Master’s Thesis

Gaussian Process Regression
and Bayesian Deep Learning

for Insurance Tariff Migration

Department of Statistics

Ludwig-Maximilians-Universitat Miinchen

Kai Philipp Becker

Munich, Novemeber 11", 2022

Submitted in partial fulfillment of the requirements for the degree of M.Sc. in Statistics
Supervised by Dr. Janek Thomas

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Abstract

This thesis reviews the current state of Gaussian Processes and Bayesian Deep
Learning hybrid models, and their applicability to the transfer of actuarial func-
tionalities. I conduct a benchmark study on two insurance tariff datasets and four
OpenML regression tasks and compare Deep Kernel Learning, Deep Gaussian Pro-
cesses, and Deep Sigma Point Processes with several strong baselines including a
bayesian deep learning baseline. The model classes are examined with respect to
fit, scalability, stability, and uncertainty quantification capabilities. My results show
that among the analyzed models Variational Deep Kernel Learning, Deep Gaussian
Processes, and Deep Ensembles show the best results with respect to predictive

performance and uncertainty estimation abilities on the insurance tariff datasets.

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Contents

1 Introduction 1
2 The Composition of Insurance Tariff Data 3
3 Gaussian Process Regression 5

4 The Current State of Gaussian Process Neural Network Hybrid Models 7

4.1 Deep Kernel Learning o 7
4.1.1 Related Methods 10
4.2 Deep Gaussian Processes Lo 11
421 DGP Model 11
4.2.2 Inference 12
4.2.3 Doubly Stochastic Variational Inference 13
424 Model Design 14
4.2.5 Related Methods 14
4.3 Deep Sigma Point Process oo 16
4.3.1 Parametric Gaussian Processes 16
4.3.2 Stochastic Variational Gaussian Process (SVGP). 16
4.3.3 Predictive Parametric Gaussian Processes 18
4.3.4 Deep Sigma Point Process 18
4.4 Other Methods 19
4.4.1 Neural Network Gaussian Process 19
4.4.2 Scalable Gaussian Process Regression Using Deep Neural Networks 20
4.4.3 Improving Output Uncertainty Estimation and Generalization in
Deep Learning via Neural Network Gaussian Processes 20
5 Experiments 21
5.1 Experiment Setup 21
5.2 Benchmark Results 23
5.2.1 K2204 and R1.08 Results 23
5.2.2 OpenML Results 26
5.2.3 Negative Log Likelihood Comparison 27
5.3 Model Prediction Analysis 28
5.4 HPO Routine Analysis 30

IT

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

6 Model Discussion 33
7 Conclusion 37
A Appendix I
A1 Datasets e I
A2 Study Set Up I
A.3 Model Search Space I
A.4 Configurations found by HPO \Y
A.4.1 Deep Kernel Learning \Y
A.4.2 Variational Deep Kernel Learning VIII
A.4.3 Deep Gaussian Process XI
A.4.4 Neural Network Deep Gaussian Process XIV
A.4.5 Deep Sigma Point Process XVI
A4.6 Deep Ensemble XIX
A.4.7 Random Forest XXI

A48 XGBoost. XXIII

I1I

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

1 Introduction

In today’s fast-paced business environment, aging policy administration systems (PAS)
can make it difficult for life insurers to quickly adapt to changing market conditions.
Therefore, modernizing PAS and moving away from legacy systems is key to coping with
increased competition from traditional companies and startups, evolving customer expec-
tations, and shifting regulatory environments. However, these tasks often require semi-
manual migration of large policy portfolios with complex actuarial functions, which can
not only take several years but also tie up valuable resources (msg life (2022)). This thesis
is part of a research project between LMU Munich and msg life to leverage automation
and explainable Al to achieve significant gains in efficiency, scalability, and cost reduction

for PAS migration.

Due to regulatory requirements, Uncertainty Quantification (UQ) and the interpolation
of training data are required for this type of data. Gaussian Processes (GPs) possess both
of these properties, which makes them a suitable initial candidate. However, they do not
scale well to large data settings, and life insurers and their PAS typically manage multi-
ple millions of insurance tariffs. Deep neural networks (DNNs) on the other hand have
emerged in recent years as state-of-the-art methods in areas such as speech recognition
and object detection due to their ability to learn data representations and their capability
to handle vast amounts of data (LeCun et al. (2015)). They do not possess inherent UQ
capabilities, however.

Neal (1995) has shown an equivalence between these two approaches. Specifically, he
showed that a single-layer neural network with infinitely many hidden units converges to
a GP with a specific kernel. More recently, researchers have begun to combine ideas from
GPs and neural networks, giving birth to a series of new models such as Deep Kernel
Learning (Wilson et al. (2016)) and Deep Gaussian Processes (Damianou and Lawrence
(2013)). Deep Kernel Learning uses a neural network to extract features and uses them
as input to a GP. Deep Gaussian Processes are inspired by the compositional structure of
a neural network and can be interpreted as a composition of multiple GPs. Variations of
these models include Variational Deep Kernel Learning (Bradshaw et al. (2017)), which
combines a sparse Gaussian Process with a neural network feature extractor, and Deep
Sigma Point Process (Jankowiak et al. (2020a)), a parametric model that tries to target
the Deep Gaussian Processes predictive distribution directly.

The goal of this thesis is to summarize the current state of Gaussian Process neural net-

work hybrid models, conduct a benchmark study on insurance tariff data, and analyze the

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

approaches with respect to scalability, stability, and quality of their uncertainty estimates.
My results show, that Variational Deep Kernel Learning showed great predictive results
over all examined datasets. The Deep Sigma Point Process displayed good performance
on small and medium-sized datasets. The Deep Gaussian Process showed competitive
performance on the examined large insurance dataset.

This Thesis is structured as follows: I begin by highlighting the distinctive features of
insurance tariff data and motivating the application of GP regression models. In Section
3, I briefly review GP regression. In section 4, I summarize the current state of GP and
neural network hybrid models. In section 5, I conduct a benchmark study of the models
reviewed in section 4 on insurance tariff and OpenML regression datasets. I will conclude

this with section 6 where I discuss the strength and weaknesses of these models.

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

2 The Composition of Insurance Tariff Data

A PAS migration includes the transfer of insurance policies and the reimplementation
of the associated actuarial functions. The approximation of these actuarial functions is
an ideal regression use case. The fictitious endowment insurance tariff dataset K2204 is
of central interest to this thesis. It contains benefit and premium present values for a
random portfolio of K2204 life-insurance policies. In this section, I will explain the math
behind the K2204 dataset and motivate why GPs are a promising model class for actuarial
function approximation.

K2204 is a classical endowment insurance tariff that pays out a single benefit payment
both in case of survival or decease of the policyholder. For a policy with a duration of
n years, the survival benefit is paid out at time n contingent upon the survival of the
policyholder. In the event of the passing of the policyholder, the death benefit is paid
out at the end of the respective insurance year. For this dataset, both death and survival
benefits are the same. The mortality table DAV_2008_T_090 (Sterbetafeln-DAV (2008))
given by the German Actuarial Society is used for all present value calculations. The
interest rate is given by 7. All calculations are made with respect to a benefit payment of
B=1.

For the duration of an insurance policy n, the policyholder at age x pays a constant pre-
mium P. The premium present value PVp (PPV) is the discounted sum of all premiums

over the entire policy duration:

n—1

P-PVp=P-> V" p,, (1)
k=0

where v = %ﬂ is the discount factor and ,p, is the k-year survival rate, which represents
the probability that a person of age x survives to reach the age x + k.

The benefit present value PVg (BPV) for a n-year insurance policy for a person of age
x is given by a combination of two different benefits, a pure endowment insurance that is
paid out in case of survival, and a term life insurance that is paid out in case of death.

The pure endowment insurance is given by

n—1
nEx =" pr-i-ka (2)
k=0

where p, . is the one-year survival rate, which describes the probability that a person of

age x + k is still alive in the next year.

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

The term life insurance can be calculated as

L EPz * Qu+k; (3)

where ¢, is the one-year mortality rate, which describes the probability that a person
of age x + k dies in the next year.
The BPV can then be calculated as

The task for the K2204 now is to predict BPV and PPV given a policyholder’s age =z,
the policy duration n, and the gender of the policyholder as features. Due to regulatory
requirements, a given algorithm should not only be able to interpolate the data points,
but also provide uncertainty estimates. GPs were chosen as the base model class for this
thesis, as they have the following key advantages. First, as I will show in Section 3, GP
predictions can interpolate observations. As there is no observation noise present in the
K2204 dataset, GPs should be able to handle this task. Second, the prediction of a GP is
probabilistic. As the above calculations allow for generating arbitrarily many new obser-
vations, the model can be refitted in areas of high uncertainty or poor performance. Third,
GPs are versatile as specialized kernels can be specified to handle the given properties by
the task at hand.

The R1.08 is the second insurance dataset that will be analyzed in this thesis. It contains
annuity insurance tariffs and differs from K2204 in that the insurance benefit is paid in
lifetime annuity payments and not in a one-time payment as in K2204. For more reference

on annuity insurance and actuarial mathematics see Kahlenberg et al. (2018).

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

3 Gaussian Process Regression

Given a dataset D of size n with input vectors X = {xi,...,x,} each of dimension
d and a vector of targets y = {yi,...,yn}, a Gaussian process is a collection of ran-
dom variables, where any finite number of those random variables have a joint Gaus-
sian Distribution (Rasmussen (2003)). Thus, if a function f(z) is generated by a GP,
f(z) ~GP(m(z), K(X, X)), then for any finite collection of inputs {xy, ..., x, }, the asso-

ciated vector of function values {f(x1), ..., f(x,)} has a Gaussian distribution

f=[f(x1), ey f(x)]" ~ N(m(z), K(x,X), (5)
where m(x) is defined as the mean function and (K(x,x’));; = k(x;,X]) is a covariance
function determined by the covariance kernel k(.,.) of the Gaussian process. A GP is
therefore completely specified by its mean and covariance function. For notational sim-
plicity, the mean function will be set to 0.

For test points X, the joint distribution over the function values f and f, can be written

[f]NN<O7[K(X,X) K (X,X,)]) -
f, K(X.,X) K(X.,X,)

By conditioning f, on X,, X and f we get the following predictive distribution

as

p(£ | X, X,y) ~ N (K (X, X) K(X,X)7'f,
K (X.,X,) - K (X, X)K(X,X)"'K (X,X.,))
The prediction for a training point x; is the exact target value y,.
p(f1X,y) ~ N (K (X, X) K(X,X) "y,

K (X,X) - K (X,X) K(X,X) 'K (X,X)) = N(y,0)
A GP is therefore a function interpolator. However, this property is not always warranted.
For that reason, a small constant is often added to the diagonal of the covariance matrix,
which can be estimated during training.
The choice of the kernel function encodes prior assumptions about the functions drawn
from a Gaussian Process such as smoothness and periodicity. A popular choice for a
kernel is the Squared Exponential kernel (Rasmussen (2003)), also known as Radial Basis
Function (RBF) kernel

[Ix = x'|

Krpr(x,x') = exp(— Ty 2). (9)

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

The choice of the kernel also introduces learnable Hyperparameters. Here, the Hyper-
parameter lengthscale controls the smoothness of the underlying function f. A larger
lengthscale will result in a smooth function, while a small lengthscale will produce a more
wiggly function.

The Hyperparameters of a GP can be optimized using gradient methods using the marginal
log-likelihood (MLL). The marginal likelihood is given as the integral of the likelihood

times the prior

ply | X) = / Py | £,X) p(| X) df. (10)
—_——— —
likelihood GP Prior

The integral in equation 10 can be solved analytically. The Hyperparameters of a GP 6

can be discovered by minimizing the marginal log-likelihood

1 _ 1 n
logp(y | X, 6) = —§yTK9 ly — 5 108 | K| — 5 log 2 (11)

where Kjy is short for K(X,X) given 6. The term MLL refers to the marginalization
over the function values and can be viewed as a penalized fit measure, where the term
%yTK@’ 'y measures the data fit and %log | Ky| is a complexity penalization term. The
final term log 27 is a normalization constant.

Limitations of GPs include their computational and storage cost. To calculate the term
K, 'y in equation 11, one needs to invert the kernel matrix, which is of size N x N
where N is the number of data points in the training set. The most common approach,
to compute the Cholesky decomposition, requires O(N?3) operations (Rasmussen (2003))
and O(N?) storage costs due to keeping the whole dataset in memory. This is infeasible
for large-scale datasets.

In addition to the scalability issues, the performance and generalization behavior of a GP
is highly dependent on the choice of the covariance function (Wilson and Adams (2013)).
Hence, specifying an appropriate kernel for a given task is crucial. Moreover, Bengio et al.
(2005) found that popular choices such as the squared exponential kernel suffer from the

curse of dimensionality.

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4 The Current State of Gaussian Process Neural Net-

work Hybrid Models

Gaussian Processes are limited by the size of the training data and choice of an appropriate
kernel. To overcome these limitations, different ideas have been developed to combine
the expressive power of Neural Networks with the uncertainty estimation capabilities of
Gaussian Processes. In the following section, I am going to outline the main ideas for

Gaussian Process and Neural Network Hybrid Models for Regression.

4.1 Deep Kernel Learning

As we have seen in Chapter 3, the choice of a suitable covariance kernel is a crucial
component of a Gaussian Process as it encodes the structure and assumptions about the
function which we wish to learn. However, the choice may depend on the given dataset and
prior knowledge of the problem at hand. Furthermore, popular kernels such as the RBF
kernel are unable to learn effective representations from data to improve predictions and
instead just provide smoothing (Ober et al. (2021)). This limits GPs from fully utilizing
the information in high-dimensional datasets or when dealing with highly structured data,
such as images (Ober et al. (2021)). Deep neural networks (DNN), on the other hand, are
known for their great representational power, and ability to learn feature representations
that aid prediction and scalability in large data settings (LeCun et al. (2015)).

To obtain the best of both worlds, Calandra et al. (2016) and Wilson et al. (2016) com-
bine the uncertainty representation advantages of GPs with the representation-learning
advantages of DNNs. The idea is to jointly learn a mapping by a DNN into a latent
dimension k, with d > k, and a GP that uses the latent feature representation as its
input space in an end-to-end fashion.

In DKL, the input x is forwarded through a DNN with L hidden Layers. The output
of the DNN is then fed into a base kernel, which is subsequently used as the covariance

function of a GP.

ko(x, X'|0) = k% (g(x, W), g(x', w)|0, W) (12)

ko(x,%’'|@) is the base kernel with Hyperparameters 8 and g(x, w) is the non-linear map-
ping given by a DNN with weights w. I denote k9°? as the base kernel, which takes the
DNN mapping g(x, w) as its input. As a sensible choice for the base kernel, Wilson et al.
(2016) suggest using the RBF Kernel. For added flexibility, Wilson et al. (2016) propose

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

to use the spectral mixture (SM) kernel as a base kernel as it can discover quasi-periodic

stationary structures.

3 ol2 1 1 2
ksm (x,x] 0) = E aq% exp (—5 ’E; (x — X')H) cos (x — X, 2mp,) (13)
q=1 ’

The complete model is shown in figure 1. This model applies a GP with base kernel kg
to the final layer of a DNN conditioned on all kernel Hyperparameters. As a GP with an
RBF or SM kernel correspond to a representation with infinite basis functions, the DNN

can be viewed as having a hidden layer with an infinite number of hidden units.

W) Y
-;. - \, H..-l_’,l) } \.fz !’J/m
Input layer /|

/. "'\,I\"[)utpnt- layer

ya
1

| / /
ity
L
|

Hidden layers

oo layer

Figure 1: In Deep Kernel Learning, the input x is mapped through a L-layered DNN
followed by a hidden layer with an infinite number of hidden units. The mapping of the
GP is parameterized by the DNN weights w and base kernel Hyperparameters 6. {w, 0}
are learned via the MLL of the GP.

Source: Wilson et al. (2016)

Similar to a standard GP, the parameters of the DNN can be treated as Hyperparameters
of the kernel. Thus to train the model, all Hyperparameters {w, 8} are jointly learned
by maximizing the MLL of the GP from Equation 10, where w are the weights of the
DNN and @ are the kernel parameters, resulting in an end-to-end training scheme. The
chain rule is used to calculate the derivatives of the MLL with respect to the kernel

Hyperparameters:

oL oL 0K 9L oL OK%P Jg(x,w)

= = = 14
00 OKdeer 90 ' Ow OKdeer 9g(x,w) Ow (14)
The derivative of the MLL with respect to the covariance matrix K% is given by
aﬁ 1 eep— eep— eep—
O K deep - §<Kd P lnyKd Pl Kd P 1)‘ (]‘5)

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

8Kdeep
00

conditioned on the transformation of the inputs g(x,w). The base kernel Hyperparam-

refers to the derivates of the kernel with respect to the base kernel Hyperparameters,

eters could include the lengthscale of the RBF kernel or mixture weights, bandwidths,
aKdeep

and frequencies for the Spectral Mixture kernel. Likewise, Belew) ATe the derivatives of
the kernel with respect to the transformation g while holding 8 constant. The derivatives
with respect to the DNN weights w can be computed using backpropagation.

Looking at equation 15, you can see immediately that this learning training scheme still
suffers from the same problem as regular GP training. The covariance matrix K% needs
to be inverted, resulting in a complexity of O(N?). Without any changes, this would make
DKL inapplicable to larger regression problems where the benefits of a feature extractor
were to be needed. To circumvent this issue, Wilson et al. (2016) leverage structured
kernel interpolation and replace every occurrence of K% with the KISS-GP covariance
matrix (Wilson and Nickisch (2015)).

The idea of KISS-GP is to construct kernel approximations for fast computations through
kernel interpolation. Popular inducing points methods such as subset of regressors (SoR),
deterministic training conditional (DTC), and fully independent training conditional (FITC)
used to scale up GPs to large datasets cost O(M?N) for M inducing points (Quinonero-

Candela and Rasmussen (2005)). Subset of regressors uses the approximate kernel

]%SOR(Xa Z) = Kx,UKi%]KU,z (16)

over a set of M inducing points U = [uj;—;__). To improve over standard GP regression,
one is constricted to choose M < N. However, this can lead to a decrease in predictive
performance (Wilson et al. (2014)). Structured Kernel Interpolation (SKI) approximates
the N x M matrix Ky of cross covariances evaluated at training points x and inducing

points U, by interpolating on the M x M covariance matrix Ky y:

nyU ~ WKUJ], (17)

where W is a sparse N x M matrix of interpolation weights. SKI uses local cubic inter-
polation resulting in a sparse matrix containing only four non-zero entries per row. Thus,

K9P can be rewritten as

SoR _ Eq(17) _
deep P22 deep—1 A deep 1-deep—1 1 -deepyy T
K S X,UKU,U Kyx =~ WKU,U KU7U KU7U w (18)
deepyr/T .
— WKEIWT = Kirss.

where K. 365’9 is the covariance matrix in Eq. 12 evaluated over the inducing points U.

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

This procedure costs O(M? + N) computations and O(M? + N) storage. By placing
the inducing points over a regular multidimensional lattice and exploiting the resulting
decomposition of Ky iy into a Kronecker product of Toeplitz matrices, this can be improved
to O(N + PMY™/P) cost for computations and O(N + PM#) cost for storage with P
grid points. In this manner, this approach scales almost linearly in N. In contrast to
the aforementioned scalable approximations techniques, KISS-GP allows having M ~ N
due to the linear scaling. Therefore, it yields a near-exact accuracy in its approximation
(Wilson and Nickisch (2015)).

4.1.1 Related Methods

Kirstein et al. (2022) use Tensor-Train (TT) decompositions to parameterize the weights
of a DNN. The Idea is to use a T'T function to extract features from the data and use these
as inputs into a GP. The parameters of the TT are treated as kernel-Hyperparameters
and can be jointly trained with the GP parameters. Ober et al. (2021) showed the
susceptibility of DKL to overfitting. Kirstein et al. (2022) state that overfitting is highly
reduced for their method, due to inherent regularisation by the choice of basis functions
and by imposing a low-rank structure. Furthermore, this low-rank structure allows for
implicit feature selection on the data and thus alleviates problems in high-dimensional

tasks. For scalability, the authors utilized variational inference for sparse GPs.

10

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4.2 Deep Gaussian Processes

Inspired by the phenomenon in DNNs that increasing their depth through additional layers
can lead to better predictive performance and greater capacity, DGPs are the multi-layer
hierarchical composition of this idea to Gaussian processes. They are created by stacking
multiple GPs in parallel and on top of each other, where each layer is modeled as the
output of a multivariate GP and acts as the next GP layers input and thus resulting in a
flexible, compositional function prior.

The resulting model is no longer a GP, but this compositional structure brings different
advantages. First, it offers greater expressive power compared to standard GPs as it can
learn more complex interactions between data. Many common kernel functions used for
GP regression have simple similarity metrics. This can become insufficient for more com-
plex datasets where different similarity metrics have to be used in different regions of the
input space. The compositional structure of DGPs allows them to perform input warp-
ing, dimensionality reduction, or expansion and thus automatically constructs a kernel
that works well for a given problem (Bui et al. (2016)). Second, even though they are a
very rich model class, they can learn representations with only a few Hyperparameters to
optimize. Third, it retains the advantages of GPs such as good uncertainty estimates. In
contrast to DNNs, the outputs of a layer are probabilistic as they are governed by a GP

resulting in the uncertainty being propagated through the network.

4.2.1 DGP Model

Damianou and Lawrence (2013) introduced the DGP architecture which corresponds to
a graphical model consisting of L layers of latent variables {h;}~,. All latent variables
{h;}£ | act as inputs for the layer below and outputs for the layer above. A Gaussian
process controls the mapping between two layers. Each mapping is handled by a separate

GP with covariance function k; and Hyperparameters ;. The process then takes the form:

Y =1, (h1)+er, en~N(0,071) (19)
hy=f(h_1)+ea e~N(0,0/1), I=1...L-1

where the function f; is drawn from a GP with covariance function k;: f;(z) ~ GP(0, k;(x, z7)).
For notational simplicity, I reduced the hidden layers to be of a single dimension, but this
can be generally extended to multiple dimensions. The noise between the layers is as-
sumed to be i.i.d. Gaussian. I define hy = X. For L = 1 this collapses back to a GP.

Hidden variables in intermediate layers can and will generally have multiple dimensions.

11

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

The joint density can be written analogously as to the GP model:

p(y, {fi}i) = ply | fo) H (£ | fi-1) (20)

hkehhood =1
DGP Prior

4.2.2 Inference

Inference is used to marginalize out the latent variables and minimize the marginal like-
lihood. Unlike in the GP case, the Inference problem for DGPs can not be solved an-
alytically. This comes as a result of the non-linearities introduced by the covariance
function between two layers. To overcome this issue, Damianou and Lawrence (2013) use
inducing points and variational inference to approximate the marginal likelihood. The
inducing points for the layers are denoted by Z*, ... Z% with associated inducing outputs
ul = f(ZY)...uf = £, (Z%). The number of inducing points K does not need to be the
same for every GP and can vary over the overall architecture. The joint density now

becomes

L

ply A {u'Ye) = ply | £9) [[o(f [w')p(u) (21)

1=1
The variational inference scheme introduced by Damianou and Lawrence (2013) uses a
variational posterior that maintains the exact model conditioned on u' and allows for a
tractable lower bound. They use a mean-field variational posterior which makes strong
independence and Gaussian assumptions. However, Salimbeni and Deisenroth (2017) have
identified two key problems with their approach. First, the DGP method by Damianou
and Lawrence (2013) forces the inputs to each layer to be independent of the outputs of
the previous layer. Furthermore, the noisy corruptions in Eq. 19 are modeled separately
and are factorized by a fully Gaussian variational distribution. Second, the output is
a single GP with independent Gaussian inputs. This causes the posterior to lose the
correlations between the layers, thus limiting the expressiveness of the model and resulting
in the variance likely being underestimated. Therefore, Salimbeni and Deisenroth (2017)
propose an inference method where they lose analytical tractability but retain a posterior

with the full conditional structure of the full model.

12

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4.2.3 Doubly Stochastic Variational Inference

In DGP modeling, the difficulty lies within correctly modeling the within and between
layer correlations. In contrast to the original DGP inference scheme where indepen-
dence between layers is assumed and which allows for analytic tractability, Salimbeni and
Deisenroth (2017) propose a variational inference scheme that simplifies the correlation
within layers, but maintains the correlation between layers. However, the resulting model
can no longer be evaluated analytically. The authors circumvent this by drawing samples
using univariate Gaussians and thus updating the bound stochastically.

Their proposed variational posterior takes the following factorized form with three as-

sumptions:

) ({fl,ul}lL:1> _ Hp (fz | ul £t Zl—l)) (ul) (22)
1=1

!, maintains the exact model. Second, the posterior

First, the posterior, conditioned on u
distribution of {u'},; is factorized between layers. And third, q(u') is Gaussian with
mean m' and variance S'.

For each layer, as both terms in the variational posterior are Gaussian, the inducing

variables can be marginalized out analytically.
L
q <{fl}zL:1> _ /Hp (fl | ul;fl—l’zl—1> q (ul) du
=1
L

= [[a (| m' sz (23)

with [ﬁl]i = fmt zi—1 (£}) and [El] =Yg z1 (£, £}). Looking at this, we can see that
ij

the marginal of the final layer f¥ only depends on £ — 1. More specifically, the i-th

marginal of the final layer only depends on the i-th marginals of all previous layers:

L—1
¢ () = / T o (f | ml, 581 7 a! (24)
=1

As the marginals only depend on its inputs conditioned on the previous layer, this allows
for sampling from the variational posterior. Using the re-parameterization trick (Kingma
et al. (2015)), we can draw samples using only univariate Gaussians by first drawing
el ~ N(0,1,) and afterward recursively sampling f! ~ ¢(f! | m!, S} 7, Z2"1) for | =
1,...,L—1as

13

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

fll = ,umﬂZl*l (le—l) + Eé @ \/Eslyzll (fil_l, f;l—l) (25)

The evidence lower bound of the DGP is given by

N L

Locr =D By [logp (vu | £7)] = Y KL [g (0) [Ip (' Z"7)]. (26)

=1 =1

This bound is evaluated using two sources of stochasticity. First by drawing Monte Carlo
samples from the posterior according to Eq. 25. Second by using sub-sampling techniques,
since the bound factorizes over the data, which allows for scalability. The computational
complexity of a DGP is O(NM?(D' + ... + D*)), where D' is the dimension of output at
layer [.

Predictions for DGPs are done by sampling from the variational posterior changing the
input locations to test locations x,. The function values at the test locations are denoted

as fl. The density for f¥ is obtained by using the Gaussian mixture

1

q () =

|

s
> g (ff | m”, 8% £, ZL_I) (27)
s=1
and sampling S samples A using 25.

4.2.4 Model Design

Duvenaud et al. (2014) show for the DGP architecture by Damianou and Lawrence (2013)
with zero mean, that the model’s representational power decreases as the number of
layers increases. This is the result of the GP mapping being non-injective resulting in
the function values being clustered around the same few values as the depth increases.
To resolve this, Duvenaud et al. (2014) propose additionally feeding the input X to each
layer. Salimbeni and Deisenroth (2017) instead use a linear mean function for all inner

layers and a constant mean function for the last layer.

4.2.5 Related Methods

Bui et al. (2016) use the fully independent training conditional inducing point approxi-
mation in each DGP layer, which results in a parametric model. As the marginal likelihood
is not tractable for a DGP, the authors use an expectation propagation approximation
scheme and combined this with probabilistic backpropagation to propagate uncertainly

through the non-linear GP mapping. They demonstrate good results on various regression

14

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

tasks with up to 500.000 data points, but were outperformed later by Salimbeni and
Deisenroth (2017) and their variational inference method.

Havasi et al. (2018) show for a variety of datasets, that the posterior distribution is
non-Gaussian and thus that the Gaussian approximation to the posterior distribution
employed by Salimbeni and Deisenroth (2017) can therefore be a poor approximation.
To solve this, they apply the Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)
sampling method to efficiently estimate the posterior distribution. The authors compared
their method to baseline using doubly stochastic variational inference (DSVI) and showed
that the SGHMC can outperform DSVI on 9 UCI regression benchmark datasets in both
average test Log-Likelihood and runtime. However, their method introduces its own pa-
rameters in addition to the DGP parameters, which makes them difficult to train without
prior knowledge of the data.

Cutajar et al. (2017) propose a modification to the DGP model formulation based on ran-
dom feature expansion at each hidden layer. In contrast to the aforementioned inference
methods, the GP governing the mapping between two layers is replaced by a two-layer
weight space approximation. First, random feature expansion is used to approximate the
kernel function and followed by a linear transformation parameterized by a weight matrix.
The authors show, that this yield a Bayesian DNN with low-rank weight matrices while
the approximations on the covariance functions result in DNN activation functions, e.g.
the Rectified Linear Unit function for the ARC-COSINE kernel. For inference, they use
stochastic variational inference and exploit mini-batch-based stochastic gradient optimiza-
tion for scalability. In their experiment, they demonstrate the scalability of their methods
on datasets with up to 8 million data points and that their approach can outperform the
methods by Bui et al. (2016).

15

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4.3 Deep Sigma Point Process

Inspired by the multi-layer structure of Deep Gaussian Processes, Jankowiak et al. (2020a)
introduce Deep Sigma Point Processes (DSPP), which are a multi-layer composition of
parametric GPs. DSPPs possess many of the advantages of DGPs such as mini-batch
training, while offering a much simpler inference problem. As shown in chapter 4.2, infer-
ence is a difficult task for DGPs, as it revolves around solving an L-dimensional integral.
In contrast to that, DSPPs solve a simpler maximum likelihood inference problem. Before
diving into detail on DSPPs, I'm going to introduce and motivate the underlying model
class, the parametric Gaussian Process. This section is structured as follows. First, I
will briefly motivate parametric GPs. Afterward, I will summarize stochastic variational
inference (SVI) for GPs to introduce the model formulation for the parametric GP and
lastly extend it to the DSPP.

4.3.1 Parametric Gaussian Processes

The main bottleneck of Gaussian Processes is the inversion of the kernel matrix. Different
solutions exist to get around this hurdle. One popular idea which has enabled Gaussian
process regression on large datasets is the combination of inducing points method with
Variational Inference (Hensman et al. (2013)). However, Jankowiak et al. (2020b) show
that the resulting predictive distribution often underestimates uncertainties, as the pre-
dictive variance is often dominated by the observation noise. The Idea for parametric GPs
is to bypass the posterior approximations entirely and instead use a parametric model to

target the predictive distribution directly.

4.3.2 Stochastic Variational Gaussian Process (SVGP)

SVI revolves around introducing a set of inducing variables u that depend on variation
parameters Z = {zm}%zl, where M = dim(u) < N. Thus, the GP prior from Eq. 10

extends from p(f | X) to p(f | u,X,Z)p(u | Z). Applying Jensen’s inequality to the log

joint density of the target and the inducing variables leads to the following lower bound:

16

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

log ply, u | X, Z) = log / dtp(y | £)p(t | wyp(u)

> Eygjw [log p(y | £) + log p(u)]

al (28)
= Z 1OgN (yz | szKJT/[lMuv Ugbs)

i=1
- TrKyy + log p(u)

2Uobs

This approach cuts down the model complexity to just O(M3), as the expensive com-
putation of inverting Ky gets replaced by Kj,sp,. Furthermore, the log-likelihood and
the trace term factorizes as a sum over the datapoints (y;,z;) and thus allow for data
subsampling.

Hensman et al. (2013) introduce a variational distribution g(u) = N (m, S), whose varia-
tional parameters m and S are optimized using the evidence lower bound (ELBO), which

is the expectation over equation X w.r.t. to g(u) plus an entropy term:
Esvgp :]Eq(u) [Ing<Y7 u ‘ Xa Z)] + H[Q(u)]

Z {ng (e | ps (%), 0505) — a;;;{i) } (29)

i=1 obs

— KL(g(u) | p(w))

where p¢ (x;) is the predictive mean function given by
pe (xi) = kK Ky m
and where oy (x;)* = Var [f; | x;] denotes the latent function variance
or (x;)° = Ky + k'K, SKy ks
The predictive distribution for SVGP at a test location x,, is given by

Py [X) =Ny | e (x7) 0 (x7)° + 0l) (30)

Note here that the predictive variance has two components: the input-dependent latent

function variance o¢(x*)? and the input-independent observation noise o2 However,

obs*
these terms appear asymmetrically in the SVGP Loss function 29. Jankowiak et al.
(2020b) assume that the absence of o¢(x*)? in the data fit term results in the domination

of the predictive variance by the observation noise.

17

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4.3.3 Predictive Parametric Gaussian Processes

To address this miss-match, the authors introduce a parametric GP regression model

which directly targets the predictive distribution in 30.

Lppgpr = Zlog./\/ (yi | e (i), 0o + O (Xz‘)z) — BregKL(g(u)|[p(0)) (31)

The parameters m, .S, Z, the observation noise, and the kernel Hyperparameters can be

optimized via gradient methods.

4.3.4 Deep Sigma Point Process

Deep Sigma Point Processes are inspired by DGPs and their flexible function priors
through the composition of multiple GPs. The main challenge with DGPs is their in-
ference scheme.
Analogous to the PPGPR, DSPPs try to target the predictive Distribution of DGPs di-
rectly. Unfortunately, the predictive distribution for a DGP is a continuous mixture of
Normal distributions and cannot be computed in a closed form. Instead, the continuous
mixture is replaced with a parametric finite mixture. Using Gauss-Hermite-Quadrature,
the continuous mixture is approximated by an S-component mixture of Dirac delta dis-
tributions controlled by weights w®) and quadrature points £). For more details on the
quadrature rules used to derive the DSPP, see the derivation in Jankowiak et al. (2020a).
As for PPGPR, the objective function coincides to regularized maximum likelihood esti-
mation
N
Laspp = Z 10g paspp (Yi | Xi) = Breg Z KL (32)
i=1

The main difference between DSPPs and DGPs is twofold. First, DGPs are trained by
approximating the Evidence Lower Bound in Eq. 26 while DSPP is trained via a regu-
larized maximum likelihood objective that targets the predictive distribution of DGPs.
Second, in the DGPs the latent function values are sampled while for the DSPP they are
parameterized via a learnable quadrature rule. Apart from these differences, the two mod-
els are very similar as they make use of the same parameters apart from the quadrature
parameters. The total computational complexity of DSPP is given by O(DM?3), where D
refers to the number of GPs in the hidden layers.

18

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

4.4 Other Methods

4.4.1 Neural Network Gaussian Process

Neal (1995) showed the equivalence between a single-layered infinitely wide neural network
with an i.i.d prior to its parameters and a Gaussian Process. Williams (1996) demon-
strated that the i.i.d prior over weights and biases can be substituted with a corresponding
GP prior over functions and thus enabling exact Bayesian inference for regression. Lee
et al. (2017) extend these works to multi-layer neural networks and create a covariance
kernel for GPs that is equivalent to multi-layer infinitely wide neural networks. For a re-
view of the correspondence between single-layer neural networks and GPs, see Neal (1995)
and Williams (1996).

I'll briefly review the correspondence between multi-layer neural networks and GPs. Con-
sider an L-layer infinitely wide neural network. The output for the ith component 2! at

layer 1 will be
Zi(w) = b+) Wial(x), (@) =¢ (" (@), (33)
j=1

where ¢ is a non-linear function, ! the post-nonlinearity transformation of the output of
the previous layers and W} and b} are the i.i.d weights and biases at layer I. If 2/ is a
GP, then 2! is a sum of i.i.d terms so that any finite collection {z!(z), ..., 2{(2%)} will have
a joint multivariate Gaussian distribution and z! ~ GP(0, K'). The covariance function
can be recursively calculated via a deterministic function F which only depends on the

nonlinearity ¢:
K'(z,2") = oy + o0, Fy (K (w,2"), K" (z,2), K"~ (2, 2)) (34)

This can be iteratively computed to obtain K for the GP describing the network’s final
output. The function F can be analytically computed for particular kernels, e.g. ReLU.
For others, the authors provide a numerical approximation. In summary, Neural Network
Gaussian Process (NNGP) refers to the GP prior induced by an infinitely wide neural
network. Thus, a neural network with random initialization can be interpreted as prior
over functions. As a deep infinitely wide neural network can be described as a GP, this
allows for full exact Bayesian inference. The work by Lee et al. (2017) allows analyzing
how neural networks work and revisiting this from a function space of view. Furthermore,
this allows examining towards what functions neural networks are biased at initialization.
Jacot et al. (2018) build on this and show that the behavior of neural networks during
training via gradient descent can be explained by a kernel, the Neural Tangent Kernel.

Both kernels can be examined in the neural tangents package (Novak et al. (2020)).

19

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Even though NNGPs have interesting theoretical properties, I will not consider them in
my experiments. As I have demonstrated in Chapter 3, scalability is an issue for fully
Bayesian training. Lee et al. (2017) used 64 CPUs to analyze datasets with up to 50.000
data points. As I am interested in methods, that can scale to million data points, NNGP
will be disregarded for the experiments. Lee et al. (2017) state that they are intending to
look into scalability methods. Thus, NNGP may be considered at a future point in time.

4.4.2 Scalable Gaussian Process Regression Using Deep Neural Networks

Similar to DKL, Huang et al. (2015) proposes to use a feature-mapping function as input
into a GP. Instead of a DNN, they use a stacked denoising auto-encoder (SDAE). The
internal representation of the last layer is used as an explicit feature map for calculating
the covariance function. The idea is, that the model can learn a much more meaning-
ful representation of the data through the feature-mapping function of the SDAE. The
model training can be divided into two steps. First, the SDAE is pretrained in an un-
supervised manner. Afterward, the parameters of the SDAE can be treated as kernel
Hyperparameters which are fine-tuned by maximizing the MLL. To reduce the computa-
tional complexity, Huang et al. (2015) use the FITC approximation (Quinonero-Candela
and Rasmussen (2005)).

4.4.3 Improving Output Uncertainty Estimation and Generalization in Deep

Learning via Neural Network Gaussian Processes

Iwata and Ghahramani (2017) propose to use a DNN for the mean function of a GP.
The idea stems from GPs excelling at local generalization, due to their local interpolation
properties. However, GPs fail to generalize in regions where there are no training data. A
GP with zero mean predicts zero for test points far from training samples. DNNs on the
other hand have good generalization behavior for previously unseen inputs by learning
multiple levels of distributed representations. By combining GPs and DNNs in this way,
the proposed method can improve generalization performance. The parameters of the
GP are trained via SVI while the DNN parameters are optimized via stochastic gradient

descent (SGD). The authors alternate between SVI and SGD for each minibatch.

20

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

5 Experiments

I will conduct a benchmark study on two insurance tariff datasets and 4 regression tasks
taken from the OpenML repository (Vanschoren et al. (2014)) to compare the generaliza-

tion performance and uncertainty estimation quality of the presented methods.

5.1 Experiment Setup

To evaluate the methods presented in chapter 4, I chose two small-sized datasets (<10k
data points), two medium-sized datasets (10-100k data points), and two large-sized datasets
(~500k data points). See A.1 for more details.

Hyperparameter optimization (HPO) via a Tree-structured Parzen Estimator (TPE) was
conducted to find the optimal configuration for each method and each dataset. To ensure
unbiased results, nested resampling was used to find the optimal Hyperparameter con-
figurations (Bischl et al. (2012)). I used 5-Fold cross-validation (CV) for the outer loop
to estimate the generalization performance. Mean-squared error (MSE), mean-absolute
error (MAE), maximum absolute error (MaAE), and negative log-likelihood (NLL) were
chosen as evaluation criteria. For the insurance datasets, the most important metric is
the MaAE as each insurance tariff prediction can not deviate more than a certain amount
from its true value due to regulatory requirements. For the inner loop, I used 4-Fold
cross-validation for the small and medium datasets for more stable results, while a simple
train-test split was used for the large datasets to find an optimal Hyperparameter con-
figuration. Additionally, I implmented early stopping with the MSE criterion. The MSE
criterion was chosen over the MaAE criterion, as it considers the whole validation set
while strongly punishing outliers. The fear was, as MaAE only considers one observation
from the validation set, the TPE would lose out on valuable information. A time-based
pruner was also used to speed up the HPO and to favor good and not too-costly archi-
tectures. Additionally, Hyperband was used for the large datasets to speed up the HPO
even further.

For each of the 5 outer loop iterations, 100 HPO trials were conducted. This means
that for each model and each dataset a total of 500 Hyperparameter configurations were
evaluated. For the inner loop, all models were trained for a maximum of 400 epochs with
5 early stopping iterations based on the MSE. Once an optimal configuration was found,
all models, except DKL, were retrained for a maximum of 1000 iterations with 10 early
stopping iterations based on the MLL or ELBO. As DKL suffered from stability issues,

the model was trained for the same number of epochs as the configuration found by the

21

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

inner HPO loop. This will be discussed in detail in Section 6. For more details on the
HPO Study setup, see A.2.

Deep Kernel Learning: I slightly altered the architecture from the original architecture
proposed by Wilson et al. (2016). The feature extractor search space was taken from the
Auto-Pytorch Tabular paper (Zimmer et al. (2021)). Furthermore, Wilson et al. (2016)
restricts the output size of the feature extractor to two neurons. I extend this up to four
neurons, as more output neurons showed great potential during testing. However, the
number of grid points for DKL grows exponentially with the number of output neurons,
which is why I had to reduce the grid size for a larger output neuron size. In addition
to the RBF and SM Kernel, I considered the Matern Kernel with nu € {0.5,1.5} for my
search space.

DKL training was limited by GPU memory constraints, as it does not allow for mini-
batching. As at the beginning of this thesis, DKL was considered one of the more
promising methods, I decided to not include the whole r1_08 dataset and instead only
a subsample of up to 600.000 data points.

Variational Deep Kernel Learning (VDKL): To reduce the memory issues of DKL,
I replaced the KISS-GP kernel approximation with the variational inference strategy pro-
posed by Hensman et al. (2015). The inducing points are now learned, instead of being
placed over a grid. This follows the framework proposed by Bradshaw et al. (2017).
VDKL thus is a sparse variational GP with a DNN as a feature extractor. Up to 20 out-
put neurons are considered for the DNN since I was no longer restricted by the memory
issues induced by the grid size in DKL. As I ran into difficulties combining VDKL with
the SM kernel, the SM kernel was removed from the search space. The rest remains as in
DKL above.

Deep Gaussian Process: The search space for the DGP implementation differs slightly
from the models evaluated in Salimbeni and Deisenroth (2017). The structure of my
DGP architectures is governed by two variables: n_gp_layers refers to the number of
hidden layers in the DGP model and n_gp_layers represents the number of GPs in each
GP hidden layer. In this architecture, the number of GPs is the same in each layer.
Neural Network Deep Gaussian Process (NNDGP): This architecture was inspired
by Jankowiak et al. (2020a), where they combined the idea of DKL and DGPs. A DNN
was used as a feature extractor and then fed into a DGP architecture. The neural net-
work parameters are jointly trained with the DGP parameters with the doubly stochastic
variational inference framework presented in 4.2.3.

Deep Sigma Point Process: The search space design follows the one by DGPs, which

22

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

means that in every layer the number of GPs is the same. For the rest of the architecture,
the search space of by Jankowiak et al. (2020a) was used.

Baselines: As baselines with strong generalization performance on tabular datasets Ran-
dom Forest and XGBoost were chosen. As a bayesian deep learning baseline, Deep Ensem-
bles (DE) by Lakshminarayanan et al. (2017) was chosen. Here, the network architecture
search space follows, like DKL, the Auto-Pytorch Tabular search space. I use random
initialization of the neural network parameters along with random shuffling of the data
points.

For details about the Hyperparameter search space, see A.3.

All model implementations were based on PyTorch and GPyTorch (Gardner et al. (2018)).
The code can be found on https://github.com/likai97/GP-NN-Hybrids. The Hyperpa-
rameter search was done using the Optuna Hyperparameter Optimization Framework
(Akiba et al. (2019)). For all GP-based models, both features and outputs were scaled
using normalization. For the Deep Ensemble, the features were scaled using standard-
ization. All models were trained using the AdamW optimizer (Loshchilov and Hutter
(2017)).

All experiments were performed on a Linux machine with one NVIDIA Tesla V100 GPU
and 16 GB of memory.

5.2 Benchmark Results

The Benchmark Results are summarized in Figures 2 - 4. Individual results can be found
in Appendix A.4. NNDGP was only evaluated on small and medium-sized datasets, due

to its extremely slow training speed and poor generalization performance.

5.2.1 K2204 and R1_08 Results

My results in Figure 2 show that for the K2204 dataset, VDKL outperforms all other
methods in terms of MSE and most importantly MaAE. As this dataset is fairly small, it is
not too surprising that all Hyperparameter configurations found for VDKL have a feature
extractor with just one hidden layer (see Appendix A.4.2). For K2204 BPV, DSPP and the
DE baseline show almost equally good performance with regard to MSE and MaAE. On
the K2204 PPV dataset, the second-best model classes are DSPPs with regard to MaAE.
DE fall slightly behind and show equally good performance with DKL and RF. DKL
and NNDGP show highly variable results over all 5 outer CV-splits, which are especially
pronounced for NNDGP. This may be the result of the model classes’ susceptibility to

23

https://github.com/likai97/GP-NN-Hybrids

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

overfitting and stability issues, which I am going to explore in more detail in Section 6.
The DGP results show less variability, but its performance falls behind VDKL, DSPP,
and DE in both metrics. Surprisingly, the XGB baseline does not show good performance
and falls behind all methods with regard to MSE.

K2204 BPV - Mean Squared Error K2204 PPV - Mean Squared Error
0.000012 0.200

0.175
0.000010
0.150

0.000008
0.125

(7] (2]
2 0.000006 . 2 0.100
0.075
0.000004 —

0.025

0.000000 0.000 —_— - é
DKL VDKL DGP NNDGP DSPP RF xGB DKL VDKL ~ DGP NNDGP DSPP DE RF xGB
Models Models
(a) K2204 BPV - Mean Squared Error (b) K2204 PPV - Mean Squared Error
K2204 BPV - Maximum Absolute Error 40 K2204 PPV - Maximum Absolute Error
0.025 35
30
0,020
5 525
& 0015 5,0
3 . A
= 0ot =15
.
o008 05 i ? —_—
0.000 0.0
KL VDKL 0GP NDGP DSPP D xGB KL VDKL DGR NNDGP DSPP DE RF XGB
(c) K2204 BPV - Maximum Absolute Error (d) K2204 PPV - Maximum Absolute Error

Figure 2: Benchmark Results for the K2204 datasets. Figure a) and b) display the Mean
Squared Error over the 5 nested resampling splits. Figure ¢) and d) exhibit the Maximum
Absolute Error (a lower score is better). VDKL, DSPP, and DE show great performance

for both metrics.

The results differ slightly for the R1.08 dataset. Note, that the results in Figure 3 are
not for the entire R1.08 dataset but instead a subset of 600K randomly sampled data
points. The boxplots show that for the R1.08 BPV dataset the best-performing models
are VDKL, DGP, and DE with respect to MSE and MaAE. DSPP, which showed great
results on the K2204 datasets, falls short in predictive performance.

As VDKL, DGP, and DE showed great results over both BPV and PPV, these methods
were applied to the entire R1.08 dataset. The results are displayed in table 1. Due to
time constraints, only a single train/test split was conducted using the best configuration
found over the subset of R1.08. Each model was trained for a maximum of 400 epochs
with 3 early stopping iterations. The results for the full dataset however are very similar

to the results on the subset of R1.08, indicating that the results and configurations are

24

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

transferable. Even though DE achieved better predictive results compared to VDKL,

they required upwards of 7 times the training time. Further investigation might go into

training VDKL for more epochs with longer patience for early stopping to see whether

better results can be achieved.

R1_08 BPV - Mean Squared Error

0.05 — =

0.00 —— -

DKL VDKL DGP DSPP DE RF XGB

Models

(a) R1.08 BPV - Mean Squared Error

30 R1_08 BPV - Maximum Absolute Error

) g
20
1.0

05 [iii:] Iiiil liii.
P DE R

DKL VDKL DGP DSPI
Models

P

F XGB

(c) R1.08 BPV - Maximum Absolute Error

0.0010

0.0008

0.0006

w
7]
=

0.0004
0.0002

0.0000

(b) R1.08 PPV - Mean Squared Error

(d) R1.08 PPV - Maximum Absolute Error

R1_08 PPV - Mean Squared Error

=
|

DKL VDKL

DG

: I??il
—_—
P DSPP
Models

»
DE RF XGB

R1_08 PPV - Maximum Absolute Error

——

DKL VDKL

-

DGP DSPP
el

’

DE RF XGB

Figure 3: Benchmark Results for the R1.08 datasets. Figure a) and b) display the Mean

Squared Error over the 5 nested resampling splits. Figure ¢) and d) exhibit the Maximum

Absolute Error (a lower score is better). VDKL, DGP, and DE show great performance

for both metrics.

R1.08 BPV R1.08 PPV
VDKL | DGP | DE VDKL | DGP | DE
MSE 0.039 0.0011 | 4e-05 | 8.6e-06 | 9.3¢-05 | 9.3e-06
MaAE 0.794 0.796 | 0.729 | 0.052 0.069 0.041
NLL -0.25 -0.329 | -4.35 | -1.882 -1.845 | -4.49
Train time in s | 737 29347 | 15708 | 1595 3700 11461

Table 1: Results for the entire R1.08 dataset with 7.6M observations. A single 75:25

train-test split was conducted. The best Hyperparameter configuration for each dataset

from Appendix A.4 was chosen. The training time is displayed in seconds.

25

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

5.2.2 OpenML Results

For the OpenML regression datasets, I display the results in Figure 4. XGB shows con-
sistently strong performance with regard to MSE over all four datasets in contrast to its
poor performance on insurance tariff data. RF produces almost equally good performance
except on the Year dataset.

For the small Wine Quality dataset, all GP methods demonstrate similar performance
except for NNDGP. Unsurprisingly, some architecture found for DGPs revert to a standard
GP (see Appendix A.4.3). A similar picture arises for the Elevators dataset with the small
exception of the poor performance by the DE baseline. For the Diamond dataset, DGPs
and DSPPs exhibit fairly stable results, equalling the performance of RF and XGB. For
the Year dataset, VDKL outperforms all GP methods and only falls behind XGB. DKL
shows quite stable results here, exceeding DGP, DSSP, and DE.

Comparing the GP-based models and DE for the Wine and Year dataset to the Deep
Ensemble Results achieved by Lakshminarayanan et al. (2017), they fall behind slightly
on the Wine dataset, but VDKL outperforms their results on the Year dataset.

Wine Quality - Mean Squared Error Elevators - Mean Squared Error

0.00005
0.7 0.00004
0.6 + 0.00003
w w
o 4 7

= =
oS T T 0.00002
)
04 0.00001 .
=l e _
03 0.00000
DKL VDKL DGP NNDGP DSPP DE RF XGB DKL VDKL DGP NNDGP DSPP DE RF XGB
Models Models
(a) Wine Quality (N=6497, D=11) (b) Elevators (N=16599, D=18)
Diamonds - Mean Squared Error Year - Mean Squared Error
500000 100
450000 *
%0
w w
g g
- % . - —
80
300000 + . — + s —
_’—
20000 o VDKL DGP NNDGP DSPP DE RF XGB e VDKL DGP DSPP DE RF XGB
Models Models
(¢) Diamonds (N=53940, D=9) (d) Year (N=515345, D=90)

Figure 4: Mean Squared Error results over 5 nested resampling splits for the OpenML

regression datasets Wine, Elevators, Diamonds, and Year (a lower score is better).

26

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

5.2.3 Negative Log Likelihood Comparison

Proper scoring rules assess the quality of predictive uncertainty (Gneiting and Raftery
(2007)). I follow the example of Lakshminarayanan et al. (2017) and use the negative
log-likelihood as UQ metric. The results are displayed in Figure 5.

DE show good performance over all datasets except for the Elevator datasets. They show
especially good results on the insurance datasets, outperforming all other methods except
for the R1.08 BPV dataset. DSPPs achieves lower NLL than DGPs on the Diamonds and
Year datasets and show equal results for the other datasets. This is in line with expectation
as the idea of DSPP was to directly target the predictive distribution because Havasi
et al. (2018) have shown that DGP posterior approximations can degrade the calibration
of the test time predictive distribution. VDKL exhibits comparable results to DGP. DKL
demonstrates poor NLL performance likely due to overfitting behavior by the feature
extractor as demonstrated by Ober et al. (2021) and van Amersfoort et al. (2021), which

I am going to discuss in detail in Section 6.

K2204 BPV - Negative Log Likelihood K2204 PPV - Negative Log Likelihood R1_08 BPV - Negative Log Likelihood R21_08 PPV - Negative Log Likelihood
-1 .

1 o
: ' s B
+
-2 05 2 0
-3 0.0 ; ! ! -1
=] -
3 o - B .
-4 -05 ;
-3
"a.=
5 -1.0 2 -4
3 ‘.
6 -15 X o -5
e 8 8’ RS e 8 & RS d e & R & e & R &
F & & F & & F W FE L O F & FE g 9
Models Models Models Models

(a) Insurance tariff datasets Negative log likelihood results

Wine Quality - Negative Log Likelihood Elevators - Negative Log Likelihood Di - Negative Log Likelihood Year - Negative Log Likelihood
16 - 95 425 —
+
14 2 9.0 4.00
12
— 85 375
1.0 -3 =
< 8.0 3.50
Z08
-4 75 325 ! ‘
0.6 N
7
04 . 0 -~ — = 3.00 N
02 65 275 =]
’ = + - < - - =
0.0 = -6 6.0 - 250
g & L L R N2 g g L Q R & & & L L R 2 g g L R 2
e \\0+ & o é)o oéz 9 & 40*' & \@QO o@Q 9 N Aoi- & eeo(;v Oé? 9 & 40"" & o@Q S
Models Models Models Models

(b) OpenML datasets Negative log likelihood results

Figure 5: Negative Log-Likelihood results for the K2204, R1.08 and OpenML regression

datasets. A lower NLL score is better.

27

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

5.3 Model Prediction Analysis

In this section, I will analyze the prediction accuracy of the three best-performing models,
VDKL, DSPP, and DE, on the K2204 datasets. All visualizations will only display the

results of the first outer nested resampling split.

K2204 BPV - Residual Plot K2204 PPV - Residual Plot

R
°
°
8
S
s

0.6 0.7 0.8 0.9 1.0 0 10 20

(a) K2204 BPV - Residual Plot (b) K2204 PPV - Residual Plot

K2204 BPV - Large Residuals K2204 PPV - Large Residuals

o Male L. o Male
o Female 70 ad o Female
60

50 .
s “ 8 A so
g 40 tet . g0
3 .. 3 -
a 3o . . a 30
- . : .
20 LB] (2] - e 20

10 . ey a0, P 10
. .

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70
Age Age

(c) K2204 BPV - Large Residuals (d) K2204 PPV - Large Residuals

Figure 6: Prediction Analysis for the first HPO study of Variational Deep Kernel Learning
for the K2204 BPV and K2204 PPV datasets. Plots a) and b) show the true values vs
Residuals. Plot c) shows the data points of the BPV dataset, where the absolute values
of the residuals exceeded the threshold of 0.0005. Plot d) shows the data points of the
PPV dataset, where the absolute values of the residuals exceeded the threshold of 0.05.

In Figure 6, the Residuals for VDKL are displayed. For both BPV and PPV the residuals
seem to be normally distributed around 0. Looking at Figure 6 ¢) and d), VDKL seems to
struggle accurately predict the tariff premium for Male insurance holders. Furthermore, it
appears to perform not too well on tariffs, which lie on the edge of possible policyholder’s
age and contract duration combinations. As K2204 is a fictitious dataset, new data points
can be created in these regions to further improve the model.

Inspecting the residual plots in Figure 7, DSPP displays larger residuals for short contract
durations on the BPV dataset and for older male policyholders on the PPV dataset.

In Figure 8 ¢), no clear pattern can be observed for which data points DE is struggling.

For PPV, DE seems to struggle on the ridge of possible age and contract durations.

28

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Residuals

K2204 BPV - Residual Plot

0.003]
0.002
0.001
0.000
~0.001
—~0.002
-0.003
0.6 0.7 0.8 0.9 1.0
True Value

(a) K2204 BPV - Residual Plot

K2204 BPV - Large Residuals

" . o Male
70 o o Female
60
< 50
2
B0
H
33 1 g
0
20 g8 1ty
tla Seete .
10 5
!:! fogee o |i‘2u-,l' RETITIILS U S AR CE D
0

10 20 30 40 50 60 70 80
Age

(c) K2204 BPV - Large Residuals

Residuals

K2204 PPV - Residual Plot

02
01
0.0
-0.1
-02
-03
-0.4
o 10 20 30 40 50
True Value
(b) K2204 PPV - Residual Plot
w K2204 PPV - Large Residuals
.) * Femae
40
s
B30
H

10 20 30 a0 50 60 70 80

(d) K2204 PPV - Large Residuals

Figure 7: Prediction Analysis for Deep Sigma Point Process on the K2204 BPV and PPV
datasets. Plots a) and b) show the true values vs Residuals. Plots c¢) and d) show the

data points, where the absolute values of the residuals exceeded the thresholds 0.001 and

0.1.

Residuals

K2204 BPV - Residual Plot

0.002
0.001
0.000
-0.001
-0.002
-0.003
0.6 0.7 0.8 0.9 1.0
Predicted Value
(a) K2204 BPV - Residual Plot
K2204 BPV - Large Residuals
e Male
0 o Female
60
50
g -
5 p
2 a0 anlde -
g 30 = *
;
20 i
10
0
10 20 30 40 50 60 70 80

(c) K2204 BPV - Large Residuals

K2204 PPV - Residual Plot

0.2
2 00
3
ﬁ -0.2)
-0.4
-0.6
0 10 30 40 50
True Value
(b) K2204 PPV - Residual Plot
K2204 PPV - Large Residuals
* Male
70 e Female
60
e TN
S T e
§ a0 oy 3)
a 30
.
20
10
0
10 20 30 40 50 60 70 80
Age

(d) K2204 PPV - Large Residuals

Figure 8: Prediction Analysis for Deep Ensembles on the K2204 BPV and PPV datasets.
Plots a) and b) show the true values vs Residuals. Plots ¢) and d) show the data points,

where the absolute values of the residuals exceeded the thresholds 0.001 and 0.2.

29

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

5.4 HPO Routine Analysis

In this section, I will analyze the results of the conducted Hyperparameter Optimization
study. I will focus on the K2204 dataset and the best-performing models VDKL, DSPP,
and DE. All visualizations will only display the results of the first outer nested resampling
split.

In Figure 9, I visualized the optimization history, the Hyperparameter feature importance,
and the Hyperparameter search history for the most important Hyperparameters. Optuna
calculates the feature importance using the normalized functional analysis of variance
method by Hutter et al. (2014). Looking at the optimization history, you can see that the
amounts of trials used seems to be sufficient. For both datasets, the minimum is found
around 60 trials. An accurately chosen learning rate seems to be of high importance for
VDKL. For both datasets, the learning rate search converges to be between 0.001-0.01.
Also interesting in Figure 9 ¢) is that the number of output neurons parameter n_out
converges to be between 3-7, which makes sense as the K2204 dataset is low-dimensional.
Figure 10 displays the study results for the DSPP. An optimal configuration for the K2204
PPV dataset seems to be quickly found. Inspecting the optimization history for K2204
BPV however, it appears the search has not converged yet, indicating that the number
of HPO trials might have been too low in this case. For both datasets, one hidden layer
looks to give the best results.

The Deep Ensemble baseline performs fairly well on both K2204 datasets. What is in-
teresting here is that although the HPO converges to an approximately equal maximum
number of neurons, for PPV the search converges to a higher number of layers. This is
consistent over all nested resampling splits, see A.4.6. The models seem to need a higher
capacity for PPV, even though the formula for PPV only consists of one component (see

Section 2), while the formula for BPV consists of two separate components.

30

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Optimization History Plot Optimization History Plot

- . « Objective value
Best v

Objective value

(a) K2204 BPV - Optimization History (b) K2204 PPV - Optimization History

slice Plot slice Plot

Obsectve value
Obgectve value

(¢) K2204 BPV - Hyperparameter Search (d) K2204 PPV - Hyperparameter Search
History History

Hyperparameter Importances Hyperparameter Importances

Hyperparameter
Hyperparametes

0 01 02 03 04 05
Importance for Objective Value

(e) K2204 BPV - Hyperparameter Feature (f) K2204 PPV - Hyperparameter Feature

Importance Importance

Figure 9: Results for the first HPO study of Variational Deep Kernel Learning on the
K2204 BPV and PPV datasets. Figures a) and b) display the average Mean Squared
Error over four inner CV splits. Figures c¢) and d) exhibit the Hyperparameters evaluated
over time and the MSE the configuration scored. Figures e) and f) show the normalized
feature importance of the Hyperparameters calculated using the normalized functional

analysis of variance.

31

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Optimization History Plot

(a) K2204 BPV - Optimization History

slice Plot

,,,,,

(c) K2204 BPV - Search History

Optimization History Plot

1004 . « Ojective value
et value
a0u
o -
o

|

(b) K2204 PPV - Optimization History

slice Plot

,,,,,

(d) K2204 PPV - Search History

Figure 10: Results for the first HPO study of Deep Sigma Point Process on the K2204
BPV and PPV datasets. Figures a) and b) display the average MSE for the evaluated

configurations. Figures ¢) and d) exhibit the evaluated Hyperparameters.

Optimization History Plot

—

g

2 w) a0 100
?

(a) K2204 BPV - Optimization History

slice Plot

: o4 s s

(c) K2204 BPV - Search History

(b) K2204 PPV - Optimization History

slice plot

sssss

(d) K2204 PPV - Search History

Figure 11: Results for the first HPO study of Deep Ensembles for the K2204 BPV and
K2204 PPV datasets. Figures a) and b) display the average MSE for the evaluated

configurations. Figures ¢) and d) exhibit the evaluated Hyperparameters.

32

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

6 Model Discussion

In this section, I am gonna share the lessons I learned from the benchmark study and high-
light the advantages and disadvantages of the models concerning performance, stability,
scalability, uncertainty estimation, and ease of use.

Deep Kernel Learning: The DKL benchmark results had higher variance and consis-
tently displayed worse performance on the insurance tariff datasets compared to the other
GP-based methods. Wilson et al. (2016) claim that DKL does not need regularization
as it is guarded against overfitting due to the model complexity being automatically cali-
brated through the optimization of the MLL. However, looking at Figure 2, DKL training
is rather volatile. Ober et al. (2021) agrees that the automatic calibration holds when
selecting a small number of Hyperparameters but that for models such as DKL with many
Hyperparameters MLL training can encourage overfitting. Strategies to address the over-
fitting issue include regularization of the feature extractor (van Amersfoort et al. (2021);
Liu et al. (2020)) and fully bayesian training (Ober et al. (2021)).

Even with displaying competitive results on the OpenML datasets, scalability remains
an issue for DKL due to memory constraints. The KISS-GP approximation costs about
O(N) storage, thus limiting the applicability of DKL by the underlying GPU hardware.
Training DKL on datasets with up to a million data points was possible, but going farther
than that meant running into CUDA memory errors as DKL does not allow for mini-batch
training. For this reason, the aforementioned experiments were not trained on the whole
R1.08 dataset with 7.6M data points and instead on just a subsample of 600k data points.
Even though DKL was rather straightforward

to implement using the GPytorch package, the

models proved difficult to train with two po- S R

tential points of failure. In contrast to the re-

Negative MLL

! ! Il | |
L T

maining methods, the calculation of the MLL

could break down during training, see Figure

Test Loss
—— Train Loss

12. Near the minimum of the MLL, the in-built e
GPytorch MLL would once in a while return a

NaN value. Training further would often lead to Figure 12: Example training curve for a
substantially worse performance, as can be seen DKL Model. The blanks in the training
by the oscillating test loss curve. Therefore, I loss curve are areas where the calcula-
implemented an extra early stopping criterion tion of the MLL failed for DKL.

to stop training once a NaN value was reached.

33

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

The second issue also revolves around the computation of the MLL. Gardner et al. (2018)
use a modified batched version of linear conjugate gradients for the computations of the
MLL and its derivatives in the GPytorch package. Occasionally during my HPO loop,
the conjugate gradient method would not converge, slowing down training and degrading

results.

Variational Deep Kernel Learning: VDKL showed consistently good predictive re-
sults over all datasets and outperformed the other GP-based method on the insurance
tariff datasets. The variability in the VDKL results is far less than compared to the
DKL results. This most likely stems from using stochastic mini-batching as this can help
mitigate the overfitting issue for DKL as found by Ober et al. (2021).

Examining the UQ capabilities of DKL and VDKL, it regularly performs worse than the
DE baseline. The issue is not as pronounced for VDKL as for DKL most likely due to
the stochastic mini-batch training. This is in line with research by Ober et al. (2021) and
van Amersfoort et al. (2021) which show these models to underperform in uncertainty
estimation. van Amersfoort et al. (2021) show that for certain feature extractors, out-
of-distributions data points can get mapped close to representations of in-distribution
data points. They propose to use a bi-Lipschitz constraint on the feature extractor as
this results in a feature representation that is sensitive to changes in the input but also
generalizes due to smoothness.

As VDKL relies on a sparse approxima-

tion of the kernel matrix through inducing

. . . . VDKL - Train Til
points and thus allows for mini-batching, — 3
7000
memory constraints were not as big of an g o000
8 5000
issue compared to DKL. In addition to £ a0 :
E
L. i 3000
that, the predictive performance for the § 20 L '
P . 1000 ° g ° ® = °
R1.08 dataset was competitive with the .8 € 5 & e & °©
k2204_BPV k2204_PPVwine_quality elevators diamonds r1_08_BPV r1_08_PPV year
DNN-based DE, even with selecting a small prasets

number of inducing points compared with

the number of observations. The train- Figure 13: Train time of the final configura-

ing time in seconds is displayed in Figure tions for Variational Deep Kernel Learning.
13. Surprisingly, the training speed for the

R1.08 datasets where roughly the same as for the 10 times smaller Diamonds dataset.
The Year dataset with a comparable number of observations to the R1.08, but with 10

times the variable took 2h hours in the maximum. Comparing the training speed on the

34

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

full R1.08 dataset to DGP in Table 1, VDKL achieved better results concerning MaAE
in a much shorter amount of time.

The implementation for VDKL was straightforward. Compared to DKL, VDKL proved
much easier to train and did not suffer from the same stability issues as DKL. The ar-
chitecture of the feature extractor is highly dependent on the task at hand and needs

therefore to be chosen carefully. Pre-training of the feature extractor can improve results.

Deep Gaussian Process: The benchmark results for DGPs were highly competitive
with VDKL on the R1.08 dataset and the OpenML Regression tasks. Only for the K2204
dataset, the performance lags behind. This supports the findings of Bui et al. (2016)
that DPGs, through the stacking of the GPs, can automatically construct kernels that
work well for a given task and can counteract the damage to the representational power
through sparse approximations

The uncertainty estimation capabilities are on par with VDKL but are generally worse
than DE. Havasi et al. (2018) attributes this to the uni-modal Gaussian approximation of
the posterior distribution. In their research, they show that the posterior distribution is
non-Gaussian for every dataset they examine and therefore propose a Hamiltonian Monte
Carlo based sampling technique.

The training speed for DGPs is displayed in

Figure 14. For the small and medium-sized

DGP - Train Time

17500 °
o

datasets, the training speed can be as much

as twice as high compared to VDKL. For g .

the subset of the R1_08, the differences in :“::: ° .

training speed are even more pronounced : 000 ;

with DGP taking multiple hours compared T8 e 4 e 8 o e
K2204_BPVK2204_PPVwine_qualfy elevalors diamonds 1_08_BPV 1108 PPV year

to VDKL which gets similar or better per-
formance in a much shorter amount of

time. The same holds true for the entire Iigure 14: Train time of the final configura-

R1.08 dataset in Table 1. tions for Deep Gaussian Processes.

The design of the search space for DGP

required many iterations as some DGP architectures required a substantial amount of
memory. The search space had to be fine-tuned with respect to the maximum depth,
width, and number of inducing points per GP. Damianou and Lawrence (2013), Salim-
beni and Deisenroth (2017), Bui et al. (2016) and Havasi et al. (2018) only used the

RBF kernel in their experiments. The introduction of the Matern Kernel improved the

35

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

predictive results on the small and medium-sized datasets. All in all, the DGP was quite
pleasant to train with regard to stability and predictive performance with the exception

of training speed.

Neural Network Deep Gaussian Process: NNDGPs predictive performance has
shown the highest variability of all models. Contrary to the experiment results found
by Jankowiak et al. (2020a), that a feature extractor can improve the predictive perfor-
mance of a DGP, my results show that it can even worsen it.

NNDGP has been highly difficult to train compared to the other methods. One reason
could be the immense amount of parameters, as it combines DGP and VDKL parameters
in one model. Glancing back at the benchmark results in Figure 2 and 4, the best NNDGP
result can be on par or slightly better than the best DGP result, indicating the potential
as found by Jankowiak et al. (2020a). The authors trained their model with multiple
restarts and only fully trained the model with the best training NLL. I did not utilize
multiple restarts. Instead, I used random initialization of inducing points as in DGPs
and pretraining of the feature extractor as in VDKL. Less variable results might have
been found with a better initialization strategy and also imploring the multiple restart
strategy.

Due to the highly variable results and even slower training speed than DGPs, NNDGP
was not benchmarked for the R1.08 and Year datasets.

Deep Sigma Point Process: DSPPs were introduced as a parametric model inspired
by the compositional structure of DGPs. They showed competitive results with VDKL
on the small and medium-sized datasets but fell behind DGPs and VDKL in predictive
performance on the R1.08 and Year datasets.

As DSPP directly targets the predictive distribution of DGPs in the training objective,
they show better-calibrated uncertainty estimates on the Diamonds and Year dataset and
equal results for the other datasets. They still fall short of the estimates by the DE
baseline.

Figure 15 exhibits the training speed for DSPP. For the small and medium-sized datasets,
the training time is comparable with DGP. For the R1_08 and Year datasets, DSPPs have
faster training speed but worse generalization performance compared to DGPs.

Due to the similarity to DGPs, the same search space was used at first. However, DSPP
proved to be even more memory intensive than DGPs, causing CUDA memory in my

early trials. By reducing the number of inducing points, the number of GP layers, and

36

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

DSPP - Train Time

e .
® °

o e
o o

h e @e
- e
e

k2204_BPV k2204_PPVwine_quality elevators diamonds r1_08_BPV r1_08_ PPV year

Datasets

Figure 15: Train time of the final configurations for Deep Sigma Point Process.

batch size I landed on a suitable search space. Altogether, DSPP were stable in their

training and proved to have a good performance on small and medium-sized datasets.

7 Conclusion

I reviewed the current state of Gaussian Process and neural network hybrid models for
regression tasks and their application for PAS migration. I then conducted a benchmark
study on two insurance tariff datasets and four OpenML regression tasks and compared
the results to a Deep Ensemble baseline.

I found that VDKL showed great predictive performance on both the insurance datasets
and OpenML regression tasks while being significantly faster compared to the other exam-
ined methods given the same number of epochs and patience. It showed good uncertainty
estimation capabilities on the OpenML regression tasks but fell behind DE on the insur-
ance datasets. DGP showed good performance on the R1.08 and OpenML datasets but
struggled on the K2204 dataset. DSPP exhibited good performance in both predictive
performance and uncertainty estimation on the small and medium-sized regression tasks
but performed worse on R1.08 and the Year dataset. DE showed great predictive per-
formance with superior uncertainty estimates compared to the GP-based methods on the
insurance datasets.

All in all, Variational Deep Kernel Learning and Deep ensembles should be further ex-
plored in their application to insurance tariff migration due to their great predictive
performance, scalability, and good uncertainty estimates. Further research may go into

more recent ensemble methods, such as Neural Ensemble Search by Zaidi et al. (2021).

37

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

References

Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M. (2019). Optuna: A next-
generation hyperparameter optimization framework, Proceedings of the 25rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining.

Bengio, Y., Delalleau, O. and Roux, N. (2005). The curse of highly variable functions

for local kernel machines, Advances in neural information processing systems 18.

Bischl, B., Mersmann, O., Trautmann, H. and Weihs, C. (2012). Resampling methods
for meta-model validation with recommendations for evolutionary computation, Fvo-

lutionary computation 20(2): 249-275.

Bradshaw, J., Matthews, A. G. d. G. and Ghahramani, Z. (2017). Adversarial exam-
ples, uncertainty, and transfer testing robustness in gaussian process hybrid deep net-
works, arXiv preprint arXiw:1707.02476 .

Bui, T., Herndndez-Lobato, D., Hernandez-Lobato, J., Li, Y. and Turner, R. (2016).
Deep gaussian processes for regression using approximate expectation propagation,

International conference on machine learning, PMLR, pp. 1472-1481.

Calandra, R., Peters, J., Rasmussen, C. E. and Deisenroth, M. P. (2016). Manifold
gaussian processes for regression, 2016 International Joint Conference on Neural Net-

works (IJCNN), IEEE, pp. 3338-3345.

Cutajar, K., Bonilla, E. V., Michiardi, P. and Filippone, M. (2017). Random feature ex-
pansions for deep gaussian processes, International Conference on Machine Learning,
PMLR, pp. 884-893.

Damianou, A. and Lawrence, N. D. (2013). Deep gaussian processes, Artificial intelli-
gence and statistics, PMLR, pp. 207-215.

Duvenaud, D., Rippel, O., Adams, R. and Ghahramani, Z. (2014). Avoiding pathologies
in very deep networks, Artificial Intelligence and Statistics, PMLR, pp. 202-210.

Gardner, J. R., Pleiss, G., Bindel, D., Weinberger, K. Q. and Wilson, A. G. (2018).
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration,

Advances in Neural Information Processing Systems.

Gueiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and
estimation, Journal of the American statistical Association 102(477): 359-378.

38

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Havasi, M., Herndndez-Lobato, J. M. and Murillo-Fuentes, J. J. (2018). Inference in
deep gaussian processes using stochastic gradient hamiltonian monte carlo, Advances

i neural information processing systems 31.

Hensman, J., Fusi, N. and Lawrence, N. D. (2013). Gaussian processes for big data,

arXiw preprint arXiw:1309.6835 .

Hensman, J., Matthews, A. and Ghahramani, Z. (2015). Scalable variational gaussian

process classification, Artificial Intelligence and Statistics, PMLR, pp. 351-360.

Huang, W., Zhao, D., Sun, F., Liu, H. and Chang, E. (2015). Scalable gaussian process
regression using deep neural networks, Twenty-fourth international joint conference

on artificial intelligence.

Hutter, F., Hoos, H. and Leyton-Brown, K. (2014). An efficient approach for assessing
hyperparameter importance, International conference on machine learning, PMLR,
pp. 754-762.

Iwata, T. and Ghahramani, Z. (2017). Improving output uncertainty estimation and

generalization in deep learning via neural network gaussian processes, arXiv preprint
arXiw:1707.05922 .

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and

generalization in neural networks, Advances in neural information processing systems
31.

Jankowiak, M., Pleiss, G. and Gardner, J. (2020a). Deep sigma point processes, Confer-
ence on Uncertainty in Artificial Intelligence, PMLR, pp. 789-798.

Jankowiak, M., Pleiss, G. and Gardner, J. (2020b). Parametric gaussian process regres-

sors, International Conference on Machine Learning, PMLR, pp. 4702-4712.
Kahlenberg, J. et al. (2018). Lebensversicherungsmathematik, Springer.

Kingma, D. P., Salimans, T. and Welling, M. (2015). Variational dropout and the local

reparameterization trick, Advances in neural information processing systems 28.

Kirstein, M., Sommer, D. and Eigel, M. (2022). Tensor-train kernel learning for gaus-
sian processes, Conformal and Probabilistic Prediction with Applications, PMLR,
pp. 253-272.

39

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Lakshminarayanan, B., Pritzel, A. and Blundell, C. (2017). Simple and scalable pre-
dictive uncertainty estimation using deep ensembles, Advances in neural information

processing systems 30.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning, nature 521(7553): 436—
444.

Lee, J., Bahri, Y., Novak, R., Schoenholz, S. S., Pennington, J. and Sohl-Dickstein, J.
(2017). Deep neural networks as gaussian processes, arXiv preprint arXiv:1711.00165

Liu, F., Xu, W., Lu, J., Zhang, G., Gretton, A. and Sutherland, D. J. (2020). Learning
deep kernels for non-parametric two-sample tests, International conference on ma-
chine learning, PMLR, pp. 6316-6326.

Loshchilov, I. and Hutter, F. (2017). Decoupled weight decay regularization, arXiv
preprint arXiw:1711.05101 .

msg life (2022). Machine learning & migration in life insurance.
URL: https://www.actuview.com/video/Machine-Learning-amp-Migration-in-Life-
Insurance/73163dd39ec87a960565¢7(f2bd43a82

Neal, R. M. (1995). BAYESIAN LEARNING FOR NEURAL NETWORKS, PhD the-

sis, University of Toronto.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-Dickstein, J. and Schoenholz,
S. S. (2020). Neural tangents: Fast and easy infinite neural networks in python, In-
ternational Conference on Learning Representations.

URL: https://github.com/google /neural-tangents

Ober, S. W., Rasmussen, C. E. and van der Wilk, M. (2021). The promises and pitfalls
of deep kernel learning, Uncertainty in Artificial Intelligence, PMLR, pp. 1206-1216.

Quinonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse ap-
proximate gaussian process regression, The Journal of Machine Learning Research
6: 1939-1959.

Rasmussen, C. E. (2003). Gaussian processes in machine learning, Summer school on

machine learning, Springer, pp. 63-71.

40

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Salimbeni, H. and Deisenroth, M. (2017). Doubly stochastic variational inference for

deep gaussian processes, Advances in neural information processing systems 30.

Sterbetafeln-DAV (2008).
URL: https://aktuar.de/Dateien_extern/Aktuelle %20 Veranstaltungen/PRF2927
_Sterbetafeln.pdf

van Amersfoort, J., Smith, L., Jesson, A., Key, O. and Gal, Y. (2021). On feature
collapse and deep kernel learning for single forward pass uncertainty, arXiv preprint
arXiw:2102.11409 .

Vanschoren, J., Van Rijn, J. N., Bischl, B. and Torgo, L. (2014). Openml: networked
science in machine learning, ACM SIGKDD Ezplorations Newsletter 15(2): 49-60.

Williams, C. (1996). Computing with infinite networks, Advances in neural information

processing systems 9.

Wilson, A. and Adams, R. (2013). Gaussian process kernels for pattern discovery and

extrapolation, International conference on machine learning, PMLR, pp. 1067-1075.

Wilson, A. G., Gilboa, E., Nehorai, A. and Cunningham, J. P. (2014). Fast kernel learn-
ing for multidimensional pattern extrapolation, Advances in neural information pro-

cessing systems 27.

Wilson, A. G., Hu, Z., Salakhutdinov, R. and Xing, E. P. (2016). Deep kernel learning,
Artificial intelligence and statistics, PMLR, pp. 370-378.

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured
gaussian processes (kiss-gp), International conference on machine learning, PMLR,

pp. 1775-1784.

Zaidi, S., Zela, A., Elsken, T., Holmes, C. C., Hutter, F. and Teh, Y. (2021). Neural
ensemble search for uncertainty estimation and dataset shift, Advances in Neural In-

formation Processing Systems 34: 7898-7911.

Zimmer, L., Lindauer, M. and Hutter, F. (2021). Auto-pytorch: Multi-fidelity met-
alearning for efficient and robust autodl, IEEFE Transactions on Pattern Analysis and
Machine Intelligence 43(9): 3079-3090.

41

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

A Appendix
A.1 Datasets

In this table, you can see all datasets used for the benchmark study, the number of
observations n, and the number of variables p. K2204 and R1.08 are insurance tariff

datasets. Wine, Elevators, Diamonds, and Year are taken from openml.org.

Dataset Name | OpenML Dataset ID [n P
K2204 / 5839 3
Wine 287 6497 11
Elevators 216 16599 18
Diamonds 42225 53940 9
Year 44027 515345 | 90
R1_08_small / 600000 | 9
R1.08 / 7496192 | 9

Table 2: HPO Study Datasets

A.2 Study Set Up

Below, you can see the HPO setup. Each method was evaluated 100 times. The time
budget refers to the maximum time a Hyperparameter configuration can be trained before
being pruned. For the dataset with less than 100K Observation, 4-Fold CV was used to
get more stable results. All models were trained in parallel. For the large datasets, a

simple train-test split was used with an additional Hyperband pruner.

Dataset Name | Time Budget | Inner Validation Loop Method | Pruner Type
K2204 10min 4-fold CV None

Wine 10min 4-fold CV None
Elevators 15min 4-fold CV None
Diamonds 30min 4-fold CV None

Year 45min 0.75/0.25 Train/Test Split Hyperband
R1_08_small 45min 0.75/0.25 Train/Test Split Hyperband

Table 3: Study Set Up

A.3 Model Search Space

In the following tables, you can see the Hyperparameter Search Space used in the optuna
HPO study for the small and medium sized datasets. Note, that for the larger datasets
with more than 500K observations, the search space was restricted slightly for some
methods, usually a slightly smaller grid size or number of inducing points. This was done

in order to avoid Memory Errors.

openml.org

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

Variable Name | Description Range Log
n_max Maximum number of neu- | U(64, 1024)
rons in feature extractor
n_layer Number of layers in feature | U(2, 5)
extractor
n_out Number of output neurons | U(2, 4)
in feature extractor
mean_type Mean Type [Constant, Linear]
kernel_type Kernel Type IRBF, Matern(nu=0.5),
Matern(nu=1.5), Spectral
Mixture]
num_mixtures Number of spectral mix- | U(2, 8)
tures for Spectral Mixture
Kernel
Ir Learning Rate U(1e-04, 1e-01) v
If n_out=2: U(10, 400)
grid_size Grid Size If n_out=3: U(10, 50)
If n_out=4: U(10, 20)
initialize_fe Initialize Feature Extractor | [True, False]
Table 4: Deep Kernel Learning Search Space
Variable Name [Description Range Log
n_max Maximum number of neu- | (64, 1024)
rons in feature extractor
n_layer Number of layers in feature | U(2, 5)
extractor
n_out Number of output neurons | (2, 20)
in feature extractor
mean_type Mean Type [Constant, Linear]
kernel_type Kernel Type IRBF, Matern(nu=0.5),
Matern(nu=1.5)]
Ir Learning Rate U(1e-04, 1e-01)
batch_size Batch Size (512, 1024, 2048]
num_inducing Number of inducing points | ¢4(50, 2000)
initialize_fe Initialize Feature Extractor | [True, False]
minit Inducing point Initializa- | [random, kmeans]
tion
Table 5: Variational Deep Kernel Learning Search Space
Variable Name | Description Range Log
n_gp_layers Number of GP layers U, 5) v
n_gp_out Number of GPs per layer U, 4) v
kernel_type Kernel Type [RBF, Matern(nu=0.5),
Matern(nu=1.5)]
Ir Learning Rate U(1e-04, 1e-01)
batch_size Batch Size (256, 512, 1024]

num_inducing

num_samples

Number of inducing points
in each hidden layer
Number of likelihood sam-
ples

(50, 1000)
U2, 15)

Table 6: Deep Gaussian Process Search Space

IT

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Variable Name [Description Range Log
n_max Maximum number of neurons in | U(64, 1024)

feature extractor
n_layer Number of layers in feature ex- | U(2, 5)

tractor
n_out Number of output neurons in fea- | U4(2, 20)

ture extractor
n_gp_layers Number of GP layers U(1,5) v
n_gp_out Number of GPs per layer U(l,4) v
kernel_type Kernel Type [RBF, Matern(nu=0.5),

Matern(nu=1.5)]

Ir Learning Rate U(1e-04, 1e-01)
batch_size Batch Size (256, 512, 1024]
num-inducing Number of inducing points in | ¢(50, 1000)

each hidden layer
num_samples Number of likelihood samples U2, 15)
initialize_fe Initialize Feature Extractor [True, False]

Table 7: Neural Network Deep Gaussian Process Search Space
Variable Name Description Range Log
n_dspp_layers Number of DSPP hidden layers | U(1, 5) v
n_dspp_out Number of GPs per hidden layer | U(1, 5) v
Ir Learning Rate U(1e-04, 1e-01) v
batch_size Batch Size [256, 512, 1024]
num-inducing Number of inducing points in | U(50, 800) v
each hidden layer
num_quadrature_sites Number of quadrature sites U(5, 10)
beta Beta [0.01, 0.05, 0.2, 1.0]
Table 8: Deep Sigma Point Process Search Space

Variable Name | Description Range Log
n_max Maximum number of neurons in | U(64, 1024)

feature extractor
n_layer Number of layers in feature ex- | U(2, 4)

tractor
Ir Learning Rate U(1e-05, 1e-01) v
batch_size Batch Size (256, 512, 1024,2048]

Table 9: Deep Ensemble Search Space

I1I

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

Variable Name | Description Range Log
n_estimators Number of Trees U(5, 500) v
max_depth Maximum Tree Depth U(5, 100) v
min_samples_split | Minimum number of samples to | U(2, 25) v
split an internal node
min_samples_leaf | Minimum number of samples to | U(1, 25)
be at a leaf node
max_features Number of features to consider | [sqrt, auto]
when looking for a split
Table 10: Random Forest Search Space
Variable Name | Description Range Log
num_boost_round | Maximum Number of Boosting | 10000
Rounds
max_depth Maximum Tree Depth U5, 75)
learning_rate Learning Rate U(0.001, 0.1) v
colsample_bytree | Subsample ratio of columns when | ¢(0.2, 0.6) v
constructing each tree
subsample Subsample ratio of the training | ¢(0.4, 0.8) v
instances
reg_alpha L1 regularization term on weights | ¢(0.01, 10) v
reg_lambda L2 regularization term on weights | U(1e-08, 10) v
gamma Gamma U(1e-08, 10) v
min_child_weight | Minimum sum of instance weight | ¢(2, 100) v

needed in a child

Table 11: XGBoost Search Space

IV

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

A.4 Configurations found by HPO

The best configurations as found by the Hyperparameter Optimization in each split.

A.4.1 Deep Kernel Learning

outer_run 1 2 3 4 5
n_max 706 166 625 650 225
n_layers 2 2 2 2 5
n_out 4 3 3 4 4
mean_type linear constant linear constant linear
kernel type rbf rbf maternl.5 | maternl.5 | rbf
Ir 0.07858 0.07444 0.07531 0.07798 0.00134
grid _size 13 30 14 19 15
initialize_fe True False False False True
MSE 7.3e-07 3.1e-06 6.4e-07 1.03e-05 1.6e-07
MAE 0.0007 0.0013 0.0006 0.002 0.0003
Max Error 0.0032 0.0073 0.0063 0.0149 0.0024
NLL -4.438 -4.048 -5.003 -4.122 -1.025
Table 12: DKL - K2204 BPV
outer_run 1 2 3 4 5
n_max 143 354 788 403 v
n_layers 2 2 2 2 2
n_out 3 3 3 3 3
mean_type linear constant constant linear linear
kernel _type matern0.5 | matern0.5 | matern0.5 | maternl.5 | maternl.5
Ir 0.0926 0.0754 0.0861 0.0708 0.0711
grid _size 37 33 14 16 29
initialize_fe False True False True True
MSE 0.022 0.042 0.06 0 0.012 0.005
MAE 0.109 0.158 0.211 0.099 0.055
Max Error 1.168 0.851 0.747 0.367 0.396
NLL -0.461 0.623 1.105 -0.367 -0.598

Table 13: DKL - K2204 PPV

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_max 940 793 782 554 148
n_layers 3 5) 2))
n_out 4 3 4 4 3
mean_type constant linear linear linear linear
kernel type rbf rbf rbf maternl.5 | rbf
Ir 0.0008 0.0005 0.0044 0.0017 0.0001
grid_size 17 27 15 20 45
initialize_fe True True True True False
MSE 0.489 0.507 0.469 0.507 0.479
MAE 0.538 0.557 0.539 0.544 0.542
Max Error 3.17 3.475 3.293 2.953 3.198
NLL 1.58 1.596 1.468 1.557 1.605
Table 14: DKL - Wine
outer_run 1 2 3 4 5
n_max 645 846 870 504 693
n_layers 4 4 3 5 2
n_out 4 4 3 4 3
mean_type constant linear linear constant linear
kernel_type rbf rbf rbf rbf rbf
Ir 0.0001 0.0001 0.0001 0.0001 0.0752
grid _size 18 11 20 19 42
initialize_fe True True True True True
MSE 5e-06 5e-06 5e-06 5e-06 8e-06
MAE 0.0017 0.0016 0.0016 0.0017 0.0019
Max Error 0.019 0.017 0.029 0.012 0.023
NLL -2.912 -2.904 -2.987 -2.909 -4.446
Table 15: DKL - Elevators
outer_run 1 2 3 4 5
n_max 705 266 711 562 193
n_layers 2 2 2 3 4
n_out 3 3 2 3 3
mean_type linear constant linear linear linear
kernel type matern0.5 | maternl.5 | rbf maternl.5 | maternl.5
Ir 0.0009 0.0031 0.0305 0.0005 0.0225
grid _size 23 38 347 28 27
initialize_fe False True True True False
MSE 553329.75 | 379790.81 | 352204.31 | 374353.68 | 431235.94
MAE 453.66 346.57 326.19 358.32 345.49
Max Error 12292.01 7269.53 10183.71 5718.19 16212.13
NLL 9.633 9.484 7.406 9.629 8.897

Table 16: DKL - Diamonds

VI

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_max 724 969 995 571 429
n_layers 4 2 2 4 4
n_out 2 2 2 2 2
mean_type constant constant constant constant linear
kernel _type rbf maternl.5 | maternl.5 | maternl.5 | rbf
Ir 0.0001 0.0488 0.0012 0.0002 0.0001
grid_size 103 48 31 145 186
initialize_fe True False False True True
MSE 82.29 152.07 83.41 81.89 81.90
MAE 6.43 10.54 6.40 6.24 6.32
Max Error 69.79 69.12 80.22 70.93 71.05
NLL 4.29 3.31 4.30 4.30 4.29
Table 17: DKL - Year
outer_run 1 2 3 4 5
n_max 808 748 663 606 343
n_layers 3 5 3 4 5
n_out 2 2 2 2 2
mean_type linear constant constant linear constant
kernel type maternl.5 | maternl.5 | rbf rbf rbf
Ir 0.0393 0.0121 0.0114 0.0003 0.0415
grid _size 95 221 34 54 259
initialize_fe False False True True True
MSE 0.014 0.023 0.0028 0.014 0.048
MAE 0.085 0.112 0.129 0.088 0.162
Max Error 2.815 2473 1.952 2.868 2.197
NLL 2.629 3.255 3.214 3.720 3.044
Table 18: DKL - R1.08 BPV
outer_run 1 2 3 4 5
n_max 182 1024 1024 511 915
n_layers 2 4 4 2 4
n_out 2 2 2 2 2
mean_type linear constant constant linear constant
kernel type rbf rbf rbf maternl.5 | maternl.5
Ir 0.025 0.01 0.01 0.025 0.032
grid _size 141 300 300 116 152
initialize_fe False False False False False
MSE 0.0007 0.0007 0.051 0.0008 0.0008
MAE 0.019 0.019 0.137 0.022 0.23
Max Error 0.297 0.199 1.558 0.247 0.217
NLL 0.908 1.656 1.670 1..305 0.671

Table 19: DKL - R1.08 PPV

VII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.2 Variational Deep Kernel Learning

outer_run 1 2 3 4 5
n_max 645 930 171 963 503
n_layers 2 2 2 2 2
n_out 10 6 13 9 6
mean_type linear constant linear constant constant
kernel type rbf rbf maternl.5 | rbf rbf
Ir 0.0006 0.0029 0.0004 0.003 0.002
batch _size 512 512 512 512 512
num _inducing | 175 949 52 811 95
initialize_fe True True True False True
minit kmeans kmeans random kmeans random
MSE 3.49e-08 1.17e-07 7.5e-07 7.46e-08 1.46e-07
MAE 0.00013 0.00024 0.00068 0.0002 0.00029
Max Error 0.0013 0.0018 0.0028 0.0016 0.0018
NLL -4.412 -4.829 -4.124 -4.769 -4.842
Table 20: VDKL - K2204 BPV
outer_run 1 2 3 4 5
n_max 945 369 778 236 82
n_layers 2 2 2 2 3
n_out 10 11 15 9 15
mean_type constant constant constant constant constant
kernel _type maternl.5 | rbf maternl.5 | maternl.5 | rbf
Ir 0.004 0.002 0.004 0.004 0.001
batch_size 512 512 512 512 512
num _inducing | 299 664 897 1487 396
initialize_fe True False True False True
minit kmeans random kmeans kmeans kmeans
MSE 0.013 0.003 0.0004 0.002 0.005
MAE 0.072 0.037 0.016 0.037 0.058
Max Error 0.64 0.31 0.11 0.14 0.21
NLL -0.141 -0.134 -0.148 -0.186 -0.148

Table 21: VDKL - K2204 PPV

VIII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_max 687 860 641 242 723
n_layers 4 3 4 3 3
n_out 19) 16 10 19
mean_type constant constant constant constant constant
kernel _type rbf matern0.5 | maternl.5 | maternl.5 | maternl.5
Ir 0.0015 0.0001 0.0014 0.003 0.002
batch_size 512 512 512 512 512
num _inducing | 916 1419 792 264 58
initialize_fe True True True False True
minit random random random kmeans random
MSE 0.51 0.55 0.52 0.50 0.51
MAE 0.49 0.54 0.51 0.54 0.54
Max Error 4.08 3.19 3.83 3.19 5.05
NLL 1.023 1.080 1.527 0.170 0.175
Table 22: VDKL - Wine
outer_run 1 2 3 4 53
n_max 854 748 535 350 805
n_layers 3 5) 4 4 4
n_out 8 10 4 18 8
mean_type constant constant constant constant constant
kernel _type rbf rbf maternl.5 | maternl.5 | maternl.5
Ir 0.0009 0.0005 0.0004 0.0002 0.0006
batch_size 512 512 512 512 512
num_inducing | 826 164 1707 55 233
initialize_fe False True True True True
minit kmeans random kmeans kmeans random
MSE 4e-06 5e-06 5e-06 4e-06 5e-06
MAE 0.0015 0.0017 0.0016 0.0015 0.0016
Max Error 0.014 0.013 0.0196 0.0119 0.0114
NLL -5.75 -5.64 -5.63 -5.53 -5.65
Table 23: VDKL - Elevators
outer_run 1 2 3 4 5
n_max 827 721 856 368 767
n_layers 3 3 5 3 4
n_out 12 5) 14 8 20
mean_type constant constant constant constant constant
kernel _type matern0.5 | rbf rbf matern(.5 | matern(.5
Ir 0.0035 0.004 0.0007 0.0008 0.0001
batch_size 512 512 512 512 512
num_inducing | 946 99 392 1401 687
initialize_fe True True False False False
minit random kmeans kmeans random random
MSE 352684.94 | 326883.94 | 335607.09 | 302789.16 | 385089.13
MAE 311.53 316.42 304.56 293.14 314.08
Max Error 16702.43 5394.03 6976.53 6122.79 12513.64
NLL 6.83 6.83 6.83 6.80 6.82

Table 24: VDKL - Diamonds

IX

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_max 910 765 634 549 306
n_layers 3 2 3 3 2
n_out 12 10 9 11 3
mean_type constant constant linear constant linear
kernel _type maternl.5 | maternl.5 | matern0.5 | maternl.5 | matern0.5
Ir 0.00026 0.0011 0.00025 0.0001 0.0002
batch _size 2048 1024 1024 1024 1024
num_inducing | 1029 1194 494 395 914
initialize_fe False False True True False
minit random random random kmeans random
MSE 75.24 72.13 79.70 80.88 76.60
MAE 5.92 6.11 6.07 5.96 6.10
Max Error 74.99 72.13 79.70 80.88 76.60
NLL 2.67 2.68 2.68 2.67 2.67
Table 25: VDKL - Year
outer_run 1 2 3 4 5
n_max 1024 141 675 259 688
n_layers 4 3 5 3 4
n_out 2 9 10 14 2
mean_type constant constant constant constant constant
kernel type rbf maternl.5 | rbf rbf rbf
Ir 0.01 0.0028 0.017 0.0037 0.021
batch_size 8192 2048 2048 2048 8192
num_inducing | 1000 690 375 1052 931
initialize_fe False True False False False
minit random kmeans kmeans random kmeans
MSE 0.0003 0.0012 0.0005 0.0002 0.0006
MAE 0.012 0.025 0.017 0.009 0.019
Max Error 0.61 0.91 0.31 0.28 0.20
NLL -0.25 -0.32 -0.32 -0.34 -0.31
Table 26: VDKL - R1.08 BPV
outer_run 1 2 3 4 5
n_max 1024 553 1024 sy 366
n_layers 4 4 4 2 2
n_out 8 6 8 8 13
mean_type constant constant constant linear linear
kernel type rbf rbf rbf maternl.5 | matern(.5
Ir 0.01 0.0042 0.01 0.032 0.002
batch _size 1024 1024 1024 2048 1024
num_inducing | 1000 1889 1000 1708 56
initialize_fe False False False True True
minit random random random kmeans random
MSE 0.00003 0.000004 0.000004 0.00005 0.00004
MAE 0.005 0.001 0.001 0.006 0.005
Max Error 0.073 0.032 0.104 0.088 0.088
NLL -1.858 -1.886 -1.887 -1.811 -1.864

Table 27: VDKL - R1.08 PPV

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.3 Deep Gaussian Process

outer_run 1 2 3 4 5
n_gp_layers 2 1 2 2 2
n_gp-out 1 4 3 3 1
kernel _type matern(0.5 | matern0.5 | matern0.5 | matern(0.5 | matern0.5
batch _size 256 256 256 256 512
Ir 0.0046 0.0038 0.0049 0.0077 0.0065
num_inducing | 571 349 664 413 204
num_samples 7 8 6 15 3
MSE 2e-06 4e-06 le-06 2e-06 3e-06
MAE 0.001 0.0013 0.0009 0.0011 0.0013
Max Error 0.008 0.012 0.006 0.007 0.009
NLL -4.78 -4.73 -4.8 -4.76 -4.67
Table 28: DGP - K2204 BPV
outer_run 1 2 3 4 5
n_gp_layers 1 1 2 1 2
n_gp-_out 2 1 2 1 4
kernel _type matern0.5 | matern0.5 | matern0.5 | matern0.5 | matern(0.5
batch_size 256 256 256 256 512
Ir 0.0072 0.0043 0.0089 0.0039 0.0066
num_inducing | 673 522 568 755 378
num_samples 13 8 9 7 7
MSE 0.038 0.032 0.022 0.03 0.025
MAE 0.15 0.13 0.11 0.13 0.12
Max Error 1.16 1.43 0.75 0.75 0.82
NLL -0.057 -0.044 -0.05 -0.07 -0.04
Table 29: DGP - K2204 PPV
outer_run 1 2 3 4 o
n_gp_layers 1 1 1 1 1
n_gp_out 3 1 2 4 4
kernel _type rbf maternl.5 | rbf maternl.5 | maternl.b
batch_size 256 512 256 256 512
Ir 0.0061 0.0019 0.0135 0.0065 0.0083
num_inducing | 329 976 51 169 83
num_samples 10 13 12 4 14
MSE 0.497 0.483 0.485 0.513 0.481
MAE 0.556 0.547 0.537 0.552 0.541
Max Error 3.22 3.16 2.81 3.12 3.04
NLL 0.15 0.14 0.14 0.17 0.14

Table 30: DGP - Wine

XI

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5

n_gp_layers 2 1 1 3 2

n_gp-out 3 3 3 4 3

kernel _type maternl.5 | matern0.5 | rbf maternl.5 | maternl.b

batch_size 256 256 256 256 256

Ir 0.0038 0.0073 0.0022 0.0077 0.003

num_inducing | 152 334 427 104 375

num_samples 12 4 4 4 7

MSE 4e-06 4e-06 4e-06 4e-06 4e-06

MAE 0.0014 0.0015 0.0015 0.0016 0.0014

Max Error 0.01 0.014 0.019 0.011 0.014

NLL -5.72 -5.66 -5.69 -5.69 -5.73
Table 31: DGP - Elevators

outer_run 1 2 3 4 5

n_gp_layers 1 2 1 1 2

n_gp-out 3 3 3 2 4

kernel _type maternl.5 | maternl.5 | maternl.5 | maternl.5 | matern0.5

batch _size 512 256 256 512 512

Ir 0.0015 0.0019 0.0016 0.0031 0.0085

num_inducing | 624 514 722 581 574

num _samples | 9 4 6 15 12

MSE 308664.65 | 304443.78 | 316624.72 | 304119.41 | 295596.94

MAE 298.61 299.84 299.44 309.58 295.48

Max Error 6101.09 5098.9 6514.66 5131.26 6672.86

NLL 6.83 6.83 6.84 6.84 6.83
Table 32: DGP - Diamonds

outer_run 1 2 3 4 5

n_gp_layers 1 2 2 2 1

n_gp_out 3 3 3 1 3

kernel type maternl.5 | maternl.5 | rbf rbf maternl.5

batch _size 512 1024 512 2048 1024

Ir 0.011 0.007 0.008 0.013 0.008

num _inducing | 59 138 185 297 380

num_samples 15 6 10 12 15

MSE 110.17 86.14 86.87 86.58 86.12

MAE 8.52 6.61 6.48 6.46 6.36

Max Error 67.99 70.47 76.86 71.62 70.11

NLL 2.85 2.73 2.73 2.73 2.73

Table 33: DGP - Year

XII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 o
n_gp_layers 3 1 2 1 1
n_gp_out 3 1 2 3 3
kernel _type rbf rbf rbf rbf rbf
batch_size 1024 1024 1024 1024 1024
Ir 0.0042 0.0022 0.0017 0.0044 0.0025
num_inducing | 300 53 769 99 246
num_samples 15 5) 7 2 14
MSE 0.002 0.003 0.002 0.002 0.001
MAE 0.033 0.041 0.031 0.033 0.020
Max Error 0.69 0.82 0.43 0.75 0.42
NLL -0.299 -0.212 -0.326 -0.255 -0.314
Table 34: DGP - R1.08 BPV
outer_run 1 2 3 4 5
n_gp_layers 1 1 1 1 2
n_gp_out 1 2 2 3 2
kernel type rbf rbf rbf rbf rbf
batch _size 1024 1024 512 512 1024
Ir 0.0024 0.0039 0.0017 0.0052 0.0029
num_inducing | 478 704 698 406 386
num_samples 7 11 13 10 7
MSE 0.0001 0.00007 0.0001 0.0002 0.00009
MAE 0.009 0.007 0.0088 0.011 0.007
Max Error 0.049 0.042 0.059 0.086 0.074
NLL -1.851 -1.859 -1.864 -1.842 -1.848

Table 35: DGP - R1.08 PPV

XIII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.4 Neural Network Deep Gaussian Process

outer_run 1 2 3 4 5
n_gp_layers 1 4 1 4 1
n_gp_out 2 3 1 4 1
n_max 189 609 885 555 577
n_layers 4 4 4 2 2
n_out 15 6 20 14 17
batch_size 256 256 256 256 512
Ir 0.0029 0.0055 0.002 0.003 0.0029
num_inducing | 113 197 490 50 50
num_samples 4 10 12 6 2
MSE 6.9e-06 4.9e-05 3e-06 4e-06 2e-06
MAE 0.0023 0.0054 0.0014 0.0016 0.0009
Max Error 0.009 0.027 0.004 0.006 0.017
NLL -4.52 -4.33 -4.82 -4.62 -4.34
Table 36: NNDGP - K2204 BPV
outer_run 1 2 3 4 5
n_gp_layers 3 2 2 2 3
n_gp_out 1 4 2 2 2
n_max 885 119 600 285 258
n_layers 2 4 4 3)
n_out 9 10 4 9 7
batch_size 512 256 256 256 256
Ir 0.0019 0.0072 0.0092 0.0084 0.0043
num_inducing | 358 233 202 391 357
num_samples 4 9 11 13 15
MSE 0.0144 0.2957 0.1306 0.0608 0.0494
MAE 0.0931 0.4566 0.2747 0.2032 0.1786
Max Error 1.251 2.542 2.321 1.066 0.736
NLL -0.02 0.47 0.25 0.11 006
Table 37: NNDGP - K2204 PPV
outer_run 1 2 3 4 5
n_gp_layers 1 4 1 4 1
n_gp_out 2 3 1 4 1
n_max 189 609 885 555 7T
n_layers 4 4 4 2 2
n_out 15 6 20 14 17
batch_size 256 256 256 256 512
Ir 0.0029 0.0055 0.002 0.003 0.0029
num_inducing | 113 197 490 50 50
num _samples |4 10 12 6 2
MSE 6.9e-06 3.9e-05 7.4e-06 1.05e-05 3.8e-07
MAE 0.0017 0.0054 0.0021 0.0028 0.0005
Max Error 0.02 0.026 0.014 0.008 0.0042
NLL 0.16 0.16 0.41 0.40 0.50

Table 38: NNDGP - Wine

XIV

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 53
n_gp_layers 5 4 4 5 4
n_gp_out 2 4 4 4 1
n_max 653 489 490 707 852
n_layers 3 2 3) 5
n_out 4 10) 11 2
batch_size 512 256 512 512 256
Ir 0.0006 0.0002 0.0001 0.0001 0.0006
num_inducing | 423 440 7 52 341
num_samples 11 9 15 9 13
MSE 0.00005 0.00004 0.00004 0.00005 0.00005
MAE 0.005 0.005 0.004 0.005 0.005
Max Error 0.05 0.05 0.06 0.05 0.05
NLL -3.01 -3.00 -3.15 -2.98 -3.12
Table 39: NNDGP - Elevators
outer_run 1 2 3 4 5
n_gp_layers 2 2 2 3 3
n_gp_out 2 2 2 3 3
n_max 431 587 972 771 558
n_layers 2 3 3 4 4
n_out 7 9 15) 7
batch _size 256 256 256 256 256
Ir 0.008 0.004 0.037 0.004 0.001
num_inducing | 73 138 199 345 505
num_samples 9 4 8 6 12
MSE 353533.1 4147571 4721145.3 | 317888 367269.6
MAE 337.5 373.9 380.3 321.2 352.9
Max Error 12899.9 5776.4 7283.2 5379.2 14410.0
NLL 6.87 7.03 7.02 6.85 6.92

Table 40: NNDGP - Diamonds

XV

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.5 Deep Sigma Point Process

outer_run 1 2 3 4 5
n_dspp_layers 1 1 1 1 1
n_dspp_out 5) 3 2 2 3
batch_size 256 256 512 256 256
Ir 0.0002 0.0003 0.0003 0.0003 0.0002
num_inducing 131 71 353 691 620
num_quadrature_sites 8 5 8 6 5)
beta 0.01 0.05 0.01 0.01 0.01
MSE 1.6e-07 2.7e-07 5e-07 1.7e-06 2.7e-07
MAE 0.00029 0.00039 0.00056 0.00117 0.00041
Max Error 0.002 0.005 0.003 0.003 0.002
NLL -4.565 -4.833 -3.388 -4.78 -4.089
Table 41: DSPP - K2204 BPV
outer_run 1 2 3 4 54
n_dspp_layers 1 1 2 1 1
n_dspp_out 2 2 1 3 2
batch _size 256 256 256 256 256
Ir 0.0002 0.0002 0.0003 0.0003 0.0005
num_inducing 788 744 479 141 155
num_quadrature_sites 7 9 9 7 10
beta 0.01 0.01 0.01 0.01 0.01
MSE 0.0035 0.0059 0.0197 0.0039 0.0479
MAE 0.0467 0.0629 0.1334 0.0512 0.1914
Max Error 0.266 0.466 0.349 0.229 0.585
NLL 0.0828 0.8656 -0.2147 0.0164 -0.1687
Table 42: DSPP - K2204 PPV
outer_run 1 2 3 4 5
n_dspp_layers 3 2 2 1 1
n_dspp_out 3 4 4 4 5
batch_size 256 256 512 256 256
Ir 0.006 0.0034 0.008 0.0002 0.0077
num_inducing 474 432 667 662 61
num_quadrature_sites 7 9 8) 7
beta 0.01 0.05 0.01 0.01 0.20
MSE 0.6 0.495 0.522 0.51 0.457
MAE 0.64 0.564 0.588 0.544 0.531
Max Error 3.389 2.921 3.257 2.909 3.394
NLL 0.22 0.151 0.382 0.447 0.083

Table 43: DSPP - Wine

XVI

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_dspp_layers 1 1 1 1 1
n_dspp_out 2 2 2 2 1
batch_size 256 256 256 256 512
Ir 0.0014 0.003 0.0023 0.0007 0.0006
num_inducing 650 712 441 652 189
num_quadrature_sites 9 7 6) Y
beta 1 1 0.01 0.01 0.20
MSE 4e-06 4e-06 4e-06 4e-06 4e-06
MAE 0.0015 0.0014 0.0015 0.0015 0.0015
Max Error 0.014 0.026 0.024 0.013 0.017
NLL -5.777 -5.792 -5.767 -5.825 -5.672
Table 44: DSPP - Elevators
outer_run 1 2 3 4 5
n_dspp_layers 1 3 2 2 1
n_dspp_out 5 4 5 5 5
batch _size 256 256 256 256 512
Ir 0.011 0.0135 0.01 0.017 0.008
num_inducing 194 198 163 236 692
num_quadrature_sites 6 5 5))
beta 0.2 0.2 0.01 0.05 0.01
MSE 325110.28 | 323600.59 | 320756.91 | 288972.84 | 322821.47
MAE 295.92 296.24 284.46 284.75 297.33
Max Error 5845.91 5105.99 6677.17 4922.98 13589.05
NLL 6.3 6.3 6.28 6.26 6.27
Table 45: DSPP - Diamonds
outer_run 1 2 3 4 54
n_dspp_layers 3 2 1 2 3
n_dspp_out 3 4 3 4 4
batch_size 2048 512 2048 1024 512
Ir 0.016 0.004 0.004 0.007 0.008
num_inducing 50 217 108 300 186
num_quadrature_sites 8) 7) 8
beta 0.05 1.0 0.20 1.0 1.0
MSE 92.9 84.02 86.2 83.3 118.9
MAE 7.3 6.5 6.4 6.3 8.1
Max Error 67.4 67.4 79.58 69.6 76.4
NLL 2.6 2.5 2.6 2.5 2.9

Table 46: DSPP - Year

XVII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_dspp_layers 2 3 2 3 2
n_dspp_out 2 2 3 4 4
batch_size 2048 1024 1024 1024 1024
Ir 0.0088 0.0138 0.0122 0.0144 0.0045
num_inducing 150 241 146 047 91
num_quadrature_sites 5t 10 10 7 6
beta 1 0.2 0.01 0.05 0.01
MSE 0.004 0.009 0.008 0.072 0.012
MAE 0.054 0.078 0.078 0.258 0.094
Max Error 0.926 1.656 1.467 1.148 1.425
NLL -0.31 -0.31 -0.30 -0.27 -0.29
Table 47: DSPP - R1.08 BPV
outer_run 1 2 3 4 5
n_dspp_layers 2 2 1 2 2
n_dspp_out 2 4 1 3 2
batch_size 2048 2048 2048 512 2048
Ir 0.019 0.006 0.033 0.011 0.006
num_inducing 163 776 A72 66 396
num_quadrature_sites 9 10 5) 8 10
beta 0.2 1.0 0.05 0.01 1.0
MSE 0.0003 0.00003 0.0001 0.0002 0.0001
MAE 0.014 0.004 0.008 0.013 0.008
Max Error 0.17 0.099 0.193 0.135 0.193
NLL -1.82 -1.86 -1.84 -1.78 -1.85

Table 48: DSPP - R1.08 PPV

XVIII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.6 Deep Ensemble

outer_run 1 2 3 4 5
n_max 227 304 393 542 348
n_layers 3 3 3 4 3
Ir 2e-05 2e-05 1le-05 1le-05 1le-05
batch_size 512 1024 512 512 512
MSE 4e-07 5.5e-07 3.7e-07 5e-07 4.3e-07
MAE 0.0005 0.0005 0.0004 0.0005 0.0005
Max Error 0.0026 0.0029 0.0028 0.0023 0.0019
NLL -6.09 -5.45 -5.68 -5.33 -6.13
Table 49: DE - K2204 BPV
outer_run 1 2 3 4 5
n_max 239 876 375 904 201
n_layers 4 4 4 4 4
Ir 0.0004 9e-05 0.0003 5e-05 0.0005
batch_size 512 512 512 512 512
MSE 0.018 0.006 0.011 0.003 0.016
MAE 0.083 0.047 0.061 0.035 0.078
Max Error 0.85 0.57 0.91 0.44 0.87
NLL -1.42 -1.36 -0.67 -1.63 -1.07
Table 50: DE - K2204 PPV
outer_run 1 2 3 4 5
n_max 668 996 943 900 963
n_layers 3 4 2 2 2
Ir 0.0028 0.0004 0.0021 0.0033 0.0012
batch_size 512 512 512 512 512
MSE 0.47 0.45 0.44 0.47 0.43
MAE 0.53 0.53 0.52 0.52 0.51
Max Error 3.36 2.99 3.29 2.82 3.2
NLL 0.104 0.079 0.067 0.109 0.049
Table 51: DE - Wine
outer_run 1 2 3 4 5
n_max 1017 287 554 821 932
n_layers D 6 6 4 6
Ir 0.000021 0.000097 0.000022 0.000023 0.000020
batch_size 8124 8124 8124 512 2048
MSE 0.000122 0.000056 0.000237 0.000134 0.000187
MAE 0.008688 0.005595 0.012509 0.008660 0.012281
Max Error 0.057 0.042 0.246 0.197 0.05
NLL -1.82 -1.38 -0.63 -1.45 -1.41

Table 52: DE - Elevators

XIX

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_max 924 968 686 52 920
n_layers 2 2 2 4 2
Ir 0.032 0.019 0.013 0.0115 0.013
batch_size 512 512 512 512 512
MSE 849109.56 | 303990.69 | 331165.84 | 400592.34 | 302748.63
MAE 289.60 282.74 290.71 307.19 283.63
Max Error 75791.84 4974.049 9417.63 13011.88 8744.75
NLL 6.03 6.03 6.1 6.02 6.08
Table 53: DE - Diamonds
outer_run 1 2 3 4 5
n_max 877 335 696 101 283
n_layers 2 2 2 3 4
Ir 0.0016 0.0027 0.029 0.0035 0.0020
batch_size 512 512 1024 512 512
MSE 86.6 148.8 88.8 87.4 94.6
MAE 6.42 9.07 6.67 6.38 7.29
Max Error 245.5 209.2 104.3 437.7 144.9
NLL 2.68 3.31 2.79 2.67 2.82
Table 54: DE - Year
outer_run 1 2 3 4 5
n_max 745 847 992 695 873
n_layers 6 5 5t D 6
Ir 4e-05 4e-05 1le-05 7e-05 4e-05
batch_size 512 512 512 512 1024
MSE 0.00011 0.00011 0.00006 0.00019 0.00036
MAE 0.008 0.007 0.006 0.011 0.015
Max Error 0.55 0.71 0.23 0.38 0.60
NLL -3.35 -3.51 -3.85 -3.36 -2.93
Table 55: DE - R1.08 BPV
outer_run 1 2 3 4 5
n_max 40 53 531 138 361
n_layers D 6 2 D 3
Ir 0.0002 0.0004 0.0003 0.0001 0.0001
batch_size 512 512 1024 1024 512
MSE 0.000014 0.00007 0.000007 0.000025 0.000007
MAE 0.0028 0.0067 0.0013 0.0041 0.0021
Max Error 0.078 0.085 0.11 0.09 0.05
NLL -4.43 -3.34 -5.4 -3.8 -4.61

Table 56: DE - R1.08 PPV

XX

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

A.4.7 Random Forest

outer_run 1 2 3 4 59
n_estimators 110 163 75 169 162
max_depth 21 36 36 41 16
min_samples_leaf 1 1 1 1 1
min_samples_split 2 2 2 2 2
max_features all sqrt all all sqrt
MSE 5.33e-07 6.98e-07 6.38e-07 7.07e-07 6.77e-07
MAE 0.0004 0.0006 0.0005 0.0005 0.0006
Max Error 0.005 0.004 0.005 0.005 0.006
Table 57: RF - K2204 BPV
outer_run 1 2 3 4 5
n_estimators 197 151 146 156 134
max_depth 47 29 38 12 47
min_samples_leaf 1 1 1 1 1
min_samples_split 2 2 3 3 2
max_features all sqrt all all all
MSE 0.007 0.01 0.009 0.01 0.008
MAE 0.05 0.07 0.06 0.07 0.05
Max Error 0.54 0.49 0.48 0.59 0.54
Table 58: RF - K2204 PPV
outer_run 1 2 3 4 59
n_estimators 372 402 73 296 167
max_depth 34 41 41 43 21
min_samples_leaf 1 1 2 1 1
min_samples_split 2 2 2 2 2
max_features sqrt all sqrt sqrt sqrt
MSE 0.39 0.35 0.34 0.38 0.33
MAE 0.44 0.42 0.42 0.43 0.42
Max Error 3.41 3.54 2.54 2.84 2.95
Table 59: RF - Wine
outer_run 1 2 3 4 5
n_estimators 397 230 456 361 481
max_depth 47 38 28 40 78
min_samples_leaf 1 1 2 1 1
min_samples_split 2 2 4 3 3
max_features all all all all all
MSE 8e-06 7e-06 7e-06 7e-06 Te-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.03 0.02 0.04 0.02 0.02

Table 60: RF - Elevators

XXI

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_estimators 380 440 341 304 459
max_depth 65 50 20 19 97
min_samples_leaf 1 1 1 1 1
min_samples_split 9)) 9 16
max_features all sqrt all all sqrt
MSE 296984.19 | 300438.14 | 308578.82 | 296715.98 | 296594.85
MAE 270.3 269.43 273.49 271.51 270.63
Max Error 5790.27 6076.36 6566.03 12583.93 9961.32
Table 61: RF - Diamonds
outer_run 1 2 3 4 5
n_estimators 225 248 250 249 249
max_depth 32 28 39 50 39
min_samples_leaf 8 8 6 6 8
min_samples_split 8 10 6 4 6
max_features all all all all all
MSE 81.8 81.0 81.4 81.6 80.6
MAE 6.35 6.33 6.33 6.33 6.30
Max Error 70.15 74.46 76.53 66.73 74.15
Table 62: RF - Year
outer_run 1 2 3 4 5
n_estimators 128 160 172 176 99
max_depth 13 13 12 13 13
min_samples_leaf 15 15 10 15 15
min_samples_split 15 9 14 11 4
max_features all all all all all
MSE 0.05 0.05 0.12 0.05 0.05
MAE 0.17 0.17 0.27 0.17 0.17
Max Error 1.28 1.77 2.12 1.22 1.21
Table 63: RF - R1.08 BPV
outer_run 1 2 3 4 5
n_estimators 30 150 10 240 11
max_depth 37 29 40 35 28
min_samples_leaf 1 1 1 1 2
min_samples_split 8 4 5) 3 3
max_features all all all all all
MSE 1.4e-07 1.4e-07 1.6e-07 1.4e-07 1.7e-07
MAE Te-05 7e-05 8e-05 7e-05 9e-05
Max Error 0.005 0.004 0.005 0.004 0.004

Table 64: RF - R1.08 PPV

XXII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

A.4.8 XGBoost

outer_run 1 2 3 4 5
n_estimators 664 709 o84 1355 490
max_depth 9 11 7 4 7
learning rate 0.086 0.071 0.088 0.07 0.1
colsample_bytree 0.56 0.51 0.6 0.54 0.53
subsample 0.57 0.53 0.66 0.64 0.64
reg_alpha 0.18 0.39 0.018 0.04 0.02
reg_lambda 6.21 0.0004 0.001 0.002 0.004
gamma 9.38e-08 1.42e-04 6.13e-06 5.05e-07 1.05e-07
min_child_weight 13.58 24.68 15.25 11.36 11.34
MSE 4e-06 5e-06 4e-06 4e-06 4e-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.01 0.01 0.01 0.01 0.01
Table 65: XGB - K2204 BPV
outer_run 1 2 3 4 53
n_estimators 664 709 584 1355 490
max_depth 8 4 6 4 11
learning _rate 0.08 0.08 0.08 0.09 0.08
colsample_bytree 0.57 0.53 0.6 0.6 0.22
subsample 0.53 0.64 0.47 0.69 0.71
reg_alpha 0.02 0.01 0.02 0.01 0.09
reg_lambda 0.01 0.18 0.001 0.16 0.00004
gamma 7.36e-07 6.62e-06 1.36e-06 4.88e-06 2.29e-05
min_child_weight 12.89 16.92 14.97 16.46 20.34
MSE 0.05 0.05 0.05 0.05 0.86
MAE 0.18 0.18 0.17 0.18 0.72
Max Error 1.11 0.96 1.06 0.98 4.06
Table 66: XGB - K2204 PPV
outer_run 1 2 3 4 59
n_estimators 299 183 261 172 566
max_depth 47 36 30 12 25
learning _rate 0.03 0.05 0.02 0.05 0.01
colsample_bytree 0.59 0.48 0.6 0.6 0.59
subsample 0.69 0.59 0.55 0.47 0.8
reg_alpha 0.05 0.05 0.02 0.02 0.01
reg_lambda 0.86 4.38e-06 1.22e-08 2.34e-02 8.87e-07
gamma 3.29e-04 2.09e-05 1.29e-06 7.22e-04 1.13e-08
min_child weight 3.83 3.4 5.41 5.48 4.77
MSE 0.39 0.34 0.34 0.40 0.32
MAE 0.42 0.4 0.41 0.44 0.38
Max Error 3.7 3.13 2.71 2.68 2.89

Table 67: XGB - Wine

XXIII

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 5
n_estimators 3308 1573 1089 681 2541
max_depth 40 4 56 37)
learning rate 0.054 0.069 0.063 0.088 0.96
colsample_bytree 0.38 0.41 0.55 0.58 0.49
subsample 0.66 0.43 0.45 0.52 0.74
reg_alpha 1.1 0.38 0.54 0.4 1.28
reg_lambda 1.97e-04 2.54 0.046 1.81e-08 4.4e-08
gamma 7.48e-05 7.7e-08 5.69e-05 2.11e-06 1.72e-06
min_child_weight 18.62 12.38 28.31 16.5 3.08
MSE 5e-06 4e-06 5e-06 5e-06 4e-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.02 0.02 0.03 0.02 0.02
Table 68: XGB - Elevators
outer_run 1 2 3 4 5
n_estimators 266 062 oll 261 022
max_depth 72 49 16 28 52
learning rate 0.065 0.036 0.078 0.87 0.084
colsample_bytree 0.57 0.51 0.6 0.47 0.48
subsample 0.54 0.72 0.59 0.72 0.8
reg_alpha 0.33 0.43 0.96 0.44 0.99
reg_lambda 9.7e-08 1.13e-05 2.19e-08 1.12e-04 1.55e-06
gamma 2.6e-04 7.06e-04 1.84e-08 1.53e-04 1.71e-057
min_child _weight 4.81 4.54 3.5 33.91 2.44
MSE 298920.73 | 300966.62 | 315999.61 | 292805.28 | 298428.54
MAE 275.33 277.04 282.61 281.54 280.42
Max Error 5257.6 6201.39 8100.32 8754.91 8892.31
Table 69: XGB - Diamonds
outer_run 1 2 3 4 53
n_estimators 840 469 742 494 519
max_depth 44 46 42 46 46
learning rate 0.0557 0.0552 0.069 0.0552 0.0552
colsample_bytree 0.59 0.59 0.48 0.59 0.59
subsample 0.65 0.63 0.80 0.63 0.63
reg_alpha 2.37 1.47 1.64 1.47 1.47
reg_lambda 2.6e-08 2.7e-08 7.9e-06 2.7e-08 2.7e-08
gamma 2.3e-06 2.6e-05 7.8e-07 2.6e-05 2.6e-05
min_child_weight 84.1 63.1 75.4 63.05 63.05
MSE 73.03 72.98 72.85 73.42 72.46
MAE 5.95 5.96 5.94 5.95 5.93
Max Error 70.33 69.94 73.18 68.52 70.43

Table 70: XGB - Year

XXIV

Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

outer_run 1 2 3 4 59
n_estimators 664 709 584 1355 490
max_depth 43 6 69 39 29
learning rate 0.086 0.084 0.099 0.81 0.071
colsample_bytree 0.53 0.46 0.46 0.57 0.58
subsample 0.75 0.56 0.45 0.4 0.56
reg_alpha 1.4 1.1 0.43 1.14 2.21
reg_lambda 1.68e-04 0.0018 3.74e-07 1.84e-06 0.18
gamma 1.86e-08 8.67e-06 2.8e-06 1.72e-04 2.18e-06
min_child weight 2.81 33.26 10.49 241 3.46
MSE 0.011 0.013 0.013 0.015 0.014
MAE 0.07 0.08 0.07 0.09 0.08
Max Error 1.94 2.10 1.81 2.14 2.48
Table 71: XGB - R1.08 BPV
outer_run 1 2 3 4 59
n_estimators 888 621 1376 278 5926
max_depth 48 4 60 11 40
learning_rate 0.065 0.081 0.023 0.0997 0.087
colsample_bytree 0.326 0.392 0.4427 0.247 0.434
subsample 0.409 0.722 0.634 0.621 0.792
reg_alpha 0.018 0.102 0.432 0.035 0.59
reg_lambda 4.08e-02 2.5e-08 4.6e-03 1.8e-05 2.5e-05
gamma 1.0e-06 1.47e-07 1.2e-04 1.1e-07 2.5e-7
min_child_weight 8.32 2.92 18.22 50.19 37.75
MSE 0.0002 0.0001 0.0002 0.0002 0.0002
MAE 0.009 0.007 0.010 0.009 0.011
Max Error 0.15 0.09 0.09 0.15 0.09

Table 72: XGB - R1.08 PPV

XXV

Gaussian Process Regression
and Bayesian Deep Learning
for Insurance Tariff Migration

Declaration of authorship

I hereby declare that the report submitted is my own unaided work. All direct or in-
direct sources used are acknowledged as references. I am aware that the Thesis in digital
form can be examined for the use of unauthorized aid and in order to determine whether
the report as a whole or parts incorporated in it may be deemed as plagiarism. For the
comparison of my work with existing sources I agree that it shall be entered in a database
where it shall also remain after examination, to enable comparison with future Theses
submitted. Further rights of reproduction and usage, however, are not granted here. This
paper was not previously presented to another examination board and has not been pub-
lished.

M S, Qe A2

XXVI

	Introduction
	The Composition of Insurance Tariff Data
	Gaussian Process Regression
	The Current State of Gaussian Process Neural Network Hybrid Models
	Deep Kernel Learning
	Related Methods

	Deep Gaussian Processes
	DGP Model
	Inference
	Doubly Stochastic Variational Inference
	Model Design
	Related Methods

	Deep Sigma Point Process
	Parametric Gaussian Processes
	Stochastic Variational Gaussian Process (SVGP)
	Predictive Parametric Gaussian Processes
	Deep Sigma Point Process

	Other Methods
	Neural Network Gaussian Process
	Scalable Gaussian Process Regression Using Deep Neural Networks
	Improving Output Uncertainty Estimation and Generalization in Deep Learning via Neural Network Gaussian Processes

	Experiments
	Experiment Setup
	Benchmark Results
	K2204 and R1_08 Results
	OpenML Results
	Negative Log Likelihood Comparison

	Model Prediction Analysis
	HPO Routine Analysis

	Model Discussion
	Conclusion
	Appendix
	Datasets
	Study Set Up
	Model Search Space
	Configurations found by HPO
	Deep Kernel Learning
	Variational Deep Kernel Learning
	Deep Gaussian Process
	Neural Network Deep Gaussian Process
	Deep Sigma Point Process
	Deep Ensemble
	Random Forest
	XGBoost

