
Master Thesis

Forecasting Volatility in Financial Time Series

A Machine Learning Approach

Author

Dominik Bruckmeier

Supervisor

Prof. Dr. Christian Heumann

Department of Statistics

Department of Statistics

Ludwig-Maximilians-Universität München

Munich, 19th of December 2022

Abstract

Forecasting volatility in financial markets plays a central role in financial econometrics,

as it is a key factor for decision makers. However, the conventional econometric models

used to predict volatility have been repeatedly criticized for their inadequate predictive

quality. It is therefore obvious to use machine learning techniques for volatility forecast-

ing. Nevertheless, applying machine learning models to predict volatility faces several

problems, such as sparse data, low signal in the data, varying data structure, and the

fact that most machine learning methods are constructed for independently and identi-

cally distributed data. We show that high-frequency data improves signal strength and

adds value even when the data is sparse. We also demonstrate that time series can be

put into a supervised machine learning format using Takens’ Embedding Theorem. Fur-

thermore, we analyze statistical learning theory for time series and volatility processes

and conclude that machine learning models are suitable for volatility forecasting. We

also consider key aspects of the volatility literature such as the properties of different

volatility proxies, data frequency, and forecast horizon.

In the empirical analysis, we compare the forecasting performance of regression trees,

random forests, and support vector regression to the GARCH and HAR-RV models for

one-step-, three-steps-, and five-steps-ahead forecasts over different forecast horizons.

Results based on realized variance as a proxy for volatility show that the HAR-SVR

model performs best for one-step- and three-steps-ahead forecasts over different time

horizons. For five-steps-ahead forecasts, we find that the GARCH model performs best

for short horizons and the HAR-TREE model is superior for intermediate and longer

horizons. The analysis also shows that machine learning models are particularly better

for predicting highly volatile phases. In addition, it turns out that features based on

economic theory can improve data quality and, thus, forecast performance.

Contents

List of Figures I

List of Tables II

List of Abbreviations III

1. Introduction 1

1.1. Motivation . 1

1.2. Related Work and Literature . 2

1.3. Problems and Research Question . 8

1.4. Overview . 9

2. Theoretical Background 10

2.1. Fundamental Theory of Time Series . 10

2.2. Financial Time Series . 17

2.3. Volatility in Financial Markets . 22

3. Econometric Forecasting Models 34

3.1. The ARCH Model . 35

3.2. The GARCH Model . 37

3.3. The HAR-RV Model . 41

4. Machine Learning Algorithms 45

4.1. Basic Theory of Machine Learning for Time Series 47

4.2. Trees . 56

4.3. Random Forest . 60

4.4. Support Vector Regression . 66

5. Evaluation 74

5.1. Time Series Cross Validation . 75

5.2. Performance Measures . 79

6. Empirial Results and Discussion 83

6.1. Empirical Setup . 83

6.2. Results and Discussion . 86

6.2.1. Evaluation of the Forecasts . 86

6.2.2. Varying the Forecast Horizon . 98

7. Conclusion 104

7.1. Limitations and Further Research . 106

A. Appendix 108

A.1. Example of Natural Filtration of an Stochastic Process 108

A.2. Random Walk as Martingale . 109

A.3. Proof of Equation (2.25) . 110

A.4. Derivation of Equation (3.9) for a GARCH(1,1) 114

A.5. Takens’ Embedding Theorem . 115

A.6. Proof of Equation (4.18) . 117

References 119

List of Figures

2.1. Return plots and stylized facts . 21

2.2. ACF plots of volatility proxies . 23

2.3. DAX volatility plots . 32

4.1. Mixing of stochastic process . 54

4.2. Representation of a Decision Tree. 57

4.3. Decomposition of the covariate space 58

4.4. Bootstrapped volatility measures . 65

4.5. Soft margin Support Vector Regression 67

5.1. K-fold cross validation . 76

5.2. One-step-ahead rolling origin validation 78

5.3. Two-steps-ahead rolling origin validation 79

6.1. DAX volatility plots of the test data 85

6.2. One-step-ahead predictions . 87

6.3. Plot of relative MSE and QLIKE for the one-step-ahead predictions

over different forecast horizons. 99

6.4. Plot of relative MSE and QLIKE for the three-steps-ahead predictions

over different forecast horizons. 100

6.5. Plots of relative MSE and QLIKE for the five-step-ahead predictions

over different forecast horizons. 102

A.1. Henon Series with coefficients a = 1.4 and b = 0.3 115

A.2. Dynamics of the Henon system in the embedded space 116

I

List of Tables

6.1. One-step-ahead out-of-sample relative loss functions with squared re-

turn volatility proxy . 88

6.2. One-step-ahead out-of-sample relative loss functions with realized vari-

ance volatility proxy . 90

6.3. Three-steps-ahead out-of-sample relative loss functions with squared

return volatility proxy . 91

6.4. Three-steps-ahead out-of-sample relative loss functions with realized

variance volatility proxy . 93

6.5. Five-steps-ahead out-of-sample relative loss functions with squared

return volatility proxy . 94

6.6. Five-steps-ahead out-of-sample relative loss functions with realized

variance volatility proxy . 95

II

List of Abbreviations

ADF-Test Augmented Dickey Fuller Test

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARFIMA Autoregressive Fractionally Integrated Moving Average

DAX German Stock Index

GARCH Generalized Autoregressive Conditional Heteroskedasticity

HAR Heterogeneous Autoregressive

IID Independent and Identically Distributed

kNN K Nearest Neighbors

KPSS-Test Kwiatkowski–Phillips–Schmidt–Shin Test

LASSO Least Absolute Shrinkage and Selection Operator

MBB Moving-Block-Bootstrap

ML Machine Learning

NN Neural Network

PP-Test Phillips-Perron Test

RF Random Forest

RV Realized Variance

SVR Support Vector Regression

S&P 500 Standard & Poor’s 500 Index

VIX CBOE Volatility Index

III

1. Introduction

1.1. Motivation

When analyzing financial market time series, the focus is on returns, i.e., the change in

the price of an asset over a given period of time, which is assumed to be random. Since

the famous thesis of Bachelier (1900)
”

The Theory of Speculation“, it is known that

the modeling and, especially, the prediction of returns is almost impossible. Bachelier

(1900) attributes this to the infinite number of events from the past, current circum-

stances, and future expectations, often independent of each other, which affect returns

and, thus, make an exact forecast impossible. Based on this thesis, the
”

Efficient Mar-

kets Theory“ and the
”

Random Walk Hypothesis“ were developed, which assume that

markets are perfectly information efficient and that all information is contained in prices.

Deviations from this are merely snapshots that are quickly adjusted by the market. Ac-

cordingly, stocks and stock markets follow a purely random process that does not allow

for systematic, autoregressive forecasting of returns.1

Another central object of investigation in financial market analysis is the fluctuation of

returns, i.e., volatility, which can not directly be observed from the market and is, thus,

a latent variable and must be approximated.2 It has been long established that volatil-

ity, unlike returns, can be predicted. According to Danielsson (2011), the importance

of volatility stems from the fact that it is needed for practical and theoretical applica-

tions in various areas of finance. As Poon and Granger (2003) describe, modeling and

forecasting volatilities of returns is important to investors because they use volatility

as an input variable for investment decisions, such as designing portfolios, determin-

ing fair option prices, or trading volatility themselves. Risk analysts use volatility as a

key concept to assess potential downside risks, regulators use it to determine minimum

capital requirements for financial institutions, and policymakers use it to assess general

economic uncertainties. In each of these applications, forecasting plays a central role

1See, for example, Fama (1970) and Fama (1965).
2The volatility is assumed to be latent since we only have one return observation per day but the

returns change many times within a trading day.

1

with econometrics providing various statistical methods to accomplish the task.

While the simplest methods to estimate volatility and make forecasts are moving aver-

age models, their extensions, as well as the random walk models, Andersen et al. (2013)

report that the most widely used models are autoregressive processes with conditional

heteroskedasticity (ARCH) by Engle (1982) and its generalization (GARCH) by Boller-

slev (1986). As high-frequency data have become increasingly available in finance in

recent years, the development of new volatility proxies and models have come about.

Andersen et al. (2013) find that ARCH and GARCH models do not perform well in a

high frequency environment, and therefore, appear to be unsuitable. To take better ad-

vantage of high frequency data, Corsi (2009) develops the heterogeneous autoregressive

model (HAR), which, Clements and Preve (2021) find, to be one of the most popu-

lar models in the high frequency data environment. Together, the ARCH, GARCH,

and HAR models provide the classic econometric toolbox for modeling and forecasting

volatility.

Despite their prevalence, these methods are often criticized3 for not being able to gener-

ate accurate forecasts of volatility, and it seems obvious to use modern machine learning

(ML) techniques, which are specially designed to achieve high prediction accuracy, to

forecast volatility. Although it seems natural to use machine learning methods for these

forecasts, there are some challenges. Volatility forecasting is a classical problem in time

series analysis, which deals not only with general properties of time series, but also

with special properties of financial market time series i.e., stylized facts. These special

properties of financial market time series differ significantly from the data environments

in which ML methods are successfully applied. As ML methods have been increasingly

used for forecasting time series in recent years, it has been shown that these methods are

quite competitive with classical methods.4 Therefore, this thesis deals with the question

of whether machine learning algorithms can and should be used to perform volatility

forecasts.

1.2. Related Work and Literature

To understand the criticisms of classical econometric models for forecasting volatilities

and the challenges of applying machine learning methods in the context of financial mar-

ket time series, we review a selection of the relevant literature that can provide insight.

3See Hansen and Lunde (2011).
4See Bontempi et al. (2012).

2

Classical econometric models for forecasting financial return volatility are mostly based

on economic and statistical theory and, as mentioned above, these models are criticized

for not generating accurate forecasts of volatility. In a study by Poon and Granger

(2003), the authors examine 93 papers dealing with forecasting volatilities. ARCH and

GARCH models are compared with simple moving average models, standard deviation

models and other volatility models. They find that ARCH and GARCH models often

do not perform better than simpler models. According to the authors, the forecasting

performance of all the models considered depends on the data frequency, the volatility

proxy used, and the forecast horizon. The ARCH and GARCH models are superior for

daily data and short forecast horizons, whereas simpler models are superior for a coarser

data structure and longer forecast horizons. Overall, the study shows a mixed picture

of the forecasting performance of ARCH and GARCH models and it is not clear which

models are preferable for forecasting volatility.

Subsequently, a number of extensions to the ARCH and GARCH models have been spe-

cially adapted to the stylized facts of financial market time series. According to Hansen

and Lunde (2005), the model most commonly used in practice is the simple GARCH(1,1)

model. To check whether this model or one of the other numerous extensions is prefer-

able in forecasting volatility, they consider 330 different GARCH models and compare

their one-day-ahead out-of-sample forecast performance. They use exchange rate data

and financial market data for their comparison. Several conclusions can be drawn from

the study. Firstly, for the forecast of exchange rates, none of the models considered

significantly outperformed the simple GARCH(1,1) model. In the case of yield data,

there are models that are clearly superior to the GARCH(1,1) model. Secondly, models

which can reproduce more stylized facts seem to be superior to the simple GARCH(1,1)

model. It also appears that for forecasting, normal distribution is more suitable com-

pared to the t-distribution. Despite these results, there are several issues to consider.

Poon (2005) argues that the forecasting performance of the of the ARCH and GARCH

extensions models depend on whether the time series under consideration has exactly

the properties for which the model was constructed. This also explains the different

results with regard to different data sets.

The view of predictive performance by ARCH and GARCH models as insufficient is not

shared by all experts. Andersen and Bollerslev (1998) attribute the poor out-of-sample

forecasting performance to poor volatility proxies. They show that classical volatility

proxies such as squared returns, despite being unbiased estimators of true underlying

volatility, are very noisy. Therefore, they propose the use of a more efficient proxy, real-

3

ized variance (RV), which is based on intra-day squared returns of high frequency data.

Andersen and Bollerslev (1998) argue that ARCH and GARCH class models should be

able to explain about 60% of volatility when RV is used as the volatility proxy. They

therefore suggest continuing to use the classical models and use RV for forecast evalua-

tion.

Building on this volatility proxy, further research directly modeled realized variance.

Probably the best-known model is the heterogeneous autoregressive (HAR) model by

Corsi (2009), which directly models realized variance as a linear function of daily, weekly,

and monthly past realized variances. The great popularity of HAR is due to its sim-

ple structure and application, as well as its good forecasting performance and ease of

economic interpretability.5 Corsi (2009) compared the HAR model with a simple au-

toregressive (AR) model and an autoregressive fractionally integrated moving average

(ARFIMA) model in terms of their one-day, one-week, and two-week out-of-sample fore-

cast performance for different data sets like exchange rates and financial market data.

The results show that the HAR model is superior to the simple AR models over all

forecast horizons. In contrast, there are only marginal differences between the HAR

model and the more complex ARFIMA model. Specifically, the HAR model performs

slightly better for one-day-ahead forecast, while the ARFIMA model performs slightly

better for larger horizons.

Audrino and Knaus (2016) compare the out-of-sample prediction performance of the

HAR model with a Least Absolute Shrinkage and Selection Operator (LASSO) version

of the HAR model. They use different stock data over a period of nine years and show

that the simple HAR model and the LASSO version perform almost identically. From

these results, the authors conclude that there are no significant differences between the

two models in terms of prediction and that neither model is clearly preferable to the

other. Similar results are obtained by other studies, such as Vortelinos (2017) who shows

that the prediction performance of HAR models is not only better than that of GARCH

models but also outperforms neural networks and other more complex models.

However, there are also studies that show a different picture of the HAR model’s fore-

casting performance. Wang et al. (2013) compare simple AR models and modified AR

versions that capture structural breaks in the time series with the HAR model to predict

the realized variance between one and three days out-of-sample. They show that the

adjusted AR models perform better than the HAR model.

Izzeldin et al. (2019) compare the forecasting performance of the HAR with that of the

5See Clements and Preve (2021).

4

ARFIMA model. They consider different market phases, forecast horizons, and data

frequencies over a ten-year period. In this setup, the HAR forecasts are less sensitive to

changing market conditions, but the forecast performance of the ARFIMA model is bet-

ter with increasing data frequency. Specifically, Izzeldin et al. (2019) find the ARFIMA

model to be slightly better for short forecast horizons, while the HAR model is better

for longer forecast periods, contrary to the results by Corsi (2009). Overall, the authors

conclude from their findings that no model is significantly superior to the other.

Overall, prior studies show a very mixed picture regarding the performance of volatility

forecasting by classical econometric models. As described above, it seems obvious to

use machine learning methods for this task and obtain more precise volatility forecasts.

However, the use of ML in the context of financial market time series is associated

with various difficulties. As Israel et al. (2020) note, finance is fundamentally different

from the research fields in which ML has been successfully applied. According to the

authors, finance is not a big data environment because there is usually only a single

time series as an observation. Further, the time series data considered have a relatively

low signal-to-noise ratio, which may favor overfitting and, in addition, financial market

time series often exhibit rapidly changing dynamics that may be due to non-stationary

behaviour. Lommers et al. (2021) and Athey and Imbens (2019) argue that in finan-

cial market analysis, inference concepts are the focus of research, to learn information

from the underlying a-priori specified data generating process as well as relationships

between variables. On the other hand, out-of-sample forecasting performance is the fo-

cus of research in the ML area. Forecasting performance should be optimized to obtain

the highest possible prediction quality and generalizability over the data and it is not

assumed that the models describe the data generating process. According to Lommers

et al. (2021), the main difference in the research paradigms is that classical financial mar-

ket analysis is hypothesis-driven whereas ML is data-driven. Athey and Imbens (2019)

also address the question of whether and to what extent machine learning methods can

be used in the general context of economic research. They argue that besides all the

challenges, especially in the area of forecasting, a large component of econometrics can

benefit greatly from ML techniques. However, the authors clarify that, even if a benefit

is conceivable, there is no a-priori guarantee for superior forecasting performance of ML

models compared to classical methods. This can be derived from the well-known No-

Free-Lunch-Theorem6 from machine learning, which states that there is no universally

6See, for example, Shalev-Shwartz and Ben-David (2014).

5

best learning procedure.

Besides the potential opportunities offered by machine learning in certain areas of fi-

nancial econometrics, Athey and Imbens (2019) argue that the problems mentioned are

one reason why econometrics has not yet made greater use of ML methods. López de

Prado (2019) shares this assessment, stating that by the end of 2018, a total of 13,772

publications related to economics, statistics, and probability theory had been published.

Among these publications, there are only 89 articles related to machine learning. Al-

though machine learning has not yet fully arrived in the econometric toolbox, there are

now a number of articles dealing with the application and benchmarking of these meth-

ods in the financial market domain. Some of these papers deal with volatility forecasting,

with RV at the core of all studies.

Masini et al. (2021) compare various machine learning techniques such as neural networks

(NN), random forests (RF), and an extended regularized HAR model (HAR-LASSO)

with the classical HAR model. They show that all ML models except the RF outperform

the HAR benachmark model over all time periods considered, with the HAR-LASSO

model performing best, followed by NN and RF.

Christensen et al. (2021) perform a similar comparison. They consider regularized mod-

els, regression trees, RFs, NNs as well as other ML methods and compare them with

the classical HAR model in terms of their one-day-ahead out-of-sample forecast perfor-

mance. The authors use data spanning 16 years and consider two different modeling

approaches. In the first approach, only pure autoregressive modeling is used. In the

second approach, additional explanatory variables are included in the models. In both

approaches, the ML methods outperform the HAR model. Overall, however, NNs and

RF are the best performing models. This result is interesting because, although it essen-

tially confirms the results of Masini et al. (2021), RF now performs significantly better.

Rahimikia and Poon (2020) compare the forecasting performance of ML methods such

as various NNs with an extended version of the HAR model. For the prediction, they use

order book data and news data of 28 stocks over a period of 9 years. The authors find

that ML methods show superior forecast performance, but the forecast quality depends

on which market phase is forecasted. It appears that for less excited market phases with

low volatility, which accounts for 90% of the data used, ML models are significantly

better. Whereas in excited market phases with high volatility, the HAR model tends to

perform better.

Somewhat different results are shown by Bucci (2020), who compares different NNs with

ARFIMA models with respect to their forecast performance of the RV over different hori-

6

zons. The author takes into account the respective market phases in order to control

for different volatility phases. From the results of the study, the authors claim that

NNs are superior to ARFIMA models in forecasting normal volatility phases as well as

high volatility phases. These findings are contrary to the results of Rahimikia and Poon

(2020), which may be due to several reasons. One is that Bucci (2020) uses significantly

more explanatory variables in his models than Rahimikia and Poon (2020), which may

lead to better generalization of the ML models and thus better forecasting performance.

Another reason may be that Bucci (2020) uses significantly more and different NNs

than Rahimikia and Poon (2020). A closer look at the evaluation shows that a change

in model ranking occurs when forecasting highly volatile phases. Although NNs still

perform better than ARFIMA models, this is now a different NN than for phases with

moderate volatility. It even shows that the models performing best in normal volatility

phases are now outperformed by the ARFIMA models for longer forecast horizons in

more volatile market phases.

In a study by De Stefani et al. (2017), the authors examine out-of-sample forecast per-

formance over different forecast horizons of different volatility proxys. They use various

ML methods such as k-nearest neighbors (kNN) regression, support vector regression

(SVR), and NNs to compare against the classical GARCH model. The authors use two

approaches to compare the models. The first forecasts the different volatility proxies

with a purely autoregressive structure and the other includes different volatility proxies

as explanatory variables in the models. The results show that the ML methods are

superior to the classical GARCH model in both scenarios and that the SVR model per-

forms best. Moreover, it is shown that the inclusion of additional volatility proxies can

significantly improve forecasting performance.

There are other studies that use ML methods in the context of volatility and may argue

for a successful application. Zhang et al. (2022) show superior forecasting performance

of different ML methods at forecast horizons of a few minutes in the high frequency do-

main. Li and Tang (2021) find that a simple ensemble of different ML models perform

best and are able to forecast the RV for longer forecast horizons better than the HAR

benchmark model. Carr et al. (2019) use option pricing data as well as data from the

S&P 500 to obtain better volatility indexation with ML models than with the VIX7.

Luong and Dokuchaev (2018) combine ML models with a classic HAR model by using

RF to forecast the direction and magnitude of volatility and incorporating this as infor-

7The Volatility Index (VIX) uses option prices to indicate the market’s expected short-term volatility
over the next 30 days for the S&P500.

7

mation into a HAR model. This additional information significantly improves forecast

performance compared to that of a simple HAR model.

From the literature review, some necessities and challenges arise from which the problem

definition and research question as well as associated implications are derived. This is

the subject of the following subsection.

1.3. Problems and Research Question

The literature review reveals several problems from which the research question of this

master thesis is derived. Drawing from the vast literature, it can be stated that forecast

performance of different classical volatility models depend on data frequency, the volatil-

ity proxy, and forecast horizon. In addition, it has become clear that machine learning

methods cannot simply be applied to the field of financial econometrics. The main rea-

sons for this are that finance is not a big data environment, different data structures

are available, and different research paradigms are underlying. Nevertheless, there are

areas in finance where ML techniques can be of great use, such as forecasting. Some of

the studies reviewed use ML models to forecast volatility in financial markets, but none

of the papers specifically address the dependence of forecast performance on data fre-

quency, volatility proxy, and forecast horizon. Moreover, the models are applied without

addressing differences in data structures and without considering possible implications

for ML procedures. This can be problematic because time series data have a different

structure than data considered in supervised machine learning. Furthermore, time se-

ries data violate the assumption that data are independent and identically distributed,

which is central to theoretical statements regarding ML algorithms.

The central research question of this thesis is whether machine learning models can

and should be used to perform volatility forecasts. From the literature review, several

problems arise with respect to this question, which are also considered in this thesis:

- Can machine learning techniques significantly improve forecasting performance

compared to econometric volatility models?

- What impact do different volatility proxies have on forecast performance and model

ranking?

- What influence does data frequency and economic theory have on modeling and

forecast quality?

8

- What influence do different forecast horizons have on forecast performance?

In addition, differences between time series and ML data structures will be discussed

and an explanation with theoretical justification will be given on how time series data

can be brought into a supervised machine learning data setup. Also, some recent results

concerning generalization bounds and stability bounds of machine learning methods in

dependent data are discussed and put into context.

To answer the research questions posed in this paper, we proceed in two main steps.

First, we discuss the properties of time series data, and more specifically financial market

time series data, as well as volatility in order to form a basic understanding. For this

purpose, we will also take a closer look at econometric models and machine learning

techniques. In the second step, we conduct an empirical study and use daily data of the

DAX. We approximate daily volatility in two ways, by first using daily data with one

observation per day and secondly, using high frequency data with several observations per

day. This two-pronged approach allows us not only to approximate and model volatility

differently but also to determine the influence of data frequency and the volatility proxy

on forecast quality.

1.4. Overview

This master thesis consists of seven chapters. In Chapter 2, we first discuss the theoret-

ical concepts of time series. Then, the characteristics of financial market time series are

described. After that, volatility is discussed in detail. In Chapter 3, the relevant econo-

metric models are presented and their properties are described. In Chapter 4, we start

with some necessary adjustments to apply time series in supervised machine learning

and discuss recent research results regarding algorithmic properties of dependent data.

Afterwards, the used algorithms are presented and necessary adaptations are analyzed.

In Chapter 5, model evaluation is discussed where the focus is on various error measures

and evaluation strategies for time-dependent data. Chapter 6 presents, evaluates, and

discusses the empirical results. In Chapter 7, a conclusion is drawn and reference is made

to the questions of the thesis. Subsequently, an outlook on future research projects is

given.

9

2. Theoretical Background

Time series analysis has had a major impact on research and practice over the last five

decades and is used in a wide variety of fields such as medicine, physics, economics,

finance, and others. The goal is to understand the characteristics and dynamics of the

series in order to derive regularities and make inferences. To do so, one tries to find a

stochastic model that describes the data as well as possible and can help to understand

the underlying process. Another elementary objective is the prediction of future states of

the time series. The importance of forecasting time series is of particular significance for

business and science. This is shown by the fact that many variables of interest evolve

over time, such as business cycles, price trends, unemployment rates, new infections,

or the electrocardiography, and it is important for optimal decision-making to have an

estimate of the series’ future behavior.

In this paper, we deal with forecasting volatility of the DAX. In econometrics, this is a

task of time series analysis, which we want to compare with machine learning methods

in order to answer the research questions outlined above. To achieve this, it is essential

to understand the theory of time series analysis, so that the peculiarities of the series can

also be accounted for in modeling and forecasting. Therefore, this chapter is first devoted

to the general theory of time series which is essential for a basic understanding. Next, we

explicitly consider financial market time series and their additional peculiarities. Finally,

these results will be used to take a closer look at volatility and to discuss it intensively.

2.1. Fundamental Theory of Time Series

Definition of Time Series

We know so far that a time series is the measurement of a variable evolving over time.

Kirchgässner et al. (2012) describe a time series as the observed realizations {rt}t∈T of

a time ordered stochastic variable {Rt}t∈T. To better understand this concept, we need

to use definitions from the theory of stochastic processes.

Following Webel and Wied (2016), we assume that (Ω,A,P) is a probability space, (E, E)

10

is a measurable space or state space, and T 6= ∅ is an index set. A family R = {Rt}t∈T
of measurable mappings

Rt : (Ω,A,P)→ (E, E)

ω 7→ Rt(ω)

is called a stochastic process. If we fix t0 ∈ T, then the stochastic process is a random

variable. On the other hand, if we interpret the index t ∈ T as time and fix ω0 ∈ Ω, we

call the mapping a path, trajectory, or realization, which is then called a time series

R(ω0) : T→ (E, E)

t 7→ Rt(ω0).

Considering a time series as a realization of a stochastic process shows that the series is

just an explicit realization of an arbitrary number of realizations of a stochastic process

with the same properties.1 Stochastic processes can be classified in terms of their index

set as well as their state space. We call the stochastic process discrete for a countable

index set and we call the process continuous for an uncountable index set. In the

present work, we mostly assume a discrete-time process which will be noted as {Rt}t∈T.

If continuous-time processes are considered, this is explicitly mentioned and is noted as

{R(t)}t∈T. Analogously, stochastic processes can be classified with respect to their state

space. In the case of (E, E) = (R,B) with B as the Borel σ-algebra, the stochastic process

is real-valued. It is essential to note from the definition that the order of the sequence

of observations in a time series is relevant and that successive values are generally not

independent of each other.

Moments of Time Series

From the interpretation of a time series as a realization of a stochastic process, the

question arises of how important values like expected value, variance, or covariance can

be determined. For this, we assume that {Rt}t∈T has a finite second moment E[R2
t] <∞.

Then the mean (2.1), variance (2.2), autocovariance (2.3), and autocorrelation (2.4)-

1See Kirchgässner et al. (2012).

11

functions of {Rt} at time t can be stated, as in Kirchgässner et al. (2012), as

µt = E[Rt] (2.1)

σ2
t = E[(Rt − µt)2] (2.2)

cov(Rt, Rt−τ) = E[(Rt − µt)(Rt−τ − µt−τ)] (2.3)

corr(Rt, Rt−τ) =
cov(Rt, Rt−τ)

cov(Rt, Rt)
. (2.4)

A short note on the autocorrelation function. This is a quantity that measure serial

correlation, that is, correlation over a fixed period of time τ . A significant autocorrelation

value indicates how the observation at time t depends on all past τ observations.

Stationarity

As mentioned by Webel and Wied (2016), moments of time series can be described by the

joint distribution of the process. This is because the distribution of a stochastic process,

under certain conditions, describes the process completely. In time series analysis, the

focus is especially on processes that exhibit the same properties over time. This means

that the joint distribution should be invariant to time shifts. This invariance property

of the distribution describes the strict stationarity condition. More formally, we define

this property following Webel and Wied (2016). A stochastic process {Rt}t∈T is strictly

stationary if for all n ∈ N, h ∈ R, all t1, . . . , tn, and r1, . . . , rn ∈ R,

Ft1,...,tn(r1, . . . , rn) = Ft1+h,...,tn+h(r1, . . . , rn)

holds. As Hassler (2007) states, strict stationarity means that the properties of the dis-

tribution do not depend on time. Only the distance between the individual components

is decisive. Accordingly, strict stationarity implies that expected value and variance are

independent of time and that autocovariance depends only on the time difference be-

tween two components. This means, for expected value (2.1) µt = µR holds for all t ∈ T,

and for variance (2.2) σ2
t = σ2

R and autocovariance (2.3) cov(Rt, Rt−τ) = cov(Rτ , R0)

holds for all τ, t ∈ T with τ < t.2

It is often very difficult to check the condition for strict stationarity in practice, so one

considers processes whose expected values are independent of time, where µt = µR

for all t ∈ T and the autocovariance function depends only on the time difference

2As mentioned above, we assume that the second moments exist and are finite: E[R2
t] < ∞. This

allows us to specify the variance and autocovariance functions.

12

cov(Rt, Rt−τ) = cov(R0, Rτ) with τ, t ∈ T and τ < t. These processes are consid-

ered weakly stationary. A weakly stationary process is in general not strict stationary

but conversely any strictly stationary process is also weakly stationary. In the following,

we only use the term stationarity to mean weak stationarity unless strict stationarity

is explicitly mentioned. As described earlier, the stationarity assumption affects the

moments of a process. In addition to the described effects, it is also true that the au-

tocorrelation of a stationary process is symmetric corr(Rt, Rt−τ) = corr(Rt, Rt+τ) and

less than or equal to one in magnitude |corr(Rt, Rt+τ) ≤ 1| for all τ .

At this point, we discuss another implicit assumption. As Kirchgässner et al. (2012)

describe, another key assumption in time series analysis is ergodicity. This assumption

states that, for a time series with a finite number of observations {rt}Tt=1, the empiri-

cal moments converge for T → ∞ to the true moments. This assumption is necessary

because, in practice, we have only one realization of the stochastic process and infer-

ence would thus be difficult. For example, if one wants to estimate the expected value,

variance, and autocovariance of a process using empirical analogues, it would be ad-

vantageous to have more than one realization at time t. Ergodicity cannot be tested

empirically and must be assumed. However, this only makes sense if we assume that the

first two moments of the process are constant over time. Thus, a process is ergodic if it

is stationary.

Filtration, Information and Martingale

One of the last two purely theoretical explanations concerns filtrations. This concept

stems from probability theory and serves in the present context as a set of information.

We again follow Webel and Wied (2016) for the definition and assume that (Ω,A,P)

is a probability space, T ⊆ R an index set. Further, let I = {At}t∈T be an isotonic

family of sub-σ algebras with At ⊂ A for all t ∈ T and As ⊂ At for all s, t ∈ T
and s < t. Then I is a filtration. We see from the definition of a filtration that it

is an increasing sequence of σ-algebras on measurable spaces. Moreover, we see that

filtrations can be interpreted as information at different times, where the information at

an earlier time is contained in the information set at a later time, and thus no information

is lost. However, we are interested in the information that arises from the stochastic

process itself, that is, somewhat simply speaking, the information about the past of

the process. This leads us to the concept of natural filtration. This is the smallest

σ-algebra generated by the past of the process up to time t, and by definition, for which

13

the stochastic process is measurable for all t ∈ T.3 We can define this special filtration

as It = σ({Rs}s≤t).4 To better use and understand this initially abstract concept, we

follow the idea of Kirchgässner et al. (2012) and take natural filtration It simply as a

set of information about the process up to time t and imagine that we know the current

value of the process as well as all past values. An example can be found in the appendix

of this paper for further explanations.

The last theoretical concept we consider concerns martingales. Hassler (2007) describes

a process as a martingale if the best prediction for a future value is its value today.

For an exact definition, we follow Hassler (2007) as well as Webel and Wied (2016).

We assume that (Ω,A,P) is a probability space, T5 is an index set, I is a filtration,

and {Rt}t∈T is a stochastic process on the given probability space. Further, let {Rt}t∈T
be measurable for all t ∈ T with respect to filtration I and let {Rt}t∈T be absolutely

integrable. Then {Rt}t∈T is a martingale if

E[Rt|Is] = Rs

for all s, t ∈ T with s < t. From the definition of a martingale, it is important to

note that conditional expectation is itself a random variable. This is best illustrated

by the example of a random walk, which represents a martingale. The corresponding

explanations can be found in the appendix of this thesis. The chosen example of the

random walk is also intuitive for the interpretation of a martingale and the importance

of this concept. On the one hand, they can be interpreted as a condition for a fair game.

On the other hand, they show a generalization of a sum of independently and identically

distributed random variables for which versions of the limit theorems exist.

As Hassler (2007) describes, it is also interesting that the expectation of the value at

time t + 1 is given by the value at time t. Thus, there is no expectation of an increase

in the value from t to t + 1. This observation allows us to formulate the martingale

concept in terms of differences, which is similar to the martingale definition except that

now E[Rt+1|It] = 0 must hold. The connection between martingales and martingale

differences is thus obvious. If {Rt}t∈T is a martingale, then {Pt = Rt − Rt−1}t∈T is a

martingale difference. Thus, a martingale difference indicates that the past of the process

3As Webel and Wied (2016) note, a process Rt is adapted if Rt is for all t ∈ T At-measurable. It is
therefore clear that any stochastic process is adapted to its natural filtration.

4See Hassler (2007).
5Note that the index set here is arbitrary and the definition is applicable for continuous as well as for

discrete-time processes. In the continuous case, one chooses T ⊆ [0,∞) with corresponding state
space (E, E) = (R,B). In the discrete-time case, on the other hand, T = N0 can be chosen.

14

has no effect on forecast quality. One can now show some properties of martingale

differences, which essentially state that martingale differences are, on average, zero and

free of serial correlation. Nevertheless, they do not have to be independent or stationary.

For a further discussion and a mathematical justification of these statements, we refer

to Hassler (2007).

Basic Time Series Models

Having laid out the main general theoretical concepts for stochastic processes, we now

briefly consider the basic processes that are relevant to the work. In doing so, we

essentially follow the descriptions of Brockwell and Davis (2002).

Probably the simplest model of time series analysis is a process consisting of independent

and identically distributed components that does not contain any trends, seasonality

structures, or cycles. These processes are called IID noise and are usually specified with

a mean of zero and constant variance. Formally, we describe such a process as

{Rt} ∼ IID(0, σ2). (2.5)

IID processes are thus stationary by definition and are relatively uninteresting as a

separate model class, but they form an important basis for more complex models. A less

restrictive assumption about the properties of the process {Rt} leads us to a very similar

process. If, instead of independence of the components, we assume only uncorrelatedness,

we arrive at white noise processes, which can be formally described as

{Rt} ∼ WN(0, σ2). (2.6)

From the properties of the processes, it can be seen that every IID noise process is a

white noise process, but the reverse is generally not true. Thus, the statements about

stationarity are also apply to the white noise process.

Another simple but important model is the random walk model, which is the basis

for pricing processes as described in the motivation section. The model with zero mean

describes an additive concatenation of independently and identically distributed random

components. Formally, the model can be described as

Rt = Rt−1 + ηt (2.7)

15

where ηt ∼ IID(0, σ2) is assumed.6 As can be easily verified, the random walk model is

an example of a non-stationary process, since its variance and autocovariance functions

depend on time. Similar to the random walk model, there is a random walk model with

drift. This model is identical to the simple random walk except that a drift term in the

form of a constant is included in the model. The random walk with drift can be formally

represented as

Rt = µ+Rt−1 + ηt (2.8)

with ηt ∼ IID(0, σ2). The random walk model with drift also describes a non-stationary

process. In this model, the drift term indicates the direction of the trend, i.e. where the

process is moving. For µ > 0, the process shows an upward trend and for µ < 0, a down-

ward trend. For µ = 0, the simple random walk model is obtained. Both random walk

models considered here represent processes in discrete time. However, we also consider a

model from continuous time and, therefore, briefly discuss Brownian motions. Accord-

ing to Webel and Wied (2016), these continuous-time processes can be approximatively

derived from a rescaled random walk and thus form the continuous counterpart to the

random walk. These processes are an elementary part of stochastic analysis and finan-

cial mathematics. In this paper, however, we only discuss one continuous time model

to gain derivations for volatility. For a detailed discussion of the underlying theory, we

refer to the literature such as Hassler (2007) or Webel and Wied (2016). To define a

Brownian motion, we assume that (Ω,A,P) is a probability space andW = {W (t)}t≥0 is

a stochastic process on it. We call W a Brownian motion with drift µ ∈ R and variance

σ2 > 0 if it satisfies the following properties:

P(W (0) = 0) = 1 (2.9)

The increments W (t1)−W (t0), . . . ,W (tn)−W (tn−1) (2.10)

with 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn are independent for any n

The increments W (t+ s)−W (s) ∼ N (µt, σ2t) are normal distributed (2.11)

for all s ∈ [0,∞) and all t > 0.

Some properties can be read directly from the definition of the process. The Brownian

motion has stationary increments, but is not stationary itself. Moreover, the definition

implies that W (t) ∼ N (µt, σ2t) holds. There are other interesting properties of these

6In some literature ηt ∼WN(0, σ2) is assumed instead of IID noise.

16

processes which we do not go into here but refer to the literature mentioned. Of special

importance to the topic of the present work are standardized Brownian motions, for

which µ = 0 and σ2 = 1 must hold from the above definition. These processes play

a special role in financial mathematics since they are essential to the definition of Ito

integrals and Ito processes.

All these technical definitions and concepts are central to a basic understanding of the

processes and derivations considered in this paper. We deal with volatility processes,

also called ARCH or GARCH processes. They represent a prominent class of processes

that use all of the concepts outlined here. A basic understanding of these processes is

also central to the application of ML methods to this class of processes.

All statistical tests used in the paper, such as the Ljung-Box test for uncorrelatedness, the

Dickey-Fuller test for non-stationarity or the Jarque-Bera test for normal distribution,

are no longer explicitly described here. These tests represent basics in time series analysis

and can be referenced in prior literature.

2.2. Financial Time Series

Having laid out the essential technical foundations for time series analysis, let us now

turn to the additional special features of financial market time series. The aim of this

work is to forecast the volatility of the DAX. According to Held (2018), the DAX is an

index which is a measure for the stock market and lists so far the 30 largest German

companies and thus approximately 80% of the share capital of domestic listed compa-

nies.7 The index is calculated according to the Laspeyres price index formula, whereby

the weighting of a share depends on the stock issuer’s free float market capitalization,

which is the difference between the issued shares and the shares held by the company

times the price per share.

We now derive a model equation to describe the return behaviour of the DAX. This

equation will play a central role in the further analysis of this thesis, since most deriva-

tions and calculations are based on it. The analysis of this process will then allow us to

work out all additional features of financial market time series that are important for

modeling and forecasting. It should be noted here that we consider all subsequent time

series models as models for observed data. The reason for doing so is to simplify the

notation and maintain the distinction between realization and process in this context.

7On September 20, 2021, the DAX was adjusted to include the 40 largest companies in the German
economy.

17

The Return Process

For the derivation of the return model, we follow the explanations of Fama (1965). He

argues that the price pt of a financial asset follows a random walk model with drift as

described in equation (2.8) so that

pt = pt−1 + µt + εt (2.12)

where pt is the price of the financial asset at time t, µt is the conditional mean also called

a drift term, and εt is a white noise process with E[εt] = 0, E[ε2t] = σ2
ε and E[εtεt−τ] = 0

for τ 6= 0 which is also called random innovation-term.

The return on financial assets at time t can now be defined as the change in price from

time t − 1 to time t, rt = ∆pt = pt − pt−1. If we now take into account that the price

process follows a model from equation (2.12), we obtain the return process

rt = µt + εt. (2.13)

As Danielsson (2011) describes, return is defined as the change in prices over a given

time interval. In finance, one looks at the relative change of prices, for which there are

various calculation methods. In financial market time series analysis, it is common to

use either discrete8 or the continuous returns. Here we use continuous returns, which is

defined as

rt = ln

(
pt
pt−1

)
. (2.14)

As Kirchgässner et al. (2012) note, the advantage of continuous returns is its symmetric

behavior. This means that from the same base value, an increase of 50% and a subsequent

decrease of 50% leads back to the initial base value, which is not true for discrete returns.

Moreover, the difference between the two return calculations is only relevant when large

returns are achieved, which is not the case with financial market returns. This follows

from the fact that ln(1 + rt) ≈ rt is true for small values of rt which can be verified with

the first order Taylor approximation.9 One more note on the derivation of the return

process from equation (2.13). The derivation performed is also valid for continuous

returns, for which we have to use the logarithm of prices ln(pt) instead of simple prices

8The or discrete return is defined as rt = pt−pt−1

pt−1
9Using f(rt) = ln(1 + rt) we get f(rt) ≈ ln(1 + 0) + 1

1+0 (rt − 0) = rt

18

pt. One practical thing needs to be mentioned at this point. The returns in this paper are

not calculated as the log difference between the closing prices of today and yesterday, but

rather as the log difference between the closing price and the opening price on the current

day. The reason for this is because of potential overnight effects that cause yesterday’s

closing price to differ from today’s opening price. Such effects may be triggered by news

that influence asset or stock prices arriving after the end of trading on the market, and

are priced in overnight. These effects generate overnight returns and create additional

volatility, which is often not accounted for in the construction of volatility proxies. This

affects one of the proxies used in this paper, realized variance.10 However, the derivations

here remain valid, as they are performed for general time points.

Stylized Facts

As briefly mentioned at the beginning of this paper, financial market time series exhibit

various peculiarities beyond those of time series that must be considered in modeling

and forecasting. According to Lommers et al. (2021), these peculiarities are due to the

fact that financial markets do not follow natural laws but rather reflect the result of

human actions, making markets irrational and difficult to predict. In addition, there are

other exogenous shocks such as natural disasters, pandemics, and political events that

are hard to predict but have an impact on financial markets. The resulting peculiarities

of financial market time series are summarized under the term stylized facts.

Stylized facts are based on empirical observations of financial market time series. To

present the most important stylized facts for the purpose of this paper, we consider daily

data of the DAX11 over a period from January 2000 to June 2022 with 5698 observations.

Figure 2.1a shows the described time series of the DAX. This is an example of a non-

stationary time series that seems to follow a positive trend. However, we are interested in

returns of the DAX which is presented in Figure 2.1b. First, it should be mentioned that

the return time series of the DAX moves around zero and does not follow a trend. The

mean value over the observation period is -0.0288% and the return series seems to show

a stationary behavior. An ADF test confirms that the hypothesis of a non-stationary

return series must be rejected for a significance level of α = 0.01. Another important

observation is that very large fluctuations and very small fluctuations in the returns are

clustered, meaning that large fluctuations follow previous large fluctuations and that

10See Shephard and Sheppard (2010).
11Data used from the Realized Library of the Oxford-Man Institute of Quantitative Finance, see Heber

and Sheppard (2009).

19

small fluctuations tend to follow small fluctuations. This clustering of return fluctua-

tions implies that the variance of returns is subject to variation over time and is not

constant. These emerging patterns of fluctuation are called volatility clusters and lead

to excess kurtosis, as shown in Figure 2.1c. We observe that the distribution has more

mass at the edges and in the center compared to a normal distribution. A distribution

with such properties is leptokurtic and the thick edges of a distribution are termed heavy

tails in the literature. In the present case, the kurtosis is 5.3 and is significantly larger

than the kurtosis of a normal distribution with 3. Thus, it is expected that the returns

are not normally distributed. This expectation is confirmed by the Jarque-Bera statistic.

The null hypothesis of a normal distribution of returns can be rejected at any conven-

tional significance level. The heavy tails and non-normality of the returns pose problems

because most models in finance are based on the normal distribution assumption, which

is obviously inadequate for the data at hand. This inadequate distribution assumption

has particular consequences in the area of risk modeling and forecasting as it can lead

to underestimation of risk. If a normal distribution of returns were assumed, this would

suggest that extreme return values occur only very rarely. Empirically, however, this is

not the case as we see, since heavy tails are an expression of extreme returns.

We now consider Figure 2.1d, which presents autocorrelation of the returns and is in-

tended to provide information on whether the random walk hypothesis and the return

process (2.13) derived from it appear reasonable for the data at hand. Most of the lags

are within the confidence interval, but there are some that go to the limit or beyond.

The Ljung-Box test indicates no significant autocorrelation up to lag four. Above a lag

order of four, the null hypothesis that the returns are not jointly autocorrelated must

be rejected.

The result of the Ljung-Box test for higher order autocorrelation seems somewhat strange

against the background of the graph and the level of the individual autocorrelation. As

Danielsson (2011) describes, this apparent autocorrelation may be due to synchroniza-

tion biases in the financial market data. To account for possible autocorrelation and

to obtain a mean model for process (2.13) it seems reasonable to fit an ARIMA model,

where the choice of the model happens stepwise with the help of information criteria.

This step is necessary to obtain residuals from the model that no longer exhibit auto-

correlation and are zero on average. One would then proceed with the residual series

instead of the observed series to model volatility.12

12See Kirchgässner et al. (2012).

20

4000

8000

12000

16000

2000 2005 2010 2015 2020
Time

C
lo

s
in

g
 P

ri
c
e

(a) DAX price series

−0.10

−0.05

0.00

0.05

0.10

2000 2005 2010 2015 2020
Time

R
e

tu
rn

(b) DAX return series

0

500

1000

1500

−0.10 −0.05 0.00 0.05 0.10
Returns

F
re

q
u

e
n

c
y

(c) DAX returns histogram

−0.10

−0.05

0.00

0.05

0.10

0 10 20 30
Lag

A
C

F

(d) Autocorrelation of DAX returns

Figure 2.1.: Different DAX return plots. The returns are calculated as the first difference
of logarithms of the DAX open to close prices.

Interestingly, the optimal model here is an ARIMA(0, 0, 0) model with zero mean, which

can be written as

rt = εt. (2.15)

The results so far suggest that the return process follows a white noise process similar

to equation (2.15). However, it does not seem plausible that the data can be explained

by this model, because it is clear from Figure 2.1b that the fluctuation in returns,

volatility, is larger in some periods than in others and therefore the variance of the

process is not constant. An indicator for existing dependencies caused by volatility

clusters is significant autocorrelation in the squared returns which can be seen in Figure

2.2a. The dependence of the squared returns reflects a non-constant, time-dependent

variance of the return process and shows not only that the process does not follow a white

noise process but also gives evidence of an autoregressive conditionally heteroskedastic

21

structure of the variance.

These results have several implications. First, it confirms Danielsson (2011) conclusion

and suggests that the returns are not autocorrelated. Second, the model choice confirms

the derived return process (2.13), which can be simplified even further as stated in

equation (2.15) but the dependence of the squared returns must still be considered.

To take the described dependencies into account, special attention must be paid to

volatility. This is the central variable of this thesis and is therefore analyzed separately

in the following chapter. It should be noted that there are many other properties of

financial market time series that are summarized under the term stylized facts. However,

these are not relevant for this thesis and we therefore refer to the literature such as Poon

(2005) for further details.

2.3. Volatility in Financial Markets

As described in the previous chapter, volatility plays a central role in this thesis. Until

now, volatility has been understood as the fluctuation of returns, which serves as a mea-

sure of return uncertainty in financial markets. Mathematically, volatility is measured

by either the variance or standard deviation of returns. As Danielsson (2011) notes,

a further distinction is made between unconditional and conditional volatility. In the

literature, a distinction is also made depending on the model, but volatility is usually

defined in terms of conditional variance or standard deviation. This is also evident from

the stylized facts, where we observe that returns exhibit heteroskedasticity leading to

volatility clusters. Simple variance or standard deviation describes the unconditional

volatility over the entire observation period, which is understood as the mean constant

value of the fluctuation in returns. This does not take into account the time dependent

structure so that given a set of information, the conditional volatility in the form of

the conditional variance or standard deviation is important. Linguistically, we follow

the literature and will not distinguish between conditional and unconditional variance,

because it is obvious from the derived equations which form is meant.

Volatility is a latent variable that has to be approximated, for which there are various

methods.13 The fact that volatility is an unobservable variable has a significant impact

on modeling and forecasting. The choice of a volatility proxy is therefore an essential

factor, as it has a decisive impact on forecast evaluation and model comparison. Research

by Andersen and Bollerslev (1998), Lopez (2001), Hansen and Lunde (2006a), Liu et al.

13See Poon (2005).

22

(2015) and others show that common volatility proxies, which have desirable statistical

properties such as unbiasedness, can be very noisy and are often the reason for poor

forecast performance of classical volatility models and may not lead to optimal model

selection.

In this paper, we consider two different proxies and use them to assess and compare the

forecasting performance of the subsequent models. We only consider volatility models

that have an autoregressive structure.

0.0

0.2

0.4

0.6

0 10 20 30
Lag

A
C

F

(a) DAX daily squared returns

0.0

0.2

0.4

0.6

0 10 20 30
Lag

A
C

F

(b) DAX realized 5-min variance of returns

Figure 2.2.: Autocorrelation of DAX volatility proxies. Calculated based on daily
squared returns and intraday squared returns with high frequency data

Daily Squared Returns Volatility Proxy

In the classical literature on modeling and forecasting financial market volatilities, the

most widely used volatility proxy is daily squared returns r2
t . To understand why this

proxy is used and what its properties are, we start from the yield process equation (2.15).

As described in the previous section, due to observed volatility clusters and the resulting

time-dependent variance of returns as well as the dependencies in squared returns, it

is implausible that this process adequately describes returns. In consideration of the

mentioned properties, we follow the explanations of Hassler (2007) and assume that

the random innovation term εt in equation (2.15) can be multiplicatively decomposed

into a pure random process scaled by a volatility process. Mathematically, this can be

represented by equation

rt = σtzt (2.16)

23

where zt ∼ IID(0, 1) is a pure random process, σ2
t is the volatility process or variance

which is assumed to be independent of zt. Further, we assume that volatility σ2
t can be

modeled by the past of the process, i.e.

σ2
t = f(rt−1, rt−2, . . .) (2.17)

holds. With equation (2.17) we can now show that the process from equation (2.16)

represents a martingale difference. We consider the amount of information It−1 which

is generated by the past of our process. Further we assume that rt is integrable and

therefore

E[rt|It−1] = E[σtzt|It−1]

= σtE[zt|It−1]

= σtE[zt]

= 0

(2.18)

holds, where the second equality follows from the independence of σt and zt and that σt is

It−1 measurable. The third and fourth equality come from the fact that by construction

zt is independent of rt−j for j > 0 and zt is zero on average. Overall, this shows that

the return process from equation (2.16) is a martingale difference. This property now

allows us to analyze squared returns r2
t as a proxy of volatility. It applies

var(rt|It−1) = E[r2
t | It−1]

= E[σ2
t z

2
t | It−1]

= σ2
tE[z2

t | It−1]

= σ2
t

(2.19)

where the first equality is a consequence of the martingale property from (2.18). The

third equality follows again from the independence of σ2
t and zt and that σ2

t is It−1

measurable and the fourth equality holds since z2
t is independent of rt−j for j > 0 and

has a variance of one. Overall, this shows that squared returns is an unbiased estimator

of the conditional variance of returns, justifying the use of squared returns as a proxy

for volatility. However, there is also much criticism towards this proxy. Andersen and

Bollerslev (1998) show that while squared returns is a conditionally unbiased estimator,

it is by construction subject to strong fluctuations. According to the authors, this

leads to significant underestimation in forecasting performance of models and possibly

24

to wrong conclusions being drawn when comparing models.

Hansen and Lunde (2005) come to a similar conclusion. In their study, they refer to

squared returns as a noisy proxy that is largely responsible for the poor forecasting

performance of volatility models. In another study, Hansen and Lunde (2006a) show that

using squared returns as the volatility proxy in choosing the optimal forecasting model

leads to inconsistent model rankings. They demonstrate that with probability converging

to one as the sample size increases, a non-optimal forecasting model is incorrectly chosen

as the best model.

To better understand why squared returns is an imprecise and noisy volatility proxy,

we follow the approach of Lopez (2001). For this, we assume that rt = εt = σtzt

with zt ∼ N (0, 1). From statistical theory, we know that the square of a standard

normal distributed random variable follows a chi-squared distribution with one degree

of freedom, thus z2
t ∼ χ2

(1) holds. In addition, we know that equation (2.19) is true for

the assumed case. The median of a χ2
(1) distributed random variable is 0.455, which

in the present case means that squared returns r2
t are smaller than 1

2
σ2
t in 50% of the

time. Now the question arises of what is the probability that squared returns deviate

from variance σ2
t by more than 50%. This probability can be determined by the χ2

(1)

distribution of z2
t . From this we obtain

P

(
r2
t ∈

[
1

2
σ2
t ,

3

2
σ2
t

])
= P

(
1

2
σ2
t ≤ r2

t ≤
3

2
σ2
t

)

= P

(
1

2
≤ r2

t

σ2
t

≤ 3

2

)

= P

(
1

2
≤ z2

t ≤
3

2

)

= P

(
z2
t ∈

[
1

2
,
3

2

])
= 0.2588

which indicates the probability that squared returns do not deviate more than 50% from

variance σ2
t . To answer our question, we need to determine the converse probability.

25

Thus, we obtain

P

(
r2
t /∈

[
1

2
σ2
t ,

3

2
σ2
t

])
= P

(
z2
t /∈

[
1

2
,
3

2

])

= 1− P

(
z2
t ∈

[
1

2
,
3

2

])
= 0.7412.

This probability indicates that squared returns deviate from variance σ2
t by more than

50% in 74.12% of the time. These results confirm the empirical results and show that

squared returns are an unreliable estimator of the volatility. Poon and Granger (2003)

note that, in addition to the problems already discussed, the use of this volatility proxy

also means that the interpretation of the results is significantly affected by it and can

lead to incorrect conclusions. They therefore suggest the use of absolute returns as the

volatility estimator. This is more robust to extreme values but is plagued by similar

problems as squared returns which is why we do not consider it in more detail. Overall,

it appears that the volatility proxies widely used in the literature, such as squared or

absolute returns, appear to be only partially suitable for approximating volatility. One

reason for using these proxies may have been the low availability of high frequency data.

The high costs of high frequency data may also be a possible reason for using noisy

volatility proxies.

Realized Variance

The second volatility proxy we consider in this paper, realized variance, is based on high

frequency data and also uses squared returns. As a measure of variation in returns,

squared returns are sampled in regular intervals and summed within a day.14 The choice

of realized variance as a second volatility proxy can be justified by its robust empirical

performance in many studies. Andersen and Bollerslev (1998) argue that employing re-

alized variance as a volatility proxy leads to significantly better forecasting performances

of GARCH models and therefore should be used. Blair et al. (2010) demonstrate that

one-step-ahead out-of-sample forecasts improve significantly when realized variance is

used as a volatility proxy instead of squared returns. They report an increase R2 of

regressions of realized volatility on one or more volatility forecasts by a factor of three

14The sampled squared returns from a regular interval like 5, 10, or 15 minutes are called intraday
squared returns.

26

to four. Hansen and Lunde (2006a) show that among different proxies, realized variance

best approximates the true variance and leads to a superior model ranking. In addi-

tion, Danielsson (2011) argues that realized variance offers several advantages as it is a

non-parametric approach that uses high frequency data and can be used with classical

models.

To define realized variance, we mainly follow Hautsch (2011), Poon (2005), and Zivot

(2011). The basic idea is that the returns can be observed not only once a day but

theoretically at an arbitrarily high frequency. To account for this, we denote m as the

trading frequency, i.e. the number of sampled returns per time interval of length ∆ = 1
m

and T as the number of observed days. Then mT = T
∆

is the number of all observa-

tions. In an example using the DAX, 8.5 hours are traded per day. If we assume that

returns are sampled every five minutes, then we have m = 8.5hrs
5min

= 510min
5min

= 102, mean-

ing that there are 102 five-minute intervals per trading day. To generally determine

the continuous intraday returns from time t − 1 + (j − 1)∆ to t − 1 + j∆ we define

rt−1+j∆ = pt−1+j∆ − pt−1+(j−1)∆ for j = 1, . . . ,m. Summing all returns for j = 1, . . . ,m,

we obtain the returns for day t as rt = rt−1+∆ + rt−1+2∆ + · · ·+ rt−1+(m−1)∆ + rt−1+m∆.

By squaring the individual intraday returns and summing them up accordingly, we then

obtain the definition of realized variance for day t as

RV
(m)
t =

m∑
j=1

r2
t−1+j∆, t = 1, . . . , T. (2.20)

From the definition of realized variance, the similarities and differences to squared re-

turns become clear. Instead of using only one squared return observation per day as a

volatility proxy, m squared returns are used here for this purpose. Similar to squared

returns, several questions arise: How can we use the realized variance as a volatility

proxy and what exactly we are approximating? What are the properties of this proxy?

To answer these questions, we need methods from stochastic calculus and continuous-

time stochastic processes. To keep mathematically demanding methods to a minimum,

we try to create an intuitive approach which, should still explain all essential formal

results. Similar to how (2.13) was derived for discrete-time processes, this can be done

for continuous-time processes. For this purpose, we assume that the log-price process

follows an Ito process or Ito diffusion, which can be thought of as the continuous coun-

terpart to the random walk model from (2.12) since the Brownian motion is a special

case of an Ito process. This is not mathematically correct, but should clarify the intu-

ition behind the concept. However, the price process can therefore be represented as a

27

martingale of the form

p(t) = p(0) +

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s) (2.21)

where µ(s) is a drift process, W (s) is a standard Brownian motion, and σ(s) is a volatility

process which is strictly positive and square-integrable. To determine the continuous

yield over interval [0, t], we determine r(0, t) = p(t)− p(0) and get

r(0, t) =

∫ t

0

µ(s)ds+

∫ t

0

σ(s)dW (s). (2.22)

If we assume in addition that the present series has a zero mean and no jumps, then it

follows that the returns are generated by a continuous time martingale

r(0, t) =

∫ t

0

σ(s)dW (s). (2.23)

This representation can be seen as a continuous counterpart to the yield process from

equation (2.16). Again, latent volatility σ(s) scales the random process dW (s), but now

continuously over time.15 Now, to establish the connection to realized variance, we first

consider the partitioning of interval [0, t] with Pn([0, t]) : 0 = so < s1 < · · · < sn = t.

For a stochastic function g, we define the quadratic variation over this partitioning as

QVn(0, t) =
n∑
i=1

(g(si)− g(si−1))2 (2.24)

and say that g is of finite quadratic variation if the limit QVn(0, t)
m.s.−→ QV (0, t) in

mean square exists. Quadratic variation measures how rough, jagged, or irregular the

realization of the process over interval [0, t] is. It is distinct from the variance of the

process because quadratic variation is dependent on the sample path, whereas variance

is a mean value over all possible sample paths. Turning to the yield process (2.23), its

quadratic variation is given by

QV (0, t) =

∫ t

0

σ2(s)ds. (2.25)

15The processes are given in integral representation because this is simpler for the derivations. Often
Ito processes are also represented in differential notation. For the processes (2.21) and (2.22), this
is dp(t) = µ(t)dt+ σ(t)dW (t). For process (2.23) it follows dp(t) = σ(t)dW (t).

28

The quadratic variation from equation (2.23) is also valid for more general Ito processes

like (2.22) because the drift process has a quadratic variation of zero. Thus, only the

quadratic variation of a standard Brownian motion over interval [0, t] has influence on the

variation of the return process. A proof that the quadratic variation corresponds exactly

to the expression (2.25) can be found in the appendix of this thesis. In addition, squared

variation is equal to integrated variance, which can be considered analogous to variance of

the returns from discrete-time models. More formally, it holds that QV (0, t) = IV (0, t)

since the return process (2.23) is continuous.

The relationship between realized variance and squared variation is that realized variance

can be used as a consistent estimator of squared variation of the return process. Thus,

daily realized variance RV
(m)
t in equation (2.20) converges in probability to the daily

squared variation of the return process QV (t − 1, t) = QV (0, t) − QV (0, t − 1) for

increasing sample frequency m→∞. More formally

lim
m→∞

P

(∣∣∣∣∣
∫ t

t−1

σ2(s)ds−
m∑
j=1

r2
t−1+j∆

∣∣∣∣∣ ≥ ε

)
= 0 (2.26)

holds. According to Poon (2005), the convergence statement follows from the conver-

gence theory for martingales and a proof can be found in Karatzas and Shreve (2012).

Moreover, the convergence result from (2.26) implies that at time t, volatility is the-

oretically observable as long as sample frequency m is high enough. Further, from

the previous derivations, we can state that squared variation measures the variation

of the realized return process and that realized variance is a consistent estimator for

it. As Andersen et al. (2001) note, it is not generally true that quadratic variation

coincides with daily conditional variance. Under the conditions that the price process

is square-integrable, the mean process is continuous, and the daily mean process is a

predeterminate process which is, given information It, independent of the daily return

process, then it can be shown that the conditional variance of the daily return process

is equal to the conditional expected value of the daily squared variation. Based on these

conditions and assuming the return process from (2.23), we get

var

(∫ t

t−1

σ(s)dW (s)

∣∣∣∣∣It−1

)
= E

[∫ t

t−1

σ2(s)ds

∣∣∣∣∣It−1

]

= E

[
m∑
j=1

r2
t−1+j∆

∣∣∣∣∣It−1

]
.

(2.27)

29

Under the assumptions, it then also follows that realized variance is an unbiased estima-

tor of the conditional variance of returns. The previous results even hold for equation

(2.23) when µ(t) = 0. The results are also reflected in the asymptotic theory for real-

ized variance. When the mean and volatility processes are independent of the Brownian

motion and assuming that the price process contains no jumps, Andersen et al. (2003)

show that standardized returns are normally distributed, i.e., rt√
RV

(m)
t

∼ N (0, 1) holds.

Barndorff-Nielsen and Shephard (2002) show that the asymptotic distribution of realized

variance is also standard normally distributed when the mean and variance processes

are independent of the Brownian motion and can be specified as

√
m

(
RV m

t − IV
2
√
IQ

)
∼ N (0, 1) (2.28)

where IV = IV (t−1, t) which is interchangeable with QV (t−1, t) and IQ = IQt(t−1, t)

is the integrated quarticity which can be consistently estimated in a similar fashion as

the integrated variance with RQ
(m)
t = m

3

∑m
j=1 r

4
t−1+j∆.

High-frequency data and continuous price theory offer many new possibilities for model-

ing and forecasting volatility. However, the key assumptions in the models are often not

tenable in reality and sampling at a high frequency poses some challenges. One problem

is that all presented results on realized variance, especially the consistency property,

were derived under the assumption that the price process is a martingale and an arbi-

trarily high sample frequency m can be chosen such that ∆→ 0 holds. The assumption

that continuous price data are available in any sample frequency is not true in practical

applications and the convergence statement (2.26) does not hold and therefore realized

variance is a biased estimator.16 As mentioned by Hansen and Lunde (2006b), in addi-

tion to the discretization of prices, there are other effects such as bid-ask bounces, noise

trading, different trading mechanisms, trading volumes, and asymmetric or asynchronous

trading in the markets that cause distortions in the calculation of realized variance.17

These effects are summarized in the literature as market microstructure effects and, as

Hansen and Lunde (2006b) show, cause spurious correlations in intraday returns. The

authors find that increasing sample frequency increases the bias of realized variance. To

16See Hautsch (2011).
17Bid-ask bounces occur when the price of an asset jumps back and forth between the bid and ask

price.
Noise trading corresponds to rumor-based trading, rather than data-based trading, and do not follow
rationality principles.
Asynchronous trading arises because different stocks or assets have different trading frequencies.

30

illustrate this, Hautsch (2011) states that in the presence of market microstructure ef-

fects, the observable price process is given by pt = p∗t +vt. If vt ∼ IID(0, ω2) is assumed,

it can be shown that

E[RV
(m)
t] = IV (t− 1, t) + 2mω2

holds. Thus, it is clear that for a higher sample frequency m, the bias of realized variance

increases and noise becomes more dominant in the estimation. To reduce the bias of

realized variance, Hansen and Lunde (2006b) propose the sparse sampling principle.

Instead of sampling at the maximum possible frequency, a coarser frequency such as

five-, ten- or fifteen-minute frequency should be used. However, the reduction of bias

comes at the cost of higher variance leading to a less precise estimation. Overall, there

is a bias-variance tradeoff with respect to the sample frequency m that must be taken

into account when choosing realized variance.

In the literature, realized variance is usually based on a five-minute frequency. Why

this frequency is a balanced choice is shown by Liu et al. (2015), who compare different

volatility proxies based on high frequency data and compare them with the realized vari-

ance on a five-minute basis. They use 400 volatility proxies with frequencies between one

second and fifteen minutes for different assets and stocks from the U.S. and U.K. over

a period of eleven years. The proxies are then compared with a data-based approach as

well as with respect to their forecasting performance using simple autoregressive fore-

casting models. The authors find no clear evidence that one of the considered proxies

systematically outperforms realized variance on a five-minute basis. There are indeed

proxies that perform better in some applications, but these are usually very complex

volatility proxies that were constructed specifically for the problem at hand. Moreover,

very complex proxies perform particularly well in the U.S. markets, but this good perfor-

mance is not transferable to other markets. Overall, realized variance on a five-minute

basis is a good approximation that is very difficult to outperform by other proxies. Based

on presented results, in this work we calculate the realized variance with a sample fre-

quency of five minutes.

Volatility of the DAX

Similar to daily squared returns, Figure 2.2b shows the autocorrelation of realized vari-

ance sampled at five minutes. The autocorrelation structure of realized variance appears

31

to be significantly stronger and more persistent than that of squared returns. This would

argue for autoregressively modeling realized variance directly instead of the squared re-

turns. We take up this idea in the following chapters not only for econometric models

but also for machine learning models. Now we consider the volatility approximation

0.0000

0.0025

0.0050

0.0075

0.0100

2000 2005 2010 2015 2020
Time

S
q

u
a

re
d

 R
e

tu
rn

s

(a) DAX volatility measured with daily
squared returns

0.000

0.002

0.004

0.006

2000 2005 2010 2015 2020
Time

R
e

a
liz

e
d

 5
−

M
in

 V
a

ri
a

n
c
e

(b) DAX volatility measured with realized
5-min variance

Figure 2.3.: DAX Volatility based on daily squared returns and intraday squared returns
with five minutes frequency

of the two estimators presented in Figure 2.3. First, it should be noted that strongly

and weakly volatile phases are captured in both charts at the same points in time. For

example, a spike in volatility can be observed in the early 2000s, which may be related

to the dot-com bubble. Also, effects of the 2007/2008 financial crisis of and the begin-

ning of the corona pandemic in March 2020 can be clearly seen in both figures. It is

remarkable that the swings are perceived at the same time, but at completely different

levels. This becomes clear when we see the different scales of volatility on the charts. On

average, squared returns seem to react much more strongly to financial markets shocks

than realized variance. This can lead to the interpretation that both volatility proxies

assess exogenous shocks to the market quite differently.

From these observations, the question arises, which of the two volatility proxies can be

considered a better approximation of quality. This question is difficult to answer. As

Lopez (2001) states, the noise in squared returns decreases for an increasing observation

period, so the proxy becomes more accurate. However, from a statistical and empirical

perspective, realized variance has more desirable properties and show better performance

in many studies compared to squared returns. Also, there is consensus in the academic

literature that bias in realized variance due to market microstructure effects no longer

matters with realized variance on a five-minute basis and realized variance is preferable

32

compared to squared returns. All in all, it is interesting and important to explore the

difference of the two volatility proxies as financial institutions base their risk management

on these proxies. In this paper, we want to check whether different proxies come to

different model rankings or if they give similar results.

At this point we would like to make a short practical remark, which is very rarely

mentioned in the literature on volatility in financial markets. While studying volatility

and its approximation, we notice that how one measures returns makes a significant

difference. If one were to determine returns as the log difference of closing prices at t

and t−1 and then square these to obtain the volatility proxy, this proxy cannot be used

for comparison with realized variance. The reason is that this measurement captures

overnight effects, because the closing price at t − 1 is not necessarily the same as the

opening price at t. If this is the case, these effects have an impact on returns and can

create additional volatility. Realized variance, on the other hand, uses squared returns of

the respective day, i.e., between opening prices and closing prices at time t, but between

trading days the overnight effects are not taken into account. Thus, to compare both

volatility proxies, returns must be measured as the log difference between the closing

price and the opening price at time t.

Volatility and Risk

To conclude this chapter, we briefly discuss the differences and similarities between

volatility and risk. According to Poon and Granger (2003), this is necessary because

it is often difficult to differentiate between volatility and risk. From a heuristic point

of view, volatility is an objective measure of uncertainty that also includes positive

events. Risk, in contrast, is a subjective measure that relates only to negative events

and depends on the individual utility function of investors. The uncertainty together

with the utility function describe the risk attitudes of investors. Following this logic

volatility serves as a central input variable in determining risk. According to Poon

(2005) and Danielsson (2011), in the context of financial time series analysis, volatility

is a measure of the spread of a distribution but not of its shape, which is the reason why

volatility is generally distinct from risk. Risk depends on the underlying distribution of

returns. Volatility can be equated with risk if one assumes that returns are normally

distributed or log-normally distributed, as those distributions are fully described by the

mean and variance. However, if other distributions are used with additional parameters,

these must also be considered. This means that, in general, volatility is not equal to

risk.

33

3. Econometric Forecasting Models

Volatility forecasting concerns all areas in which financial risk exists and has occupied

the scientific and business communities for many decades. The strong significance of

volatility forecasting in risk analysis and risk management comes from the fact that

volatility is the central input variable in determining risk. Accordingly, there numerous

of models to predict volatility. They must also account for stylized facts, especially the

facts that fluctuation of returns over time has variations and that clusters occur. As we

have seen, this is expressed by the observation that although returns are uncorrelated,

squared returns show significant and persistent autocorrelation. This dependence of

squared returns is used by the Autoregressive Conditional Heteroskedasticity (ARCH)

model introduced by Engle (1982). These models use past squared return observations

to model conditional variance to reflect the time-dependent structure of volatility, which

is also the basis for its name.

Since the introduction of ARCH models, there has been a boom in research from which

numerous generalizations and extensions have emerged, such as the GARCH model by

Bollerslev (1986). More modern approaches and models were gradually developed due

to the advent and greater availability of high frequency data. Volatility proxies such as

realized variance have become increasingly important in modeling and forecasting. As

Figure 2.2b shows, realized variance has a similar autocorrelation structure as squared

returns, but much stronger and more persistent. Researchers built upon this character-

istic, leding to autoregressively modeling realized variance and using it for forecasting.

Probably the best known and most widely used model for this purpose is the Heteroge-

neous Autoregressive Model of Realized Volatility (HAR-RV) by Corsi (2009). Instead of

a simple autoregressive model, this model uses a parsimonious, cumulative approach to

model and forecast realized variance. It attempts to describe volatility using the average

level of realized variance over the last day, week, and month.

34

3.1. The ARCH Model

To introduce the ARCH models, we follow Hassler (2007) and Kirchgässner et al. (2012).

The idea of these models is based on a return process that can be decomposed multi-

plicatively as in equation (2.16) and, in addition, it is assumed that conditional variance

can be modeled as a function of the past of the process, as in equation (2.17). Thus, we

can specify an ARCH(q) model with the following equations

rt = σtzt

zt ∼ IID(0, 1)

σ2
t = α0 +

q∑
i=1

αtr
2
t−i.

(3.1)

There are several things to consider with this definition. First, the conditional mean

is zero since ARCH processes are martingale differences, which is a consequence from

equation (2.18). Furthermore, it follows from the martingale difference property and the

law of total expectation that the return process is uncorrelated, where

cov(rt, rt+τ) = E[rtrt+τ]

= E[E[rtrt+τ |It+τ−1]]

= E[rt+τE[rt|It+τ+1]]

= 0.

(3.2)

Overall, it shows that we have a serially uncorrelated process with zero mean. Such

processes are described as white noise processes, but they are not necessarily independent

over time. Moreover, it follows from equation (2.19) that

var(rt|It−1) = σ2
t = α0 +

q∑
i=1

αir
2
t−i (3.3)

holds. Since we model conditional variance, which is strictly greater than zero, we have

to impose some conditions on the model parameter. To ensure that σ2
t > 0 applies,

α0 > 0 and αi ≥ 0 must hold for all i = 1, . . . , q. In addition to the positivity condition

for conditional variance, a finite and positive variance expression of the ARCH process

exists exactly when it is stationary. Given the definition (3.1) and that the non-negativity

35

conditions hold, the stationarity condition for the ARCH(q) model can be written as

q∑
i=1

αi < 1. (3.4)

A proof that the stationarity condition (3.4) is necessary and sufficient can be found

in Hassler (2007). From the definition of the ARCH process, we observe that it is able

to capture volatility clusters. If a large shock in returns occurs, subsequent values of

conditional variance are also larger because equation (3.3) is a monotonically increasing

function of past squared returns. The same applies to small shocks. The parameters

αi and the order q of the model plays a crucial role in modeling the volatility clusters.

The coefficients αi indicate how strong the volatility clusters are. The larger the values

of the model parameters, the more clearly volatility clusters emerge. The model order

q indicates how many parameters are necessary to reproduce volatility patterns with

the model. A larger value of q implies that more and larger clusters are present in the

data. However, it must be considered that the model order also determines the number

of parameters in the model and a large q would contradict the parsimony principle.

Another aspect to note from the definition (3.1) is that zt is assumed to be an IID

random process and a distribution is not explicitly described. This means that although

Engle (1982) assumes in his original paper that zt ∼ N (0, 1) holds, this assumption

is not mandatory so that it is also possible to choose other distributions that may

better describe fat tails such as a t-distribution. Nevertheless, even assuming a normal

distribution of the innovations, it is possible to approximate leptokurtic distributions.

This follows from the fact, that under this assumption, the conditional distribution

given the information of the past process is given as rt|It−1 ∼ N (0, σ2
t). This does not

imply that the joint nor the marginal distribution are normal. To show that leptokurtic

distributions can be approximated under the assumption zt ∼ N (0, 1) kurtosis must be

determined. We know that for a standard normally distributed random variable, the

kurtosis is E[z4
t] = 3 and, in addition, we assume E[σ4

t] <∞. This gives us

E[r4
t] = E[σ4

t z
4
t] = 3E[σ4

t] ≥ 3E[σ2
t]

2

⇒ E[r4
t]

E[σ2
t]

2
≥ 3.

(3.5)

Here, the second equality results from the independence of σt and zt as well as the

previously mentioned kurtosis. The inequality follows from Jensen’s inequality or also

36

from the definition of variance.1

The estimation of ARCH models is mostly done with the maximum likelihood method.

We do not discuss this method here in the context of ARCH models, but rather in

the following chapter on generalized ARCH models. The reason is that the likelihood

functions are almost identical, and the ARCH likelihood function can be derived from

the GARCH likelihood function. Before we move on to the generalized ARCH models,

the question arises why a generalization of the models is necessary at all. The reason

for the generalization of ARCH models can be easily understood from Figure 2.2a. Here

we see that the autocorrelation function of squared returns is present for a relatively

long time, i.e., it has a high persistence or long memory. This means that we would

have to choose a high model order q to capture volatility clusters, which contradicts the

sparsity principle. Moreover, due to the need for a high model order q, problems with

the non-negativity constraints may arise if the estimates are not properly restricted. The

restrictions may result in the dynamics being only partially or insufficiently captured,

resulting in inflexible conditional variance dynamics for the model.

3.2. The GARCH Model

The introduction of the generalized ARCH models (GARCH) by Bollerslev (1986) is

largely due to the practical needs and associated problems of the ARCH model men-

tioned. To describe the model, we essentially follow the explanations of Hassler (2007),

Kirchgässner et al. (2012) and Tsay (2005). The idea behind the GARCH models is

easiest to describe by thinking of the ARCH model as an AR process for volatility.

Accordingly, one can think of the GARCH model as an ARMA process for volatility.

Therefore, the main difference between GARCH and ARCH models is that conditional

variance additionally depends on the lagged values of the process itself. Thus, the

GARCH(p,q) process can be defined as

rt = σtzt

zt ∼ IID(0, 1)

σ2
t = α0 +

q∑
i=1

αtr
2
t−i +

p∑
i=1

βiσ
2
t−i.

(3.6)

1Jensen’s Inequality: For a convex function g and a random variable X, E[g(X)] ≥ g(E[X]) holds.
Note the similarity between Jensen’s inequality and variance var(X) = E[X2]− E[X]2 ≥ 0.

37

The most important difference is the volatility function, which is calculated by the

GARCH model according to (2.19) and is given as

var(rt|It−1) = σ2
t = α0 +

q∑
i=1

αir
2
t−i +

p∑
i=1

βiσ
2
t−i. (3.7)

Since we again use conditional variance for modeling, it must be greater than zero. To

ensure this, in addition to the conditions for the ARCH model α0 > 0 and αi ≥ 0 for

all i = 1, . . . , q, we also need restrictions for the GARCH parameters. Thus, for these,

βi ≥ 0 for all i = 1, . . . , p must also hold. Furthermore, very similar to the stationarity

condition of the ARCH model from (3.4), GARCH models must consider the appropriate

model parameters. Thus we call a GARCH(p,q) model that satisfies the non-negativity

conditions stationary with finite existing variance, if

q∑
j=1

αj +

p∑
i=1

βi < 1. (3.8)

holds. In the last section, we mentioned that the GARCH(p,q) model allows a more

parsimonious parameterization than the ARCH(q) model. This may not be obvious at

first glance since the GARCH model has p + q parameters and the ARCH model has

only q. The reason for the parsimony of the GARCH model compared to the ARCH

model is that a stationary GARCH model can be transformed into an ARCH(∞) model.

Thus, a GARCH process can also be written as

σ2
t = ν0 +

∞∑
i=1

νir
2
t−i (3.9)

with νi ≥ 0 and
∑∞

i=1 |νi| < ∞. A derivation of this result for a GARCH(1,1) process

can be found in the appendix of this paper. For a general proof we refer to Hassler

(2007). Overall, the representation (3.9) shows that GARCH with only p+q parameters

is a more flexible representation of an infinite ARCH process. This shows that GARCH

processes model an infinitely long dependence of volatility on the past of the process

itself. In doing so, the models use exponentially decreasing weights, i.e., νi → 0 for

i → ∞, so that squared returns far in the past are assigned a lower weight than more

recent ones. Moreover, the fact that GARCH processes can be represented as ARCH(∞)

processes has the consequence that all the results already described for stationary ARCH

processes also apply to GARCH processes. Thus, for GARCH processes, it also holds

38

that they are martingale differences and, under the assumption that zt ∼ N (0, 1) applies,

kurtosis can exceed the value three. It is also true for GARCH models that the normal

distribution assumption is not mandatory. Moreover, the choice of the model order p, q

is now also essential. Indeed, the larger the sum
∑q

j=1 αj +
∑p

i=1 βi is, the more often

phases with low volatility and phases with high volatility alternate.

Maximum Likelihood Estimation

Having introduced the ARCH and GARCH models and discussed their essential proper-

ties, we now consider the estimation of the models. The estimation of GARCH models

is a challenging task that involves many problems. Usually, ARCH and GARCH models

are estimated using the maximum likelihood method but there is no analytically closed

form for optimization and, thus, numerical methods must be used. The likelihood func-

tions for ARCH and GARCH models are almost identical and differ only by the number

of parameters, since a GARCH(0, q) is an ARCH(q) model. The derivations presented

here essentially follow Tsay (2005), Lee and Hansen (1994), and Zivot (2009).

In general, the likelihood function for time series models is somewhat more cumbersome

to determine than for data that satisfy the IID assumption. Technically speaking, this

means that for dependent data, the joint density cannot be represented as a product of

marginal densities. The trick for dependent data is to factorize the density based on the

equation f(x|y) = f(x,y)
f(y)

. Thus, we can specify joint density in the present case as

fθ(r0, r1, . . . , rT) = fθ(rT |rT−1, . . . , r0)fθ(r0, . . . , rT−1)

= fθ(rT |rT−1, . . . , r0)fθ(rT−1|rT−2, . . . , r0)fθ(r0, . . . , rT−2)

...

=
T∏
t=1

fθ(rt|rt−1, . . . , r0)fθ(r0)

=
T∏
t=1

fθ(rt|It−1)fθ(r0).

(3.10)

As Tsay (2005) notes, for a large sample size T the density of r0 can be neglected and,

since maximizing the conditional likelihood is equivalent to maximizing its logarithm,

we can generally state the conditional likelihood and the conditional log-likelihood for

39

the full data as

L(θ|r0, . . . , rT) =
T∏
t=1

fθ(rt|It−1) (3.11)

log(L(θ|r0, . . . , rT)) = l(θ|r0, . . . , rT) =
T∑
t=1

log(fθ(rt|It−1)). (3.12)

To better analyze the estimation of GARCH models, we consider a GARCH(1, 1) model

of the form σ2
t = α0 +α1r

2
t−1 +β1σ

2
t−1 and assume that the returns given past information

are normally distributed, so rt|It−1 ∼ N (0, σ2
t) holds. This can be justified by the fact

that this model specification is often sufficient to obtain a good model fit.2 The distribu-

tion assumption may often not be true, but according to Zivot (2009), it has been shown

that the maximization of the Gaussian likelihood results in the quasi-maximum likeli-

hood estimate, which is consistent and asymptotic normally distributed given a proper

model specification.3 Thus, we can write the parameter vector as θ = (α0, α1, β1)>,

where we actually do not know the value of σ2
1 but take it as given. In practice, this

parameter is either estimated or randomly determined. Thus, we can obtain the condi-

tional log-likelihood from (3.12) as

l(θ|r0, . . . , rT) ∝ −1

2

T∑
t=1

(
ln(σ2

t) +
r2
t

σ2
t

)
(3.13)

where σ2
t = σ2

t (θ) depends on unknown parameters because of the GARCH(1, 1) speci-

fication. To maximize the conditional log-likelihood, we can now perform the derivative

of this function with respect to the parameter vector θ and obtain the score function

∂l(θ|r0, . . . , rT)

∂θ
= s(θ|r0, . . . , rT)

= −1

2

T∑
t=1

(
1

σ2
t (θ)
− r2

t

(σ2
t (θ))

2

)
∂σ2

t (θ)

∂θ

=
T∑
t=1

∂l(θ|r0, . . . , rT)

∂θ

σ2
t (θ)

∂θ

(3.14)

2See Hansen and Lunde (2005).
3See Lee and Hansen (1994).

40

where the derivative
∂σ2

t (θ)

∂θ
must be partially differentiated according to the parameters

of the vector θ. Thus, one obtains

∂σ2
t (θ)

∂α0

= 1 + β1

∂σ2
t−1(θ)

∂α0

(3.15)

∂σ2
t (θ)

∂α1

= r2
t−1 + β1

∂σ2
t−1(θ)

∂α1

(3.16)

∂σ2
t (θ)

∂β1

= σ2
t−1 + β1

∂σ2
t−1(θ)

∂β1

. (3.17)

Overall, there is no closed analytic form, so maximization of the conditional log likeli-

hood must be performed using numerical methods. However, according to Zivot (2009),

there are still some problems with the optimization of the objective function. Especially

the initial values, the choice of the optimization algorithm, and the choice of the conver-

gence criterion are crucial for the stability of the estimation. In addition, the likelihood

function for models with many parameters is not always well-behaved, so that optimiza-

tion methods exhibit convergence problems and may only find local maxima. Overall,

the facts described here must be considered when modeling and forecasting volatility

with GARCH models. Attention should be paid to more parsimonious models under a

normal distribution assumption. This ensures that a more stable solution is obtained

when optimizing the likelihood, which represents a consistent and asymptotic normally

distributed estimate, and this approach is also supported by the studies mentioned.

3.3. The HAR-RV Model

The ARCH and GARCH models considered so far use past squared returns and past

values of the process to forecast volatility. However, according to Andersen et al. (2003)

these models are unsuitable for high frequency data such as realized variance and often

show poor forecasting performance. The authors were able to show that simple time

series models that directly model realized variance are significantly superior to GARCH

models in forecasting. Moreover, as we discussed in chapter 2, realized variance has

better properties than squared returns from a statistical point of view, such that An-

dersen and Bollerslev (1998) suggest using this proxy for model evaluation for GARCH

forecasts. Thus, it also seems obvious to model realized variance directly and make

forecasts.

Based on this idea, Corsi (2009) proposed the heterogeneous autoregressive model for

41

realized variance (HAR-RV) which is the best known and most widely used model for

realized variance. According to Corsi (2009), the HAR-RV model is an additive cascade

model that uses different volatility frequencies, starting from the lowest to the highest.

The economic justification of the model comes from the heterogeneous market hypothe-

sis introduced by Müller et al. (1993). This hypothesis essentially states that there are

various reasons why heterogeneities occur in financial markets, such as different market

players, constraints, time horizons, and geographical location, as well as many other fac-

tors. For volatility modeling specifically, different market participants and their different

time horizons play a particularly important role. It is assumed that different market ac-

tors have different time horizons and, therefore, perceive, react to, and cause volatility on

the markets differently. Depending on the different time horizons, market participants

can be divided into short-term traders who have a daily or higher trading frequency,

medium-term traders who adjust their positions approximately weekly and long-term

traders who adjust their positions only monthly. Based on this classification, only one

volatility component is relevant for each market participant. As Corsi (2009) explains,

this can be justified by the fact that long-term volatility is important for high-frequency

traders, as it influences future trends and risks. Thus, they adjust their trading strategies

to long-term volatility, causing short-term volatility. Meanwhile, short-term volatility

does not affect the trading behavior of long-term investors. Overall, this means that

long-term volatility affects short-term volatility, but short-term volatility does not affect

long-term volatility.

To formalize this idea, let σ̃t
(j) for j ∈ {d, w,m} be the latent volatility for one day σ̃t

(d),

one week σ̃t
(w), and one month σ̃t

(m). The frequency of the return process is determined

by the highest frequency of volatility. In the case described, this is daily volatility,

which coincides with integrated volatility and thus σ̃t
(d) = σ

(d)
t holds. Therefore, the

daily return process can be expressed as

rt = σ
(d)
t zt (3.18)

where zt ∼ N (0, 1) is assumed. To account for volatility components and the dependence

of long-term volatility on short-term volatility, the volatility processes σ̃t
(j) for j ∈

{d, w,m} are assumed to have an autoregressive structure and involve the expectation

42

of the next lower frequency. Corsi (2009) proposes the following formulation for it

σ̃t
(m) = c(m) + φ(m)RV

(m)
t−1 + ω̃t

(m)

σ̃t
(w) = c(w) + φ(w)RV

(w)
t−1 + γ(w)Et−1[σ̃t

(m)] + ω̃t
(w)

σ̃t
(d) = c(d) + φ(d)RV

(d)
t−1 + γ(d)Et−1[σ̃t

(w)] + ω̃t
(d)

(3.19)

where ω̃t
(j) are serially independent innovation terms and c(j) are constants for j ∈

{d, w,m}. RV
(d)
t−1, RV

(w)
t−1 and RV

(m)
t−1 denote the daily, weekly, and monthly realized

variance, respectively. It should be noted that a typical financial market is assumed

with 5 trading days per week and 22 trading days per month. Accordingly, the realized

variances can be determined as

RV
(d)
t−1 =

m∑
j=1

r2
t−2+j∆

RV
(w)
t−1 =

1

5

5∑
j=1

RVt−j

RV
(m)
t−1 =

1

22

22∑
j=1

RVt−j.

(3.20)

To derive the model, forward substitution must be done for each volatility process and

σ̃t
(d) = σ

(d)
t must be considered. This gives

σ̃t
(d) = c+ β(d)RV

(d)
t−1 + β(w)RV

(w)
t−1 + β(m)RV

(m)
t−1 + ω̃t

(d) (3.21)

where c = c(d) + γ(d)c(w) + γ(d)γ(w)c(m) and βd = φd, β(w) = γ(d)φ(w), β(m) = γ(d)γ(w)φ(m).

This model represents a three-factor model, with each factor corresponding to realized

variance at different time horizons. Taking advantage of the fact that ex-post volatility

is realized variance plus an error term and thus σ
(d)
t = RV

(d)
t +ω

(d)
t , equation (3.21) can

be rewritten as

RV
(d)
t = c+ β(d)RV

(d)
t−1 + β(w)RV

(w)
t−1 + β(m)RV

(m)
t−1 + ωt (3.22)

where ωt = ω̃t
(d)−ω(d)

t applies. Equation (3.22) is the HAR-RV model proposed by Corsi

(2009). The model now offers the advantage of directly modeling and forecasting realized

variance. Moreover, with this model it is possible to account for the high persistence

of realized variance from Figure 2.2b without using an overparameterized model. For

43

comparison, a simple AR model would have to account for 22 lagged variables of realized

variance to do so. The economic rationale for restrictions allows the HAR-RV model to

capture these dependencies with only three parameters. From this we see that only the

average volatility level of the last day, the last week and the last month is of importance

for modeling and forecasting.

Corsi (2009) also conducted a model comparison, showing that the HAR-RV model has

significantly better forecasting performance than a simple AR model and is on par with

a more complex ARFIMA model. As described by Clements and Preve (2021), many

other studies find that the HAR-RV model is also able to capture the strong persistence

of volatility. In addition, the model was found to have superior forecasting performance

in many cases, which led to its acceptance in the literature. As Clements and Preve

(2021) argue, despite the relatively simple structure of the model, it captures all relevant

characteristics of volatility, has good forecasting performance, and provides an economic

interpretation. Further, the authors describe that the simplicity is also reflected in

the fact that the model can be estimated using ordinary least squares (OLS). Given

the observations RV1, . . . , RVT , the OLS estimator for β = (c, β(d), β(w), β(m))> is the

solution to the minimization problem

min
ĉ,β̂(d),β̂(w),β̂(m)

T∑
t=23

(
RVt − ĉ− β̂(d)RV

(d)
t−1 − β̂(w)RV

(w)
t−1 − β̂(m)RV

(m)
t−1

)2

. (3.23)

If the errors ωt of the model (3.22) are homoscedastic, independent, and normally dis-

tributed, then the OLS estimator is asymptotically consistent.

The aim of this paper is to forecast the volatility of the DAX. For this purpose, we

have so far considered the classical econometric models, which are based either on the

observation of empirical facts, such as stylized facts, or on economic theory. All these

models are used going forward as benchmark models in comparison to methods from

machine learning for the evaluation of the volatility forecast.

44

4. Machine Learning Algorithms

When it comes to forecasting volatility, it seems obvious to use methods from machine

learning since they were designed specifically for prediction tasks. This is in line with the

argumentation of Lommers et al. (2021) and Athey and Imbens (2019), who describe

that the research paradigms of finance and machine learning are different, but also

that forecasting is a fundamental part of financial econometrics where machine learning

approaches can be beneficial. However, to apply machine learning techniques in the

context of financial market time series, additional issues must be considered.

Israel et al. (2020) note that ML methods have been successfully used predominantly

in areas where large amounts of data are available. In contrast, finance is not a big

data environment, where often only a single time series is available, which has a low

signal-to-noise ratio, is characterized by large dynamics, and may be non-stationary.

A possible solution for these problems is high frequency data, which offer several ad-

vantages and, therefore, are used in this thesis. First, high frequency data allow several

observations per day, thus increasing the amount of available data. Second, high fre-

quency data makes it is possible to determine more precise and informative quantities,

such as realized variance, which also have a higher signal-to-noise ratio1 due to the higher

measurement frequency. As Israel et al. (2020) state, financial market returns exhibit a

signal-to-noise ratio close to zero, which also infers their unpredictability. Specifically,

volatility measured by realized variance determined from high frequency data has a ra-

tio of 0.5329, whereas daily squared returns in the available data has a signal-to-noise

ratio of 0.3554. This confirms the argumentation that high frequency data can at least

partially solve the problem of low signal-to-noise ratio and shows that volatility approx-

imated by realized variance is more suitable than squared returns for forecasting with

machine learning. The problem of large dynamics and the possibility of non-stationarity

of the series is present not only for machine learning approaches, but also in classical

models. For example, GARCH models have problems with structural breaks in the data

and often their parameter values show that the processes are close to non-stationarity.

1The signal-to-noise ratio is here calculated approximately as SNR = µ
σ .

45

However, these problems have recently become more present in the machine learning

literature and we discuss them in more detail in the following chapter.

Another important aspect is that time series have a different data structure than data

used for machine learning. This particularly concerns the time-ordered structure of

financial market time series and their associated dependencies. The special structure of

time series makes it necessary to embed them in other spaces, like the Euclidean space,

in order to apply them to ML methods. However, the temporal structure of the data

also has implications for evaluation procedures, such as cross-validation or bootstrap

procedures, which must be adapted for time series. We consider these problems and

possible solutions in more detail in the following chapters.

Further reasons why ML methods may be suitable for forecasting return volatilities re-

sult from the stylized facts. We see from Figure 2.1 that returns exhibit heavy tails.

When modeling volatility with classical econometric models such as the GARCH model,

a priori a distribution and functional form must be specified that generates these data

and accounts as accurately as possible for the property of heavy tails. While the distri-

butional assumption and the specification of the relationship’s form allow for inference,

it can also lead to further problems if the assumptions do not adequately reflect reality.

ML methods, in contrast, do not a priori assume a distribution and a functional form,

but try to approximate a function based on the data which fits the data best. While

this often prevents inference, it has the advantage that no unrealistic distribution as-

sumptions have to be made and a non-linear modeling is possible.

All the described problems and possible solutions are the main reasons why we use

machine learning methods to forecast the volatility of financial market returns in this

paper. Another reason is that procedures from ML have not yet arrived in the economet-

ric toolbox. This may be due to various reasons, but the advantages of these methods

for specific areas of econometrics should be taken up and their potential exploited, which

this work aims to illustrate. Now the question remains, which ML algorithms can be

used to forecast volatility? Since we have 5.698 observations in our data, this rules out

methods from Deep Learning since these require far more data for an efficient applica-

tion. The choice of models is essentially based on the studies evaluated. Studies in ML

research by Christensen et al. (2021), Masini et al. (2021), and De Stefani et al. (2017)

show that, in addition to neural networks, models such as trees, random forests, and

support vector machines may also be suitable for forecasting return volatilities. Before

we consider these ML models and the necessary adaptations for their application in the

context of time series, we first discuss the theory of machine learning for time series.

46

From our point of view, this is necessary because none of the prior research deals with

this topic and it seems to be taken for granted that ML methods are applicable for time

series. Thereby, the different data structure and learnability guarantees will be in the

focus of the discussion.

4.1. Basic Theory of Machine Learning for Time Series

The Data Structure

The aim of this paper is to compare volatility forecasts with econometric methods and

machine learning techniques. In the context of machine learning theory, this is a su-

pervised learning problem. This describes, according to Shalev-Shwartz and Ben-David

(2014), that we guide the machine learning models to learn with the help of data where

the variable of interest is known. The data is split into two sets: first, training data to

learn from, and, second, unseen test data to check how accurately the machine learned.

The goal is to make predictions of a variable of interest y using various features x, taking

into account the learned patterns from the data.

Following Shalev-Shwartz and Ben-David (2014), we can formalize this concept by as-

suming that we have an input pair (xi, yi) which is independently and identically drawn

from an unknown distribution P. Thereby X d is the domain set or instance space and

the points of the domain set xi ∈ X d are usually vectors of covariates, which are also

called features or instances. The target variable yi ∈ Y is also called a label and Y
is correspondingly called a label set. Thus, we can specify the total training data as

S = {(x1, y1), . . . , (xn, yn)} ⊆ X d × Y . The goal now is to learn a function f(xi) such

that for new data f(xi) ≈ yi holds with high probability.

From the supervised learning setup, some differences in the structure and givenness of

a time series can now be seen. First, it becomes apparent that the data structure is

different from that of a time series. A time series is a time ordered sequence of the same

observation {rt}t∈T = {r1, . . . , rT} which usually has autocorrelation and cannot be di-

rectly represented as a pair of observations as described. An obvious way to put time

series into a supervised learning data format is, for example, if we think of predicting the

value of rt+1 and assuming that its last three observations {rt, rt−1, rt−2} are important.

Thus, we can write y = rt+1 and x = (rt, rt−1, rt−2)> in the previous notation. Following

this logic we use x = (rt+1, rt, rt−1)> to predict y = rt+2. This rationale can be continued

for the whole observed time series. Thus, we get a vector of labels with y ∈ RT−n−1 and

47

a matrix of covariates X ∈ R(T−n−1)×n and can represent them as

y =

rn+1

rn+2

...

rT−1

rT

X =

rn rn−1 . . . r1

rn+1 rn . . . r2

...
...

...
...

rT−2 rT−3 . . . rT−n−2

rT−1 rT−2 . . . rT−n−1

. (4.1)

With this idea, it is possible to put the time series into a data format that allows it to

be used for supervised machine learning applications. However, if we look more closely

at representation (4.1), we notice that the series {r1, . . . , rT} is divided into T − n − 1

series, each of which is represented by n past values from the original T observations.

This intuitive structuring of the data can be theoretically justified with Takens (1981)

embedding theorem. This theorem is mathematically very demanding and extends be-

yond the scope of this paper, so we do not present and prove it. Instead, we describe

and discuss its main implications, following the explanations of Bontempi et al. (2012)

and Jemwa (2003).

Takens’ embedding theorem forms the basis of nonlinear time series from the perspective

of dynamic system theory. The dynamic system theory offers an alternative view of a

time series. Instead of assuming that a time series is a realization of a stochastic process,

one assumes that the series and its randomness is generated by a non-linear determin-

istic system. The resulting behavior is deterministic chaos. The essential statement of

Takens’ theorem is, that given an observed time series rt, it is possible to reconstruct

an equivalent2 state space of the dynamics that generates the time series. This implies

that, for a deterministic system, time series rt can be used to reconstruct the state of

the system at a given time. Therefore, in this approach, a time series is viewed as an

observation of a dynamic system whose states s(t) vary over time within state space Γ,

according to the relationship

s(t) = Ht(s(t0)) (4.2)

with H : Γ → Γ as a function which describes the dynamics. The relationship between

the observed noise-free time series and the dynamic system that generates the series

2The equivalence here is meant as diffeomorphic equivalent, which means that there exists a bijective
continuously differentiable function φ whose inverse is also differentiable.

48

depends on the measurement and can be stated as

rt = G(s(t)). (4.3)

where G : Γ → RD is a measurement function3. Since functions H and G are usually

unknown, one cannot in general reconstruct the original states of the system.4 However,

it is possible under certain conditions to reconstruct an equivalent state space if all

available information is contained in the observed time series rt. This statement is

Takens (1981) embedding theorem and provides the formal basis for embedding a time

series into a lower dimensional Euclidean space. The embedding theorem implies that a

mapping φ : Γ → Rn exists, which describes the relation between a finite time window

of the time series according to

φ(s(t)) = {G(H−d(s(t))), . . . ,G(H−d−n+1(s(t)))} = {rt−d, . . . , rt−d−n−1} (4.4)

and the state of the dynamic system that creates the series. Thereby {rt−d, . . . , rt−d−n−1}
is an embedding vector or Takens’ vector, d is the lag time, and n is the number of past

observations that are considered. Takens (1981) showns that if φ is an embedding5 this

implies a smooth function f : Rn → R in the reconstructed state space such that

rt = f(rt−d, rt−d−1, . . . rt−d−n+1) (4.5)

holds. This representation implies that reconstructed states can be used for any purpose

of time series analysis such as estimating f . This approach to reconstructing the state

space implies and justifies the representation of the observed time series as in (4.1). It

should be noted, however, that we have implied d = 0 in our intuitive derivation of the

data structure (4.1), since the vector y is in Takens’ embedding theorem actually the

first column of the matrix X. To better understand this abstractly formulated approach,

a visual elaboration describing the steps can be found in the appendix of this thesis.

We now consider two additional aspects of this approach. First, the previous deriva-

tion assumes that f is a deterministic function that perfectly describes the time series.

However, since we usually have to estimate f and cannot assume that f is known, it is

3Here we deal with univariate time series so we assume for the measurement function D = 1.
4Since the two functions H and G are unknown, a diffeomorphic equivalence becomes evident here. If

one would not demand this it would be senseless to expect a reconstruction.
5Bontempi et al. (2012) describes an embedding as ”a smooth one-to-one differential mapping with a

smooth inverse”.

49

reasonable to assume that a noise term is also present and that the relation is given as

rt = f(rt−d, rt−d−1, . . . rt−d−n+1) + ut. (4.6)

Equation (4.6) is called nonlinear autoregressive (NAR) model. The second aspect to

consider is the choice of d and n. There are different approaches to determining d and n,

like order selection based on the autocorrelation function or information criteria, which

we do not discuss in detail in this paper but refer e.g. to Casdagli et al. (1991). Instead,

we briefly consider the intuition behind the selection based on the autocorrelation func-

tion and thus also describe our approach in this work. The logic in this approach of

how n is chosen can be seen from Figure 2.2 and the representation of the autoregressive

data structure in (4.1). The idea here is to choose n such that significant autocorrelation

structures are included in the embedding vectors. In other words, we choose n such that

rt and rt−n are nearly uncorrelated with each other. By doing so, we can use the auto-

correlation function and obtain at least n = 30 for daily squared returns r2
t and realized

variance RVt.
6 A value of n = 30 is not surprising in modeling and forecasting volatility,

as this just reflects the high persistence of volatility. Even though this approach is intu-

itive and described in the literature, there are potential problems with it. As Casdagli

et al. (1991) note, the autocorrelation function only measures linear dependencies and

may therefore be generally inappropriate. Nevertheless, this approach will be used here

and we refer to Casdagli et al. (1991) for a detailed discussion of potential problems with

it.

Statistical Learning Theory for Time Series

After discussing the different data structures between time series and supervised learning

methods, we now turn to the theoretical basis of machine learning. We focus on up-

per bounding the probability that learning will lead to an error. The area particularly

relevant to such a topic is statistical learning theory. The key assumption in standard

machine learning is that the data are independent and identically distributed S ∼ Pn,

which is not satisfied for time series because of their temporal dependencies and possible

non-stationary behavior. Because of these problems, it is therefore questionable whether

machine learning methods are suitable for forecasting time series and what learning guar-

antees exist. To answer these questions, we first describe the most important concepts of

6We only choose n with this approach for squared returns. To obtain features with realized variance,
we use the same regressors as in (3.20) from the HAR-RV model.

50

standard statistical learning theory and present recent research results in the context of

time series analysis. In doing so, we do not consider the concepts in mathematical detail,

but provide a verbal explanation. Nevertheless, to introduce the theory we need some

notation, and essentially follow Mohri et al. (2018) and Shalev-Shwartz and Ben-David

(2014) for such.

We already formulated the general goal of machine learning at the beginning of this

chapter and that remains the same even in the context of time series. We are looking

for a function f : X → Y such that for new data, f(xi) ≈ yi holds with high probability.

Here, we refer to f as the predictor or hypothesis. Set F denotes the set of all such

functions f and is called a hypothesis space or hypothesis class.7 To find out which

machine learning algorithm is best suited for a specific learning problem, an evaluation

criterion is needed to compare the performance of the different approaches. For this, we

define a measure of failure, also called the loss function, as ` : Y × Y → R+. The loss

function can be written as `(f(xi), yi) since it measures the output of chosen hypothesis

f and the observed true value. It indicates the costs of failures.8 Based on the loss

function, the risk function or the generalization error is defined as the expectation of

the loss function

RP(f) = EP[`(f(x), y)]. (4.7)

This quantity gives expected loss if we use f to predict yi from xi given a new observation.

The integral of expected value is with respect to distribution P of a new test point (xi, yi),

which is independent of f . Risk is a key measure in machine learning, as it measures

the average prediction quality of predictor f in terms of the loss function. Accordingly,

optimal risk can theoretically be found by the minimization problem f ∗ = arg min
f∈F

RP(f).

In practice, however, true distribution P is often unknown and, thus, RP(f) is also

unknown and must be estimated. This is done with the mean over the training data as

follows

R̂P(f) =
1

n

n∑
i=1

`(f(xi, yi)) (4.8)

7For example, F = {f(xi) : x>i β,∀β ∈ Rp} is the hypothesis space of linear functions.
8Some of the best known loss functions are the quadratic loss function `(f(xi), yi) = (f(xi)− yi)2 or

the absolute loss function `(f(xi), yi) = |f(xi)− yi|.

51

and is called empirical risk or training error. Accordingly, empirical risk minimization

can be performed with f̂ ∗ = arg min
f∈F

R̂P(f). The approach of empirical risk minimization

is intuitive and, under the assumptions of independent and identically distributed data

and a bounded loss function `, it is easy to show that empirical risk is an unbiased

estimator of true risk and, based on the law of large numbers, it is also consistent and

R̂P(f)
P−→ RP(f) holds.

Although the preceding argument partially justifies the use of empirical risk minimiza-

tion, there are practical problems with it. According to McDonald et al. (2011), these

problems arise from minimizing empirical risk, which relates only to the training data,

and possibly from ignoring the fact that we are looking for a predictor that has a small

true risk. From a practical point of view, this means that we only have a finite amount

of data and, therefore, there may be large differences between true risk and empirical

risk, especially when F is large and n is small. Thus, overfitting the data and poor

out-of-sample prediction performance can occur with this approach.

There are two strategies to avoid these problems, according to McDonald et al. (2011).

First, one can restrict hypothesis space F , and second, one can adapt the optimization

problem by penalizing for high model complexity. Nevertheless, the true distribution

of the data remains unknown and, therefore, true risk cannot be determined. To cir-

cumvent this problem, upper bounds for the risk are considered, which hold with high

probability. This resulting theory is called probably approximately correct (PAC). Ac-

cording to McDonald et al. (2011), the core of the PAC model is that for a hypothesis

f from a finite hypothesis space F with probability of at least 1− δ,

RP(f) ≤ R̂P(f) + Θ(C(F), δ, n) (4.9)

holds, where C(F) is a measure of model complexity, n is the number of training data,

δ is the confidence parameter, and Θ represents a function of all these parameters.9

There are a few special features to note with the PAC model. First, the PAC model

is a distribution-free approach. Second, the training data and the test data are used

to determine the error. Third, the PAC model deals with the learnability issue for a

class of learners F and not a specific learner. Fourth, the model considers only finite

hypothesis sets F .

There are also several other learning models that consider infinite hypothesis classes

or allow for algorithm-specific generalization bounds. Probably the best-known exten-

9For a proof of statement (4.9) we refer to Mohri et al. (2018).

52

sions which allow infinite hypothesis sets are the Rademacher complexity and the VC

(Vapnik-Chervonenkis) dimension. According to Mohri et al. (2018), the general idea of

Rademacher complexity and VC dimension is that the infinite case is reduced to a finite

case and then proceeds as in the PAC model. The reduction of complexity of hypoth-

esis space F is done differently between the two approaches. Rademacher complexity

is used by Rademacher learning guarantees to measure the complexity of the family of

functions and gauge to what degree it can fit random noise. This uses the correlation

between random noise in the data S and the family of functions. The more complex

the considered function classes are, the more they correlate with random noise in the

data. In contrast, generalization bounds with VC dimension use the growth function

for a hypothesis set F . This gives the maximum number of possibilities with which n

points can be uniquely classified by hypotheses from F and, thus, can be interpreted as

a kind of size of the hypothesis space. Thereby, we say that hypothesis set F shatters

a set A with n points if it realizes all possible ways of labeling the n points of A, that

is, when the growth function equals 2|A| = 2n. Based on these considerations, the VC

dimension of hypothesis space F is defined as the maximum size or cardinality of the

set it can shatter.10

Each of the PAC, Rademacher complexity, or VC dimension approaches allows us to

determine learning guarantees in terms of probability bounds, essentially corresponding

to the one stated in (4.9). They fundamentally differ only in the last term and can be

more complex. However, these bounds do not consider specific algorithms but apply to

arbitrary algorithms using F as a hypothesis space. In order to consider the respec-

tive algorithms or whole classes of algorithms with similar properties and to determine

generalization bounds based on them, the algorithmic stability is used and the resulting

bounds are called stability bounds. To define the stability of an algorithm, it is as-

sumed that the loss function ` is bounded and two training data sets S and S ′ are used

which differ only with respect to one point. A learning algorithm is said to be uniformly

β-stable if the algorithm is trained on both data sets and the respective losses of the

corresponding hypotheses do not differ by more than β. The resulting generalization

bounds are also similar to (4.9), differing only in the last term and now additionally

depending on β. To determine probability bounds for the generalization error in all

the described approaches and to measure how quickly empirical risk converges to true

risk, concentration inequalities are used. The most frequently used inequalities for this

10For example, if we consider F = {f(x) = 1(x ≤ θ), θ ∈ R}, then this hypothesis set can shatter two
points, but not three.

53

purpose are the Hoeffding and McDiarmid inequalities.11 All these inequalities assume

that the data are independent and identically distributed, so that the results from the

standard theory of statistical learning are not directly transferable to time series.

However, time series are playing an increasingly important role in theory and applications

and research in this area has made some progress in recent years. Most generalization

bounds for time series assume that the series is stationary and mixing. We have already

defined stationarity, but mixing is a concept that deals with how to relax the indepen-

dence of two events P(A ∩B) = P(A)P(B). Intuitively, a stochastic process is mixing if

events in the past and future become independent as the time interval between events

increases. Figure 4.1 shows the intuition of mixing.

t t+ k

B A

Figure 4.1.: Illustration of the mixing property following Kuznetsov and Mohri (2018)

The dependence of past events B on future event A decreases for increasing k, so that

for a sufficiently large k the events are independent. In other words, if the time distance

between past and future events becomes large enough, the events approach asymptotic

independence and, therefore, mixing can be interpreted as a measure of weak depen-

dence. There is to note that mixing of stochastic processes and the associated asymptotic

independence relate to an appropriate metric. It is also interesting to note that IID pro-

cesses by definition satisfy the conditions of mixing and, therefore, suggests that many

statements about learnability of IID processes are also applicable to mixing processes if

they achieve asymptotic independence quickly enough. There are many ways to define

mixing, with the β-mixing being of particular importance for statistical learning theory

for time series. A detailed overview of different types of mixing and their definitions can

be found in Bradley (2005).

There are several definitions of β-mixing and the definition below follows that of Mohri

and Rostamizadeh (2007). They define β-mixing for a stationary sequence {Rt} as

β(k) = sup
t

E
B∈σt

−∞

[
sup

A∈σ∞t+k

∣∣∣P(A|B)− P(A)
∣∣∣] k→∞−→ 0 (4.10)

11A detailed overview of the main concentration inequalities can be found in the appendix of Mohri
et al. (2018).

54

where σji is the σ-algebra generated by random variable Rk for i ≤ k ≤ j with i, j ∈
Z ∪ {−∞,∞}.
The definition (4.10) of β-mixing is very general and technical. But it is easy to un-

derstand when considering a relaxation of independence. While mathematically in-

exact, the concept is intuitively appealing. For a β-mixing process, it holds that

β(k)
k→∞→ 0 and, since we can write P(A|B) − P(A) = P(A∩B)−P(A)P(B)

P(B)
, this implies

P(A ∩ B)
k→∞→ P(A)P(B). Thus, a process is β-mixing if for an increasing k, the joint

distribution of events is equal to the product of the individual distributions of events.12

In the literature, many well-known time series processes have been shown to be mixing

processes. Fryzlewicz and Rao (2011) determine lower and upper limits for mixing pa-

rameters of ARCH processes and non-stationary ARCH processes. Carrasco and Chen

(2002) and Lindner (2009) describe that GARCH processes are β-mixing. Varied re-

sults are also known in the context of machine learning. Karandikar and Vidyasagar

(2009) show that under additional assumptions, an algorithm whose predictors risk can

be upper bounded in the case of IID data, it is also possible to upper bound the risk of

the same predictor when the series at hand is stationary and β-mixing. Based on these

results, the authors determine bounds on the generalization error not only in the IID

case, but also for β-mixing. Rademacher complexity bounds for dependent, stationary,

and β-mixing processes are determined by Mohri and Rostamizadeh (2008). They show

its applicability to classification tasks and note that similar generalization bounds can

be derived for regression applications. These results were extended by Kuznetsov and

Mohri (2014), who show that Rademacher complexity bounds also hold for nonstation-

ary β-mixing processes. For this, they use discrepancy, which describes the difference

between path-dependent risks of two probability distributions. In other words, discrep-

ancy can be interpreted as the difference between two probability distributions, which

serves as a measure for non-stationarity while accounting for the hypothesis set and the

loss function.13

Further generalization bounds based on VC dimension and algorithmic stability for sta-

tionary mixing data have also been developed. Yu (1994) generalizes the theory of VC

dimension for stationary mixing processes, from which bounds for the generalization er-

ror can be derived. Mohri and Rostamizadeh (2007) derive stability bounds that directly

12See McDonald et al. (2011), who additionally note that for stationary sequences β-mixing can also
be written in terms of the total variation norm β(k) = ‖Pt×Pt+k−Pt⊗t+k‖TV , where Pt, Pt+k, and
Pt⊗t+k are the restrictions of P to σt−∞, σ∞t+k and (σt−∞, σ

∞
t+k) respectively.

13For a detailed definition and explanation of the discrepancy approach see Mohri and Muñoz Medina
(2012).

55

generalize the IID stability bounds and demonstrate their applicability to Support Vec-

tor Regression and Kernel Ridge Regression. In recent years, many other results have

been obtained on the learnability of dependent data, with almost all work assuming the

properties of mixing and stationary. Particularly noteworthy is the work of Kuznetsov

and Mohri (2015), who note that these assumptions are often not met. Thus, the ques-

tion arises whether time series that are not stationary and have no mixing properties

can be learned at all. To answer this question, new tools for the analysis are needed.

Kuznetsov and Mohri (2015) propose using generalization bounds with discrepancy to

develop new algorithms. The idea is to optimize the upper discrepancy bounds directly.

The resulting optimization problem can then be solved efficiently, as the authors show

with an example of kernel-based regression, since a convex optimization problem results.

In addition to the development of new algorithms, this theory allows analysis of known

algorithms in more detail.

Overall, the literature provides a theoretical basis for using machine learning techniques

in a time series context. From the literature described, machine learning algorithms

seem to be particularly suitable for volatility forecasting because GARCH processes are

β-mixing and there are learning guarantees for stationary and non-stationary β-mixing

processes. Altogether, this allows for the interpretation that GARCH processes can be

learned regardless of whether the process is stationary or not and provides a theoretical

justification for the use of machine learning methods for volatility forecasting.

4.2. Trees

We now introduce and describe the ML models used in the paper. As discussed earlier,

the choice of methods considered is justified by the models’ performance in the literature

and the small amount of data. Essentially, we use trees, random forests, and support

vector regression. Our remarks describing the methods essentially follow the books by

Hastie et al. (2009) and James et al. (2013).

Decision Trees

Similar to the well-known probability tree, a decision tree is a directed graph with a

tree structure running from top to bottom. The tree consists of a root node at the top

that contains all features or covariates and divides downwards into further nodes up to

leaves that mark the end of the tree. Each node to be split is called a parent node and

the resulting nodes are called child nodes. Based on a single covariate, parent nodes are

56

split into two child nodes using a binary decision rule. The division of parent nodes is

chosen such that both child nodes are as heterogeneous as possible, but with the greatest

possible homogeneity within the nodes. Then the two child nodes become parent nodes

themselves and subdivide in the same way. This procedure is carried out until a stop

rule is applied. A simple decision tree with two covariates is shown in Figure 4.2.

root

node

X1 ≤ t1

leaf R1

X2 ≤ t2

leaf R2

node

leaf R3

X1 ≤ t3

node

leaf R4

X2 ≤ t4

leaf R5

Figure 4.2.: Schematic representation of a decision tree based on Hastie et al. (2009)
with two covariates used for binary decisions.

It is possible to further distinguish decision trees. We call it a classification tree when

the dependent variable is categorical and a regression tree when the dependent variable

is metrically scaled. There are various algorithms that automatically generate decision

trees, and here we focus on the classification and regression trees, CART algorithm.

Classification and Regression Trees

We assume that we have training data S = {(x1, y1), . . . , (xn, yn)} with feature vec-

tor xi = (xi1, . . . , xid)
>. The CART algorithm decomposes the covariate space into

d-dimensional hyperrectangles. In other words, the covariate space is divided into dis-

joint subsets. Thus, CART attempts to approximate the underlying true function using

piecewise constant functions. Figure 4.2 below shows the disjoint decomposition of the

two-dimensional covariate space for the decision tree from Figure 4.2. In doing so, the

algorithm must decide by which covariate to split and determines the split points for

it. To better understand this idea, we essentially follow the mathematical description of

Hastie et al. (2009).

For this, we suppose the covariate space is decomposed into M d-dimensional non-

overlapping hyperrectangles R1, R2, . . . , RM and the variable of interest yi is modeled in

57

X2

X1t1 t3

t2

t4

R3

R1

R2

R4

R5

Figure 4.3.: Decomposition of a two-dimensional covariate space into rectangles. The
presented decomposition corresponds to the representation of the decision
tree from Figure 4.2 (Hastie et al., 2009)

each of the regions Rm as a constant value cm for m = 1, . . . ,M with

f(xi) =
M∑
m=1

cm1(xi ∈ Rm) (4.11)

where 1() is the indicator function and cm is a constant function of the respective region

Rm. To find the best possible model fit for a regression tree T , the sum of squared

distances

SSE(T) =
n∑
i=1

(yi − f(xi))
2

=
M∑
m=1

n∑
i=1

(yi − cm1(xi ∈ Rm))2.

(4.12)

is used. The goal of the algorithm is now to find the optimal decomposition of the

covariate space in M d-dimensional hyperrectangles and function cm such that SSE(T)

is minimized. For any decomposition of the covariate space this is achieved by choosing

ĉm =
1

nRm

∑
xi∈Rm

yi (4.13)

58

where nRm corresponds to the number of observations in region Rm. In other words, this

shows that using the mean over all yi in the respective region Rm minimizes the sum of

squared distances. According to James et al. (2013), to find the optimal decomposition

of the covariate space into M hyperrectangles such that equation (4.12) is minimized,

the algorithm starts at root node R with all observations and chooses the best split

covariate xj with corresponding split point s. To split all observations with respect

to covariates xj, a binary split is performed, where RL(j, s) = {X | xj ≤ s} and

RR(j, s) = {X | xj > s} is chosen so that the largest possible reduction of the sum of

squared distances is achieved. To determine the reduction of the sum of squared distances

by binary partitioning, the difference of the sum of squared distances in the root node

before and after the split must be determined. Therefore, all covariates X1, . . . , Xd and

all possible split points s for the covariates are considered and these are chosen so that

the resulting tree has the smallest possible SSE(T). The best split variable xj and the

corresponding split point s are determined from the minimization problem

min
j,s

(
min
cL

∑
xj∈RL(j,s)

(yi − cL)2 + min
cR

∑
xj∈RR(j,s)

(yi − cR)2

)
. (4.14)

For an arbitrary choice of j and s, the internal minimization problem is solved by

ĉL =
1

nRL

∑
xi∈RL(j,s)

yi

ĉR =
1

nRR

∑
xi∈RR(j,s)

yi.
(4.15)

After finding optimal split variable xj and corresponding split variable s, the data is split

into two disjoint subsets and the described splitting steps are repeated for the two new

regions. This procedure could then be carried out until there is only one observation in

each leaf, which would result in overfitting to the data. However, it is also conceivable

that a tree that is too small, with little depth, would fail to detect significant structures

in the data. Thus, it can be seen that tree depth determines the complexity of the tree

and must be taken as a tuning parameter that should be determined from the data.

To counter these problems, there are several approaches. Particularly well known is the

cost-complexity pruning. In this approach, splitting of the covariate space is stopped as

soon as the child nodes contain a fixed number of observations. This initially leads to a

very large and deep tree which is then pruned such that a specified objective function

59

is minimized depending on tree size and goodness of fit of the tree. For a detailed

discussion of this subject, we refer the reader to the book by Hastie et al. (2009). In

general, trees provide a simple structure that can be easily interpreted and allow easy

handling of all covariate types. If the tree is large enough, good performance can be

achieved. However, it is problematic that they tend to overfit, since they are unstable

and small changes in the data can lead to completely different trees. The main reason

for the instability and the resulting high variance is the hierarchical structure of the

method. This structure leads to the fact that an error in the first decompositions has an

effect until the last decomposition. Overall, this describes the well-known bias-variance

tradeoff that applies to trees, as they have a low bias and high variance.

4.3. Random Forest

To eliminate the problems of instability and the resulting large variance of trees, several

approaches have been proposed in the literature. According to James et al. (2013), the

best-known proposed solutions are based on reducing the high variance for a procedure

with low bias. The basic idea is that through an ensemble of trees, the bias remains

the same while the variance is reduced. The intuition behind these approaches is easy

to understand from a statistical point of view, since for independently and identically

distributed random variables Z1, . . . , Zn with variance σ2, the arithmetic mean Z̄ has

a lower variance σ2

n
compared to that of each individual variable. This demonstrates

the idea that averaging a set of observations leads to a reduction in variance. Based

on this intuition, Breiman (1996) proposes Bootstrap Aggregation (Bagging). In this

method, B bootstrap samples are drawn with replacement from existing training data

and one tree per bootstrap sample is fitted. To obtain predictions, individual trees are

aggregated and the mean of all predictions is used. One problem with this method

is that while the prediction function of B trees is from the same distribution, they

are not necessarily independent or uncorrelated because they are generated from very

similar data. This correlation between the trees influences variance reduction, because

the higher the correlation, the higher the variance of the ensemble’s prediction function.

To generate an ensemble of uncorrelated trees, Breiman (2001) proposes the random

forest algorithm. The idea behind this approach is to reduce correlation between trees

without increasing the variance of each tree too much. Random feature selection achieves

this by randomly selecting mtry from the total d covariates and searching for the optimal

split variable. This step leads to a decrease in correlation between individual trees, since

60

the ensemble uses randomly generated and different trees. This intuitive description

we want to analyze mathematically more exactly, following the books of Hastie et al.

(2009) and James et al. (2013). In addition, an essential adjustment must be made to

be able to use the Random Forest algorithm for time series data. This concerns the

bootstrap method, which is not applicable in the classical form to time series since these

exhibit temporal dependencies and a resampling with replacement would destroy this

structure. To take this adaptation into account, we first introduce the algorithm and

speak of bootstrap methods in general, and then explain the Moving Block Bootstrap

(MBB) method, which is used in the present work.

Bootstrap Aggregation

To obtain an ensemble of trees, we assume the training data S = {(x1, y1), . . . , (xn, yn)}
with feature vector xi = (xi1, . . . , xid)

>. From these data, we draw B bootstrap samples

S∗1 , . . . ,S∗B with length n, where for all b = 1, . . . , B a CART T ∗b with prediction function

f̂ ∗b are created. These trees are grown without pruning and until a minimum node size

nmin is reached. Finally, we can take the mean over all B prediction functions f̂ ∗b (x) and

get the bagged predictor

f̂BBag(x) =
1

B

B∑
b=1

f̂ ∗b (x). (4.16)

As described heuristically at the beginning of this chapter, the bagging procedure is

particularly suitable for models with low bias and high variance. This is especially

true for tree models, since they are not pruned for bagging and thus the predicted

values deviate only slightly from the actual values, resulting in low bias. At the same

time, not pruning trees lead to a possible overfitting which results in high variance.

The bootstrap samples S∗1 , . . . ,S∗B are drawn from the original data S and therefore

(should) follow the same distribution. Thus, trees T ∗b and their prediction functions

f̂ ∗b are also identically distributed, since these are generated from the B identically

61

distributed bootstrap samples. From this fact we get

E
[
f̂BBag(x)

]
= E

[
1

B

B∑
b=1

f̂ ∗b (x)

]

=
1

B

B∑
b=1

E
[
f̂ ∗b (x)

]
= E

[
f̂ ∗b (x)

]
(4.17)

which means that the expected value of the mean of the B prediction functions f̂ treeBag

is equal to the expected value of any prediction function from the ensemble. In other

words, the estimator of the bagging method is unbiased. It should be noted that al-

though individual trees and prediction functions are identically distributed, they need

not be independent or uncorrelated, since they were generated from the same data. The

variance of bagged predictor f̂BBag can be calculated under the assumption of positive

pairwise correlation ρ between prediction functions as

var(f̂BBag
(
x)
)
= ρσ2 +

1− ρ
B

σ2 (4.18)

where σ2 is the variance of the individual prediction functions. A detailed derivation or

proof of the equation (4.18) can be found in the appendix of this paper. Note that this

equation is only valid for positively correlated trees ρ > 0, otherwise it would be possible

to get a negative variance expression. However, the interpretation of this equation is

interesting. First, we see that the variance due to bagging for ρ 6= 1 and B 6= 1 is smaller

than that of a single tree or prediction function which have variance σ2. Moreover, for

a sufficiently large bootstrap sample B, the second term is negligible, but the first term

ρσ2 remains. Overall, this shows that correlation has an impact on variance reduction

of the bagging procedure and reducing the correlation can further reduce variance of the

bagged predictor. Reducing correlation to lower variance while maintaining accuracy is

the goal of the random forest algorithm.

Random Forest Algorithm

The objective of the random forest algorithm is to reduce correlation ρ between indi-

vidual trees or predictor functions in bagging to further reduce variance (4.18) of the

bagged predictor. To achieve this goal, bagging is extended by random feature selection.

This means that, unlike classical trees, not all d features are considered as potentially

62

optimal split variables. Instead, mtry ≤ d features get randomly selected and the optimal

split variable is searched for among them. This process is performed until the minimum

number of observations nmin in a child node is reached and no more splitting of this

node is performed. This approach seems a bit strange at first but leads to the desired

decorrelation. The effect of random feature selection follows a simple logic. To under-

stand this, we follow the example of James et al. (2013) and assume that there is one

strong predictor among all covariates and that all other covariates have only a moder-

ate predictive quality. Then, without random feature selection, bagging would generate

trees, most of which would choose the strong predictor as the first split variable. As a

result, all trees would have a similar structure and the predictions would be strongly

correlated with each other, leading not to the desired variance reduction. By randomly

selecting potential split variables, frequent selection of the strong predictor is prevented

and correlation between forecasts is reduced, resulting in a reduction of variance. The

random forest predictor differs from the bagging predictor only by the random feature

selection and to distinguish between them, it is written as

f̂BRF (x) =
1

B

B∑
b=1

f̂ ∗b (x). (4.19)

in the following.

If a random forest is used for prediction, the number of trees and thus the number of

bootstrap samples B, as well as the number of random features mtry must be determined

beforehand. A reference for the choice of these parameters is given by James et al. (2013).

They state that an increasing number of trees B does not lead to overfitting to the data

as they are generated from different bootstrap samples. Breiman (2001) notes that the

generalization error of the random forest for an increasing number of trees B almost

surely converges to a lower bound. This means that the number of trees can be chosen

arbitrarily large without increasing generalization error. However, this should not be

chosen too large, since computational time increases but no significant improvements of

the error can be expected. The number of covariates mtry for each splitting of nodes

is set in most implementations in R14 to mtry = b
√
dc or mtry =

⌊
d
3

⌋
as default values.

These values are based on the work of Breiman (2003), who claims that these values

are close to the optimal values. To optimize them, the author suggests using half and

double the default to make optimizations. Taking into account that in the present work

time series data are used and that the covariates are highly correlated with each other,

14R Core Team (2022)

63

smaller values are preferable according to James et al. (2013). All in all, it seems to

make sense to use the default setting and smaller values such as a half or one third of

this value to perform optimizations.

We would like to briefly describe another property of the random forest. As described,

each tree is generated from a bootstrap sample, using on average only about two thirds

of the data.15 The remaining data is called out-of-bag data and can be used to evaluate

the prediction performance. For a detailed discussion of out-of-bag data, we refer to

Hastie et al. (2009)

Bootstrap for Time Series

In the description of the random forest algorithm we mentioned that we use bootstrap

to generate different trees, but the classic bootstrap procedure must be adapted for

the application of the algorithm in the time series context. Suppose we have data

x = (x1, . . . , xn)> which are independent and identically distributed. In classical boot-

strapping16, we draw n times with replacement from the data and get a bootstrap sample

x1∗ = (x1∗
1 , . . . , x

1∗
n)>. Repeating this process B times we obtain B bootstrap samples

x1∗, . . . ,xB∗ each of length n. This classical approach of the bootstrap method does not

work for time series, because the data are assumed to be independent and the order

of the data does not matter. Thus, the classical bootstrap would destroy the temporal

structure of the series and would not be able to reflect dependencies.

This problem is not new and several extensions have been proposed in the literature to

make bootstrap usable for dependent data. A distinction is made between model-based

bootstrap methods like the residual bootstrap or autoregressive-sieve bootstrap and non-

parametric bootstrap like the block bootstrap introduced by Carlstein (1986). In this

paper, we use a method from the block bootstrap called moving block bootstrap which

was proposed by Künsch (1989). A good overview of bootstrap procedures for dependent

data is given by Bühlmann (2002) and Kreiss and Lahiri (2012), which serve as a basis

for the following remarks.

The goal of the block bootstrap is to generate pseudodata that retain the dependence

structure from the original stationary time series. To achieve this, entire blocks are

resampled instead of individual observations. The idea is that for stationary time

15For n observations, the probability of an observation being selected for the bootstrap sample is equal
to 1

n and for not being selected 1− 1
n . Thus, the probability of not being in the sample is (1− 1

n)n

which approaches 0.6321 for n → ∞. Thus, on average, 0.3678 = 36.78% of the data corresponds
to out-of-bag data.

16See Efron and Tibshirani (1994).

64

series, individual blocks that are far enough apart are approximately uncorrelated.

Resampling is similar to the classical bootstrap, except that whole blocks are resam-

pled, assuming that blocks of sufficiently large size contain the essential dependence

structure. Depending on the block bootstrap procedure, the blocks may or may not

overlap and the block length may be fixed or random. To make these ideas more

tangible, suppose we have a time series {xt}Tt=1 of length T . In the moving block

bootstrap, we divide the data into N = T − l + 1 overlapping blocks of length l,

where we assume for simplicity that l divides T . Thus, individual blocks can be de-

fined as L1 = {x1, . . . , xl}, L2 = {x2, . . . , xl+1}, . . . , LN = {xT−l+1, . . . , xT}. From

these blocks, T
l

blocks are now randomly sampled with replacement. Putting together

these blocks yields a bootstrap sample. For example, let us consider the time series

xt = {x1, x2, . . . , x6} of length T = 6 and set a block length of l = 3, then we obtain

N = T−l+1 = 6−3+1 = 4 blocks L1 = {x1, x2, x3}, L2 = {x2, x3, x4}, L3 = {x3, x4, x5},
and L4 = {x4, x5, x6}. Since the original series has length T = 6, in this example
T
l

= 6
3

= 2 blocks must be drawn randomly with replacement where there are a total

of N2 = 16 possibilities to assemble the blocks into a bootstrap sample. The following

figure shows the moving block bootstrap for squared returns as well as for the realized

variance.

0.0000

0.0025

0.0050

0.0075

0.0100

2000 2005 2010 2015 2020
Time

M
B

B
 S

q
u

a
re

d
 R

e
tu

rn
s

(a) Bootstrapped daily squared returns

0.000

0.002

0.004

0.006

2000 2005 2010 2015 2020
Time

M
B

B
 R

e
a

liz
e

d
 V

a
ri

a
n

c
e

(b) Bootstrapped realized 5-min variance

Figure 4.4.: Moving block bootstrap for the volatility proxies considered in this thesis.
For the resampling we used block length l = 5 and only B = 1 replications
because of the clarity and comparability. The original series are blue and
the MBB series are red.

If we compare the bootstrap sample with the original series in Figure 4.4, we notice

that the extreme deflections in the original series do not occur at the same times in the

bootstrap sample. This is because in the moving block bootstrap method, the blocks

65

are randomly chosen and assembled. In addition, this procedure assumes that the series

must be stationary. Using the ADF or the PP test, it confirms that there is no unit

root for the series of volatility proxies. Interestingly, the results of the KPSS test show

that the null hypothesis of stationarity must be rejected. These seemingly contradic-

tory results may be an expression of heteroskedasticity and structural breaks that are

supposed to be captured by these series. Moreover, it is known that the parameters of

GARCH models sum close to unity, suggesting that the volatility processes are close to

a unit root which may explain the different test results.

Overall, however, this means that the moving block bootstrap method cannot be con-

sidered optimal for series with structural breaks and near a unit root. Even so, the

choice of block length l is non-trivial and is the subject of current research. The work of

Politis and White (2004) and the correction of this work by Patton et al. (2009) should

be mentioned. These papers use a spectral density approach to determine optimal block

length. In the present thesis, we treat block length as hyperparameter of the random

forest. To check if the results of the tuning process are theoretically justified, we follow

the work of Hall et al. (1995), who show that the optimal asymptotic formula for optimal

block length is proportional to n
1
k for k ∈ {3, 4, 5}. According to the authors, the choice

of k depends strongly on the context. That is, smaller k values can be used to estimate

bias or variance, while larger values can be used for more complex calculations such as

confidence intervals. Since volatility forecasting can be considered a complex task for

many reasons described, a large k should possibly be chosen for approximation. For

k = 5, a block length of 5.64 is obtained in the present case.

4.4. Support Vector Regression

The last approach from supervised machine learning we consider are support vector

machines, or, in the present context support vector regression. Mohri et al. (2018)

describe this regression approach as inspired by the idea of support vector classification.

The idea is to estimate a regression on the data with a tube of radius ε > 0, such

that most observations lie within this ε-environment. With this approach, we get two

regions in which observations lie. One region describes the data within the ε-environment

which are not penalized. The other region contains all observations that lie outside the

ε-environment and are penalized according to the distance to the fitted function. The

fitted hyperplane is represented by support vectors, which are all elements from the data

outside of the ε-tube. Support vectors influence how the ε-environment and its shape is

66

determined. For a small ε, one allows only a small error tolerance, and accordingly more

observations lie outside the ε-tube, which means a higher number of support vectors.

The reverse is true for large ε, since fewer observations lie outside the ε-tube, resulting in

fewer support vectors. This intuitive description of the idea of support vector regression

is shown in Figure 4.4.

Φ(x)

y

ωΦ(x) + b

+ε

−ε

ζi

ζ∗i

Figure 4.5.: Soft margin support vector regression for a feature mapping Φ(x) = x cor-
responding to some kernel K. Points inside the green bounds are in the
ε-environment. ζi and ζ∗i are slack variables that measure the deviation of
points outside the ε tube to the tube. See Smola and Schölkopf (2004).

To elaborate the concept mathematically, we follow the explanations of Mohri et al.

(2018), Awad and Khanna (2015), and Smola and Schölkopf (2004). First, we consider

the hypothesis set of all linear functions F = {x 7→ w>Φ(x) + b : w ∈ Rd, b ∈ R}.
Here Φ is the feature mapping, a function of the input variables, which allows more

complex structures of input variable x. Mapping Φ is related to a positive definite

kernel K since features x can be very high dimensional and, therefore, scalar product

〈Φ(x)Φ(x
′
)〉 can only be determined with much effort and is possibly inefficient. But if

there is a kernel function K(x,x
′
) = Φ(x)>Φ(x

′
) corresponding to this scalar product,

then the scalar product can be replaced by the kernel function, which increases the

efficiency of the calculations. This procedure is also called the kernel trick and will be

used for later derivations.17 In order to approximate the unknown function with support

17A detailed introduction and discussion of kernel functions and its properties can be found in Mohri
et al. (2018). Here is just a short example: for K(x,x

′
) = (x>x

′
)2 with x = (x1, x2)> it follows that

67

vector regression, this approach uses optimization techniques that can be justified from

Figure 4.4. As described, the goal is to find a ε-environment which contains the most

observations and is closest to the fitted function f(x) = w>Φ(x)+b while minimizing the

prediction error. We first assume that we seek a function with a ε-tube that contain all

observations. In the case of Figure 4.4 that means that all points lie either in the upper

or lower ε-environment. To achieve this, we must minimize the length of normal vector

‖w‖ to the approximated surface. Additionally the constraints that all deviations are

within the ε neighborhood shall apply. From this description, we obtain the optimization

problem

min
w,b

{
1

2
‖w‖2

}

s.t.

yi −w>Φ(xi)− b ≤ ε

w>Φ(xi) + b− yi ≤ ε.

(4.20)

The formulation of optimization problem (4.20) is due to mathematical convenience and

permissible, since 1
2
‖w‖2 is a monotonically increasing function over the non-negative

domain, and thus ‖w‖ and 1
2
‖w‖2 share the same minimum value for the given con-

straints. Minimization problem (4.20) can be represented more compactly, as in Mohri

et al. (2018), using the ε-sensitive loss function

|yi − (w>Φ(xi) + b)|ε = max(0, |yi − (w>Φ(xi) + b)| − ε) (4.21)

which does not consider any losses for values within the ε-environment and only penalize

points outside the ε-tube, the support vectors. Therefore this loss function provides

sparse solutions with a relatively small number of support vectors. Thus, it is possible

to further rewrite the optimization problem as

min
w,b

{
1

2
‖w‖2 + C

n∑
i=1

|yi − (w>Φ(xi) + b)|ε

}
(4.22)

K(x,x
′
) = x21x

′2
1 + 2x1x

′

1x2x
′

2 + x22x
′2
2 =

(
x21
√

2x1x2 x22
) x

′2
1√

2x
′

1x
′

2

x
′2
2

 = Φ(x)>Φ(x
′
). This shows

that for an two dimensional input space, the second-degree polynomial corresponds to the scalar
product of dimension three.

68

where |.|ε is the ε-sensitive loss and C is a positive numerical value which we consider

in more detail below. In the optimization problem (4.20) and (4.22), it is assumed that

a function can be found for which all observations lie within the ε-environment. This

assumption is somewhat restrictive and can be relaxed by using slack variables ζi, ζ
∗
i ≥ 0

for each point, as shown in Figure 4.4. This makes it possible to allow for additional

errors up to the value of slack variables ζi, ζ
∗
i and to satisfy the otherwise infeasible

constraints from Equation (4.20). Note that while each point theoretically has two slack

variables, only one of these is non-zero because a point can only be either above or below

the ε-environment. Considering the slack variables, we obtain the optimization problem

min
w,b,ζi,ζ∗i

{
1

2
‖w‖2 + C

n∑
i=1

(ζi + ζ∗i)

}

s.t.

yi −w>Φ(xi)− b ≤ ε+ ζ∗i

w>Φ(xi) + b− yi ≤ ε+ ζi

ζi, ζ
∗
i ≥ 0 ∀i ∈ {1, . . . , n}

(4.23)

where C denotes an optimization parameter that penalizes observations that lie out-

side the ε-environment. This parameter controls the tradeoff between complexity of the

function to be approximated and the amount of allowed deviations. Therefore, C is a

tuning parameter that can be used to avoid overfitting.

As described by Smola and Schölkopf (2004), the Lagrange method is used to solve

primal optimization problem (4.23). This method allows us to construct a Lagrange

function from the original objective function with constraints by introducing dual vari-

ables, which in turn allows us to consider the problem as a dual optimization problem.

This is possible because the optimization problem at hand (4.23) is convex and, thus,

the optimal solutions of the primal problem and dual problem coincide. That is, the

value of the optimal solution of the primal problem is given by the solutions of the dual

problem. This is advantageous in that optimization problem (4.23) is easier to solve in

dual form, where the dual form is crucial for the nonlinear extension of support vector

regression. For the primal Lagrange function, we assume that αi, α
∗
iλi, λ

∗
i ≥ 0 are the

69

Lagrange multipliers, thus we obtain

L(w, b, ζiζ
∗
i , αi, α

∗
i , λi, λ

∗
i) =

1

2
‖w‖2 + C

n∑
i=1

(ζi + ζ∗i)−
n∑
i=1

(λiζi + λ∗i ζ
∗
i)

−
n∑
i=1

α∗i (w
>Φ(xi) + b− yi − ε− ζ∗i)

−
n∑
i=1

αi(yi −w>Φ(xi)− b− ε− ζi).

(4.24)

The minimum of primary Lagrangian function (4.24) can now be determined by partial

derivatives with respect to the variables which must be set equal to zero. In addition, the

Karush-Kuhn-Tucker (KKT) conditions, which state that the product of the Lagrange

multipliers and the constraints must be equal to zero, must hold. To better understand

the role of the conditions and constraints, we look at the optimization step by step

and first determine the partial derivatives with respect to primary variables and slack

variables (ω, b, ζi, ζ
∗
i). In order not to overstress the notation, we write L for the Lagrange

function L(ω, b, ζiζ
∗
i , αi, α

∗
i , λi, λ

∗
i). Therefore, the partial derivatives can be written as

∂L
∂w

= w −
n∑
i=1

(αi − α∗i)Φ(xi) = 0 (4.25)

∂L
∂b

=
n∑
i=1

(α∗i − αi) = 0 (4.26)

∂L
∂ζi

= C − λi − αi = 0 (4.27)

∂L
∂ζ∗i

= C − λ∗i − α∗i = 0 (4.28)

Partial derivatives (4.25), (4.26), (4.27) and (4.28) can now be substituted into the

primary Lagrange function (4.24) to obtain the optimization problem in dual form

max
αi,α∗i

{
− 1

2

n∑
i=1

n∑
j=1

(αi − α∗i)(αj − α∗j)Φ(xi)
>Φ(xj)− ε

n∑
i=1

(αi + α∗i) +
n∑
i=1

yi(αi − α∗i)

}

s.t.

∑n

i=1(αi − α∗i) = 0

αi, α
∗
i ∈ [0, C].

(4.29)

70

By transforming equations (4.27) and (4.28) to λi = C−αi and λ∗i = C−α∗i , respectively,

dual variables λi, λ
∗
i can be eliminated from optimization problem (4.29). It should

be noted that dual problem (4.29) is also a convex quadratic problem, which can be

solved by various quadratic optimization methods. However, from equation (4.25) follows

w =
∑n

i=1(αi−α∗i)Φ(xi), which shows that w can be represented as a linear combination

of the input variables. Together with f(x) = w>Φ(xi) + b, this gives the support vector

expansion

f(x) =
n∑
i=1

(αi − α∗i)Φ(xi)
>Φ(xi) + b. (4.30)

which is used for predictions of new inputs. From this representation, we see that w does

not have to be explicitly calculated to evaluate the complete function f(x). Moreover,

it shows that product Φ(xi)
>Φ(xj) corresponds to kernel function K(xi,xj) and can

be replaced by it, which extends the support vector regression to non-linear function

approximation.

Let us now consider how offset b can be determined. For this we consider the following

KKT conditions

αi(yi −w>Φ(xi)− b− ε− ζi) = 0 (4.31)

α∗i (w
>Φ(xi) + b− yi − ε− ζ∗i) = 0 (4.32)

(C − αi)ζi = 0 (4.33)

(C − α∗i)ζ∗i = 0 (4.34)

which are also called complementary slackness conditions. These conditions allow differ-

ent statements about the contribution of individual points (xi, yi) for the support vector

regression and shows the way to calculate offset b. We follow Bishop and Nasrabadi

(2006) for the arguments and statements.

For any (xi, yi) it holds that αiα∗i = 0

In the case of a general point (xi, yi), it holds that αiα
∗
i = 0. This follows from the

fact that if we assume αi > 0 and α∗i > 0, then both constraints would apply and the

sum of complementary slack conditions (yi−w>Φ(xi)− b− ε− ζi) = 0 and (w>Φ(xi) +

b − yi − ε − ζ∗i) = 0 equals ζi + ζ∗i = −2ε. However, since by definition, only one of

the slack variables ζi, ζ
∗
i is non-zero and ε > 0, it must be negative, which contradicts

71

the assumption ζi, ζ
∗
i ≥ 0. Thus, there is no set of dual variables αi, α

∗
i which are

simultaneously non-zero. Since we have additionally assumed that αi, α
∗
i ≥ 0, only one

of the Lagrange multipliers αi, α
∗
i can be greater than zero at a time, which means that

the fitted function either overestimates or underestimates the true value by more than

ε.

For (xi, yi) in the ε-environment, it holds that αi = 0 and α∗i = 0

For points inside the ε-environment the slack variables are zero, i.e., ζi = 0 and ζ∗i =

0 holds. Since these points are not support vectors, they do not contribute to the

predictions and we have αi = α∗i = 0. This is also evident by the complementary

slackness conditions, where we have (yi − w>Φ(xi) − b − ε) < 0 and therefore αi = 0

must hold so that the slackness conditions are valid. The same is true for (w>Φ(xi) +

b− yi − ε) < 0 which also leads to α∗i = 0.

For (xi, yi) outside the ε-environment, where we have αi = C or α∗i = C and

points on the ε-tube, it holds that αi, α∗i ∈ [0, C]

From the definition of λi, λ
∗
i ≥ 0 and Equations (4.27) and (4.28), we conclude that

αi, α
∗
i ∈ [0, C] holds in general. For points (xi, yi) above or on the upper ε-environment,

it follows that yi−w>Φ(xi)−b−ε = ζi ≥ 0 is true. If a point (xi, yi) lies on the ε-bound,

ζi = 0 applies which implies λi ≥ 0 and, therefore we must have αi ∈ [0, C]. If we con-

sider points (xi, yi) above the upper ε-environment, we have ζi > 0 and λi = 0, which

implies αi = C. This is analogously true for points on or below the lower ε-environment,

such that α∗i ∈ [0, C] holds for points on the lower ε-tube and α∗i = C for points below

the lower ε-bound.

All in all, these explanations show that only those points which are support vectors have

to be considered and, thus, sparse solutions are available. However, the parsimony of

solutions depends essentially on the choice of the ε-environment. This controls a tradeoff

between prediction accuracy and sparsity. If we allow only small deviations, i.e., a small

ε, then there are many support vectors since many observations lie outside the ε-tube

and the solution is less parsimonious. Conversely, if we allow a larger error tolerance,

with a larger ε, then there are fewer support vectors since many observations lie within

the ε-environment and the solution is more parsimonious. Overall, it is possible to de-

termine offset b from the previous statements. For an input xj within the ε-environment

with ζj = 0 and 0 < αj < C, offset b can be calculated from complementary slackness

72

constraints (4.31) and (4.33) by

b = yj −w>Φ(xj)− ε

= yj −
n∑
i=1

(αi − α∗i)Φ(xi)
>Φ(xj)− ε.

(4.35)

Analogously, we obtain this result for an input xj with 0 < α∗j < C. At this point

we want to emphasize again that all mathematical representations shown were made

using feature mapping Φ(x). It has already been noted that product Φ(xi)
>Φ(xj) can

be replaced by kernel function K(xi,xj) to obtain an efficient calculation while also

extending the support vector regression algorithm for non-linear regression problems.

All presented mathematical formulas are still valid, but should be replaced with kernel

function K(xi,xj), which we do not explicitly due to the limited scope of this work.

There are, of course, several kernel functions that can be used for prediction, which begs

the question, which function should be used? This question is difficult to answer because

kernel functions are not hyperparameters and only a few papers use the same machine

learning techniques for volatility prediction. Therefore, we follow the work of Peng et al.

(2018) and their reasoning and use the radial basis function kernel, or RBF kernel for

short, which is defined as

K(xi,xj) = exp

(
‖xi − xj‖2

2σ2

)
(4.36)

with σ > 0. Peng et al. (2018) state that this kernel function is one of the most widely

used in machine learning because it can represent an infinite dimensional space while

depending only on the single parameter σ.

73

5. Evaluation

To choose optimal hyperparameters for models or to compare different models in terms

of their out-of-sample forecasting performance, cross-validation techniques such as K-

fold cross-validation are usually used and forecasts are performed. The so generated

forecasts of each model are then evaluated and compared using various performance

measures such as Mean-Square-Error (MSE), Mean-Absolute-Error (MAE) or others.

Since we want to forecast volatility, a latent variable, and we use time series data to do

so, various properties of volatility and the dependency structure of the data must also

be taken into account.

As already described in the chapter on volatility in financial markets, this is a latent

variable that must be approximated. The choice of the volatility proxy can therefore

have a considerable influence on the out-of-sample forecast performance of different mod-

els. Volatility forecasts depend on various other factors as well. According to Poon and

Granger (2003), one of these important factors is current volatility level and the volatility

level of the considered forecast horizon. If a model is fitted to data that consistently ex-

hibit moderate volatility and is used to forecast highly volatile periods, then it is unlikely

that the model will achieve good forecasting performance. This is because time series

models are based on historical data and are, by design, unsuitable for forecasting unpre-

dictable and unprecedented events. Since this paper compares conventional time series

models with machine learning methods, which use also purely autoregressive data, it is

not about forecasting only highly volatile phases or even shocks, but about a comparison

to show whether machine learning methods are suitable and possibly even better suited

for volatility forecasting. To forecast shocks, additional explanatory variables should be

included as regressors, regardless of whether classical econometric volatility models or

machine learning models are used.

Another important factor is volatility structure or its persistence. As shown in Figure

2.2, the high persistence of volatility proxies is an expression of long-lasting significant

autocorrelation. Capturing these structures is the task of the models. It is known that

simple GARCH models cannot capture high persistence, but as Corsi (2009) notes, the

74

HAR-RV model is able to capture long-lasting effects. The machine learning models

used in this work do not have properties in their construction that specifically take long

memory effects into account. To sufficiently account for long-lasting effects, it is there-

fore necessary to include the most significant autocorrelations in the models. This is

attempted in the present work by including a relatively high number of lagged variables

as predictors in the models. However, we will also use the HAR model construction and

build based on this idea machine learning models.

Poon and Granger (2003) further, describe that forecast horizon and data frequency

play a significant role in predicting volatility, specifically that forecast horizon depends

on data frequency. Many studies shown that for forecasts over large horizons, forecast

error is larger for data with higher frequency. This resulted in simple methods, such

as moving average models, being superior to model-based approaches, such as GARCH

models. Overall, the higher the frequency of the data, the shorter the forecast horizon

should be and vice versa. We take this into account in the emprical analysis by varying

the forecast horizons between three months two years.

Two further essential aspects that must be considered when forecasting volatility are

the cross-validation to estimate the test error of the model, as well as the choice of a

metric for comparing models that takes into account possible asymmetries. We look at

these two factors in more detail below.

5.1. Time Series Cross Validation

According to James et al. (2013), cross-validation is generally a resampling procedure

used to estimate the test error of a model. The test error describes the average error of

the model that results from the prediction of a new observation that was not used for

training. The test error can be easily determined if test data are available. This is often

not the case, since usually only one data set is available. To use this data set to estimate

the test error, there are several methods, one being the cross-validation method. The

idea of cross-validation is to hold out a subset of the data which is not used for training

the models but for prediction. This general idea of cross-validation can be implemented

in a number of different ways, with the best known and most widely used being K-fold

cross-validation.

75

K-Fold Cross-Validation

In K-fold cross-validation, data S are randomly split into K parts of approximately equal

size. Then K − 1 parts of the data are used for training the model and the K-th part is

used for forecasting and calculating prediction error R associated with a loss function `.

This procedure is repeated for k = 1, . . . K and prediction errors R(1),R(2), . . . ,R(k) can

be determined for each of the K parts. The test error from the K-fold cross-validation

is then determined as the average over all K forecast errors

CV(K) =
1

K

K∑
k=1

R(k). (5.1)

Figure 5.1 schematically represents the K-fold cross-validation.

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

...

Figure 5.1.: K = 11-fold cross-validation. The blue dots represent K − 1 = 10 data sets
for training and the orange dots represent the respective test data set. Each
line represents one iteration, from here K = 11 total iterations. See Hastie
et al. (2009) and Hyndman and Athanasopoulos (2018).

From Figure 5.1, it seems that K-fold cross-validation does not appear to be appropriate

for dependent data such as time series. This impression is confirmed when looking at the

first row or iteration in this figure. Here one would try to forecast the past with future

data. Described a bit more technically and following Bergmeir et al. (2018), this means

that K-fold cross-validation would remove K randomly selected parts of time series {xt}
to use as test data. This approach would destroy the time dependency of the series and

therefore does not seem to be permissible, since the errors from the training data would

correlate with the errors of the test data.

Based on the described problem the result obtained by Bergmeir et al. (2018) in their

work on K-fold cross-validation for time series models is surprising. The authors show

that if a purely autoregressive modeling is chosen and the errors of the models are

uncorrelated, K-fold cross-validation can and should be used in the context of time series.

This result is supported by a proof and an experiment. The proof presented by Bergmeir

et al. (2018) is based on an AR(p) model, where only the purely autoregressive structure

76

of the model is crucial. Thus, it is possible to extend the proof to other models as well.

In their experiment, the authors compare different cross-validation procedures such as 5-

fold cross-validation, leave-one-out cross-validation, rolling-origin validation and others

in terms of one-day-ahead out-of-sample prediction. In doing so, the authors consider

various scenarios, seeking to determine how each cross-validation procedure performs

when models are close to the true data-generating process and also when models are

misspecified. It turns out that K-fold cross-validation gives the best estimates of the

test error if the models are properly specified. If the models are misspecified, rolling-

origin validation seems to give slightly better results.

It is not clear whether the models in the present work should be evaluated with K-

fold cross-validation. This is because not all models like the GARCH model follow a

strict autoregressive structure. It is possible to represent the GARCH model as an

ARCH process as in Equation (3.2), which only use past squared returns to describe

the conditional variance at the current time and is therefore purely autoregressive, but

with an infinite number of delayed variables. Overall, the work of Bergmeir et al. (2018)

is worth mentioning because of its astonishing results but should not be considered

as the only evaluation option. In the econometric literature, out-of-sample prediction

performance evaluation of models is usually performed using a procedure called rolling-

evaluation. We discuss one such procedure in the following.

Rolling-Origin Validation

As Hyndman and Athanasopoulos (2018) and Tashman (2000) describe, the general idea

of rolling-origin validation is that the entire time series of length T is first divided into

a training data set of length t and a test data set T − t. The split is made so that all

training data are temporally prior to the test data in order to exclude the possibility of

predicting the past with future data. In addition, it must be taken into account that the

training data is sufficiently large to obtain reliable forecasts. This first split is the first

iteration of a general iterative process which is performed multiple times. In the first

iteration, the full t training data are used to obtain a prediction of the t + 1 value. In

the second step, the training data set is increased or updated by one observation and,

accordingly, has a length of t+1. On this t+1 training data, the model is refitted and a

forecast for the t+ 2-th value is performed. This iterative procedure is performed until

T − 1 training data is available and the T -th value is predicted. A visual depiction of

the one-step-ahead rolling-origin validation is given in the figure below.

77

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

...

Figure 5.2.: Blue dots represent the training data and orange dots the test data respec-
tively. The light gray dots represent the test data that are not used for the
evaluation. See Hyndman and Athanasopoulos (2018).

Figure 5.2 shows a time series with T = 11 observations as an example. Here, the data

is first divided into training data with an initial length of t = 5 observations and a test

data set with a length of T − t = 6 observations. The first five observations are used for

training in the first iteration and only the sixth observation is used for prediction. In the

second iteration, the sixth observation is added or updated to the training data set and

the prediction is performed for the seventh observation. This procedure is performed

until the training data contains T − 1 = 10 observations and the T = 11 observation is

predicted. For each iteration, the prediction error R can be determined and, similar to

K-fold cross-validation, the test error of the rolling-origin validation can be determined

by the average over all test errors of the iterations.

This validation approach can also be generalized to a direct h-steps-ahead forecasting

scheme. According to Ben Taieb and Hyndman (2012), the direct forecasting strategy

uses different models for each of the different forecast horizons h. Thus, for a h-step-

ahead prediction of rt, a model is trained using only lagged variables (rt−h, rt−h−1, . . .)

and therefore a direct h-step-ahead forecast can be generated according to

rt = f(rt−h, rt−h−1, . . .). (5.2)

Ben Taieb and Hyndman (2012) note that this forecasting strategy produces unbiased

forecasts under the condition that function f is flexible enough. Moreover, if function

f is close to the true function sought, the mean square error of the direct h-step fore-

cast is smaller than that of the recursive h-step forecast. However, since a separate

model must be fitted for each forecast horizon h, this approach is more computationally

intensive than the recursive strategy. For a more detailed discussion of the different

forecasting strategies for time series, we refer the reader to Ben Taieb and Hyndman

(2012), Chevillon and Hendry (2005), and Chevillon (2007). Overall, the generalization

does not change the described iterative process of rolling-origin cross-validation. Even

78

in the generalized approach, the data is split into training data of length t and test data

of length T − t. In the first iteration, the model is fitted on the t training data and

the prediction is made for t+ h based on the data available until time t. In the second

iteration, the training dataset is updated by one observation so that it now has length

t+ 1. The model is then fitted on this data set and the prediction is performed for time

point t + (h + 1) based on the data available until time t + 1. This procedure is shown

in the figure below for a h = 2 step-ahead validation.

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

... . . .
... . . .

...

Figure 5.3.: Blue dots represent the training data and orange dots the test data respec-
tively. The light gray dots represent the test data that are not used for the
evaluation. See Hyndman and Athanasopoulos (2018)

5.2. Performance Measures

To evaluate the forecast performance from the cross-validation procedures, the forecast

error on the test data set must be determined using statistical loss functions. As already

described several times, volatility is a latent variable that has to be approximated thereby

introducing potential noise. Thus, the choice of a volatility proxy also plays an essential

role in the choice of loss functions for the evaluation and comparison of different models

because biases may arise from the selection of a noisy proxy. According to Patton

(2011), it is still possible to find suitable loss functions which can handle potentially

noisy volatility proxies. For this purpose, he defines robust loss functions. These are

loss functions whose model ranking with respect to the expected loss remains the same,

regardless of whether the true conditional variance or an unbiased volatility proxy is

used for the evaluation.

In the literature on volatility forecasting, there are many loss functions with different

properties which are used for forecast evaluation and model comparison. An overview of

the various loss functions commonly used is also given by Patton (2011). Most of the loss

functions considered in his paper do not satisfy the definition of robustness. In fact, it

79

turns out that out of nine different commonly used loss functions, only the mean squared

error (MSE) and the quasi-likelihood loss functions (QLIKE) satisfy these requirements.

Based on these results, we use the MSE and QLIKE loss functions in this paper, and, for

comparison, the non-robust loss function, the mean absolute error (MAE). In addition,

we use the linear exponential loss function (LINEX) proposed by Poon and Granger

(2003). Following Patton (2011) and Poon and Granger (2003), MSE, MAE, QLIKE,

and LINEX are defined as

MSE(σ2, f̂) =
1

T − t

T∑
i=T−t

(σ2
i − f̂i)2 (5.3)

MAE(σ2, f̂) =
1

T − t

t∑
i=T−t

| σ2
i − f̂i | (5.4)

QLIKE(σ2, f̂) =
1

T − t

T∑
i=T−t

(
σ2
i

f̂i
− ln

(σ2
i

f̂i

)
− 1

)
(5.5)

LINEX(σ2, f̂) =
1

T − t

T∑
i=T−t

[
exp(−a(f̂i − σ2

i)) + a(f̂i − σ2
i)− 1

]
(5.6)

where σ2
i describes a volatility proxy and f̂i the volatility forecast. The choice of differ-

ent loss functions is due to not only the robustness criterion but also because specific

properties of the loss functions play an important role in the choice of the evaluation cri-

terion. MSE and MAE are symmetric loss functions because they weight overestimates

and underestimates identically. This means that changing the order of σ2, f̂i in the func-

tions does not matter for the loss and the penalty of an overestimation f̂i = σ2
i + δ is the

same as for an underestimation f̂i = σ2
i − δ. However, the penalization of incorrect fore-

casts differs between the two loss functions, as the mean square error penalizes incorrect

forecasts more heavily than the mean absolute error does. The symmetric property of

the MSE and MAE follow directly from their mathematical definitions, but it is useful

to put these properties into the present context. In this paper, the objective is to fore-

cast the volatility of the DAX. Therefore, the loss functions should describe economic

uncertainties in the financial markets. In the present context, large forecast errors in

volatility forecasts are disadvantageous for several reasons. First, it is conceivable that

large forecast errors can lead to sub-optimal investment decisions or that the maximum

expected loss of the capital under risk is wrongly estimated. Second, it is conceivable

that an incorrect estimate of volatility affects market capitalization, since the value of a

company can be derived from expected earnings, which are affected by volatilities. From

80

these reasons, it can be seen that an underestimation of volatility in particular entails

special risks and must be taken into consideration. MSE and MAE do not account for

this special risk of underestimating volatility because they are symmetric loss functions

penalizing underestimation in the same way as overestimation. However, the MSE seems

to be more appropriate compared to the MAE since the former penalizes large forecast

errors more heavily.

To account for the risk of underestimating volatility, asymmetric loss functions such as

QLIKE and LINEX are more appropriate. By definition, the QLIKE loss function pe-

nalizes an underestimation of volatility more than an overestimation. The LINEX loss

function has an additional parameter a > 0 that controls the symmetry or asymmetry of

the function. In the limiting case for a→ 0, it even holds that LINEX →MSE and the

LINEX loss function is nearly symmetric1. Thus, the parameter a controls the strength

of the penalization and for large a > 0, overestimates are penalized approximately lin-

early while underestimates are penalized exponentially. This also justifies the naming of

the LINEX loss function. When using these asymmetric loss functions, however, possible

weaknesses should also be considered. The QLIKE and LINEX loss functions are only

partial and imperfect solutions to control for risks of underestimation. This is because

the loss functions penalize underestimates especially strongly, partly even stronger than

MSE does. However, the advantage that these risk functions penalize underestimation

so strongly can also be a disadvantage. This becomes clear, for example, if we look at

two competing models and their volatility forecasts. Both models have a bias of iden-

tical magnitude, with one model having a positive bias (overestimation) and the other

model having a negative bias (underestimation). In this case, the QLIKE and LINEX

functions would favor the model with positive bias since overestimates are penalized less

than underestimates. The reasons why underestimation should be particularly avoided

support the use of these loss functions, of course, but the weaknesses should also be con-

sidered and the QLIKE and LINEX loss functions should be considered together with

other loss functions. Nevertheless, the asymmetric loss functions can be used to assess

which of the competing models is less likely to underestimate volatility and therefore

better suited for forecasting shocks and highly volatile periods.

In addition to the loss functions mentioned, we also use the squared correlation between

the actual values of the test data and the predicted values. The use of squared correla-

1To show that LINEX → MSE holds, we have to use the Taylor series at point zero, called the

Maclaurin series for the exponential function which is given by exp{a(f̂ − σ2)} =
∑∞
i=0 a

i (f̂−σ2)i

i! .
Plugging this expression into the LINEX loss function and taking the limit for a → 0 proves the
statement.

81

tion is equivalent to the R2 of a regression of the observed quantities on the predicted

ones. This procedure is called Mincer-Zarnowitz Regression and, according to Patton

(2011), leads to a robust ranking with respect to a noisy volatility proxy of different

models.

82

6. Empirial Results and Discussion

In this section, we consider the empirical analysis. Before we analyze the forecasting

performance of the models and draw comparisons, we discuss the general procedure in

section 6.1. We first focus on the partitioning and structuring of the data, as well as the

calibration of the models’ hyperparameters. In section 6.2, we present and discuss the

results of the primary analysis. In doing so, in addition to comparing the forecasting

performance of the individual models relative to the GARCH(1,1) benchmark model,

we also consider the impact of the different modeling approaches and volatility proxies.

Furthermore, we look at the forecasting performance of the models for different forecast

horizons.

6.1. Empirical Setup

Data Splitting and Hyperparameter Tuning

As described in the introduction to this chapter, we first describe the general procedure

before moving on to the analysis of forecast performance. The reason for this is two-fold.

First, the procedure should be as transparent as possible and, second, some interesting

results occur during these steps. It is necessary to split the whole data set to compare

the forecasting performance of classical econometric models with machine learning mod-

els. This involves fitting the models on the training data and running the forecasts on

test data. In addition, it must be taken into account that the machine learning models

have hyperparameters that must be optimized to prevent overfitting and to obtain the

best possible performance. Therefore, we need another data set, the validation data set.

Overall, we divide the total data into training data, which is 80% of the total data, and

a validation and test data set, each with 10% of the total data.

To calibrate the hyperparameters of the machine learning models, we use the grid search

approach. Here we specify different values for the respective hyperparameters and con-

sider all possible combinations. Models with different hyperparameter combinations are

fitted on the training data and evaluated on the validation data using an rolling-origin

83

cross-validation approach. A hyperparameter combination is considered optimal if it has

the smallest error on the validation data among all hyperparameter combinations consid-

ered.1 Optimization is performed for the regression trees (TREE), random forests (RF),

and support vector regression (SVR) for a total of six different models, as we consider

two different modeling approaches. First, we consider purely autoregressive modeling

with squared returns as features, where the models are referred to as ARCH-TREE,

ARCH-RF, and ARCH-SVR below. Second, we use the theory of the Heterogeneous

Market Hypothesis which underlies the HAR-RV model and use the same features from

this model in the machine learning models. These models will be referred to as HAR-

TREE, HAR-RF, and HAR-SVR in the following.

In the optimization process, a total of 210 ARCH-TREEs and HAR-TREEs as well as

10.080 ARCH-RFs and 9.072 HAR-RFs were evaluated and the best parameter combina-

tions are chosen. The results of the hyperparameter optimization of the SVR model are

particularly interesting. Here we evaluate 27 different ARCH-SVR and 120 HAR-SVR.

It is shown in the HAR-SVR model that the optimal parameter combination includes

ε = 0. This means that all errors are penalized and that the number of support vectors

is possibly equal to the number of observations. Although a high number of support

vectors can often be an indication of overfitting the data, our finding here is the result

of the grid search with many other SVR models allowing an error tolerance of ε > 0.

Thus, it is quite possible that the high number of support vectors is an expression of the

high complexity and difficulty of learning the volatility. Another interesting observation

is that the HAR-SVR model with ε = 0 is similar to a leas absolute deviation regres-

sion with L2 regularization. This suggests that regularization approaches are generally

suitable for modeling and forecasting volatilities, which seems to be an interesting start-

ing point for further investigation. However, in the present work, we use the empirical

results from the grid search and use the optimal hyperparameter combination of the

HAR-SVR including ε = 0.

In addition to the tuning process, it is important tounderstand the structure of the test

data, especially for time series. We therefore look at the test data for both volatility

proxies that we want to forecast. Figure 6.1 shows the test data set of squared returns

and realized variance. The last 10% of the total data is used as test data, which corre-

sponds to about two trading years. From the time series of squared returns in Figure

6.1a, we can see that it has significantly more movements than that of realized variance

1As described in the section on random forests, these offer the advantage of out-of-bag data, which is
used for grid search.

84

in Figure 6.1b. These stronger movements of squared returns were also noted in Section

2.3 and can be attributed to the theoretical conclusion that squared returns are a noisy

volatility proxy.

0.0000

0.0005

0.0010

0.0015

2020−07 2021−01 2021−07 2022−01 2022−07
Time

S
q

u
a

re
d

 R
e

tu
rn

s

(a) DAX volatility of test data measured
with daily squared returns

0.0000

0.0005

0.0010

0.0015

2020−07 2021−01 2021−07 2022−01 2022−07
Time

R
e

a
liz

e
d

 5
−

m
in

 V
a

ri
a

n
c
e

(b) DAX volatility of test data measured
with realized 5-min variance

Figure 6.1.: DAX volatility of the test data measured on daily squared returns and in-
traday 5-min squared returns.

This observation has several implications for modeling, forecasting, and evaluation.

First, it is conceivable that autoregressive models that use only squared returns as

features have problems correctly identifying structures in volatility data and making

accurate forecasts because the data contain too much noise. However, models that

use realized variance as features are also not able to achieve good forecast performance

because squared returns have significantly more jumps that the models learn from the in-

put. Overall, when squared returns are used as autoregressive features and as a volatility

proxy, it is likely that the models will tend to underestimate and, thus, forecast perfor-

mance, which is based on various loss functions that severely penalize underestimation,

may appear to be inadequate. Overall, the higher noise component and associated

stronger motions may cause forecast performance of the models to be underestimated.

In comparison, the realized variance series in Figure 6.1b show a much smoother curve

with less extreme swings. It is, therefore, reasonable to expect that the models produce

significantly better forecasting results when evaluated with realized variance than with

squared returns.

85

6.2. Results and Discussion

In this section we present the results of the empirical analysis, where in Section 6.2.1

we evaluate the results of the primary analysis for one-step, three-step, and five-step

predictions obtained from the rolling-origin cross-validation procedure with full test data.

In Section 6.2.2, we perform a robustness check by varying the length of test data. We

consider forecast horizons of 66 days (three months), 132 days (six months), 264 days

(one year), and a total test data length of 570 days (about 2 years).

6.2.1. Evaluation of the Forecasts

One-step-ahead predictions

We now analyze the one-step-ahead forecast performance of the various models. First,

we consider the current values approximated by squared returns and realized variance

and compare them to the forecasts of the respective models in Figure 6.2.

Overall, Figure 6.2 shows that the model types considered cannot forecast squared re-

turns as accurately as realized variance. Figures 6.2a and 6.2b show in particular that

many extreme expressions are poorly predicted. In comparison, realized variance and

also its extreme expressions can be predicted much better, as seen in Figures 6.2c and

6.2d. As a result, the prediction performance of each model is significantly better when

evaluated with realized variance than with squared returns. Figure 6.2 also shows that re-

gardless of which volatility proxy is used, HAR-type models perform better than ARCH-

type models. When the different models and the different volatility proxies are included

in the analysis, the best forecasting performances are obtained for realized variance and

HAR-type models. To support this initial graphical analysis, we consider the evaluation

of the forecasting models using the performance measures described.

Table 6.1 presents the evaluation of the models using the described loss functions relative

to the GARCH(1,1) model and use squared returns as a volatility proxy. In addition,

the out-of-sample R2 is given, which is not relative to the GARCH(1,1) model.

Various results can be seen from the table. First, all ARCH-type machine learning mod-

els appear to be inferior to the GARCH(1,1) model, since all loss functions are greater

than one for those models and, thus, greater than that of the benchmark model. As

described at the beginning of this chapter, this is due to the high complexity and the low

signal-to-noise ratio in squared return data. In contrast, all HAR-type machine learning

models perform better than the GARCH(1,1) baseline model. This finding allows us

to draw some interesting conclusions. The better performance of the models, reflects

86

0.0000

0.0005

0.0010

0.0015

2020−072021−012021−072022−012022−07
Time

S
q

u
a

re
d

 R
e

tu
rn

Models

Squared Returns

GARCH(1,1)

HAR−RV

ARCH−SVR

ARCH−TREE

ARCH−RF

(a) ARCH-type model predictions with
squared return volatility proxy

0.0000

0.0005

0.0010

0.0015

2020−072021−012021−072022−012022−07
Time

S
q

u
a

re
d

 R
e

tu
rn

Models

Squared Returns

GARCH(1,1)

HAR−RV

HAR−SVR

HAR−TREE

HAR−RF

(b) HAR-type model predictions with
squared return volatility proxy

0.0000

0.0005

0.0010

0.0015

2020−072021−012021−072022−012022−07
Time

R
e

a
liz

e
d

 V
a

ri
a

n
c
e

Models

Realized Variance

GARCH(1,1)

HAR−RV

ARCH−SVR

ARCH−TREE

ARCH−RF

(c) ARCH-type model predictions with
realized variance volatility proxy

0.0000

0.0005

0.0010

0.0015

2020−07 2021−01 2021−07 2022−01 2022−07
Time

R
e

a
liz

e
d

 V
a

ri
a

n
c
e

Models

RV−Series

GARCH(1,1)

HAR−RV

HAR−SVR

HAR−TREE

HAR−RF

(d) HAR-type model predictions with
realized variance volatility proxy

Figure 6.2.: One-step-ahead predictions from rolling-origin cross validation for HAR-
type and ARCH-type models. The first row of the panel shows the evalua-
tion with the squared return volatility proxy and the second row the realized
variance.

the significantly higher signal-to-noise ratio of realized variance compared to squared

returns, which allows the models to obtain more actionable information from the data.

Moreover, since the main difference between daily squared returns and realized variance

is sampling frequency, it seems that high frequency data can significantly increase the

forecasting performance of the models. Another aspect that can be derived from these

results is that economic theory, which is the basis for the choice of HAR features, also

has an impact on forecast performance. Therefore, it seems reasonable to use theory

as a basis when constructing the models and applying them. This is especially true for

the use of machine learning models, which are based on a data driven approach using

mathematical optimization. Thus, rather than arbitrarily using obvious features for

forecasting, it may be advantageous to select features for the models based on economic

87

Table 6.1.: One-step-ahead out-of-sample relative loss functions with squared return
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.0000000 1.0000000 1.0000000 0.0921794

HAR-RV 0.9433166 0.9263867 0.9533064 0.9432779 0.1619839

ARCH-
TREE

2.8923213 1.2451736 1.1138064 2.8883200 0.0005169

HAR-
TREE

0.9780221 0.9633501 1.0250176 0.9779871 0.1345477

ARCH-RF 1.0385940 1.0769980 1.0368481 1.0386092 0.0581089

HAR-RF 0.9297015 0.9188890 0.9722340 0.9296777 0.1667894

ARCH-SVR 1.1405302 1.1194445 1.1316190 1.1404561 0.0701698

HAR-SVR 0.9433943 0.8626342 0.9671994 0.9433967 0.1437387

Best Model HAR-RF HAR-SVR HAR-RV HAR-RF HAR-RF

The table reports the one-step-ahead out-of-sample forecasts of the different models. The
loss functions are relative to the GARCH(1,1) model and use squared returns as a volatility
proxy. The last column describes the out-of-sample R2 and is not specified relative to the
GARCH(1,1) model.

theory.

Let us now take a closer look at the individual models from Table 6.1. We first analyze

the results of the loss functions MSE and MAE as well as the out-of-sample R2, which do

not account for volatility underestimation. Here we find that according to MSE and R2

the HAR-RF performs best, and MAE prefer the HAR-SVR. All these three evaluation

criteria attest that machine learning models produce forecasting performance superior

compared to that of classical models. However, it should be noted that the performance

of the HAR-RV model is only slightly worse than that of the superior machine learn-

ing models. This good performance of the HAR-RV model is special because it has

the simplest structure compared to all other models considered. Next in the analysis,

we include the two loss functions that explicitly account for underestimation. We find

that the HAR-RV model performs best according to the QLIKE loss function while the

LINEX loss function prefers the HAR-RF. This shows that while the simple HAR-RV

model performs well, the HAR-RF performs best overall, as it outperforms the other

models on three of the five evaluation criteria (i.e., MSE, LINEX, and R2). However, the

differences between the HAR-RV, HAR-RF and HAR-SVR models are marginal whereas

88

the mean forecast performance of the three models are significantly better than that of

the GARCH(1,1) benchmark model.

The previous results from Table 6.1 use daily squared returns as a volatility proxy,

which is a noisy proxy. We now turn to realized variance as a volatility proxy to check

whether it yields similar results. Table 6.2 gives the one-step-ahead forecasts of all

models considered relative to the GARCH(1,1) benchmark model, using realized vari-

ance as a volatility proxy. The results from Table 6.1 and Table 6.2 coincide that all

ARCH-type machine learning models are inferior to the GARCH(1,1) model, but all

other results in table 6.2 are starkly different. Although the out-of-sample R2 values

for the ARCH-type models are better and all the models can significantly reduce their

loss function values compared to the previous table, the loss functions show that the

models now perform even worse compared to the benachmark model. This is because

the forecast performance of GARCH(1,1) has improved significantly and more strongly

compared to the ARCH-type models using realized variance as a volatility proxy. Com-

pared to values when using squared returns as a proxy the values of the loss functions

of the GARCH(1,1) decreased for MSE by 82.17%, for MAE by 54.50%, for QLIKE by

86.47%, and for LINEX by 82.17%, respectively.

This significant reduction in the values of the loss functions for the benchmark model

also has an impact on the competing models HAR-type models. In Table 6.1, HAR-RV,

HAR-RF and HAR-SVR were superior to the benchmark model for all evaluation cri-

teria. However, this is no longer true using the realized variance as a volatility proxy.

In Table 6.2, an ambiguous picture emerges. The loss functions that do not account

for underestimation display different results as MSE indicates that both HAR-RV and

HAR-RF are inferior to GARCH(1,1), but MAE attests superiority of both models over

the benchmark model. The comparison between HAR-RV and HAR-RF also shows a

contrasting picture between the two loss functions. According to the MSE, HAR-RF is

superior whereas the MAE prefers the HAR-RV model. A similar picture develops from

the QLIKE and LINEX loss functions, which penalize underestimation. According to

the QLIKE function, HAR-RV and HAR-RF both outperform the benchmark model,

with HAR-RV model performing better than HAR-RF. The LINEX loss function, on the

other hand, indicates the opposite, certifying that both models perform worse than the

benchmark model. These results are due to the GARCH(1,1) model having a larger re-

duction in the values of MSE and LINEX compared to HAR-RV and HAR-RF, whereas

the reductions are smaller for MAE and QLIKE loss functions. The discussions provided

in Chapter 5 provide further theoretical explanations for these results. Since the LINEX

89

Table 6.2.: One-step-ahead out-of-sample relative loss functions with realized variance
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.0000000 1.0000000 1.0000000 0.5145068

HAR-RV 1.1382622 0.9226583 0.8064079 1.1381519 0.5208179

ARCH-
TREE

11.8837402 1.7952916 2.0362305 11.8629296 0.0054381

HAR-
TREE

1.2970916 1.0811412 1.1872757 1.2970207 0.4461177

ARCH-RF 1.3986991 1.2805308 1.4099873 1.3987172 0.3542689

HAR-RF 1.0685640 0.9085725 0.8715917 1.0684612 0.5322668

ARCH-SVR 2.2566581 1.5191301 5.3875931 2.2564963 0.2349250

HAR-SVR 0.9149897 0.7737198 0.8082095 0.9149865 0.5464619

Best Model HAR-SVR HAR-SVR HAR-RV HAR-SVR HAR-SVR

The table reports the one-step-ahead out-of-sample forecasts of the different models. The
loss functions are relative to the GARCH(1,1) model and used the realized variance as
volatility proxy. The last column describes the out-of-sample R2 and is not specified
relative to the GARCH(1,1) model.

function is a more complex version of the MSE, both loss functions behave similarly to

a reduction. More surprising are the results on the described robustness of the MSE

and QLIKE loss functions according to Patton (2011). According to this theory, the

robust loss functions should lead to the same model preference regardless of the choice

of volatility proxy but this is only true for QLIKE but not for MSE.

Despite the ambiguous results, a clear picture emerges with respect to the HAR-SVR

model. This model performs best on all evaluation criteria except for the QLIKE statis-

tic. The values of the loss functions for HAR-SVR drop the most. Compared to values

when using squared returns as a proxy the values of the loss functions of HAR-SVR

decreased for MSE and LINEX by 82.71%, for MAE 59.1%, and for QLIKE 88.69%,

respectively. Moreover, it is interesting to note that HAR-RF was the best performing

model from Table 6.1, although it performed only marginally better than the HAR-SVR.

Overall, this shows that the HAR-SVR model seems to be particularly suitable for one-

step-ahead volatility forecasting.

It should be briefly noted at this point that the HAR-SVR model was used here with

ε = 0, as it was considered optimal based on the grid search. The empirical results now

90

confirm the assumption that the model does not overfit the data, but that there is a high

underlying complexity. Furthermore, the good forecasting results support the conjecture

that regularization approaches can improve the forecasting of volatility, as HAR-SVR

with ε = 0 is similar to a mean absolute deviation regression with L2 penalization. Thus,

a possible further research approach could be to optimize and benchmark the HAR-RV

model with mean absolute deviations and regularization.

The previous results from Table 6.2 and 6.1 are all based on rolling-origin cross-validation

with one-step-ahead forecasts. Next, we consider forecasting for multiple time steps be-

cause, in addition to the practical relevance of multistep forecasts, we also want to check

whether the previous results are preserved and what influence the multi step forecast

has on the model choice.

Three-step-ahead predictions

We first consider the h = 3 multistep forecast in Table 6.3 with squared returns as a

volatility proxy. Here the ARCH-type machine learning models show superior perfor-

mance compared to HAR-type machine learning methods.

Table 6.3.: Three-steps-ahead out-of-sample relative loss functions with squared return
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.000000 1.0000000 1.0000000 0.0828083

HAR-RV 1.0144227 1.212505 0.5975491 1.0142682 0.1069744

ARCH-
TREE

2.7237657 1.477453 0.6698557 2.7198232 0.0000010

HAR-
TREE

1.1137196 1.238442 0.6196070 1.1135439 0.0700342

ARCH-RF 0.9752723 1.289243 0.6233780 0.9752163 0.0630731

HAR-RF 1.0463854 1.200716 0.6064805 1.0462348 0.0860393

ARCH-SVR 1.0975261 1.329749 2.1529380 1.0973901 0.0599594

HAR-SVR 0.9840365 1.089762 0.6129426 0.9839441 0.0995796

Best Model ARCH-RF GARCH(1,1) HAR-RV ARCH-RF HAR-RV

The table reports the three-steps-ahead out-of-sample forecasts of the different models.
The loss functions are relative to the GARCH(1,1) model and used the squared returns
as volatility proxy. The last column describes the out-of-sample R2 and is not specified
relative to the GARCH(1,1) model.

91

These results are in contrast with the results from the h = 1 step-ahead predictions,

where the HAR-type machine learning models in particular show superior prediction

performance. In this context, however, it is interesting to note that the simple HAR-RV

model shows good prediction performance. This is surprising, since obviously the HAR-

type features also seem to be suitable for direct three-step prediction, but the machine

learning models cannot reflect this. The only overlap in the results between the one-step

and three-steps evaluations of forecasting performance is that random forest performs

well as a machine learning model. Nonetheless, the arguments from the one-step-ahead

forecast evaluation from Tables 6.1 and 6.2 that higher signal-to-noise ratio and eco-

nomic theory can improve forecast performance cannot be confirmed by the results from

Table 6.3. Therefore, it cannot be determined from the previous three-steps forecasting

analysis whether ARCH-type or HAR-type models are appropriate for three-step fore-

casting. Rather, the question arises as to why the HAR-type machine learning models

are apparently unable to use the information that the HAR-RV model uses to achieve

good forecasting performance. One possible reason may be the noisy volatility proxy.

To investigate this conjecture, we consider five-minute realized variance as the volatility

proxy in the evaluation.

Table 6.4 presents the findings and shows that the forecast performance results differ

significantly from those in Table 6.3. It shows a reversed picture in that all ARCH-type

machine learning models are inferior to the GARCH(1,1) benchmark model and the

HAR-type models perform significantly better. The HAR-SVR model performs best for

four out of five evaluation criteria. These results are very similar to the results from

Table 6.2, and, therefore, appear to be more consistent compared to the conclusions

based on the evaluation with the squared returns proxy. Thus, it is justified to assume

that the arguments given to explain the superior forecast performance of the HAR-type

models are valid, since a consistent picture emerges when using realized variance to

evaluate one-step-ahead and three-steps-ahead forecasts. The use of realized variance

as a volatility proxy leads to a disproportionate reduction in loss function values of

the HAR-type models for the three-step-ahead forecasts. The results are particularly

interesting with respect to the QLIKE and LINEX functions, which account for the un-

derestimation of volatility. Here we clearly see that, on average, the HAR-type models

significantly underestimate volatility less for the three-steps-ahead forecasts than the

benchmark model.

92

Table 6.4.: Three-steps-ahead out-of-sample relative loss functions with realized variance
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.0000000 1.0000000 1.0000000 0.3480741

HAR-RV 0.9400281 1.1146282 0.2223225 0.9398359 0.4731413

ARCH-
TREE

7.4811659 1.7439025 0.4204816 7.4672517 0.0037198

HAR-
TREE

0.9787893 1.1378694 0.2547988 0.9785689 0.4753799

ARCH-RF 1.0274074 1.3046950 0.3098271 1.0273585 0.2560791

HAR-RF 0.8333681 1.0294754 0.2182369 0.8332023 0.5058117

ARCH-SVR 1.5277932 1.5321372 2.8790590 1.5275718 0.2030051

HAR-SVR 0.8149053 0.9161168 0.2177746 0.8147805 0.4502370

Best Model HAR-SVR HAR-SVR HAR-SVR HAR-SVR HAR-RF

The table reports the three-steps-ahead out-of-sample forecasts of the different models.
The loss functions are relative to the GARCH(1,1) model and used the realized variance
as volatility proxy. The last column describes the out-of-sample R2 and is not specified
relative to the GARCH(1,1) model.

Five-step-ahead predictions

As a final forecasting step, we consider the five-steps-ahead forecast of volatility. We

begin by evaluating model performance using the various loss functions and squared

returns as a volatility proxy. Table 6.5 presents the corresponding results. Three of the

five evaluation criteria indicate that a machine learning model is superior, and the other

two criteria prefer the HAR-RV model and the GARCH(1,1) model once. However, it

is notable that the ARCH-type random forest model performs particularly well and the

results are generally very similar to the results from Table 6.3. Thus, when evaluating the

models with squared returns as a volatility proxy, it is not evident whether ARCH-type

or HAR-type features are better suited to five-step forecasting. Looking at MSE and

MAE, it is unclear whether ARCH-RF or the GARCH(1,1) benchmark model performs

better.

Turning to the results from the QLIKE and LINEX loss functions, which account for the

dangers of underestimating volatility, we see that a machine learning model is superior,

although the overall picture is mixed.

The QLIKE statistic indicates that, on average, the machine learning models do not

93

Table 6.5.: Five-steps-ahead out-of-sample relative loss functions with squared return
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.000000 1.0000000 1.0000000 0.0672432

HAR-RV 1.1144723 1.238475 0.6227791 1.1142619 0.0871241

ARCH-
TREE

5.7165652 1.645766 0.6861945 5.7040704 0.0001981

HAR-
TREE

1.0586127 1.199247 0.6362155 1.0584805 0.0774196

ARCH-RF 0.9804679 1.270656 0.6449600 0.9804222 0.0538403

HAR-RF 1.0815563 1.207418 0.6223103 1.0813710 0.0798813

ARCH-SVR 1.1000776 1.310149 0.7620742 1.0999535 0.0533527

HAR-SVR 1.1529672 1.110769 0.6402901 1.1527977 0.0484506

Best Model ARCH-RF GARCH(1,1) HAR-RF ARCH-RF HAR-RV

The table reports the five-steps-ahead out-of-sample forecasts of the different models.
The loss functions are relative to the GARCH(1,1) model and used the squared returns
as volatility proxy. The last column describes the out-of-sample R2 and is not specified
relative to the GARCH(1,1) model.

underestimate volatility as much as the benchmark model, and in particular the good

performance of the simple HAR-RV model must also be mentioned here. In contrast,

the LINEX loss function indicates that of all the models considered, only the ARCH-

RF model performs better than the benchmark model. Note that this result should be

considered against the background that the LINEX loss function approaches the MSE

loss function in the limiting case. On the whole, the results from Table 6.5 show a mixed

picture, just as the evaluations using squared returns as a proxy did earlier. Therefore,

in comparison we look at the evaluation of forecast performance using realized variance

and see if, as before, this gives a more consistent picture of performance of the different

models.

Table 6.6 shows the five-steps-ahead forecasts of the models with realized variance as

a volatility proxy. Here we see that all superior models are machine learning models

with HAR-type features. This is inconsistent with the previous results of the five-steps-

ahead predictions using squared returns as a volatility proxy, they did not provide a

clear picture of which features are suitable for prediction and whether machine learning

models are superior or inferior. Nevertheless, the current results are consistent with

94

Table 6.6.: Five-steps-ahead out-of-sample relative loss functions with realized variance
volatility proxy

MSE MAE QLIKE LINEX R2

GARCH(1,1) 1.0000000 1.0000000 1.0000000 1.0000000 0.2918195

HAR-RV 1.2421562 1.2241697 0.2626402 1.2418737 0.4225153

ARCH-
TREE

18.7553299 2.0176781 0.4356751 18.7102896 0.0041078

HAR-
TREE

0.9304624 1.1259193 0.2674193 0.9302774 0.4529715

ARCH-RF 1.0759533 1.3264220 0.3373528 1.0759131 0.2102532

HAR-RF 1.0907330 1.1478352 0.2529850 1.0905268 0.4157510

ARCH-SVR 1.4795954 1.5454435 0.5809830 1.4793872 0.2032242

HAR-SVR 1.0336128 0.9768818 0.2550898 1.0334172 0.4117495

Best Model HAR-
TREE

HAR-SVR HAR-RF HAR-
TREE

HAR-
TREE

The table reports the five-steps-ahead out-of-sample forecasts of the different models. The
loss functions are relative to the GARCH(1,1) model and used the realized variance as
volatility proxy. The last column describes the out-of-sample R2 and is not specified
relative to the GARCH(1,1) model.

the evaluations of one-step-ahead and three-steps-ahead predictions that used realized

variance as a proxy. From Tables 6.2, 6.4, and 6.6, it appears that HAR-type features

are the better choice compared to squared returns and that out of the 15 best models,

14 are HAR-type machine learning models.

The results differ, however, with respect to the best model. While HAR-SVR or HAR-

RF were preferred in the one-step-ahead and three-step-ahead evaluations with realized

variance, now the simple HAR-TREE is superior in the five-steps-ahead evaluation.

This seems counterintuitive at first since the random forest model is an ensemble of

tree models and the bias of a tree within the random forest equals the bias of the

random forest. Yet, as Hastie et al. (2009) note, the trees within the random forest are

restricted by the bootstrap and the number of random chosen regressors for each split

mtry. Therefore, it is possible that an unpruned tree that is used outside the random

forest may have a lower bias. With respect to the present case, we considered block

lengths of the moving-block bootstrap procedure as a tuning parameter and identified an

optimal value of five. This means that in bootstrap resampling, blocks of length five are

95

each assembled to generate a bootstrap sample on which a tree is fitted for the random

forest. The block lengths thus correspond exactly to the step size of the forecast and it

is, therefore, conceivable that the correlation structure from the moving block bootstrap

is not sufficient to perform such a forecast with reasonable accuracy. Moreover, there are

only three HAR-type features in total, of which only two are used from the tuning process

for randomly choosing features at the nodes. Since the bias increases with decreasing

mtry, this may also have an impact on the prediction performance. Thus, a possible

improvement could be to increase the block length and to include additional features in

the model.

Discussion and Classification of Results

We now classify and discuss the results so far. The overall picture is mixed when

analyzing the results from the one-step-ahead, three-steps-ahead, and five-steps-ahead

evaluations using squared returns as a volatility proxy. Although the analysis shows

that of the 15 model preferences emerging from the evaluation, a total of 11 machine

learning models are indicated as superior and, of these, seven HAR-type machine learning

models and four ARCH-type models are preferred. Moreover, of the total 15 superior

models, nine are HAR-type models and only four are ARCH-type models. Thus, the

evaluation with squared returns show that HAR-type features appear to be better suited

for volatility forecasting than the ARCH-type features.

The picture becomes less straightforward when we look more closely at the individual

model preferences and assume that the model considered superior is the one most often

preferred by the loss functions. The results show that for the one-step-ahead forecast

evaluated with squared returns, HAR-RF performs best. For the three-steps-ahead fore-

casts, no clear decision can be made, as both the ARCH-RF model and the simple

HAR-RV model are each preferred twice by different loss functions. For the five-steps-

ahead forecast, on the other hand, the ARCH-RF model is considered superior. We note

that even though the ARCH-RF is preferred by the MSE and LINEX loss functions for

the three-steps-ahead and five-steps-ahead forecasts, this can be problematic in model

selection because, the LINEX function converges to the MSE in the limiting case of

a → 0. Examining the loss functions using squared returns across all prediction steps,

we notice that ARCH-RF and HAR-RV models are each preferred twice by the evalua-

tion criteria. Thus, no distinct picture emerges as to which model is superior across all

forecast horizons. The ambiguous results from the evaluation using squared returns as

a volatility proxies only show that the HAR-type models are preferred over the ARCH-

96

type models and that the random forest model appears to be the most appropriate for

one-step-ahead forecasting. Further conclusions cannot be drawn from the results. One

possible reason for the mixed results may be that squared returns are a noisy volatility

proxy.

In the empirical analysis, we therefore also considered realized variance as a volatility

proxy for all three forecasting steps. The empirical analysis with realized variance shows

a consistent picture. Of the 15 evaluations, machine learning models are superior in 14

cases and the simple HAR-RV model only once for all forecast steps and all loss func-

tions considered. Furthermore, all superior models use HAR-type features, suggesting

that these features are better suited for volatility forecasting than ARCH-type features.

Looking more closely at the individual model evaluation results, we find that for the

one-step-ahead and three-step-ahead forecasts, the HAR-SVR model performs best. In

both cases, the model is preferred by four out of five loss functions. Only for five-steps-

ahead forecasts does HAR-TREE perform best. Based on the loss functions across all

forecast horizons, the HAR-SVR model appears to be the most appropriate.

Generally, evaluating the models across the different forecast steps using realized vari-

ance shows a more consistent picture than model evaluation using squared returns as

a volatility proxy. However, there are also overlaps in the results. Model performance

evaluation using both volatility proxies show that in both cases machine learning models

are superior to the benchmark model and also to the simple HAR-RV model. In addition,

both analyses show that the HAR-type features tend to be better at producing accurate

volatility forecasts. Despite these similarities, the evaluations differ significantly when

it comes to choosing the best model. In the evaluations, out of a total of 30 model

preferences from the loss functions, only three times are the same models considered

optimal across all forecast horizons. The observation that the loss functions with the

two volatility proxies arrive at very different model preferences is particularly surprising

for the MSE and QLIKE functions. We choose the MSE and the QLIKE loss functions

as evaluation criteria because they fulfill the robustness property according to Patton

(2011) and, thus, should lead to the same model choice for the two different volatility

proxies. In the case of the LINEX loss function, one would also expect very similar

model preference results due to its similarity to the MSE. Despite this, we find that for

the three forecast steps considered, the QLIKE function generates an identical model

preference twice for both volatility proxies and the MAE comes to an identical assess-

ment once. All other criteria prefer different models.

The question now arises as to which results are more reliable. To answer this question,

97

we are helped by the results from Section 2.3, where we examined the properties of

volatility proxies and showed that squared returns is a noisy proxy. In addition, we also

examined the work of Hansen and Lunde (2006a), in which the authors point out that

model comparison and choice based on squared returns is very likely to favor an inferior

model. Therefore, the authors argue for the use of realized variance as an alternative

volatility proxy. The results of by Liu et al. (2015), which we considered in detail in

Section 2.3, also argue in favor of realized variance as a volatility proxy. The authors

showed that among 400 different volatility proxies there is hardly any evidence that one

of the proxies systematically outperforms the realized variance on a five-minute basis.

Overall, therefore, evaluation results based on realized variance should be preferred in

model selection. Based on our results, we argue that the HAR-type features and models

are better suited than the ARCH-type ones in accurately forecasting volatility. The

HAR-type features differ from the ARCH-type features in two major ways. First, real-

ized variance is calculated based on high frequency data and, second, economic theory is

used to determine HAR-type features. Since the HAR-type machine learning models are

convincing in volatility forecasting, it seems that high frequency data and economic the-

ory not only bring advantages to classical statistical methods like the HAR-RV model,

but machine learning models can also use information in the features and economic the-

ory for forecasting financial market volatility. The results also show that the HAR-SVR

model is particularly suitable for one-step-ahead and three-steps-ahead forecasts. It is

interesting to note that the HAR-SVR model is fitted with ε = 0 and is therefore similar

to a mean absolute deviation regression with L2 regularization. It would be interesting

for future research to use this result and fit the HAR-RV model as a mean absolute

deviation regression with L2 penalization. Further, the results show that the simple

HAR-TREE performs best for five-steps-ahead forecasts. These results seem contradic-

tory at first, but are consistent with the findings of many studies that simpler models

often perform better for large multistep forecasts.2

6.2.2. Varying the Forecast Horizon

In the primary analysis in the previous section, we considered the one-step-ahead, three-

steps-ahead, and five-steps-ahead forecasts on the whole test data, which corresponds to

a time horizon of 570 days. Now, to check whether the results change or stay the same, we

vary length of the test data set or forecast horizon for all h-step-ahead forecasts with h ∈

2See Poon and Granger (2003).

98

{1, 3, 5}. For this robustness check, we consider four horizons: three months (66 days),

six months (132 days), one year (264 days), and about two years (570 days), specifying

a trading month with 22 days. In addition, this approach allows us to determine the

influence of forecast horizon on the model choice. Note that we use the results from the

primary analysis and perform the variation of the forecast horizon only for the HAR-

type models. Furthermore, we evaluate the forecast horizon variation results using only

the MSE and the QLIKE loss functions.

One-step-ahead predictions and forecast horizon variations

We first consider the one-step-ahead forecasts of the HAR-type models relative to the

GARCH benchmark model, as shown in Figure 6.3.

Figure 6.3a shows that, with respect to MSE for all forecast horizons, only the HAR-

SVR model performs better than the benchmark model and that the differences between

the models become smaller as the length of the test data increases. On the whole, it can

be concluded that the HAR-SVR model is suitable for long and short forecast horizons

for volatility forecasts. Moreover, the model ranking remains consistent across forecast

horizons and essentially mirrors the results from the primary analysis.

0.75

1.00

1.25

1.50

1.75

three months six months one year two years

R
e

la
ti
ve

 M
S

E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(a) MSE relative to GARCH model
over different horizons

0.8

1.0

1.2

three months six months one year two years

R
e

la
ti
ve

 Q
L

IK
E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(b) QLIKE relative to GARCH model
over different horizons

Figure 6.3.: The plots show the MSE and QLIKE loss functions relative to the GARCH
model for one-step-ahead predictions over different lengths of test data. A
point below one indicates that the model performs better than the GARCH
benchmark model.

Figure 6.3b reflects the varying forecast horizons considering the underestimation of

volatility. Here we see that over all forecast horizons only HAR-TREE performs worse

than the benchmark model. On average, all other models underestimate volatility signif-

99

icantly less than the GARCH model. There are only minor differences in the value of the

QLIKE statistic between HAR-RV, HAR-RF, and HAR-SVR across all forecast horizons

and the results appear to be robust. All in all, these results confirm the primary analy-

sis and support the argument that the HAR-SVR model is preferred for one-step-ahead

forecasting over all test data lengths considered.

Three-step-ahead predictions and forecast horizon variations

Next, we consider the three-steps-ahead predictions with varying test data length in Fig-

ure 6.4. First, we notice that the two figures show similar behavior of the loss functions,

as the values of these converge with increasing test data length. Yet, the structure in

the two figures also indicates that the results may be less consistent.

Let us first look at the relative MSE in Figure 6.4a. Here we see that none of the models

outperforms the benchmark model for the forecast horizons of three and six months.

Starting from a forecast horizon of six months, as the forecast horizon increases, the

performance of the HAR-SVR is almost identical to that of the GARCH and, for even

longer horizons, the HAR-SVR performs still better. The remaining models, in contrast,

only outperform the GARCH model for the longest forecast horizon of 570 days, with

HAR-RF performing significantly better than the benchmark model and HAR-RV and

HAR-TREE performing only marginally better.

1.00

1.25

1.50

1.75

three months six months one year two years

R
e

la
ti
ve

 M
S

E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(a) MSE relative to GARCH model
over different horizons

0.2

0.4

0.6

0.8

three months six months one year two years

R
e

la
ti
ve

 Q
L

IK
E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(b) QLIKE relative to GARCH model
over different horizons

Figure 6.4.: The plots show the MSE and QLIKE loss functions relative to the GARCH
model for the three-steps-ahead predictions over different lengths of test
data. A point below one indicates that the model performs better than the
GARCH benchmark model.

In Figure 6.4b, we consider the QLIKE loss function over the different forecast horizons

100

to account for the risks of underestimating volatility. Here we find that all the models

considered perform better than the GARCH benchmark model over the varying time

horizons. Here, HAR-SVR performs best and HAR-RV performs worst among the su-

perior models. The loss function values for the different models are very similar across

all time horizons and become smaller relative to the benchmark model as the horizon

increases. This suggests that the GARCH model systematically underestimates volatil-

ity and, therefore, appears less well suited to forecast highly volatile phases.

In general, we find that MSE prefers the GARCH model for the three and six months

forecast horizon in the three-steps-ahead analysis, and that the HAR-SVR model per-

forms better from a test data length of greater than six months. When we account for

the dangers of underestimating volatility by using the QLIKE function, we see that the

HAR-SVR model is also preferred for shorter forecast horizons.

Five-step-ahead predictions and forecast horizon variations

Last, we consider the five-steps-ahead forecast performance of the models with varying

forecast horizons in Figure 6.5. Here we see essentially the same structure as in the

analysis of three-steps-ahead forecasts with varying forecast horizons, as the values of the

loss functions converge with increasing test data length. However, the model preferences

now differ significantly from the previous analysis. Figure 6.5a shows that none of the

models considered outperforms the benchmark model up to a forecast horizon of two

years. Despite the poor general performance over shorter horizons across all models,

HAR-TREE performs relatively best, HAR-RV model performs relatively worst, and the

performance of HAR-SVR and HAR-RF are almost identical. From a forecast horizon

of two years, HAR-TREE then outperforms the benchmark model.

To make a statement about the general performance for the five-step-ahead forecasts

and varying forecast horizon, we further consider the QLIKE statistic in Figure 6.5b

which accounts for problems due to volatility underestimation. Again, we see that for

an increasing forecast horizon, the values of the loss function converge. Interestingly,

only HAR-TREE performs better than the GARCH benchmark model for a horizon

of three months. All other models except HAR-RV show similar performance to the

benchmark. For a forecast horizon of six months and longer, all models perform better

than the benchmark model, although the differences between the models appear to be

only marginal.

A clear statement on which model across varying forecast horizons for the five-steps-

ahead forecasts is more difficult to assess in this case. This is because the GARCH

101

benchmark model for MSE performs better for three of the four horizons considered,

but this is no longer true for the QLIKE statistics. Even so, it seems overall reason-

able to choose the GARCH model for very short forecast horizons and direct five-step

forecasts, as it performs better, on average, with respect to MSE and has a similar per-

formance with respect to the QLIKE function. For medium and longer forecast horizons,

on the other hand, HAR-TREE appears to be a better fit because, although the model’s

MSE is slightly worse for medium horizons, it avoids underestimation more often, on

average, than the bechmark model. By and large, this interpretation of the results sup-

ports the findings of the primary analysis and shows a robust picture for medium and

longer forecast horizons.

1.0

1.5

2.0

2.5

three months six months one year two years

R
e

la
ti
ve

 M
S

E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(a) MSE relative to GARCH model
over different horizons

0.25

0.50

0.75

1.00

1.25

three months six months one year two years

R
e

la
ti
ve

 Q
L

IK
E

HAR−RF HAR−RV HAR−SVR HAR−TREE

(b) QLIKE relative to GARCH model
over different horizons

Figure 6.5.: The plots show the MSE and QLIKE loss functions relative to the GARCH
model for the five-steps-ahead predictions over different lengths of test
data. A point below one indicates that the model performs better than
the GARCH benchmark model.

Discussion and Classification of Results

The robustness analysis in this subsection shows that for the one-step-ahead and three-

steps-ahead forecasts, the HAR-SVR model performs best for all forecast horizons con-

sidered. In addition, the analysis shows that when the volatility underestimation is

accounted for, HAR-SVR, HAR-RF, and HAR-RV perform significantly better than the

benchmark model. This suggests that, on average, these models underestimate volatil-

ity less frequently than the GARCH model and are, therefore, better suited to forecast

highly volatile phases. In general, the results from the robustness test confirm the results

102

from the primary analysis.

The findings from the five-steps-ahead forecast with different test data lengths show a

somewhat less consistent picture than the results from the primary analysis. Here it

turns out that for shorter forecast horizons, the GARCH benchmark model may be the

most suitable model, as it performs significantly better for MSE than any of the other

models and there is little difference in the QLIKE function. For intermediate and longer

forecast horizons, on the other hand, HAR-TREE appears to be the most appropriate.

For medium horizons, the MSE loss function of the HAR-TREE model is slightly higher

than that of the benchmark model, but the model underestimates volatility less on aver-

age. For longer horizons, however, HAR-TREE performs better for both loss functions

and should, therefore, be preferred.

Taken together, the analysis shows that there is a possible relationship between forecast

horizon and multi-step direct forecasts. The results suggest that for one-step-ahead and

three-step-ahead forecasts, the HAR-SVR model is generally superior. For five-step-

ahead forecasts, on the other hand, the forecast horizon plays an important role which

should be taken into consideration, because for shorter horizons the GARCH model is

superior, whereas for intermediate and longer horizons HAR-TREE is superior.

103

7. Conclusion

The aim of this paper was to examine whether there is a theoretical and empirical basis

to successfully use machine learning models in the time series domain for forecasting

the volatility of the DAX. To achieve this goal, we first analyzed and presented the

most important theoretical foundations. We started by studying the variable of interest,

volatility. In the process, we saw that volatility is a latent variable that needs to be

approximated and that there are various ways to do so. For this paper, we considered

two of the best-known volatility proxies, daily squared returns and realized variance.

The analysis of the proxies in Section 2 showed that the choice of volatility proxy has a

significant impact on model evaluation and ranking. It was found that squared returns

is a very noisy proxy that deviates from the true value of the variance by more than 50%

in 74% of the time and, therefore, can lead to erroneous model comparisons and model

rankings. The analysis of the second proxy, realized variance, showed that it has more

desirable statistical properties than squared returns and that the empirical approxima-

tion performance calculated on a five-minute frequency has the best performance among

many volatility proxies and leads to consistent model comparison and model ranking.

Another step toward the paper’s goal was to answer the question of whether there is a

theoretical basis for using machine learning models for time series to forecast volatility.

First, we focused on the different data structure of time series and the data format for

supervised machine learning models. We showed that the intuitive idea of putting a time

series into such a format can be justified theoretically and that it is possible to use it

for learning and forecasting with ML methods. We derived the theoretical justification

for this from Takens’ Embedding Theorem. This confirms that it is possible, under cer-

tain conditions, to reconstruct an equivalent state space containing the dynamics that

generate the time series. This result, in turn, implies that there is a relation between a

finite window of a time series and the state of the dynamic system generating the series.

Taken together, this led us to put the time series into a supervised learning format.

In the second step, we addressed the question of whether there is a statistical learning

theory for time series in general and, more specifically, for volatility processes that gives

104

us clues as to whether it is possible to derive learning guarantees from it and justify the

use of machine learning models for volatility forecasting. We found that GARCH pro-

cesses exhibit β-mixing properties and that learning guarantees exist for stationary and

nonstationary cases. Based on these results, we argued that the use of machine learning

in the context of time series is justified from a theoretical point of view. Since volatility

processes such as the GARCH process have the required properties to obtain learning

guarantees, we concluded that forecasting volatility with machine learning models seems

quite promising.

To empirically test whether machine learning models are suitable for successfully per-

forming volatility forecasting, we conducted a study comparing various regression trees,

random forests, and support vector regressions to classical models such as the HAR-RV

model and the GARCH model. The machine learning models were used in two variants

with different features to test whether economic theory can be used to improve forecasts

and to evaluate the impact of high frequency data on forecast performance. The first

variant of machine learning models was the ARCH-type models, which used only the

past squared returns to perform forecasts. The second variant, the HAR-type models,

used high frequency data and the Heterogeneous Market Hypothesis to derive features

based on realized variance using an economic theory.

In our study, we also considered other factors that are important for forecasting volatil-

ity. First, we examined one-step-ahead forecasts, as well as direct three-steps-ahead and

five-steps-ahead forecasts of all models and varied the forecast horizon between three

months, six months, one year, and two years. In addition, we used special loss functions

to account for the risks of underestimating volatility. These loss functions also allowed

us to compare the models in terms of their forecasting performance of highly volatile

periods. We performed the evaluations of the models and the model comparison for all

described factors for both volatility proxies.

The empirical analysis showed that the different volatility proxies indicate different su-

perior models. The model evaluation with squared returns showed that the machine

learning models performed better. In addition, while we found that the HAR-type

models perform better than the ARCH-type models, a closer look at the model com-

parison with squared returns also showed that no specific model performed best across

all forecast steps. For the one-step-ahead forecast, HAR-RF performed best, and for

the five-steps-ahead forecast, ARCH-RF performs best. The three-steps-ahead forecast

gave a mixed picture, as here ARCH-RF and HAR-RV were equally preferred by the loss

functions. Overall, the loss functions together with the squared returns as a volatility

105

proxy most often showed the random forest model to be superior.

In contrast, the empirical evaluation with realized variance, showed more consistent

results. Here, we found the machine learning models outperformed the GARCH and

HAR-RV models across all forecast horizons. We also showed that the HAR-type mod-

els perform better than the ARCH-type models when using realized variance as the

volatility proxy. In fact, a closer look at the individual forecast horizons showed that for

the one-step-ahead and three-steps-ahead forecasts, the HAR-SVR model outperformed

all other models. Only for the five-steps-ahead forecast did the HAR-TREE model per-

form better.

All in all, we inferred from the results of the empirical analysis that the HAR-type fea-

tures perform better. This suggests that high frequency data and economic theory can

be used to improve the prediction performance not only for classical models, but also for

machine learning models. Since many of the arguments given support realized variance

as a superior volatility proxy, we concluded that the HAR-SVR model performs best

for short-term forecasts such as one-step-ahead and three-steps-ahead while the simpler

HAR-TREE model tends to perform better for longer term forecasts.

To corroborate the results from the primary analysis, we performed a robustness check

by looking at model performance for different forecast horizons. We used results from

the primary analysis and evaluated the well-performing HAR-type models over different

forecast horizons. The robustness check confirmed the results from the primary analysis,

as HAR-SVR performed best for the one-step-ahead and three-steps-ahead forecasts over

the different forecast horizons. Only for the five-steps-ahead forecast over the various

forecast horizons does the picture differ somewhat from that in the primary analysis.

The GARCH model was found to be superior for shorter forecast horizons and the HAR-

TREE model performed better for medium and longer forecast horizons. Another result

from the robustness analysis of the different forecast horizons showed that the preferred

models, on average, underestimate volatility less than the GARCH benchmark model

for all forecast steps considered and are therefore better suited to forecast highly volatile

phases.

7.1. Limitations and Further Research

Volatility forecasting continues to be a difficult task. In this paper, we showed that

it is possible to obtain a significant improvement in volatility forecasting over classical

models using well-known and easy-to-implement machine learning models. However, we

106

obtained these results only for the DAX and it is conceivable that these results do not

hold in other markets. Therefore, it seems reasonable to check whether these results

hold in other markets in future research. In doing so, markets comparable to the DAX

should be considered to be able to compare the results.

In addition, we used only three different machine learning approaches for the volatility

forecast in this paper. The use of these three machine learning models in our paper is

because we had relatively little data available to apply other, possibly more complex

methods. More complex methods often require significantly more data to obtain good

performance from the models. Therefore, much more data should be collected to check

if the performance of our models can be improved and if there are other methods which

perform even better.

The results obtained in this paper are mainly focused on pure autoregressive model-

ing, which permits us to say that a relatively simple data structure still allows machine

learning models to perform significantly better than the classical volatility models. This

is especially true for HAR-type models whose features are generated based on economic

theory. In future research, it would be interesting to explore if there are other financial

market theories that would generate additional features to further improve forecasting

performance. In general, it would be interesting to find out if the additional inclusion

of features can further improve the results obtained here.

Another aspect that may provide new insights is the use of machine learning models to

generate features. Here, a classification procedure could be used to predict the direction

of volatility movement. This could be achieved, for example, through binary classifica-

tion, by trying to forecast the change in return and additionally including this forecast

as a feature in the volatility models.

A final interesting avenue for future investigation concerns the adaptation and improve-

ment of existing methods to use machine learning methods more efficiently for time

series in general. This idea goes back to the fact that in this work we used the moving

block bootstrap instead of the classical bootstrap to be able to use the random forest

model for time series. This method does not seem to be optimal, since it is only de-

signed for stationary series, for example, and the series should have a smooth course.

The adaptation or improvement of these procedures can possibly help to consider more

complex time series and to optimize existing models for use.

107

A. Appendix

A.1. Example of Natural Filtration of an Stochastic

Process

Let a probability space be given by Ω = {1, 2, 3},A = P({1, 2, 3}),P(ω)) = 1
3

for

all ω ∈ Ω. Furthermore, let a continuous stochastic process {X(t)}t∈T be defined by

X(t, ω) = max{t− ω, 0}. Then the natural filtration of the process is given as

I =

{∅,Ω} for t ∈ [0, 1]

{∅,Ω, {1}, {2, 3}} for t ∈ (1, 2]

P({1, 2, 3}) for t > 2.

To check this, only the definitions of natural filtration and the measurability condition

have to be used. So it must be shown that process X(t) is At-measurable for all t .

This is easily shown. For t ∈ [0, 1], X(t) = 0 holds, which becomes clear by substituting

for all ω ∈ Ω. Thus X−1(t, {0}}) = Ω. The smallest σ-algebra containing Ω and, for

which X(t) is measurable, is {∅,Ω}.
Similarly, for t ∈ (1, 2], we obtain X(t) = max{t − 1, 0} for possible values of X(t).

Thus X−1(t, {0}) = {1, 2} and X−1(t, {t− 1}) = {1} holds. It follows that the smallest

σ-algebra for which X(t) is measurable and contains the pre-images is {∅,Ω, {1}, {2, 3}}.
For t > 2, the range is X(t) = max{t− 1, t− 2, 0} and the smallest σ-algebra for which

X(t) is measurable must contain the sets {1}, {2} and {3}. In the present case, this is

P({1, 2, 3}).

108

A.2. Random Walk as Martingale

Let {Xt}t∈T be a sequence of independent random variables with P(Xt = 1) = 1
2

=

P(Xt = −1) and It = σ({Xs}s≤t). Then Rt = X1 + · · · + Xt is called a random walk.

To show that {Rt} is a martingale, E[Rt+1|It] = Rt must hold. So we have

E[Rt+1|It] = E[Rt +Xt+1|It] = E[Rt|It] + E[Xt+1|It] = Rt.

The first equality follows from Rt+1 = X1 + . . . Xt + Xt+1 = Rt + Xt+1. The second

equality is due to the additivity of conditional expectation. The last equality follows from

the fact that Xt+1 is independent of It and therefore it holds E[Xt+1|It] = E[Xt+1] = 0

and Rt is It measurable and, therefore, E[Rt|It] = Rt from which it follows overall that

random walk {Rt} is a martingale.

109

A.3. Proof of Equation (2.25)

The proof presented here essentially goes back to Shreve et al. (2004) and Hassler (2007).

We assume that the return process can be defined as an Ito integral of the form

r(0, t) =

∫ t

0

σ(s)dW (s).

where {σ(s)} is a simple stochastic process adapted to filtration {At}t∈T associated with

Brownian motion {W (t)}t≥0. This means that, for partitioning Pn([0, t]) : 0 = so <

s1 < · · · < sn = t, σ(s) is constant on each subinterval [sk, sk+1) and is At-measurable

for t ≥ 0. For an arbitrary subinterval [sk, sk+1) of partitioning Ito integral can then be

defined by the Ito sum as

I(t) =
k−1∑
j=0

σ(sj)(W (sj+1)−W (sj)) + σ(sk)(W (s)−W (sk)).

Then the quadratic variation of the return process up to time t is given by

QV (0, t) =

∫ t

0

σ2(u)du

Note: The reason why we give the proof for only a simple stochastic process is because,

loosely speaking, the result is also valid for general stochastic processes. Similar to the

construction of the Lebesgue integral, we can define the limit of a sequence of simple

stochastic processes with some properties as an approximation of a general stochastic

process. So limn→∞ σn(s) = σ(s) holds and the results can thus be generalized. More-

over, the proof here is only meant to provide a basic understanding.

Proof:

We first consider the quadratic variation on arbitrary subinterval [sj, sj+1) from par-

titioning Pn([0, t]) = {s0, s1, . . . , sn} with 0 = s0 < s1 < · · · < sn = t. We fur-

ther decompose the subinterval [sj, sj+1) into m subintervals such that [sj, sj+1) =

[k0, k1) ∪ [k1, k2) ∪ · · · ∪ [km−1, km) with sj = k0 < k1 < · · · < km = sj+1. Then,

we can write the quadratic variation of the subinterval [sj, sj+1) with the help of the

110

definition of the Ito integral as

QVm(sj, sj+1) =
m−1∑
i=0

[I(ki+1)− I(ki)]2

=
m−1∑
i=0

[σ(sj)(W (ki+1)−W (ki))]
2

=
m−1∑
i=0

σ2(sj)[W (ki+1)−W (ki)]
2

= σ2(sj)
m−1∑
i=0

[W (ki+1)−W (ki)]
2

Now, we have to consider the sum
∑m−1

i=0 [W (ki+1) − W (ki)]
2 which is the quadratic

variation of the standard Brownian motion over interval [sj, sj+1). As Hassler (2007)

describes, for the quadratic variation of a standard Brownian motion over the interval

[sj, sj+1), it holds that QVm(sj, sj+1)
m.s−→ (sj+1−sj) = QV (sj, sj+1). We will now prove

this fact, but only for convergence in probability, i.e., QVm(sj, sj+1)
P−→ (sj+1 − sj) =

QV (sj, sj+1). For this purpose, we first consider the expected value of the quadratic

variation, which is determined as

E[QVm(sj, sj+1)] =
m−1∑
i=0

E[(W (ki+1)−W (ki))
2]

=
m−1∑
i=0

var[(W (ki+1)−W (ki))]

=
m−1∑
i=0

(ki+1 − ki)

= km − k0

= sj+1 − sj.

111

Further, we determine the variance of the quadratic variation by

var[QVm(sj, sj+1)] =
m−1∑
i=0

var[(W (ki+1)−W (ki))
2]

=
m−1∑
i=0

{E[(W (ki+1)−W (ki))
4]− E[(W (ki+1)−W (ki))

2]2}

=
m−1∑
i=0

{3(ki+1 − ki)2 − (ki+1 − ki)2}

= 2
m−1∑
i=0

(ki+1 − ki)2

≤ 2 max
0≤i≤m−1

[(ki+1 − ki)]
m−1∑
i=0

(ki+1 − ki)

= 2 max
0≤i≤m−1

[(ki+1 − ki)](sj+1 − sj)

=
m→∞−→ 0.

Here, the first equality uses independence of the increments of the Brownian motion, the

second equality follows from the variance shift, and the third equality comes from the

fact that kurtosis of a normal distributed random variable with zero expectation equals

to 3σ2, which in the present case can be translated to 3(ki+1 − ki)2. The last equality

is valid because for m → ∞ the partitioning of the subintervals becomes finer and the

lengths of the intervals become smaller so that in the limiting case the maximum step

size approaches zero. Now we can use Chebyshev’s inequality and it follows that

P(|QVm(sj, sj+1)− (sj+1 − sj)| > ε) ≤
2 max

0≤i≤m−1
[(ki+1 − ki)](sj+1 − sj)

ε2

=
m→∞−→ 0

which means that the quadratic variation of the standard Brownian motion converges

in probability to (sj+1− sj), i.e. QVm(sj, sj+1)
P−→ (sj+1− sj). Using this result, we get

for m→∞

QV (sj, sj+1) = σ2(sj)(sj+1 − sj)

=

∫ sj+1

sj

σ2(u)du.

112

Now, we can apply the same procedure over all n subintervals of [0, t], i.e., add up the

quadratic variation just determined and get

QV (0, t) =
n−1∑
j=0

∫ sj+1

sj

σ2(u)du

=

∫ t

0

σ2(u)du.

113

A.4. Derivation of Equation (3.9) for a GARCH(1,1)

We now consider a stationary GARCH(1,1) model, which is the most widely used spec-

ification of these models. This can be written as

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1.

Iterating backwards and using σ2
t−1 = α0 + α1r

2
t−2 + β1σ

2
t−2, we get

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1

= α0 + α1r
2
t−1 + β1(α0 + α1r

2
t−2 + β1σ

2
t−2)

= α0(1 + β1) + α1r
2
t−1 + β1α1r

2
t−2 + β2

1σ
2
t−2.

We can iterate further back and for σ2
t−2 = α0 + α1r

2
t−3 + β1σ

2
t−3, we obtain

σ2
t = α0(1 + β1 + β2

1) + α1r
2
t−1 + β1α1r

2
t−2 + β2

1α1r
2
t−3 + β3

1σ
2
t−3

= α0(1 + β1 + β2
1) + α1(r2

t−1 + β1r
2
t−2 + β2

1r
2
t−3) + β2

1σ
2
t−3

We can further perform the backward iteration for σ2
t−i for i > 2 and thus obtain

σ2
t = α0(1 + β1 + β2

1 + β3
1 + . . .) + α1

∞∑
i=1

βi−1
1 r2

t−i

= α0

∞∑
i=0

βi1 + α1

∞∑
i=1

βi−1
1 r2

t−i

=
α0

1− β1

+ α1

∞∑
i=1

βi−1
1 r2

t−i.

From the assumption of stationarity with α1 + β1 < 1, it follows that the geometric

series
∑∞

i=0 β
i
1 converges to 1

1−β1 . This gives us an ARCH(∞) representation of the

GARCH(1,1) process. In the general notation from equation (3.9), we have ν0 = α0

1−β1 ,

and νi = α1β
i−1
1 .

114

A.5. Takens’ Embedding Theorem

To describe Takens’ theorem graphically we follow the idea of Jemwa (2003) and the

description of Garcia (2022). We consider the Henon map and show that the representa-

tion (4.1) is admissible. This map describes a dynamical system in discrete time which

exhibits chaotic behavior. The Henon map can be described by the equations

xt = 1− ax2
t−1 + yt−1

yt−1 = bxt−1.

Based on these equations, we uniformly sample a sequence of values to generate a Henon

time series which can be seen in the following figure.

−1.0

−0.5

0.0

0.5

1.0

0 100 200 300
Time

x(
t)

Figure A.1.: Henon Series with coefficients a = 1.4 and b = 0.3

This figure shows a time series with data in a familiar format. This data can now be

converted into a matrix form with embedding vectors from Takens’ theorem.

xt =

0.487

0.833

0.174

1.208

−0.990

−0.010
...

⇒ X =

0.174 0.833 0.487

1.208 0.174 0.833

−0.990 1.208 0.174

−0.010 −0.990 1.208
...

...
...

.

115

Each row vector of matrix X corresponds to an embedding vector. Here it should be

noted that in representation (4.1), the first column of the matrix corresponds to the

vector of labels. However, in this example, the observed time series is projected into

a three-dimensional reconstructed state. This space can be represented graphically by

plotting lagged variables on the axes, which reveals the dynamics generating the series.

This can be seen in the following figure.

x(t−2)
x(

t−
1)

x(t)

3D State Space / Phase Space

Figure A.2.: Dynamics of the Henon system in the embedded space

Overall, it appears that this approach supports the restructuring of a time series into a

supervised learning data format.

116

A.6. Proof of Equation (4.18)

We now want to show that the variance of the bagged predictor f̂BBag for identically

distributed trees and prediction functions that are positively correlated with each other

is exactly equal to the expression from equation (4.18)

var(f̂BBag
(
x)
)
= ρσ2 +

1− ρ
B

σ2.

This representation of the variance is from the book by Hastie et al. (2009) Equation

15.1 and is also asked to proof there as an exercise. Since this book is a standard in the

statistical machine learning literature, there are probably many different approaches to

derive this equation.

Proof:

We first assume that all for all i ∈ {1, . . . , B} prediction functions are identically dis-

tributed with f̂ ∗i ∼ D(µ, σ2) and there is a positive pairwise correlation between the

prediction functions f̂ ∗i and f̂ ∗j with correlation coefficient ρ > 0. Thus, with the help of

the calculation rules of variance and covariance, it follows

var(f̂BBag
(
x)
)

= var

(
1

B

B∑
i=1

f̂ ∗i (x)

)

=
1

B2
var

(B∑
i=1

f̂ ∗i (x)

)

=
1

B2
cov

(B∑
i=1

f̂ ∗i (x),
B∑
i=1

f̂ ∗i (x)

)

=
1

B2

{ B∑
i=1

var(f̂ ∗i (x)) +
∑
i 6=j

cov(f̂ ∗i (x), f̂ ∗j (x))

}
=

1

B2

{
Bσ2 +

∑
i 6=j

cov(f̂ ∗i (x), f̂ ∗j (x))

}
=

1

B2

{
Bσ2 +

∑
i 6=j

ρσ2

}
=

1

B2

{
Bσ2 + (B2 −B)ρσ2

}
= ρσ2 +

(1− ρ)

B
σ2

117

The first five equalities following from using the definitions and applying the variance

and covariance rules, and the relationship between the two measures. Note that the sixth

equality follows from the fact that ρ =
cov(f̂∗i (x),f̂∗j (x))

σ2 . The seventh equality follows from

the fact that there are exactly B2 pairs of i, j where for B pairs i = j holds. Accordingly

there have to be (B2 − B) paris with i 6= j and therefore we get
∑

i 6=j = (B2 − B) =

B(B − 1).

118

References

Andersen, T. G. and Bollerslev, T. (1998). Answering the skeptics: Yes, standard

volatility models do provide accurate forecasts. International economic review, pages

885–905.

Andersen, T. G., Bollerslev, T., Christoffersen, P. F., and Diebold, F. X. (2013). Finan-

cial risk measurement for financial risk management. In Handbook of the Economics

of Finance, volume 2, pages 1127–1220. Elsevier.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001). The distribution

of realized exchange rate volatility. Journal of the American statistical association,

96(453):42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and

forecasting realized volatility. Econometrica, 71(2):579–625.

Athey, S. and Imbens, G. (2019). Machine learning methods economists should know

about. arXiv preprint arXiv:1903.10075.

Audrino, F. and Knaus, S. D. (2016). Lassoing the har model: A model selection

perspective on realized volatility dynamics. Econometric Reviews, 35(8-10):1485–1521.

Awad, M. and Khanna, R. (2015). Support vector regression. In Efficient learning

machines, pages 67–80. Springer.

Bachelier, L. (1900). Théorie de la spéculation. In Annales scientifiques de l’École

normale supérieure, volume 17, pages 21–86.

Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric analysis of realized

volatility and its use in estimating stochastic volatility models. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 64(2):253–280.

119

Ben Taieb, S. and Hyndman, R. (2012). Recursive and direct multi-step forecasting: the

best of both worlds. Technical report, Monash University, Department of Econometrics

and Business Statistics.

Bergmeir, C., Hyndman, R. J., and Koo, B. (2018). A note on the validity of cross-

validation for evaluating autoregressive time series prediction. Computational Statis-

tics & Data Analysis, 120:70–83.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and machine learning,

volume 4. Springer.

Blair, B. J., Poon, S.-H., and Taylor, S. J. (2010). Forecasting s&p 100 volatility:

the incremental information content of implied volatilities and high-frequency index

returns. In Handbook of quantitative finance and risk management, pages 1333–1344.

Springer.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal

of econometrics, 31(3):307–327.

Bontempi, G., Ben Taieb, S., and Borgne, Y.-A. L. (2012). Machine learning strategies

for time series forecasting. In European business intelligence summer school, pages

62–77. Springer.

Bradley, R. C. (2005). Basic properties of strong mixing conditions. a survey and some

open questions. Probability surveys, 2:107–144.

Breiman, L., C. A. (2003). Manual: Setting up, using and understanding random forests,

v4.0. URL: https://www.stat.berkeley.edu/∼breiman/Using random forests v4.0.pdf,

(22.08.2022), University of California, Berkeley.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

Brockwell, P. J. and Davis, R. A. (2002). Introduction to time series and forecasting.

Springer.

Bucci, A. (2020). Realized volatility forecasting with neural networks. Journal of Fi-

nancial Econometrics, 18(3):502–531.

Bühlmann, P. (2002). Bootstraps for time series. Statistical science, pages 52–72.

120

https://www.stat.berkeley.edu/~breiman/Using_random_forests_v4.0.pdf

Carlstein, E. (1986). The use of subseries values for estimating the variance of a general

statistic from a stationary sequence. The annals of statistics, pages 1171–1179.

Carr, P., Wu, L., and Zhang, Z. (2019). Using machine learning to predict realized

variance. arXiv preprint arXiv:1909.10035.

Carrasco, M. and Chen, X. (2002). Mixing and moment properties of various GARCH

and stochastic volatility models. Econometric Theory, 18(1):17–39.

Casdagli, M., Eubank, S., Farmer, J. D., and Gibson, J. (1991). State space reconstruc-

tion in the presence of noise. Physica D: Nonlinear Phenomena, 51(1-3):52–98.

Chevillon, G. (2007). Direct multi-step estimation and forecasting. Journal of Economic

Surveys, 21(4):746–785.

Chevillon, G. and Hendry, D. F. (2005). Non-parametric direct multi-step estimation for

forecasting economic processes. International Journal of Forecasting, 21(2):201–218.

Christensen, K., Siggaard, M., and Veliyev, B. (2021). A machine learning approach to

volatility forecasting. Available at SSRN.

Clements, A. and Preve, D. P. (2021). A practical guide to harnessing the HAR volatility

model. Journal of Banking & Finance, 133:106285.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal

of Financial Econometrics, 7(2):174–196.

Danielsson, J. (2011). Financial risk forecasting: the theory and practice of forecasting

market risk with implementation in R and Matlab. John Wiley & Sons.

De Stefani, J., Caelen, O., Hattab, D., and Bontempi, G. (2017). Machine learning for

multi-step ahead forecasting of volatility proxies. In MIDAS@ PKDD/ECML, pages

17–28.

Efron, B. and Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of

the variance of united kingdom inflation. Econometrica: Journal of the econometric

society, pages 987–1007.

Fama, E. F. (1965). The behavior of stock-market prices. The journal of Business,

38(1):34–105.

121

Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work.

The journal of Finance, 25(2):383–417.

Fryzlewicz, P. and Rao, S. S. (2011). Mixing properties of arch and time-varying arch

processes. Bernoulli, 17(1):320–346.

Garcia, C. A. (2022). nonlinearTseries: Nonlinear Time Series Analysis. R package

version 0.2.12.

Hall, P., Horowitz, J. L., and Jing, B.-Y. (1995). On blocking rules for the bootstrap

with dependent data. Biometrika, 82(3):561–574.

Hansen, P. R. and Lunde, A. (2005). A forecast comparison of volatility models: does

anything beat a GARCH (1, 1)? Journal of applied econometrics, 20(7):873–889.

Hansen, P. R. and Lunde, A. (2006a). Consistent ranking of volatility models. Journal

of Econometrics, 131(1-2):97–121.

Hansen, P. R. and Lunde, A. (2006b). Realized variance and market microstructure

noise. Journal of Business & Economic Statistics, 24(2):127–161.

Hansen, P. R. and Lunde, A. (2011). Forecasting volatility using high frequency data.

Hassler, U. (2007). Stochastic integration and time series modeling: an introduction with

applications from finance and econometrics. Springer.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman, J. H. (2009). The elements

of statistical learning: data mining, inference, and prediction, volume 2. Springer.

Hautsch, N. (2011). Econometrics of financial high-frequency data. Springer Science &

Business Media.

Heber, Gerd, A. L. N. S. and Sheppard, K. K. (2009). Oxford-man institute’s realized

library. Oxford-Man Institute, University of Oxford. Library Version: 0.3.

Held, C. (2018). Gabler business dictionary definition: German Stock Index

(DAX). URL: https://wirtschaftslexikon.gabler.de/definition/deutscher-aktienindex

-dax-31116/version-254682, (10.07.2022), Springer.

Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: principles and practice.

OTexts.

122

https://wirtschaftslexikon.gabler.de/definition/deutscher-aktienindex-dax-31116/version-254682
https://wirtschaftslexikon.gabler.de/definition/deutscher-aktienindex-dax-31116/version-254682

Israel, R., Kelly, B. T., and Moskowitz, T. J. (2020). Can Machines ’Learn’ Finance?

Journal of Investment Management.

Izzeldin, M., Hassan, M. K., Pappas, V., and Tsionas, M. (2019). Forecasting realised

volatility using ARFIMA and HAR models. Quantitative Finance, 19(10):1627–1638.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statis-

tical learning, volume 112. Springer.

Jemwa, G. T. (2003). Multivariate nonlinear time series analysis of dynamic process

systems. Master’s thesis, Stellenbosch: University of Stellenbosch.

Karandikar, R. and Vidyasagar, M. (2009). Probably approximately correct learning

with beta-mixing input sequences. submitted for publication.

Karatzas, I. and Shreve, S. (2012). Brownian motion and stochastic calculus, volume

113. Springer Science & Business Media.

Kirchgässner, G., Wolters, J., and Hassler, U. (2012). Introduction to modern time series

analysis. Springer Science & Business Media.

Kreiss, J.-P. and Lahiri, S. N. (2012). Bootstrap methods for time series. In Handbook

of statistics, volume 30, pages 3–26. Elsevier.

Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observa-

tions. The annals of Statistics, pages 1217–1241.

Kuznetsov, V. and Mohri, M. (2014). Generalization bounds for time series prediction

with non-stationary processes. In International conference on algorithmic learning

theory, pages 260–274. Springer.

Kuznetsov, V. and Mohri, M. (2015). Learning theory and algorithms for forecasting

non-stationary time series. Advances in neural information processing systems, 28.

Kuznetsov, V. and Mohri, M. (2018). Lecture notes on advanced machine learning:

Time series prediction. URL: https://cims.nyu.edu/∼mohri/amls/aml time series.pd

f, (16.08.2022), New York University.

Lee, S.-W. and Hansen, B. E. (1994). Asymptotic theory for the GARCH (1, 1) quasi-

maximum likelihood estimator. Econometric theory, 10(1):29–52.

123

https://cims.nyu.edu/~mohri/amls/aml_time_series.pdf
https://cims.nyu.edu/~mohri/amls/aml_time_series.pdf

Li, S. Z. and Tang, Y. (2021). Forecasting realized volatility: An automatic system using

many features and many machine learning algorithms. Available at SSRN 3776915.

Lindner, A. M. (2009). Stationarity, mixing, distributional properties and moments of

GARCH (p, q)–processes. In Handbook of financial time series, pages 43–69. Springer.

Liu, L. Y., Patton, A. J., and Sheppard, K. (2015). Does anything beat 5-minute RV? A

comparison of realized measures across multiple asset classes. Journal of Econometrics,

187(1):293–311.

Lommers, K., El Harzli, O., and Kim, J. (2021). Confronting machine learning with

financial research. The Journal of Financial Data Science, 3(3):67–96.

Lopez, J. A. (2001). Evaluating the predictive accuracy of volatility models. Journal of

forecasting, 20(2):87–109.

López de Prado, M. (2019). Beyond econometrics: A roadmap towards financial machine

learning. Available at SSRN 3365282.

Luong, C. and Dokuchaev, N. (2018). Forecasting of realised volatility with the random

forests algorithm. Journal of Risk and Financial Management, 11(4):61.

Masini, R. P., Medeiros, M. C., and Mendes, E. F. (2021). Machine learning advances

for time series forecasting. Journal of Economic Surveys.

McDonald, D. J., Shalizi, C. R., and Schervish, M. (2011). Generalization error bounds

for stationary autoregressive models. arXiv preprint arXiv:1103.0942.

Mohri, M. and Muñoz Medina, A. (2012). New analysis and algorithm for learning with

drifting distributions. In International Conference on Algorithmic Learning Theory,

pages 124–138. Springer.

Mohri, M. and Rostamizadeh, A. (2007). Stability bounds for non-iid processes. Ad-

vances in Neural Information Processing Systems, 20.

Mohri, M. and Rostamizadeh, A. (2008). Rademacher complexity bounds for non-iid

processes. Advances in Neural Information Processing Systems, 21.

Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2018). Foundations of machine learn-

ing. MIT press.

124

Müller, U. A., Dacorogna, M. M., Davé, R. D., Pictet, O. V., Olsen, R. B., and Ward,

J. R. (1993). Fractals and intrinsic time: A challenge to econometricians. Unpublished

manuscript, Olsen & Associates, Zürich, 130.

Patton, A., Politis, D. N., and White, H. (2009). Correction to “automatic block-

length selection for the dependent bootstrap” by d. politis and h. white. Econometric

Reviews, 28(4):372–375.

Patton, A. J. (2011). Volatility forecast comparison using imperfect volatility proxies.

Journal of Econometrics, 160(1):246–256.

Peng, Y., Albuquerque, P. H. M., de Sá, J. M. C., Padula, A. J. A., and Montenegro,

M. R. (2018). The best of two worlds: Forecasting high frequency volatility for cryp-

tocurrencies and traditional currencies with support vector regression. Expert Systems

with Applications, 97:177–192.

Politis, D. N. and White, H. (2004). Automatic block-length selection for the dependent

bootstrap. Econometric reviews, 23(1):53–70.

Poon, S.-H. (2005). A practical guide to forecasting financial market volatility. John

Wiley & Sons.

Poon, S.-H. and Granger, C. W. (2003). Forecasting volatility in financial markets: A

review. Journal of economic literature, 41(2):478–539.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rahimikia, E. and Poon, S.-H. (2020). Machine learning for realised volatility forecasting.

Available at SSRN, 3707796.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From

theory to algorithms. Cambridge university press.

Shephard, N. and Sheppard, K. (2010). Realising the future: forecasting with

high-frequency-based volatility (heavy) models. Journal of Applied Econometrics,

25(2):197–231.

Shreve, S. E. et al. (2004). Stochastic calculus for finance II: Continuous-time models,

volume 11. Springer.

125

Smola, A. J. and Schölkopf, B. (2004). A tutorial on support vector regression. Statistics

and computing, 14(3):199–222.

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems

and turbulence, Warwick 1980, pages 366–381. Springer.

Tashman, L. J. (2000). Out-of-sample tests of forecasting accuracy: an analysis and

review. International journal of forecasting, 16(4):437–450.

Tsay, R. S. (2005). Analysis of financial time series. John wiley & sons.

Vortelinos, D. I. (2017). Forecasting realized volatility: HAR against principal compo-

nents combining, neural networks and GARCH. Research in international business

and finance, 39:824–839.

Wang, C. S.-H., Bauwens, L., and Hsiao, C. (2013). Forecasting a long memory process

subject to structural breaks. Journal of Econometrics, 177(2):171–184.

Webel, K. and Wied, D. (2016). Stochastic Processes. Springer.

Yu, B. (1994). Rates of convergence for empirical processes of stationary mixing se-

quences. The Annals of Probability, pages 94–116.

Zhang, C., Zhang, Y., Cucuringu, M., and Qian, Z. (2022). Volatility forecasting with

machine learning and intraday commonality. arXiv preprint arXiv:2202.08962.

Zivot, E. (2009). Practical issues in the analysis of univariate GARCH models. In

Handbook of financial time series, pages 113–155. Springer.

Zivot, E. (2011). Lecture notes on financial econometrics: Introduction to realized

variance. URL: https://faculty.washington.edu/ezivot/econ589/econ512realizedvaria

nce.pdf, (23.07.2022), University of Washington.

126

https://faculty.washington.edu/ezivot/econ589/econ512realizedvariance.pdf
https://faculty.washington.edu/ezivot/econ589/econ512realizedvariance.pdf

Declaration of Authenticity

The work contained in this thesis is original and has not been previously submitted for

examination which has led to the award of a degree.

To the best of my knowledge and belief, this thesis contains no material previously

published or written by another person except where due reference is made.

Dominik Bruckmeier

127

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Motivation
	Related Work and Literature
	Problems and Research Question
	Overview

	Theoretical Background
	Fundamental Theory of Time Series
	Financial Time Series
	Volatility in Financial Markets

	Econometric Forecasting Models
	The ARCH Model
	The GARCH Model
	The HAR-RV Model

	Machine Learning Algorithms
	Basic Theory of Machine Learning for Time Series
	Trees
	Random Forest
	Support Vector Regression

	Evaluation
	Time Series Cross Validation
	Performance Measures

	Empirial Results and Discussion
	Empirical Setup
	Results and Discussion
	Evaluation of the Forecasts
	Varying the Forecast Horizon

	Conclusion
	Limitations and Further Research

	Appendix
	Example of Natural Filtration of an Stochastic Process
	Random Walk as Martingale
	Proof of Equation (2.25)
	Derivation of Equation (3.9) for a GARCH(1,1)
	Takens' Embedding Theorem
	Proof of Equation (4.18)

	References

