oq, tq). We first derive time-aware entity representations h(sq ,tq),
h(oq ,tq) of the query entities sq, oq at tq as follows:

h(sq ,tq) = hsq + δ2f(hsq∥Φ(tq)),

h(oq ,tq) = hoq + δ2f(hoq∥Φ(tq)).
(25)

hsq ∈ Rd and hoq ∈ Rd denote the time-invariant entity representations of sq and
oq. δ2 is a trainable parameter that controls the amount of the injected temporal
information. Unlike Equation 21, we do not search temporal neighbors from the
background graph for query entities, so no aggregation is performed. Equation
25 shows how we compute representations for the query entity in MOST-TA.
Similarly, MOST-TD adapts Equation 25 to the following Equation 26 to enable
time difference learning,

h(sq ,tq) = hsq + δ2f(hsq∥Φ(tq − t0)),

h(oq ,tq) = hoq + δ2f(hoq∥Φ(tq − t0)).
(26)

Then we calculate the meta-representation of r. Inspired by the KG scoring func-
tion RotatE [35], we treat the meta-representation of r as element-wise rotation

26

in the complex plane. To do this, we project hr into a complex space to get the
complex vector hC

r ∈ C d
2 .

h̃r =
π

∥hr∥∞
hr,

hC
r [j] = cos

(
h̃r[j]

)
+
√
−1 sin

(
h̃r[j]

)
, 1 <= j <=

d

2
.

(27)

hC
r [j] and h̃r[j] denote the jth element of the vectors hC

r and h̃r. ∥hr∥∞ denotes
the infinity norm of the vector hr. We also map the query entity representations
h(sq ,tq), h(oq ,tq) to another complex space C d

2 to get hC
(sq ,tq)

, hC
(oq ,tq)

. For each mapped

vector, we take the first half of the original vector from Rd as the real part and
the second half as imaginary part . For example, for the vector v = [2, 3]⊤ ∈ R2,
we map it to vC = [2+3

√
−1]⊤ ∈ C1. According to [35], unitary complex number

can be considered as a rotation in the complex plane, while hC
(sq ,tq)

◦ hC
r can be

interpreted as doing element-wise rotation from the query subject sq in the complex
space. We give the complete form of our metric function ψ as

ψ (q|Sr) = Sigmoid

(
Re

((
hC
(sq ,tq) ◦ h

C
r

)⊤
h̄C
(oq ,tq)

))
, (28)

where q = (sq, r, oq, tq) and Sigmoid denotes the sigmoid function that maps the
score to a value between 0 and 1. Re means taking the real part of the complex
number and h̄C

(oq ,tq)
means the complex conjugate of hC

(oq ,tq)
. ψ takes the real part

of the dot product (Hermitian product) between the representations of the rotated
query support hC

(sq ,tq)
◦ hC

r and the query object hC
(oq ,tq)

as the score.

3.4 Parameter Learning

We train MOST with episodic training. In each episode, we first randomly choose
one sparse relation r. Then we sample one r-related quadruple as the support
quadruple Sr = (s0, r, o0, t0), and collect a group of quadruples containing r as
query setQr. For each of the quadruple in the query set, i.e., q = (sq, r, oq, tq) ∈ Qr,
we switch q’s object entity oq to every other entity e ∈ (E \ {oq}) in the TKG
(where E denotes the set of all entities in this TKG) and construct |E|−1 polluted
quadruples {q−} for q. And we use the binary cross entropy loss to optimize our
model.

L =
1

|Qr|
∑
q

1

|E|

lq+ +
∑
q−

lq−

 , (29)

27

Algorithm 1: One-Shot Episodic Training
1 Training sparse relations Rtrain

sp

2 for episode = 1: M do
3 Shuffle relations in Rtrain

sp

4 Sample sparse relation r from Rtrain
sp

5 Sample a (s0, r, o0, t0) to make the support set Sr

6 if One-Shot Interpolated LP then
7 Sample a batch of query quadruples Qr = {(sq , r, oq , tq)}

8 else // One-Shot Extrapolated LP

9 Sample a batch of query quadruples Qr = {(sq , r, oq , tq)|t0 < tq}

10 Compute h(s0,t0), h(o0,t0) with graph encoder

11 Compute meta-information hmeta
(s0,r,o0,t0)

12 Learn meta-representation hr with meta-representation learner

13 Pollute each q ∈ Qr and generate polluted quadruples {q−}
14 Compute time-aware representations for entities in all q and {q−} // Equation 25

15 Compute scores for all q and {q−} with metric function ψ
16 Calculate the loss L
17 Update model parameters using gradient of loss ▽L

where lq+ = yq log (ψ(q|Sr))+(1−yq) log(1− ψ(q|Sr)) and lq− = yq− log (ψ(q−|Sr))+
(1 − yq−) log (1− ψ(q−|Sr)) denote the binary cross entropy loss of q and q−, re-
spectively. yq = 1 and yq− = 0 and for q ∈ Qr, we want to maximize the positive
score ψ(q|Sr), and minimize the negative score ψ(q−|Sr). We describe our one-shot
training procedure with Algorithm 1.

4 Experiments

Under the extrapolation setting, the existing datasets have the problem of an
extremely small number of associated quadruples. Thus, We propose four new
large-scale datasets with a substantial number of associated TKG quadruples. We
then evaluate MOST by performing interpolated and extrapolated LP under the
one-shot setting and compare MOST’s performance with several baselines and
conduct ablation studies to show the superiority of our model components.

28

Figure. 12. Sparse Relation frequency comparison between ICEWS-one ext and
ICEWS17; GDELT-one ext and GDELT.

4.1 Datasets

4.1.1 Problem with Previous Datasets

Integrated Crisis Early Warning System (ICEWS) [6] is a series of datasets con-
taining political events over time. Global Database of Events, Language, and
Tone (GDELT) [22] is a database recording all the events driving our global soci-
ety every second of every day. Based on these two TKG databases, Mirtaheri et
al. [27] propose two one-shot extrapolation LP datasets, ICEWS17 and GDELT.
They first set upper and lower frequency thresholds (50 to 500 for ICEWS17, 50
to 700 for GDELT) for datasets and then select the frequency relations between
the thresholds as sparse relations. A significant number of quadruples regarding
sparse relations are removed to prevent time overlaps among meta-learning sets
(Tmeta−train, Tmeta−valid, Tmeta−test). For example, assume a sparse relation r is
selected, Tr ∈ Tmeta−train, and the ending timestamp of the meta-training set is t′.
Then all the quadruples in {(s, r, o, t)|s, o ∈ E , t > t′} are removed from the dataset.
For worse situation, if r’s frequency is close to the lower threshold before removal, it
is very likely the number of associated quadruples left in {(s, r, o, t)|s, o ∈ E , t ≤ t′}

29

becomes extremely small after removal. This tiny query set Qr will cause instabil-
ity during training. Similarly, for Tr ∈ Tmeta−valid or Tr ∈ Tmeta−test, evaluation on
a tiny query set Qr also makes it hard to accurately determine the performance of
the model. As shown in Figure. 12, a large part of sparse relations in ICEWS17
and GDELT have very few associated quadruples. Specifically, in ICEWS17, 31
out of 85 sparse relations have less than 50 associated quadruples. In GDELT, 24
out of 69 sparse relations have less than 50 associated quadruples. Moreover, 4 out
of 14 test relations have even less than ten associated quadruples in ICEWS17,
and this also applies to 11 out of 14 test relations in GDELT. This introduces
instability in model training and evaluation.

4.1.2 Our Datasets

To fix the problem with ICEWS17 and GDELT [27], we construct two new large-
scale extrapolation LP datasets, i.e., ICEWS-one ext and GDELT-one ext by tak-
ing subsets from ICEWS [6] and GDELT [22]. Furthermore, we also construct two
interpolation datasets, i.e., ICEWS-one int and GDELT-one int for interpolated
LP in the one-shot setting. Details about data construction are as follows:

(A) Extrapolation Datasets

1. We take ICEWS05-15 1 and GDELT 2 as the databases for dataset construc-
tion.

2. For each database, by tracking every relation’s frequency of occurrence, we
divide all relations into two groups, i.e., frequent relations and sparse relations.
Relations occurring between 100 and 1000 times in ICEWS05-15, and 200 and
2000 times for GDELT are taken as sparse relations. Those occurring more than
1000 times in ICEWS05-15 and more than 2000 times in GDELT are considered
as frequent relations.

3. For each database, the quadruples containing its frequent relations form the
background graph G ′. We split sparse relations into meta-train/meta-valid/meta-
test groups, and remove a number of quadruples to avoid time overlap between
every two sparse relation groups (following [27]. After quadruple removal, if
the number of a sparse relation’s associated quadruples is smaller than 50 for
ICEWS, 100 for GDELT, we discard all the quadruples concerning this sparse

1https://github.com/mniepert/mmkb/tree/master/TemporalKGs
2https://github.com/INK-USC/RE-Net/tree/master/data

30

relation. The remaining quadruples containing sparse relations are kept for
meta-learning process.

ICEWS-one ext contains timestamped political facts happening from 2005 to 2015,
while GDELT-one ext contains global social facts from Jan. 1st, 2018 to Jan. 31st,
2018. We take the relations with higher frequency as frequent relations Rfreq and
build background graphs G ′ with all the quadruples containing them. Following
[27], we then remove a part of quadruples associated with sparse relations to
prevent time overlaps among meta-learning sets. After removal, we further discard
the relations with too few associated quadruples (less than 50 for ICEWS-one ext,
100 for GDELT-one ext). In this way, we prevent including meta-tasks Tr with an
extremely small query set Qr.

From Figure 12, we observe that ICEWS-one ext and GDELT-one ext have a
substantial number of associated quadruples for each sparse relation, which greatly
alleviates instability in model training and evaluation.

Similarly, we construct two more datasets, i.e., ICEWS-one int and GDELT-
one int, for interpolated LP in the one-shot setting.

(B) Interpolation Datasets

1. We take ICEWS05-15 and GDELT as the databases for dataset construction.

2. For each database, by tracking every relation’s frequency of occurrence, we
divide all relations into two groups, i.e., frequent relations and sparse relations.
Relations occurring between 50 and 500 times in ICEWS05-15, and 100 and 1000
times for GDELT are taken as sparse relations. Those occurring more than 500
times in ICEWS05-15 and more than 1000 times in GDELT are considered as
frequent relations.

3. For each database, the quadruples containing the frequent relations form
the background graph G ′. We split its sparse relations into meta-train/meta-
valid/meta-test groups, and the quadruples containing the sparse relations are
kept for meta-learning process.

Since in interpolated LP, there is no constraint on the support timestamp t0, we do
not remove quadruples to eliminate time overlaps among meta-learning sets. We
set the upper and lower thresholds of sparse relations’ frequency to 50 and 500 for
ICEWS-one int, 100 and 1000 for GDELT-one int, and then split these relations
into train/valid/test groups.

31

We present the statistics of our four datasets in Table 1.

Table 1: Dataset statistics.

Dataset |E| |R| |T | |T|
ICEWS05-15-one ext 7, 934 109 4, 017 53/6/11
ICEWS05-15-one int 10, 356 155 4, 017 74/9/10
GDELT-one ext 6, 647 155 2, 751 55/7/11
GDELT-one int 7, 677 181 2, 751 64/8/8

In Table 1, |T| denotes the number of meta-learning tasks in Tmeta−training, Tmeta−valid,
Tmeta−test. |E|, |R| and |T denotes the number of entities, relations, and times-
tamps in each dataset, respectively.

4.2 Baseline Methods

We compare our model with two groups of baseline methods on both interpolated
and extrapolated LP in the one-shot setting.

4.2.1 Few-shot Relational Learning Methods

For static KG FSL methods, we consider five models, i.e., Gmatching [46], MetaR
[8], FSRL [52], FAAN [34], GANA [31]. For TKG FSL method, we consider OAT
[27]. In [27], static KG FSL methods are trained and evaluated on an unweighted
static KG derived from collapsing the original TKG, which greatly decreases the
inductive bias brought by the original TKG and causes poor performance of these
methods. We hold the view that this setting is unfair. In our work, we provide
static KG FSL methods with all the facts in the original datasets and only neglect
time information, i.e., neglecting t in (s, r, o, t). More experimental comparisons
are provided in the section 4.5.1.

4.2.2 Temporal Knowledge Graph Embedding Methods

We select three TKG interpolation methods, i.e., TNTComplEx [20], ATiSE [49],
TeLM [48], and three TKG extrapolation methods, i.e., TANGO [13], CyGNet
[54], xERTE [12] as our baselines.

32

For each interpolation dataset, we build a training set for these methods by adding
all the quadruples of the background graph G ′ and the quadruples associated with
all the meta-training relations Rtrain

sp . For each extrapolation dataset, we build a
training set by adding all the background quadruples and all the quadruples con-
cerning every r ∈ Rtrain

sp during meta-training time G ′
train. We do not include any

quadruple regarding r ∈ {Rvalid
sp ,Rtest

sp } in the training set. But the models have
access to the support quadruples (Sr, r ∈ {Rvalid

sp ,Rtest
sp }) during inference. We

test TKG embedding baselines with the same quadruples tested by FSL methods
to ensure a fair comparison.

4.3 Implementation Details

Table 2: Hyperparameter searching strategy.

Hyperparameter Search Space

Time Encoding Strategy {TA, TD}
Embedding Size {50, 100, 200}

Aggregation Step {1, 2}
Activation Function {Tanh, ReLU, LeakyReLU}

Dropout {0.2, 0.3, 0.5}
Temporal Neighbor {64, 128, 512}

Batch Size {64, 128}

We implement all experiments with PyTorch [32] on a single NVIDIA Tesla T4. We
use the hyperparameter searching strategy stated in Table 2. For every dataset,
we do 648 trials, and let our model run for 10000 batches. We select the trial
leading to the best performance on the meta-validation set and take this hyper-
parameter setting as our best configuration. We train our model five times and
report averaged results. The best hyperparameter settings are reported in Table
4. The GPU memory usage is reported in Table 3.

For baseline methods, we use the official implementation of TNTComplEx 3,

3https://github.com/facebookresearch/tkbc

33

ATiSE 4, TeLM 5, TANGO 6, CyGNet 7, xERTE 8, GMatching 9, MetaR 10, FSRL
11, FAAN 12, GANA 13, and OAT 14. We pretrain Distmult [51] on the whole back-
ground graph of every interpolation dataset, and on the background graph before
the end of meta-training set of every extrapolation dataset. We initialize the entity
representations of KG FSL methods with the pretrained embeddings. We provide
the hyperparameter settings of all baseline methods in Table 5 and Table 6. We
refer to the best hyperparameter settings of baseline methods reported in their
original papers.

Table 3: GPU memory usage.

Datasets ICEWS-one ext ICEWS-one int GDELT-one ext GDELT-one int

Model GPU Memory GPU Memory GPU Memory GPU Memory

MOST-TA 3327MB 3327MB 2967MB 2545MB
MOST-TD 5759MB 3327MB 3315MB 2967MB

Table 4: Best hyperparameter settings on each dataset.

Datasets ICEWS-one ext ICEWS-one int GDELT-one ext GDELT-one int

Hyperparameter

Time Encoding Strategy TD TA TD TA
Embedding Size 200 100 100 50
Aggregation Step 1 1 1 1
Activation Function ReLU ReLU LeakyReLU LeakyReLU
Dropout 0.2 0.2 0.3 0.3
Temporal Neighbor 512 512 512 512
Batch Size 64 64 64 64

4https://github.com/soledad921/ATISE
5https://github.com/soledad921/TeLM
6https://github.com/TemporalKGTeam/TANGO
7https://github.com/CunchaoZ/CyGNet
8https://github.com/TemporalKGTeam/xERTE
9https://github.com/xwhan/One-shot-Relational-Learning

10https://github.com/AnselCmy/MetaR
11https://github.com/chuxuzhang/AAAI2020 FSRL
12https://github.com/JiaweiSheng/FAAN
13https://github.com/ngl567/GANA-FewShotKGC
14https://openreview.net/forum?id=GF8wO8MFQOr

34

Table 5: Hyperparameter settings of interpolation baselines.

Datasets ICEWS-one int GDELT-one int

Hyperparameter Embedding Size # Negative Sample Batch Size Embedding Size # Negative Sample Batch Size

TNTComplEx 256 - 1000 312 - 1000
ATiSE 500 10 512 500 10 512
TeLM 4000 - 1000 4000 - 1000
GANA 100 1 1024 100 1 1024
MetaR 100 1 1024 100 1 1024
GMatching 100 1 128 100 1 128
FSRL 100 1 128 100 1 128
FAAN 100 1 128 100 1 128
OAT 50 1 100 50 1 100

Table 6: Hyperparameter settings of extrapolation baselines.

Datasets ICEWS-one ext GDELT-one ext

Hyperparameter Embedding Size # Negative Sample Batch Size Embedding Size # Negative Sample Batch Size

TANGO 200 - - 200 - -
CyGNet 200 - 1024 200 - 1024
xERTE 256 - 128 128 - 128
GANA 100 1 1024 100 1 1024
MetaR 100 1 1024 100 1 1024
GMatching 100 1 128 100 1 128
FSRL 100 1 128 100 1 128
FAAN 100 1 128 100 1 128
OAT 50 1 100 50 1 100

4.4 Evaluation Metrics

We use Mean Reciprocal Rank (MRR) and Hits@k to evaluate the model per-
formance on extrapolated link prediction. Previous KG FSL methods only report
object prediction results. To achieve comprehensive results, for each test quadruple
(sq, rq, oq, tq) ∈ Qr, rq ∈ Rtest

sp , we derive two link prediction queries: (sq, rq, ?, tq)
and (?, rq, oq, tq). Following [12], we transform (?, rq, oq, tq) into (oq, r

−1, ?, tq) (r
−1

denotes the reciprocal relation of r), and perform object prediction. We compute
the rank of the ground truth missing entities (sq or oq) for every link prediction
query. Let ψsq and ψoq denote the rank of (?, rq, oq, tq) and (sq, rq, ?, tq), respec-
tively. We compute MRR by averaging the ranks among all the test quadruples:

1∑
rq∈Rtest

sp

2|Qrq |
∑

rq∈Rtest
sp

∑
q̃∈Qrq

(
1

ψsq
+

1

ψoq

)
, (30)

where q̃ denotes a test quadruple (sq, rq, oq, tq). Hits@1/3/5/10 denote the propor-
tions of the predicted links where ground truth entities are ranked as top 1, top
3, top 5, and top 10, respectively. The larger the two metrics are, the better the
model performs on the task.

35

4.5 Experiment Results

4.5.1 Unfair Evaluation for Static KG FSL Methods

As mentioned in section 4.2, collapsing a TKG into an unweighted static KG will
cause unfair evaluation for static KG FSL methods. For example, in the original
TKG, there exist n identical events {(Jonathan Nolan, live in, London, t1), ...,
(Jonathan Nolan, live in, London, tn)} that happen at n different timestamps. If
n is a large number, these n repeated events will introduce a strong inductive bias
showing that the entities, Jonathan Nolan and London, are likely to be highly
correlated. Collapsing the original TKG into an unweighted static KG will lose
great amounts of information for static KG FSL methods and force the models to
learn more from weakly correlated entities.

Table 7: Interpolated LP results on collapsed unweighted KGs. Evaluation metrics
are MRR and Hits@1/3/5/10 (%).

Datasets ICEWS-one int GDELT-one int

Model MRR Hits@1 Hits@3 Hits@5 Hits@10 MRR Hits@1 Hits@3 Hits@5 Hits@10

GANA 9.49 3.14 12.74 16.27 21.47 5.08 2.86 5.08 6.32 9.12
MetaR 17.73 0.00 28.96 38.77 49.13 7.94 0.11 10.41 14.99 22.14
GMatching 21.63 10.44 24.36 33.34 45.52 11.61 5.98 11.61 15.41 22.43
FSRL 21.09 9.90 23.99 32.34 43.84 11.08 5.67 11.12 14.61 21.32
FAAN 23.05 11.95 26.87 34.76 45.84 12.62 6.66 13.42 16.82 23.72

Table 8: Extrapolated LP results on collapsed unweighted KGs. Evaluation met-
rics are MRR and Hits@1/3/5/10 (%).

Datasets ICEWS-one ext GDELT-one ext

Model MRR Hits@1 Hits@3 Hits@5 Hits@10 MRR Hits@1 Hits@3 Hits@5 Hits@10

GANA 17.10 5.55 22.84 29.28 38.88 9.75 0.69 13.31 18.26 25.48
MetaR 15.28 2.46 21.74 29.35 39.98 8.11 0.08 11.23 15.61 26.30
GMatching 15.99 8.29 16.97 22.90 32.99 11.82 7.27 11.44 14.67 22.24
FSRL 11.96 5.62 10.63 16.32 26.54 9.69 7.21 9.09 10.93 14.17
FAAN 19.51 11.31 21.94 27.50 34.56 12.81 7.80 13.02 16.25 21.28

To empirically prove our assertion, we collapse our datasets into unweighted static
KGs and rerun all static KG FSL methods on them. We retrain Distmult on
the unweighted background graphs for embedding initialization. We report the
experimental results in Table 7 and Table 8. By comparing with Table 9 and
Table 10, we observe that in most cases, collapsing TKGs into unweighted KGs
worsens the performance of static KG FSL methods greatly.

36

4.5.2 Model Results

Table 9: Interpolated LP results for one-shot relational learning on ICEWS-one int
and GDELT-one int. Evaluation metrics are MRR and Hits@1/3/5/10. The best
results are marked in bold.

Datasets ICEWS-one int GDELT-one int

Model MRR Hits@1 Hits@3 Hits@5 Hits@10 MRR Hits@1 Hits@3 Hits@5 Hits@10

TNTComplEx 23.34 14.57 27.21 31.54 36.88 11.95 6.76 11.98 15.58 21.78

ATiSE 34.40 22.03 39.51 49.25 60.57 7.77 5.10 6.72 8.13 12.13

TeLM 35.38 24.42 39.21 47.74 59.12 10.41 5.97 10.37 13.28 18.87

GANA 13.83 6.07 19.21 24.00 27.23 5.89 2.53 6.54 8.35 12.20

MetaR 27.69 7.88 41.02 52.58 61.78 9.91 0.18 14.61 19.62 26.79
GMatching 30.59 15.46 39.33 48.80 58.62 12.53 6.55 12.80 17.14 24.15
FSRL 33.98 18.94 44.48 52.61 59.82 14.11 7.61 14.67 19.56 27.54
FAAN 35.48 23.27 43.36 49.45 57.73 14.77 7.67 16.19 21.35 27.11

OAT 11.55 5.47 10.09 14.81 23.42 12.28 7.70 12.59 15.18 21.47

MOST-TA 47.79 39.91 51.79 57.01 62.25 17.71 11.56 19.07 23.25 29.76
MOST-TD 47.60 39.43 51.98 56.83 62.38 17.36 11.67 18.18 22.74 28.63

Table 9 and Table 10 report the experimental results of one-shot interpolated
and extrapolated LP, respectively. We find that static KG FSL methods can
achieve competitive or even better performance compared with traditional TKG
embedding methods, implying the effectiveness of FSL in modeling sparse relations
in KGs.

MOST outperforms baseline methods on all datasets in both LP tasks. While
MOST-TA performs better than MOST-TD in the interpolation task, MOST-
TD outperforms MOST-TA in the extrapolation task. We have the following
explanation.

In the interpolated LP, every timestamp is observable during training, which en-
ables the time encoder to learn information from all the timestamps. However,
in the extrapolated LP, meta-training set does not span across the whole time-
line due to the time constraint, when we sample the temporal neighbors during
inference, there might be some timestamps unseen in the meta-training set, which
leads to the degenerated model performance. For extrapolation tasks, time differ-
ences modeling achieves better results since almost all encountered time differences
during inference are already seen and learned by the model during meta-training.

For static KG FSL methods, i.e., Gmatching, MetaR, FSRL, FAAN, GANA, their
performances in both LP tasks are not so good since they do not incorporate
temporal information. Traditional TKG embedding methods, i.e., TNTComplEx,

37

Table 10: Extrapolated LP results for one-shot relational learning on ICEWS-
one ext and GDELT-one ext. Evaluation metrics are MRR and Hits@1/3/5/10.
The best results are marked in bold.

Datasets ICEWS-one ext GDELT-one ext

Model MRR Hits@1 Hits@3 Hits@5 Hits@10 MRR Hits@1 Hits@3 Hits@5 Hits@10

TANGO 10.23 3.94 11.40 15.88 25.78 13.88 9.61 13.17 16.93 22.29
CyGNet 22.30 12.61 25.51 30.46 39.13 9.42 4.87 9.74 13.13 16.81
xERTE 30.02 19.79 36.63 42.13 51.16 16.38 10.88 18.23 22.19 27.76

GANA 11.34 3.70 15.52 19.25 25.67 7.12 4.85 7.02 8.89 11.13
MetaR 23.50 9.01 32.95 40.18 48.73 9.66 0.03 13.79 19.52 26.30
GMatching 20.30 12.35 21.06 28.80 38.02 12.26 8.41 11.44 13.76 19.01
FSRL 18.06 12.09 17.68 21.06 32.23 6.96 2.52 8.81 11.58 14.13
FAAN 25.73 15.86 29.14 35.95 43.73 14.36 8.71 15.31 18.46 23.71

OAT 13.28 9.51 12.69 18.02 21.48 14.06 6.71 13.43 18.59 28.11

MOST-TA 32.94 26.35 34.64 39.97 47.19 15.69 10.14 16.49 20.54 26.38
MOST-TD 38.46 31.51 40.73 46.02 52.32 17.36 11.64 18.37 22.46 28.15

ATiSE, TeLM, TANGO, CyGNet, xERTE, are not specially designed to capture
information in the one-shot setting and generalize to the events of the associated
spare relation. The TKG FSL method OAT is designed for extrapolated LP. It
includes temporal information by employing a snapshot encoder that sequentially
encodes a fixed number of historical graph snapshots right before the query times-
tamp. For the interpolation task, OAT will not get the temporal information
coming after the query timestamp, which causes degenerated performance. For
the extrapolation task, since OAT has a fixed history length, the temporal infor-
mation is not enough and the model performance degenerated. MOST search for
the nearest temporal neighbors in the meta-information extractor and there is no
constraint on how far away these neighbors are, which helps to incorporate tem-
poral neighbors in a better way. Besides, OAT employs cosine similarity for score
computation, while MOST employs a metric function to compute the score. It is
also worth noting that OAT performs much worse on ICEWS-based datasets (Ta-
ble 9 and Table 10). It is due to the characteristics of databases. As discussed in
[44], ICEWS database is much sparser than GDELT. This implies that it is hard
to capture enough information when only considering a fixed number of graph
snapshots, which causes worse performance on ICEWS-based datasets.

38

Table 11: Ablation studies of MOST-TA variants on ICEWS-one int and ICEWS-
one ext. The best results are marked in bold.

Datasets ICEWS-one int ICEWS-one ext

Variants MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

A 9.21 3.05 21.95 9.87 3.04 26.69

B1 45.00 35.40 61.83 29.98 20.17 46.30
B2 42.99 32.14 61.47 31.78 24.40 46.19

C1 1.00 0.82 0.89 9.33 5.16 17.38
C2 16.27 7.36 32.47 26.13 17.97 43.65

MOST-TA 47.79 39.91 62.25 32.94 26.35 47.19

Table 12: Ablation studies of MOST-TD variants on ICEWS-one int and ICEWS-
one ext. The best results are marked in bold.

Datasets ICEWS-one int ICEWS-one ext

Variants MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

A 9.21 3.05 21.95 9.87 3.04 26.69

B1 44.91 34.56 60.40 35.45 27.87 51.77
B2 42.11 30.45 61.79 37.73 30.62 52.32

C1 0.95 0.62 0.97 10.46 6.17 15.77
C2 23.68 13.87 44.40 27.35 18.82 43.78

MOST-TD 47.60 39.43 62.38 38.46 31.51 52.32

39

4.5.3 Ablation Study

To validate the effectiveness of model, we derive model variants for both MOST-
TA and MOST-TD, and conduct several ablation studies on ICEWS-one int and
ICEWS-one ext. We present the experimental results in Table 11 and Table 12.
We devise model variants from the following angles:

(A) Excluding temporal information: In A, we remove the time encoder Φ in
all model components (Equation 21, 22 and 25), creating a model without using
any temporal information. Note that without Φ, MOST-TA equals MOST-TD.
we first change Equation 21 to Equation 31.

h(s0,t0) = hs0 + δ1σ(
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

Wg (he′ ◦ hr′)),

h(o0,t0) = ho0 + δ1σ(
1

|Ño0|

∑
(e′,r′,t′)∈Ño0

Wg (he′ ◦ hr′)).
(31)

In Equation 31 we randomly sample a fixed number of the temporal neighbors
rather than getting the neighbors nearest to the support timestamp to avoid any
temporal information. We also change Equation 25 to Equation 32.

h(sq ,tq) = hsq + δ2hsq ,

h(oq ,tq) = hoq + δ2hoq .
(32)

We use h(s0,t0), h(o0,t0) in Equation 31 to compute the meta-representation of r,
and we map h(sq ,tq), h(oq ,tq) in Equation 32 to the complex plane to compute score
ψ. Here we just denote these representations with timestamps, e.g., with t0 in
h(s0,t0), but they do not contain any temporal information.

The results show that it is crucial to utilize temporal information and MOST also
heavily relies on temporal information.

(B) Changing graph aggregation function in meta-information extrac-
tor: In B1, we use mean pooling over the representations of temporal neighbors.
For MOST-TA, we change the graph aggregation function Equation 21 to Equation

40

33.

h(s0,t0) =
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

f(he′∥Φ(t′)),

h(o0,t0) =
1

|Ño0|

∑
(e′,r′,t′)∈Ño0

f(he′∥Φ(t′)).
(33)

For MOST-TD, we change the graph aggregation function Equation 22 to Equation
34.

h(s0,t0) =
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

f(he′∥Φ(t0 − t′)),

h(o0,t0) =
1

|Ño0 |

∑
(e′,r′,t′)∈Ño0

f(he′∥Φ(t0 − t′)).
(34)

In B2, for MOST-TA, we change the graph aggregation function Equation 21 to
Equation 35.

h(s0,t0) =
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

Wr′ (f(he′∥Φ(t′))) ,

h(o0,t0) =
1

|Ño0 |

∑
(e′,r′,t′)∈Ño0

Wr′ (f(he′∥Φ(t′))) .
(35)

here Wr′ is a weight matrix modeling the relation r′. For MOST-TD, we change
the graph aggregation function Equation 22 to Equation 36.

h(s0,t0) =
1

|Ñs0|

∑
(e′,r′,t′)∈Ñs0

Wr′ (f(he′∥Φ(t0 − t′))) ,

h(o0,t0) =
1

|Ño0|

∑
(e′,r′,t′)∈Ño0

Wr′ (f(he′∥Φ(t0 − t′))) .
(36)

The results show that the aggregation function has a great ability in extracting
meta-information.

(C) Changing metric function: In C1, we replace our metric function ψ with
RotatE [35] together with time-aware representations.

score = ∥hC
(sq ,tq) ◦ h

C
r − hC

(oq ,tq)∥1, (37)

where ∥ · ∥1 is the L1-norm.

41

In C2, we replace ψ with the LSTM-based matcher proposed in [46]. We notice
that there is no meta-representation of sparse relation in [46]. The LSTM-based
matcher only calculates a score representing the similarity between support entity
pairs (s0, o0) and the query entity pairs (sq, oq). Following [46], we perform two
steps of matching. Each step of matching is defined as

h′
k+1, ck+1 = LSTM(hquery, [hk∥hsupport, ck]),

hk+1 = h′
k+1 + hquery,

scorek+1 = h⊤
k+1hsupport,

(38)

where LSTM(x, [h, c]) is a standard LSTM cell [15] with input x, hidden state h,
and cell state c. hsupport = h(s0,t0)∥h(o0,t0), and hquery = h(sq ,tq)∥h(oq ,tq).

We find that our metric function works much better in one-shot TKG LP.

4.5.4 Performance over Different Sparse Relations

Table 13: One-shot TKG interpolated LP performance over each sparse relation
on ICEWS-one int and GDELT-one int. The best results are marked in bold. The
second best results are underlined.

ICEWS-one int GDELT-one int

MRR MRR

Relation Frequency MOST-TA FAAN TeLM Relation Frequency MOST-TA FAAN TeLM

Threaten to reduce or break relations 65 35.25 28.13 21.79 Receive deployment of peacekeepers 108 35.94 9.52 10.62
Demonstrate for leadership change 89 53.65 40.86 44.08 Ban political parties or politicians 167 9.46 11.54 5.30

Express intent to yield 92 50.50 36.38 26.06 Attempt to assassinate 177 12.23 7.65 6.36
Increase police alert status 118 75.75 53.06 78.31 Receive inspectors 234 17.07 15.13 1.26
Appeal for material aid 146 52.69 49.37 37.96 Demand change in institutions, regime 411 14.16 7.00 15.42

Impose blockade, restrict movement 175 63.83 49.41 56.58 Threaten political dissent 675 18.21 13.77 16.15
Impose restrictions on political freedoms 282 38.45 34.33 23.00 Declare truce, ceasefire 748 19.65 13.41 6.33

Acknowledge or claim responsibility 269 39.54 25.66 38.48 Give ultimatum 752 17.98 16.84 11.47
Share intelligence or information 349 29.75 15.18 27.21

Defy norms, law 436 57.84 43.37 29.33

We also compare MOST with three strong baselines regarding the performance
over different sparse relations. We choose TeLM and xERTE because they are
the strongest traditional TKG interpolation and extrapolation baselines. We also
choose FAAN since it outperforms almost all baselines in our main results. We do
not compare with OAT because its performance is not strong enough compared
with the above mentioned baselines, even though it is the only method developed
for one-shot TKG LP.

Table 13 and Table 14 show MOST has strong robustness over different sparse

42

Table 14: One-shot TKG extrapolated LP performance over each sparse relation
on ICEWS-one ext and GDELT-one ext. The best results are marked in bold.
The second best results are underlined.

ICEWS-one ext GDELT-one ext

MRR MRR

Relation Frequency MOST-TD FAAN xERTE Relation Frequency MOST-TD FAAN xERTE

Provide military protection or peacekeeping 55 32.85 17.63 17.10 Investigate crime, corruption 149 15.34 15.90 15.29
Accuse of human rights abuses 57 21.39 4.99 17.07 Express intent to de-escalate military engagement 153 19.58 15.83 18.22
Appeal for change in leadership 65 22.05 21.60 30.98 Express intent to settle dispute 160 22.19 8.01 21.58

Acknowledge or claim responsibility 67 26.31 23.30 25.23 Protest violently, riot 176 18.72 11.66 13.42
Share intelligence or information 93 30.41 18.52 26.35 Carry out suicide bombing 180 10.17 5.06 10.01

Rally opposition against 107 21.67 15.40 24.33 Seize or damage property 212 17.04 11.43 17.29
Express intent to provide material aid 127 37.13 28.26 29.09 Veto 279 22.78 23.15 22.67
Appeal for intelligence cooperation 128 42.91 43.88 41.67 Demand intelligence cooperation 312 14.75 15.61 15.31

Provide military aid 130 33.51 9.74 18.59 Engage in political dissent 321 15.67 10.21 11.83
Mobilize or increase armed forces 180 59.61 32.96 28.99 Appeal for economic aid 348 15.21 16.17 15.55

Bring lawsuit against 184 47.47 36.28 45.99 Express intent to provide economic aid 359 19.69 17.67 18.72

relations in both one-shot TKG interpolated LP and extrapolated LP as it out-
performs FAAN, TeLM and xERTE in almost all relations.

4.5.5 Performance over Different Support-Query Time Differences

Figure 13 and Figure 14 show that our model is robust to support-query time
differences. We also keep the above mentioned models as baselines. For each sparse
relation r in the meta-test set, we compute the time difference |tq − t0|, where t0,
tq are support and query timestamp, respectively. The number of test quadruples
with the same difference |tq − t0| is relatively small. Inspired by previous work
[27], we aggregate every 140 hours on ICEWS-one int, every 24 hours on ICEWS-
one ext, every 40 hours on GDELT-one int and every 6 hours on GDELT-one ext
for better visualization. In Figure 13a to 13d, it can be observed that our model
performance dominates FAAN and TeLM on both interpolated LP datasets. From
Figure 14a to 14d, our model also outperforms FAAN and xERTE almost in all
points on both extrapolated LP datasets.

4.5.6 Time Cost Analysis

Table 15: Test time (min) comparison among MOST and the strongest baselines
on ICEWS-based datasets.

Model MOST-TA MOST-TD FAAN TeLM xERTE

ICEWS-one int 0.10 0.11 35.93 0.02 -
ICEWS-one ext 0.20 0.23 27.20 - 5.23

43

(a) (b)

(c) (d)

Figure. 13. Performance comparison between MOST and baselines over differ-
ent support-query time differences |tq − t0| on ICEWS-one int. (a) MOST-TA
vs. FAAN on ICEWS-one int; (b) MOST-TA vs. TeLM on ICEWS-one int; (c)
MOST-TA vs. FAAN on GDELT-one int; (d) MOST-TA vs. TeLM on GDELT-
one int.

44

(a) (b)

(c) (d)

Figure. 14. Performance comparison between MOST and baselines over different
support-query time differences |tq − t0| on ICEWS-one ext. (a) MOST-TD vs.
FAAN on ICEWS-one ext; (b) MOST-TD vs. xERTE on ICEWS-one ext; (c)
MOST-TD vs. FAAN on GDELT-one ext; (d) MOST-TD vs. xERTE on GDELT-
one ext.

45

Figure. 15. Training time com-
parison among MOST and the
strongest baselines on ICEWS-
based datasets.

Figure. 16. Training time com-
parison among MOST and the
strongest baselines on GDELT-
based datasets.

We report in Figure 15 the time cost of MOST and several strong baselines on both
ICEWS-based datasets. We observe that MOST achieves the best performance on
LP tasks while keeping a low time cost. Though MOST-TD and MOST-TA achieve
weaker performance than their counterpart in the interpolated and extrapolated
LP, respectively, they require much shorter training time and can still achieve
superior performance as reported in Table 9 and Table 10. Similar to Figure 15,
in Figure 16, we report the total training time comparison among MOST and
several strong baselines on GDELT-one int and GDELT-one ext. Note that static
KG FSL methods employ pretrained KG embeddings for initialization. We do
not include this time cost in the numbers presented in Figure 15 and Figure 16.
MOST does not require pretraining and it also keeps low time costs while training
GDELT-based datasets.

Except for training time, evaluation time is also a critical factor affecting the total
time cost of model development. We report the evaluation time of all methods
on meta-test sets in Table 16 and Table 17. We find that MOST keeps extremely
low time consumption during evaluation. This greatly accelerates the process of
model development.

We attribute the high training time efficiency of MOST to the employment of
binary cross entropy loss. We treat every entity other than the ground truth
missing entity as a negative sample, instead of sampling a number of negative
samples for each LP query. We avoid the time cost during sampling and we also

46

Table 16: Test time (min) comparison of all methods on interpolation datasets.

Datasets ICEWS-one int GDELT-one int

Model

TNTComplEx 0.02 0.03
ATiSE 2.20 2.77
TeLM 0.02 0.04

GANA 9.77 11.12
MetaR 8.01 7.33
GMatching 52.31 43.23
FSRL 32.21 23.66
FAAN 35.93 41.08

OAT 612.34 781.49

MOST-TA 0.10 0.27
MOST-TD 0.11 0.24

Table 17: Test time (min) comparison of all methods on extrapolation datasets.

Datasets ICEWS-one ext GDELT-one ext

Model

TANGO 3.76 4.54
CyGNet 1.68 5.56
xERTE 5.23 12.41

GANA 3.64 7.86
MetaR 4.13 8.99
GMatching 19.61 18.91
FSRL 10.06 18.28
FAAN 27.20 33.78

OAT 1112.17 1507.78

MOST-TA 0.20 0.29
MOST-TD 0.23 0.46

47

jointly learn the representations of all entities when we perform prediction for
every LP query. For evaluation, during score computation, we do not compute
contextualized entity representations for all candidates. Instead, we incorporate
temporal information with a simple time encoding layer for all the entities together.
Some of the previous methods, e.g., OAT, compute the score for each candidate
entity by going through the whole model (e.g. going through the whole model
for |E| times if there exist |E| entities). However, in our work, we only need to
go through the whole model for one time, thus cutting great time costs during
evaluation.

5 Conclusion and Limitations

5.1 Conclusion

TKGs are known to be highly incomplete and a large portion of relations occur
only a handful of times. In this work, we employ the one-shot learning method
to tackle this problem. We propose four new large-scale TKG datasets for one-
shot relational learning. Compared with previous datasets, our new datasets have
a substantial number of associated TKG facts, which greatly alleviates model
training and evaluation instability. Furthermore, we extend the interpolated and
extrapolated LP tasks to the one-shot setting, and propose a model learning meta
representations of one-shot relations (MOST) for solving both tasks. Our model
achieves state-of-the-art performance on all datasets in both tasks while keeping
a low time cost.

We derive a meta-information extractor in order to learn contextualized entity
representations. As for an entity e, a fixed number of temporal neighbors are sam-
pled. MOST then aggregates the information provided by its temporal neighbors
to compute its time-aware representation. Inspired by the work of Xu et al. [50],
we encode time information in two different ways, i.e. absolute timestamp t′ and
time difference t0 − t′ for different LP tasks. We learn an adaptively regularized
meta representation for the sparse relation r from the time-aware representations
of support entities in the one-shot examples, and then map the entity representa-
tions to the complex space. After that, we further employ a metric function for
predicting missing entities.

Experimental results show that MOST achieves state-of-the-art performance and
outperforms all the baselines on both one-shot LP tasks, showing its great potential

48

in the area of LP.

5.2 Limitations

Our work only considers the one-shot scenario without generalizing it to a larger
shot size. Additional modules are required to distinguish graph information from
more than one support example rather than directly using all the information
provided by the only support example. We leave for future work to solve the
low-shot TKG relational learning problem, e.g., 3-shot, 5-shot.

49

References

[1] Ralph Abboud et al. “BoxE: A Box Embedding Model for Knowledge Base
Completion”. In: Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS
2020, December 6-12, 2020, virtual. Ed. by Hugo Larochelle et al. 2020. url:
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-

Abstract.html.

[2] Ivana Balazevic, Carl Allen, and Timothy M. Hospedales. “TuckER: Ten-
sor Factorization for Knowledge Graph Completion”. In: Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, Hong Kong, China, November 3-7, 2019. Ed. by
Kentaro Inui et al. Association for Computational Linguistics, 2019, pp. 5184–
5193. doi: 10.18653/v1/D19-1522. url: https://doi.org/10.18653/v1/
D19-1522.

[3] Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic web”. In:
Scientific american 284.5 (2001), pp. 34–43.

[4] Tim Berners-Lee et al. “The World-Wide Web”. In: Commun. ACM 37.8
(Aug. 1994), pp. 76–82. issn: 0001-0782. doi: 10.1145/179606.179671.
url: https://doi.org/10.1145/179606.179671.

[5] Antoine Bordes et al. “Translating Embeddings for Modeling Multi-relational
Data”. In: Advances in Neural Information Processing Systems 26: 27th An-
nual Conference on Neural Information Processing Systems 2013. Proceed-
ings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States. Ed. by Christopher J. C. Burges et al. 2013, pp. 2787–2795. url:
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-

Abstract.html.

[6] Elizabeth Boschee et al. ICEWS Coded Event Data. Version V29. 2015. doi:
10.7910/DVN/28075. url: https://doi.org/10.7910/DVN/28075.

[7] Joan Bruna et al. “Spectral Networks and Locally Connected Networks on
Graphs”. In: 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Pro-
ceedings. Ed. by Yoshua Bengio and Yann LeCun. 2014. url: http://arxiv.
org/abs/1312.6203.

50

https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6dbbe6abe5f14af882ff977fc3f35501-Abstract.html
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.18653/v1/D19-1522
https://doi.org/10.1145/179606.179671
https://doi.org/10.1145/179606.179671
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://proceedings.neurips.cc/paper/2013/hash/1cecc7a77928ca8133fa24680a88d2f9-Abstract.html
https://doi.org/10.7910/DVN/28075
https://doi.org/10.7910/DVN/28075
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1312.6203

[8] Mingyang Chen et al. “Meta Relational Learning for Few-Shot Link Pre-
diction in Knowledge Graphs”. In: Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019,
Hong Kong, China, November 3-7, 2019. Ed. by Kentaro Inui et al. Associ-
ation for Computational Linguistics, 2019, pp. 4216–4225. doi: 10.18653/
v1/D19-1431. url: https://doi.org/10.18653/v1/D19-1431.

[9] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolu-
tional Neural Networks on Graphs with Fast Localized Spectral Filtering”.
In: Advances in Neural Information Processing Systems 29: Annual Confer-
ence on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain. Ed. by Daniel D. Lee et al. 2016, pp. 3837–3845. url:
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-

Abstract.html.

[10] Tim Dettmers et al. “Convolutional 2D Knowledge Graph Embeddings”. In:
CoRR abs/1707.01476 (2017). arXiv: 1707.01476. url: http://arxiv.
org/abs/1707.01476.

[11] Zifeng Ding et al. “A Simple But Powerful Graph Encoder for Temporal
Knowledge Graph Completion”. In: CoRR abs/2112.07791 (2021). arXiv:
2112.07791. url: https://arxiv.org/abs/2112.07791.

[12] Zhen Han et al. “Explainable Subgraph Reasoning for Forecasting on Tempo-
ral Knowledge Graphs”. In: 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. url: https://openreview.net/forum?id=pGIHq1m7PU.

[13] Zhen Han et al. “Learning Neural Ordinary Equations for Forecasting Future
Links on Temporal Knowledge Graphs”. In: Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-11 November, 2021.
Ed. by Marie-Francine Moens et al. Association for Computational Linguis-
tics, 2021, pp. 8352–8364. doi: 10.18653/v1/2021.emnlp-main.658. url:
https://doi.org/10.18653/v1/2021.emnlp-main.658.

[14] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. “A Fast Learning
Algorithm for Deep Belief Nets”. In: Neural Comput. 18.7 (2006), pp. 1527–
1554. doi: 10.1162/neco.2006.18.7.1527. url: https://doi.org/10.
1162/neco.2006.18.7.1527.

[15] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:
Neural Comput. 9.8 (1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.
1735. url: https://doi.org/10.1162/neco.1997.9.8.1735.

51

https://doi.org/10.18653/v1/D19-1431
https://doi.org/10.18653/v1/D19-1431
https://doi.org/10.18653/v1/D19-1431
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/04df4d434d481c5bb723be1b6df1ee65-Abstract.html
https://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1707.01476
https://arxiv.org/abs/2112.07791
https://arxiv.org/abs/2112.07791
https://openreview.net/forum?id=pGIHq1m7PU
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

[16] Shaoxiong Ji et al. “A survey on knowledge graphs: Representation, acqui-
sition, and applications”. In: IEEE Transactions on Neural Networks and
Learning Systems 33.2 (2021), pp. 494–514.

[17] Woojeong Jin et al. “Recurrent Event Network: Autoregressive Structure In-
ferenceover Temporal Knowledge Graphs”. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP).
Online: Association for Computational Linguistics, Nov. 2020, pp. 6669–
6683. doi: 10.18653/v1/2020.emnlp-main.541. url: https://aclanthology.
org/2020.emnlp-main.541.

[18] Jaehun Jung, Jinhong Jung, and U Kang. “Learning to Walk across Time for
Interpretable Temporal Knowledge Graph Completion”. In: KDD ’21: The
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
Virtual Event, Singapore, August 14-18, 2021. Ed. by Feida Zhu, Beng Chin
Ooi, and Chunyan Miao. ACM, 2021, pp. 786–795. doi: 10.1145/3447548.
3467292. url: https://doi.org/10.1145/3447548.3467292.

[19] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with
Graph Convolutional Networks”. In: 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net, 2017. url: https://openreview.
net/forum?id=SJU4ayYgl.

[20] Timothée Lacroix, Guillaume Obozinski, and Nicolas Usunier. “Tensor De-
compositions for Temporal Knowledge Base Completion”. In: 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020. url: https://openreview.
net/forum?id=rke2P1BFwS.

[21] Julien Leblay and Melisachew Wudage Chekol. “Deriving Validity Time in
Knowledge Graph”. In: Companion of the The Web Conference 2018 on The
Web Conference 2018, WWW 2018, Lyon , France, April 23-27, 2018. Ed.
by Pierre-Antoine Champin et al. ACM, 2018, pp. 1771–1776. doi: 10.1145/
3184558.3191639. url: https://doi.org/10.1145/3184558.3191639.

[22] Kalev Leetaru and Philip A Schrodt. “Gdelt: Global data on events, location,
and tone, 1979–2012”. In: ISA annual convention. Vol. 2. 4. Citeseer. 2013,
pp. 1–49.

[23] Ruoyu Li et al. “Adaptive Graph Convolutional Neural Networks”. In: CoRR
abs/1801.03226 (2018). arXiv: 1801.03226. url: http://arxiv.org/abs/
1801.03226.

52

https://doi.org/10.18653/v1/2020.emnlp-main.541
https://aclanthology.org/2020.emnlp-main.541
https://aclanthology.org/2020.emnlp-main.541
https://doi.org/10.1145/3447548.3467292
https://doi.org/10.1145/3447548.3467292
https://doi.org/10.1145/3447548.3467292
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=rke2P1BFwS
https://openreview.net/forum?id=rke2P1BFwS
https://doi.org/10.1145/3184558.3191639
https://doi.org/10.1145/3184558.3191639
https://doi.org/10.1145/3184558.3191639
https://arxiv.org/abs/1801.03226
http://arxiv.org/abs/1801.03226
http://arxiv.org/abs/1801.03226

[24] Yankai Lin et al. “Learning Entity and Relation Embeddings for Knowledge
Graph Completion”. In: Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA. Ed. by
Blai Bonet and Sven Koenig. AAAI Press, 2015, pp. 2181–2187. url: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571.

[25] Jiang Lu et al. “Learning from Very Few Samples: A Survey”. In: CoRR
abs/2009.02653 (2020). arXiv: 2009.02653. url: https://arxiv.org/abs/
2009.02653.

[26] Yunpu Ma, Volker Tresp, and Erik A. Daxberger. “Embedding models for
episodic knowledge graphs”. In: J. Web Semant. 59 (2019).

[27] Mehrnoosh Mirtaheri et al. “One-shot Learning for Temporal Knowledge
Graphs”. In: 3rd Conference on Automated Knowledge Base Construction,
AKBC 2021, Virtual, October 4-8, 2021. Ed. by Danqi Chen et al. 2021.
doi: 10.24432/C55K56. url: https://doi.org/10.24432/C55K56.

[28] Allen Newell, John C Shaw, and Herbert A Simon. “Report on a general
problem solving program”. In: IFIP congress. Vol. 256. Pittsburgh, PA. 1959,
p. 64.

[29] Maximilian Nickel, Lorenzo Rosasco, and Tomaso A. Poggio. “Holographic
Embeddings of Knowledge Graphs”. In: CoRR abs/1510.04935 (2015). arXiv:
1510.04935. url: http://arxiv.org/abs/1510.04935.

[30] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. “A Three-Way
Model for Collective Learning on Multi-Relational Data”. In: Proceedings of
the 28th International Conference on Machine Learning, ICML 2011, Belle-
vue, Washington, USA, June 28 - July 2, 2011. Ed. by Lise Getoor and
Tobias Scheffer. Omnipress, 2011, pp. 809–816. url: https://icml.cc/
2011/papers/438%5C_icmlpaper.pdf.

[31] Guanglin Niu et al. “Relational Learning with Gated and Attentive Neighbor
Aggregator for Few-Shot Knowledge Graph Completion”. In: SIGIR ’21: The
44th International ACM SIGIR Conference on Research and Development
in Information Retrieval, Virtual Event, Canada, July 11-15, 2021. Ed. by
Fernando Diaz et al. ACM, 2021, pp. 213–222. doi: 10.1145/3404835.
3462925. url: https://doi.org/10.1145/3404835.3462925.

[32] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep
Learning Library”. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada. Ed. by Hanna
M.Wallach et al. 2019, pp. 8024–8035. url: https://proceedings.neurips.

53

http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571
https://arxiv.org/abs/2009.02653
https://arxiv.org/abs/2009.02653
https://arxiv.org/abs/2009.02653
https://doi.org/10.24432/C55K56
https://doi.org/10.24432/C55K56
https://arxiv.org/abs/1510.04935
http://arxiv.org/abs/1510.04935
https://icml.cc/2011/papers/438%5C_icmlpaper.pdf
https://icml.cc/2011/papers/438%5C_icmlpaper.pdf
https://doi.org/10.1145/3404835.3462925
https://doi.org/10.1145/3404835.3462925
https://doi.org/10.1145/3404835.3462925
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html

cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.

html.

[33] Michael Sejr Schlichtkrull et al. “Modeling Relational Data with Graph Con-
volutional Networks”. In: The Semantic Web - 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece, June 3-7, 2018, Proceedings.
Ed. by Aldo Gangemi et al. Vol. 10843. Lecture Notes in Computer Science.
Springer, 2018, pp. 593–607. doi: 10.1007/978-3-319-93417-4_38. url:
https://doi.org/10.1007/978-3-319-93417-4%5C_38.

[34] Jiawei Sheng et al. “Adaptive Attentional Network for Few-Shot Knowledge
Graph Completion”. In: Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2020, Online, November
16-20, 2020. Ed. by Bonnie Webber et al. Association for Computational
Linguistics, 2020, pp. 1681–1691. doi: 10.18653/v1/2020.emnlp-main.131.
url: https://doi.org/10.18653/v1/2020.emnlp-main.131.

[35] Zhiqing Sun et al. “RotatE: Knowledge Graph Embedding by Relational
Rotation in Complex Space”. In: 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net, 2019. url: https://openreview.net/forum?id=HkgEQnRqYQ.

[36] Zhiqing Sun et al. “Rotate: Knowledge graph embedding by relational rota-
tion in complex space”. In: arXiv preprint arXiv:1902.10197 (2019).

[37] Théo Trouillon et al. “Complex Embeddings for Simple Link Prediction”.
In: Proceedings of the 33nd International Conference on Machine Learning,
ICML 2016, New York City, NY, USA, June 19-24, 2016. Ed. by Maria-
Florina Balcan and Kilian Q. Weinberger. Vol. 48. JMLR Workshop and
Conference Proceedings. JMLR.org, 2016, pp. 2071–2080. url: http://
proceedings.mlr.press/v48/trouillon16.html.

[38] Shikhar Vashishth et al. “Composition-based Multi-Relational Graph Con-
volutional Networks”. In: 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net, 2020. url: https://openreview.net/forum?id=BylA%5C_C4tPr.

[39] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural In-
formation Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA. Ed.
by Isabelle Guyon et al. 2017, pp. 5998–6008. url: https://proceedings.
neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-

Abstract.html.

54

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.1007/978-3-319-93417-4%5C_38
https://doi.org/10.18653/v1/2020.emnlp-main.131
https://doi.org/10.18653/v1/2020.emnlp-main.131
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=BylA%5C_C4tPr
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[40] Oriol Vinyals et al. “Matching Networks for One Shot Learning”. In: Ad-
vances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona,
Spain. Ed. by Daniel D. Lee et al. 2016, pp. 3630–3638. url: https://
proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-

Abstract.html.

[41] Yanjie Wang, Rainer Gemulla, and Hui Li. “On Multi-Relational Link Pre-
diction With Bilinear Models”. In: Proceedings of the Thirty-Second AAAI
Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Appli-
cations of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium
on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018. Ed. by Sheila A. McIlraith and Kil-
ian Q. Weinberger. AAAI Press, 2018, pp. 4227–4234. url: https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900.

[42] Yaqing Wang et al. “Generalizing from a Few Examples: A Survey on Few-
shot Learning”. In: ACM Comput. Surv. 53.3 (2020), 63:1–63:34. doi: 10.
1145/3386252. url: https://doi.org/10.1145/3386252.

[43] Zhen Wang et al. “Knowledge Graph Embedding by Translating on Hyper-
planes”. In: Proceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada. Ed. by
Carla E. Brodley and Peter Stone. AAAI Press, 2014, pp. 1112–1119. url:
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531.

[44] Jiapeng Wu et al. “TeMP: Temporal Message Passing for Temporal Knowl-
edge Graph Completion”. In: Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020. Ed. by Bonnie Webber et al. Association for Computational
Linguistics, 2020, pp. 5730–5746. doi: 10.18653/v1/2020.emnlp-main.462.
url: https://doi.org/10.18653/v1/2020.emnlp-main.462.

[45] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”.
In: IEEE Trans. Neural Networks Learn. Syst. 32.1 (2021), pp. 4–24. doi:
10.1109/TNNLS.2020.2978386. url: https://doi.org/10.1109/TNNLS.
2020.2978386.

[46] Wenhan Xiong et al. “One-Shot Relational Learning for Knowledge Graphs”.
In: Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 - November 4, 2018.
Ed. by Ellen Riloff et al. Association for Computational Linguistics, 2018,
pp. 1980–1990. doi: 10.18653/v1/d18-1223. url: https://doi.org/10.
18653/v1/d18-1223.

55

https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/90e1357833654983612fb05e3ec9148c-Abstract.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
https://doi.org/10.1145/3386252
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8531
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://doi.org/10.18653/v1/2020.emnlp-main.462
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.1109/TNNLS.2020.2978386
https://doi.org/10.18653/v1/d18-1223
https://doi.org/10.18653/v1/d18-1223
https://doi.org/10.18653/v1/d18-1223

[47] Canran Xu and Ruijiang Li. “Relation embedding with dihedral group in
knowledge graph”. In: arXiv preprint arXiv:1906.00687 (2019).

[48] Chengjin Xu et al. “Temporal Knowledge Graph Completion using a Linear
Temporal Regularizer and Multivector Embeddings”. In: Proceedings of the
2021 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, NAACL-HLT 2021,
Online, June 6-11, 2021. Ed. by Kristina Toutanova et al. Association for
Computational Linguistics, 2021, pp. 2569–2578. doi: 10.18653/v1/2021.
naacl-main.202. url: https://doi.org/10.18653/v1/2021.naacl-
main.202.

[49] Chengjin Xu et al. “Temporal Knowledge Graph Embedding Model based
on Additive Time Series Decomposition”. In: CoRR abs/1911.07893 (2019).
arXiv: 1911.07893. url: http://arxiv.org/abs/1911.07893.

[50] Da Xu et al. “Inductive representation learning on temporal graphs”. In: 8th
International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. url: https:
//openreview.net/forum?id=rJeW1yHYwH.

[51] Bishan Yang et al. “Embedding Entities and Relations for Learning and In-
ference in Knowledge Bases”. In: 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url:
http://arxiv.org/abs/1412.6575.

[52] Chuxu Zhang et al. “Few-Shot Knowledge Graph Completion”. In: The
Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Arti-
ficial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020.
AAAI Press, 2020, pp. 3041–3048. url: https://ojs.aaai.org/index.
php/AAAI/article/view/5698.

[53] Shuai Zhang et al. “Quaternion Knowledge Graph Embeddings”. In: Ad-
vances in Neural Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, December 8-
14, 2019, Vancouver, BC, Canada. Ed. by Hanna M. Wallach et al. 2019,
pp. 2731–2741. url: https://proceedings.neurips.cc/paper/2019/
hash/d961e9f236177d65d21100592edb0769-Abstract.html.

[54] Cunchao Zhu et al. “Learning from History: Modeling Temporal Knowl-
edge Graphs with Sequential Copy-Generation Networks”. In: Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial Intelligence, IAAI 2021, The

56

https://doi.org/10.18653/v1/2021.naacl-main.202
https://doi.org/10.18653/v1/2021.naacl-main.202
https://doi.org/10.18653/v1/2021.naacl-main.202
https://doi.org/10.18653/v1/2021.naacl-main.202
https://arxiv.org/abs/1911.07893
http://arxiv.org/abs/1911.07893
https://openreview.net/forum?id=rJeW1yHYwH
https://openreview.net/forum?id=rJeW1yHYwH
http://arxiv.org/abs/1412.6575
https://ojs.aaai.org/index.php/AAAI/article/view/5698
https://ojs.aaai.org/index.php/AAAI/article/view/5698
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/d961e9f236177d65d21100592edb0769-Abstract.html

Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI
2021, Virtual Event, February 2-9, 2021. AAAI Press, 2021, pp. 4732–4740.
url: https://ojs.aaai.org/index.php/AAAI/article/view/16604.

57

https://ojs.aaai.org/index.php/AAAI/article/view/16604

Acknowledgement

I would like to thank all of you for helping me in writing this thesis. I am most
grateful to my supervisor, Prof. Dr. Volker Tresp, who provided great support
for my master’s thesis project. Without his dedicated involvement in every step
throughout the process, this paper would have never been accomplished. He is not
only a knowledgeable supervisor in research but also an experienced elder in life.
His advice and help will still be of great benefit to me in the future.

Secondly, I would like to express my sincere thanks to my tutor, Zifeng Ding.
He provided me with a lot of help in various aspects, such as experiment design,
project planning, result analysis, and thesis writing. He showed me in action how
hardworking and uncompromising a researcher should be. When I encountered
difficulties and wanted to give up. he encouraged me to continue. When I was
confused, he showed me the way forward. He also taught me how to balance work
and life, he is a real role model for me.

I am also deeply indebted to Prof. Dr. Christian Heumann, Prof. Dr. Christoph
Kern, Ms. Maj-Catherine Botheroyd-Hobohm, Dr. Friedemann Steck, and Dr.
Zhen Han. You have listened to me patiently and enlightened me in my most
difficult moments and helped me think of ways when I struggled. You even helped
me with financial pressures so that I could focus on my research.

Getting through my thesis required more than academic support, and I have many,
many people to thank for listening to me and, at times, having to tolerate me
over the past years. I cannot begin to express my gratitude and appreciation for
their friendship. Yicui Kang, Jasmin, Coco, Zongyue Li, and Han Bao have been
unwavering in their personal and professional support during the time I spent at
the University.

Most importantly, none of this could have happened without my family. My
mother, offered her encouragement through phone calls every week – despite my
limited devotion to correspondence. With his brand of humor, my brother has
been kind and supportive of me over the last several years. Every time I was
ready to quit, you did not let me, and I am forever grateful. This dissertation
stands as a testament to your unconditional love and encouragement.

58

	Introduction
	Motivation
	Method Introduction
	Temporal Knowledge Graph Link Prediction
	Few-Shot Learning
	Episodic Training

	One-Shot Temporal Knowledge Graph Link Prediction Setup
	Contribution
	Outline of the Thesis

	Background and Related Work
	Knowledge Graph Embedding Methods
	Translation Models
	Factorization Models
	Neural Network Models
	Rotation Models

	Deep Neural Networks
	Graph Neural Networks
	Graph Convolutional Networks
	Spectral-based Graph Convolutional Network
	Spatial-based Graph Convolutional Networks

	Graph Attention Networks
	Graph Attention Network
	Gated Attention Network

	Multi-Relational Graph Convolutional Networks
	Temporal Knowledge Graph Embedding Methods
	Few-shot Relational Learning Methods for Knowledge Graphs

	Meta Representations of One-shot Relations
	Meta-information Extractor
	Meta-representation Learner
	Metric Function
	Parameter Learning

	Experiments
	Datasets
	Problem with Previous Datasets
	Our Datasets

	Baseline Methods
	Few-shot Relational Learning Methods
	Temporal Knowledge Graph Embedding Methods

	Implementation Details
	Evaluation Metrics
	Experiment Results
	Unfair Evaluation for Static KG FSL Methods
	Model Results
	Ablation Study
	Performance over Different Sparse Relations
	Performance over Different Support-Query Time Differences
	Time Cost Analysis

	Conclusion and Limitations
	Conclusion
	Limitations

	References

