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Abstract

This thesis reviews the current state of Gaussian Processes and Bayesian Deep

Learning hybrid models, and their applicability to the transfer of actuarial func-

tionalities. I conduct a benchmark study on two insurance tariff datasets and four

OpenML regression tasks and compare Deep Kernel Learning, Deep Gaussian Pro-

cesses, and Deep Sigma Point Processes with several strong baselines including a

bayesian deep learning baseline. The model classes are examined with respect to

fit, scalability, stability, and uncertainty quantification capabilities. My results show

that among the analyzed models Variational Deep Kernel Learning, Deep Gaussian

Processes, and Deep Ensembles show the best results with respect to predictive

performance and uncertainty estimation abilities on the insurance tariff datasets.
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1 Introduction

In today’s fast-paced business environment, aging policy administration systems (PAS)

can make it difficult for life insurers to quickly adapt to changing market conditions.

Therefore, modernizing PAS and moving away from legacy systems is key to coping with

increased competition from traditional companies and startups, evolving customer expec-

tations, and shifting regulatory environments. However, these tasks often require semi-

manual migration of large policy portfolios with complex actuarial functions, which can

not only take several years but also tie up valuable resources (msg life (2022)). This thesis

is part of a research project between LMU Munich and msg life to leverage automation

and explainable AI to achieve significant gains in efficiency, scalability, and cost reduction

for PAS migration.

Due to regulatory requirements, Uncertainty Quantification (UQ) and the interpolation

of training data are required for this type of data. Gaussian Processes (GPs) possess both

of these properties, which makes them a suitable initial candidate. However, they do not

scale well to large data settings, and life insurers and their PAS typically manage multi-

ple millions of insurance tariffs. Deep neural networks (DNNs) on the other hand have

emerged in recent years as state-of-the-art methods in areas such as speech recognition

and object detection due to their ability to learn data representations and their capability

to handle vast amounts of data (LeCun et al. (2015)). They do not possess inherent UQ

capabilities, however.

Neal (1995) has shown an equivalence between these two approaches. Specifically, he

showed that a single-layer neural network with infinitely many hidden units converges to

a GP with a specific kernel. More recently, researchers have begun to combine ideas from

GPs and neural networks, giving birth to a series of new models such as Deep Kernel

Learning (Wilson et al. (2016)) and Deep Gaussian Processes (Damianou and Lawrence

(2013)). Deep Kernel Learning uses a neural network to extract features and uses them

as input to a GP. Deep Gaussian Processes are inspired by the compositional structure of

a neural network and can be interpreted as a composition of multiple GPs. Variations of

these models include Variational Deep Kernel Learning (Bradshaw et al. (2017)), which

combines a sparse Gaussian Process with a neural network feature extractor, and Deep

Sigma Point Process (Jankowiak et al. (2020a)), a parametric model that tries to target

the Deep Gaussian Processes predictive distribution directly.

The goal of this thesis is to summarize the current state of Gaussian Process neural net-

work hybrid models, conduct a benchmark study on insurance tariff data, and analyze the
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approaches with respect to scalability, stability, and quality of their uncertainty estimates.

My results show, that Variational Deep Kernel Learning showed great predictive results

over all examined datasets. The Deep Sigma Point Process displayed good performance

on small and medium-sized datasets. The Deep Gaussian Process showed competitive

performance on the examined large insurance dataset.

This Thesis is structured as follows: I begin by highlighting the distinctive features of

insurance tariff data and motivating the application of GP regression models. In Section

3, I briefly review GP regression. In section 4, I summarize the current state of GP and

neural network hybrid models. In section 5, I conduct a benchmark study of the models

reviewed in section 4 on insurance tariff and OpenML regression datasets. I will conclude

this with section 6 where I discuss the strength and weaknesses of these models.
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2 The Composition of Insurance Tariff Data

A PAS migration includes the transfer of insurance policies and the reimplementation

of the associated actuarial functions. The approximation of these actuarial functions is

an ideal regression use case. The fictitious endowment insurance tariff dataset K2204 is

of central interest to this thesis. It contains benefit and premium present values for a

random portfolio of K2204 life-insurance policies. In this section, I will explain the math

behind the K2204 dataset and motivate why GPs are a promising model class for actuarial

function approximation.

K2204 is a classical endowment insurance tariff that pays out a single benefit payment

both in case of survival or decease of the policyholder. For a policy with a duration of

n years, the survival benefit is paid out at time n contingent upon the survival of the

policyholder. In the event of the passing of the policyholder, the death benefit is paid

out at the end of the respective insurance year. For this dataset, both death and survival

benefits are the same. The mortality table DAV 2008 T 090 (Sterbetafeln-DAV (2008))

given by the German Actuarial Society is used for all present value calculations. The

interest rate is given by i. All calculations are made with respect to a benefit payment of

B = 1.

For the duration of an insurance policy n, the policyholder at age x pays a constant pre-

mium P. The premium present value PVP (PPV) is the discounted sum of all premiums

over the entire policy duration:

P ·PVP = P ·
n−1∑
k=0

νk · kpx, (1)

where ν = 1
1+i

is the discount factor and kpx is the k-year survival rate, which represents

the probability that a person of age x survives to reach the age x+ k.

The benefit present value PVB (BPV) for a n-year insurance policy for a person of age

x is given by a combination of two different benefits, a pure endowment insurance that is

paid out in case of survival, and a term life insurance that is paid out in case of death.

The pure endowment insurance is given by

nEx = νn ·
n−1∏
k=0

px+k, (2)

where px+k is the one-year survival rate, which describes the probability that a person of

age x+ k is still alive in the next year.
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The term life insurance can be calculated as

nAx =
n−1∑
k=0

νk+1 · kpx · qx+k, (3)

where qx+k is the one-year mortality rate, which describes the probability that a person

of age x+ k dies in the next year.

The BPV can then be calculated as

PVB = nAx + nEx. (4)

The task for the K2204 now is to predict BPV and PPV given a policyholder’s age x,

the policy duration n, and the gender of the policyholder as features. Due to regulatory

requirements, a given algorithm should not only be able to interpolate the data points,

but also provide uncertainty estimates. GPs were chosen as the base model class for this

thesis, as they have the following key advantages. First, as I will show in Section 3, GP

predictions can interpolate observations. As there is no observation noise present in the

K2204 dataset, GPs should be able to handle this task. Second, the prediction of a GP is

probabilistic. As the above calculations allow for generating arbitrarily many new obser-

vations, the model can be refitted in areas of high uncertainty or poor performance. Third,

GPs are versatile as specialized kernels can be specified to handle the given properties by

the task at hand.

The R1 08 is the second insurance dataset that will be analyzed in this thesis. It contains

annuity insurance tariffs and differs from K2204 in that the insurance benefit is paid in

lifetime annuity payments and not in a one-time payment as in K2204. For more reference

on annuity insurance and actuarial mathematics see Kahlenberg et al. (2018).
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3 Gaussian Process Regression

Given a dataset D of size n with input vectors X = {x1, ...,xn} each of dimension

d and a vector of targets y = {y1, ..., yn}, a Gaussian process is a collection of ran-

dom variables, where any finite number of those random variables have a joint Gaus-

sian Distribution (Rasmussen (2003)). Thus, if a function f(x) is generated by a GP,

f(x) ∼ GP (m(x), K(X,X)), then for any finite collection of inputs {x1, ...,xn}, the asso-
ciated vector of function values {f(x1), ..., f(xn)} has a Gaussian distribution

f = [f(x1), ..., f(xn)]
T ∼ N (m(x), K(x,x′), (5)

where m(x) is defined as the mean function and (K(x,x′))i,j = k(xi,x
′
j) is a covariance

function determined by the covariance kernel k(., .) of the Gaussian process. A GP is

therefore completely specified by its mean and covariance function. For notational sim-

plicity, the mean function will be set to 0.

For test points X∗, the joint distribution over the function values f and f∗ can be written

as [
f

f∗

]
∼ N

(
0,

[
K(X,X) K (X,X∗)

K (X∗,X) K (X∗,X∗)

])
(6)

By conditioning f∗ on X∗, X and f we get the following predictive distribution

p (f∗ | X∗,X,y) ∼ N
(
K (X∗,X)K(X,X)−1f ,

K (X∗,X∗)−K (X∗,X)K(X,X)−1K (X,X∗)
) (7)

The prediction for a training point xi is the exact target value yi.

p (f | X,y) ∼ N
(
K (X,X)K(X,X)−1y ,

K (X,X)−K (X,X)K(X,X)−1K (X,X)
)
= N (y, 0)

(8)

A GP is therefore a function interpolator. However, this property is not always warranted.

For that reason, a small constant is often added to the diagonal of the covariance matrix,

which can be estimated during training.

The choice of the kernel function encodes prior assumptions about the functions drawn

from a Gaussian Process such as smoothness and periodicity. A popular choice for a

kernel is the Squared Exponential kernel (Rasmussen (2003)), also known as Radial Basis

Function (RBF) kernel

KRBF (x,x
′) = exp(−∥x− x′∥

2 ∗ l2
). (9)
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The choice of the kernel also introduces learnable Hyperparameters. Here, the Hyper-

parameter lengthscale controls the smoothness of the underlying function f . A larger

lengthscale will result in a smooth function, while a small lengthscale will produce a more

wiggly function.

The Hyperparameters of a GP can be optimized using gradient methods using the marginal

log-likelihood (MLL). The marginal likelihood is given as the integral of the likelihood

times the prior

p(y | X) =

∫
p(y | f ,X)︸ ︷︷ ︸

likelihood

p(f | X)︸ ︷︷ ︸
GP Prior

df . (10)

The integral in equation 10 can be solved analytically. The Hyperparameters of a GP θ

can be discovered by minimizing the marginal log-likelihood

log p(y | X, θ) = −1

2
y⊤K−1

θ y − 1

2
log |Kθ| −

n

2
log 2π (11)

where Kθ is short for K(X,X) given θ. The term MLL refers to the marginalization

over the function values and can be viewed as a penalized fit measure, where the term
1
2
y⊤K−1

θ y measures the data fit and 1
2
log |Kθ| is a complexity penalization term. The

final term n
2
log 2π is a normalization constant.

Limitations of GPs include their computational and storage cost. To calculate the term

K−1
θ y in equation 11, one needs to invert the kernel matrix, which is of size N × N

where N is the number of data points in the training set. The most common approach,

to compute the Cholesky decomposition, requires O(N3) operations (Rasmussen (2003))

and O(N2) storage costs due to keeping the whole dataset in memory. This is infeasible

for large-scale datasets.

In addition to the scalability issues, the performance and generalization behavior of a GP

is highly dependent on the choice of the covariance function (Wilson and Adams (2013)).

Hence, specifying an appropriate kernel for a given task is crucial. Moreover, Bengio et al.

(2005) found that popular choices such as the squared exponential kernel suffer from the

curse of dimensionality.
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4 The Current State of Gaussian Process Neural Net-

work Hybrid Models

Gaussian Processes are limited by the size of the training data and choice of an appropriate

kernel. To overcome these limitations, different ideas have been developed to combine

the expressive power of Neural Networks with the uncertainty estimation capabilities of

Gaussian Processes. In the following section, I am going to outline the main ideas for

Gaussian Process and Neural Network Hybrid Models for Regression.

4.1 Deep Kernel Learning

As we have seen in Chapter 3, the choice of a suitable covariance kernel is a crucial

component of a Gaussian Process as it encodes the structure and assumptions about the

function which we wish to learn. However, the choice may depend on the given dataset and

prior knowledge of the problem at hand. Furthermore, popular kernels such as the RBF

kernel are unable to learn effective representations from data to improve predictions and

instead just provide smoothing (Ober et al. (2021)). This limits GPs from fully utilizing

the information in high-dimensional datasets or when dealing with highly structured data,

such as images (Ober et al. (2021)). Deep neural networks (DNN), on the other hand, are

known for their great representational power, and ability to learn feature representations

that aid prediction and scalability in large data settings (LeCun et al. (2015)).

To obtain the best of both worlds, Calandra et al. (2016) and Wilson et al. (2016) com-

bine the uncertainty representation advantages of GPs with the representation-learning

advantages of DNNs. The idea is to jointly learn a mapping by a DNN into a latent

dimension k, with d ≫ k, and a GP that uses the latent feature representation as its

input space in an end-to-end fashion.

In DKL, the input x is forwarded through a DNN with L hidden Layers. The output

of the DNN is then fed into a base kernel, which is subsequently used as the covariance

function of a GP.

kθ(x,x
′|θ) → kdeep(g(x,w), g(x′,w)|θ,w) (12)

kθ(x,x
′|θ) is the base kernel with Hyperparameters θ and g(x,w) is the non-linear map-

ping given by a DNN with weights w. I denote kdeep as the base kernel, which takes the

DNN mapping g(x,w) as its input. As a sensible choice for the base kernel, Wilson et al.

(2016) suggest using the RBF Kernel. For added flexibility, Wilson et al. (2016) propose

7
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to use the spectral mixture (SM) kernel as a base kernel as it can discover quasi-periodic

stationary structures.

kSM (x, x′ | θ) =
Q∑

q=1

aq
|Σq|

1
2

(2π)
D
2

exp

(
−1

2

∥∥∥Σ 1
2
q (x− x′)

∥∥∥2) cos
〈
x− x′, 2πµq

〉
(13)

The complete model is shown in figure 1. This model applies a GP with base kernel kθ

to the final layer of a DNN conditioned on all kernel Hyperparameters. As a GP with an

RBF or SM kernel correspond to a representation with infinite basis functions, the DNN

can be viewed as having a hidden layer with an infinite number of hidden units.

Figure 1: In Deep Kernel Learning, the input x is mapped through a L-layered DNN

followed by a hidden layer with an infinite number of hidden units. The mapping of the

GP is parameterized by the DNN weights w and base kernel Hyperparameters θ. {w,θ}
are learned via the MLL of the GP.

Source: Wilson et al. (2016)

Similar to a standard GP, the parameters of the DNN can be treated as Hyperparameters

of the kernel. Thus to train the model, all Hyperparameters {w,θ} are jointly learned

by maximizing the MLL of the GP from Equation 10, where w are the weights of the

DNN and θ are the kernel parameters, resulting in an end-to-end training scheme. The

chain rule is used to calculate the derivatives of the MLL with respect to the kernel

Hyperparameters:

∂L
∂θ

=
∂L

∂Kdeep

∂Kdeep

∂θ
,

∂L
∂w

=
∂L

∂Kdeep

∂Kdeep

∂g(x,w)

∂g(x,w)

∂w
(14)

The derivative of the MLL with respect to the covariance matrix Kdeep is given by

∂L
∂Kdeep

=
1

2
(Kdeep−1yyTKdeep−1 −Kdeep−1). (15)

8



Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

∂Kdeep

∂θ
refers to the derivates of the kernel with respect to the base kernel Hyperparameters,

conditioned on the transformation of the inputs g(x,w). The base kernel Hyperparam-

eters could include the lengthscale of the RBF kernel or mixture weights, bandwidths,

and frequencies for the Spectral Mixture kernel. Likewise, ∂Kdeep

∂g(x,w)
are the derivatives of

the kernel with respect to the transformation g while holding θ constant. The derivatives

with respect to the DNN weights w can be computed using backpropagation.

Looking at equation 15, you can see immediately that this learning training scheme still

suffers from the same problem as regular GP training. The covariance matrix Kdeep needs

to be inverted, resulting in a complexity of O(N3). Without any changes, this would make

DKL inapplicable to larger regression problems where the benefits of a feature extractor

were to be needed. To circumvent this issue, Wilson et al. (2016) leverage structured

kernel interpolation and replace every occurrence of Kdeep with the KISS-GP covariance

matrix (Wilson and Nickisch (2015)).

The idea of KISS-GP is to construct kernel approximations for fast computations through

kernel interpolation. Popular inducing points methods such as subset of regressors (SoR),

deterministic training conditional (DTC), and fully independent training conditional (FITC)

used to scale up GPs to large datasets cost O(M2N) for M inducing points (Quinonero-

Candela and Rasmussen (2005)). Subset of regressors uses the approximate kernel

k̃SoR(x, z) = Kx,UK
−1
U,UKU,z (16)

over a set of M inducing points U = [uii=1,...,M ]. To improve over standard GP regression,

one is constricted to choose M ≪ N . However, this can lead to a decrease in predictive

performance (Wilson et al. (2014)). Structured Kernel Interpolation (SKI) approximates

the N ×M matrix Kx,U of cross covariances evaluated at training points x and inducing

points U , by interpolating on the M ×M covariance matrix KU,U :

Kx,U ≈ WKU,U , (17)

where W is a sparse N ×M matrix of interpolation weights. SKI uses local cubic inter-

polation resulting in a sparse matrix containing only four non-zero entries per row. Thus,

Kdeep can be rewritten as

Kdeep SoR
≈ Kx,UK

deep−1
U,U KU,x

Eq(17)
≈ WKdeep

U,U Kdeep−1
U,U Kdeep

U,U W⊤

= WKdeep
U,U W⊤ := KKISS.

(18)

where Kdeep
U,U is the covariance matrix in Eq. 12 evaluated over the inducing points U .

9



Gaussian Process Regression

and Bayesian Deep Learning

for Insurance Tariff Migration

This procedure costs O(M2 + N) computations and O(M2 + N) storage. By placing

the inducing points over a regular multidimensional lattice and exploiting the resulting

decomposition ofKU,U into a Kronecker product of Toeplitz matrices, this can be improved

to O(N + PM1+1/P ) cost for computations and O(N + PM
2
P ) cost for storage with P

grid points. In this manner, this approach scales almost linearly in N . In contrast to

the aforementioned scalable approximations techniques, KISS-GP allows having M ≈ N

due to the linear scaling. Therefore, it yields a near-exact accuracy in its approximation

(Wilson and Nickisch (2015)).

4.1.1 Related Methods

Kirstein et al. (2022) use Tensor-Train (TT) decompositions to parameterize the weights

of a DNN. The Idea is to use a TT function to extract features from the data and use these

as inputs into a GP. The parameters of the TT are treated as kernel-Hyperparameters

and can be jointly trained with the GP parameters. Ober et al. (2021) showed the

susceptibility of DKL to overfitting. Kirstein et al. (2022) state that overfitting is highly

reduced for their method, due to inherent regularisation by the choice of basis functions

and by imposing a low-rank structure. Furthermore, this low-rank structure allows for

implicit feature selection on the data and thus alleviates problems in high-dimensional

tasks. For scalability, the authors utilized variational inference for sparse GPs.

10
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4.2 Deep Gaussian Processes

Inspired by the phenomenon in DNNs that increasing their depth through additional layers

can lead to better predictive performance and greater capacity, DGPs are the multi-layer

hierarchical composition of this idea to Gaussian processes. They are created by stacking

multiple GPs in parallel and on top of each other, where each layer is modeled as the

output of a multivariate GP and acts as the next GP layers input and thus resulting in a

flexible, compositional function prior.

The resulting model is no longer a GP, but this compositional structure brings different

advantages. First, it offers greater expressive power compared to standard GPs as it can

learn more complex interactions between data. Many common kernel functions used for

GP regression have simple similarity metrics. This can become insufficient for more com-

plex datasets where different similarity metrics have to be used in different regions of the

input space. The compositional structure of DGPs allows them to perform input warp-

ing, dimensionality reduction, or expansion and thus automatically constructs a kernel

that works well for a given problem (Bui et al. (2016)). Second, even though they are a

very rich model class, they can learn representations with only a few Hyperparameters to

optimize. Third, it retains the advantages of GPs such as good uncertainty estimates. In

contrast to DNNs, the outputs of a layer are probabilistic as they are governed by a GP

resulting in the uncertainty being propagated through the network.

4.2.1 DGP Model

Damianou and Lawrence (2013) introduced the DGP architecture which corresponds to

a graphical model consisting of L layers of latent variables {hl}Ll=1. All latent variables

{hl}Ll=1 act as inputs for the layer below and outputs for the layer above. A Gaussian

process controls the mapping between two layers. Each mapping is handled by a separate

GP with covariance function kl and Hyperparameters θl. The process then takes the form:

Y = fL (hl−1) + ϵL, ϵL ∼ N
(
0, σ2

LI
)

hl = fl (hl−1) + ϵl, ϵl ∼ N
(
0, σ2

l I
)
, l = 1 . . . L− 1

(19)

where the function fl is drawn from a GP with covariance function kl: fl(x) ∼ GP(0, kl(x, x
I)).

For notational simplicity, I reduced the hidden layers to be of a single dimension, but this

can be generally extended to multiple dimensions. The noise between the layers is as-

sumed to be i.i.d. Gaussian. I define h0 = X. For L = 1 this collapses back to a GP.

Hidden variables in intermediate layers can and will generally have multiple dimensions.
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The joint density can be written analogously as to the GP model:

p(y, {fl}Ll=1) = p(y | fL)︸ ︷︷ ︸
likelihood

L∏
l=1

p(fl | fl−1)︸ ︷︷ ︸
DGP Prior

(20)

4.2.2 Inference

Inference is used to marginalize out the latent variables and minimize the marginal like-

lihood. Unlike in the GP case, the Inference problem for DGPs can not be solved an-

alytically. This comes as a result of the non-linearities introduced by the covariance

function between two layers. To overcome this issue, Damianou and Lawrence (2013) use

inducing points and variational inference to approximate the marginal likelihood. The

inducing points for the layers are denoted by Z1, . . . ZL with associated inducing outputs

u1 = f1(Z
1) . . .uL = fL(Z

L). The number of inducing points K does not need to be the

same for every GP and can vary over the overall architecture. The joint density now

becomes

p(y, {f l}Ll=1, {ul}Ll=1) = p(y | fL)
L∏
l=1

p(f l | ul)p(ul) (21)

The variational inference scheme introduced by Damianou and Lawrence (2013) uses a

variational posterior that maintains the exact model conditioned on ul and allows for a

tractable lower bound. They use a mean-field variational posterior which makes strong

independence and Gaussian assumptions. However, Salimbeni and Deisenroth (2017) have

identified two key problems with their approach. First, the DGP method by Damianou

and Lawrence (2013) forces the inputs to each layer to be independent of the outputs of

the previous layer. Furthermore, the noisy corruptions in Eq. 19 are modeled separately

and are factorized by a fully Gaussian variational distribution. Second, the output is

a single GP with independent Gaussian inputs. This causes the posterior to lose the

correlations between the layers, thus limiting the expressiveness of the model and resulting

in the variance likely being underestimated. Therefore, Salimbeni and Deisenroth (2017)

propose an inference method where they lose analytical tractability but retain a posterior

with the full conditional structure of the full model.
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4.2.3 Doubly Stochastic Variational Inference

In DGP modeling, the difficulty lies within correctly modeling the within and between

layer correlations. In contrast to the original DGP inference scheme where indepen-

dence between layers is assumed and which allows for analytic tractability, Salimbeni and

Deisenroth (2017) propose a variational inference scheme that simplifies the correlation

within layers, but maintains the correlation between layers. However, the resulting model

can no longer be evaluated analytically. The authors circumvent this by drawing samples

using univariate Gaussians and thus updating the bound stochastically.

Their proposed variational posterior takes the following factorized form with three as-

sumptions:

q
({

f l,ul
}L
l=1

)
=

L∏
l=1

p
(
f l | ul; f l−1,Zl−1

)
q
(
ul
)

(22)

First, the posterior, conditioned on ul, maintains the exact model. Second, the posterior

distribution of {ul}l=1 is factorized between layers. And third, q(ul) is Gaussian with

mean ml and variance Sl.

For each layer, as both terms in the variational posterior are Gaussian, the inducing

variables can be marginalized out analytically.

q
({

f l
}L
l=1

)
=

∫ L∏
l=1

p
(
f l | ul; f l−1,Zl−1

)
q
(
ul
)
dul

=
L∏
l=1

q
(
f l | ml,Sl; f l−1,Zl−1

)
=

L∏
l=1

N
(
f l | µ̃l, Σ̃l

)
(23)

with
[
µ̃l
]
i
= µml,Zl−1

(
f li
)
and

[
Σ̃

l
]
ij
= ΣSl,Zl−1

(
f li , f

l
j

)
. Looking at this, we can see that

the marginal of the final layer fLi only depends on fLi − 1. More specifically, the i-th

marginal of the final layer only depends on the i-th marginals of all previous layers:

q
(
fLi
)
=

∫ L−1∏
l=1

q
(
f li | ml,Sl; f l−1

i ,Zl−1
)
df li (24)

As the marginals only depend on its inputs conditioned on the previous layer, this allows

for sampling from the variational posterior. Using the re-parameterization trick (Kingma

et al. (2015)), we can draw samples using only univariate Gaussians by first drawing

ϵli ∼ N (0, Il) and afterward recursively sampling f̂ li ∼ q(f li | ml,Sl; f̂ l−1
i ,Zl−1) for l =

1, . . . , L− 1 as
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f̂ li = µml,Zl−1

(
f̂ l−1
i

)
+ ϵli ⊙

√
ΣSl,Zl−1

(
f̂ l−1
i , f̂ l−1

i

)
(25)

The evidence lower bound of the DGP is given by

LDGP =
N∑
i=1

Eq(fLi )
[
log p

(
yn | fLn

)]
−

L∑
l=1

KL
[
q
(
ul
)
∥p
(
ul;Zl−1

)]
. (26)

This bound is evaluated using two sources of stochasticity. First by drawing Monte Carlo

samples from the posterior according to Eq. 25. Second by using sub-sampling techniques,

since the bound factorizes over the data, which allows for scalability. The computational

complexity of a DGP is O(NM2(D1 + ...+DL)), where Dl is the dimension of output at

layer l.

Predictions for DGPs are done by sampling from the variational posterior changing the

input locations to test locations x∗. The function values at the test locations are denoted

as f l∗. The density for fL∗ is obtained by using the Gaussian mixture

q
(
fL∗
)
≈ 1

S

S∑
s=1

q
(
fL∗ | mL,SL; f (s)

L−1

∗ ,ZL−1
)

(27)

and sampling S samples f
(s)L−1

∗ using 25.

4.2.4 Model Design

Duvenaud et al. (2014) show for the DGP architecture by Damianou and Lawrence (2013)

with zero mean, that the model’s representational power decreases as the number of

layers increases. This is the result of the GP mapping being non-injective resulting in

the function values being clustered around the same few values as the depth increases.

To resolve this, Duvenaud et al. (2014) propose additionally feeding the input X to each

layer. Salimbeni and Deisenroth (2017) instead use a linear mean function for all inner

layers and a constant mean function for the last layer.

4.2.5 Related Methods

Bui et al. (2016) use the fully independent training conditional inducing point approxi-

mation in each DGP layer, which results in a parametric model. As the marginal likelihood

is not tractable for a DGP, the authors use an expectation propagation approximation

scheme and combined this with probabilistic backpropagation to propagate uncertainly

through the non-linear GP mapping. They demonstrate good results on various regression
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tasks with up to 500.000 data points, but were outperformed later by Salimbeni and

Deisenroth (2017) and their variational inference method.

Havasi et al. (2018) show for a variety of datasets, that the posterior distribution is

non-Gaussian and thus that the Gaussian approximation to the posterior distribution

employed by Salimbeni and Deisenroth (2017) can therefore be a poor approximation.

To solve this, they apply the Stochastic Gradient Hamiltonian Monte Carlo (SGHMC)

sampling method to efficiently estimate the posterior distribution. The authors compared

their method to baseline using doubly stochastic variational inference (DSVI) and showed

that the SGHMC can outperform DSVI on 9 UCI regression benchmark datasets in both

average test Log-Likelihood and runtime. However, their method introduces its own pa-

rameters in addition to the DGP parameters, which makes them difficult to train without

prior knowledge of the data.

Cutajar et al. (2017) propose a modification to the DGP model formulation based on ran-

dom feature expansion at each hidden layer. In contrast to the aforementioned inference

methods, the GP governing the mapping between two layers is replaced by a two-layer

weight space approximation. First, random feature expansion is used to approximate the

kernel function and followed by a linear transformation parameterized by a weight matrix.

The authors show, that this yield a Bayesian DNN with low-rank weight matrices while

the approximations on the covariance functions result in DNN activation functions, e.g.

the Rectified Linear Unit function for the ARC-COSINE kernel. For inference, they use

stochastic variational inference and exploit mini-batch-based stochastic gradient optimiza-

tion for scalability. In their experiment, they demonstrate the scalability of their methods

on datasets with up to 8 million data points and that their approach can outperform the

methods by Bui et al. (2016).
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4.3 Deep Sigma Point Process

Inspired by the multi-layer structure of Deep Gaussian Processes, Jankowiak et al. (2020a)

introduce Deep Sigma Point Processes (DSPP), which are a multi-layer composition of

parametric GPs. DSPPs possess many of the advantages of DGPs such as mini-batch

training, while offering a much simpler inference problem. As shown in chapter 4.2, infer-

ence is a difficult task for DGPs, as it revolves around solving an L-dimensional integral.

In contrast to that, DSPPs solve a simpler maximum likelihood inference problem. Before

diving into detail on DSPPs, I’m going to introduce and motivate the underlying model

class, the parametric Gaussian Process. This section is structured as follows. First, I

will briefly motivate parametric GPs. Afterward, I will summarize stochastic variational

inference (SVI) for GPs to introduce the model formulation for the parametric GP and

lastly extend it to the DSPP.

4.3.1 Parametric Gaussian Processes

The main bottleneck of Gaussian Processes is the inversion of the kernel matrix. Different

solutions exist to get around this hurdle. One popular idea which has enabled Gaussian

process regression on large datasets is the combination of inducing points method with

Variational Inference (Hensman et al. (2013)). However, Jankowiak et al. (2020b) show

that the resulting predictive distribution often underestimates uncertainties, as the pre-

dictive variance is often dominated by the observation noise. The Idea for parametric GPs

is to bypass the posterior approximations entirely and instead use a parametric model to

target the predictive distribution directly.

4.3.2 Stochastic Variational Gaussian Process (SVGP)

SVI revolves around introducing a set of inducing variables u that depend on variation

parameters Z = {zm}Mm=1, where M = dim(u) ≪ N . Thus, the GP prior from Eq. 10

extends from p(f | X) to p(f | u,X,Z)p(u | Z). Applying Jensen’s inequality to the log

joint density of the target and the inducing variables leads to the following lower bound:
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log p(y,u | X,Z) = log

∫
dfp(y | f)p(f | u)p(u)

≥ Ep(f |u)[log p(y | f) + log p(u)]

=
N∑
i=1

logN
(
yi | kT

i K
−1
MMu, σ2

obs

)
− 1

2σ2
obs

Tr K̃NN + log p(u)

(28)

This approach cuts down the model complexity to just O(M3), as the expensive com-

putation of inverting KNN gets replaced by KMM . Furthermore, the log-likelihood and

the trace term factorizes as a sum over the datapoints (yi, xi) and thus allow for data

subsampling.

Hensman et al. (2013) introduce a variational distribution q(u) = N (m,S), whose varia-

tional parameters m and S are optimized using the evidence lower bound (ELBO), which

is the expectation over equation X w.r.t. to q(u) plus an entropy term:

Lsvgp =Eq(u)[log p(y,u | X,Z)] +H[q(u)]

=
N∑
i=1

{
logN

(
yi | µf (xi) , σ

2
obs

)
− σf (xi)

2

2σ2
obs

}
−KL(q(u) | p(u))

(29)

where µf (xi) is the predictive mean function given by

µf (xi) = kT
i K

−1
MMm

and where σf (xi)
2 ≡ Var [fi | xi] denotes the latent function variance

σf (xi)
2 = K̃ii + kT

i K
−1
MMSK−1

MMki

The predictive distribution for SVGP at a test location xstar is given by

p (y∗ | x∗) = N
(
y∗ | µf (x

∗) , σf (x
∗)2 + σ2

obs

)
(30)

Note here that the predictive variance has two components: the input-dependent latent

function variance σf (x
∗)2 and the input-independent observation noise σ2

obs. However,

these terms appear asymmetrically in the SVGP Loss function 29. Jankowiak et al.

(2020b) assume that the absence of σf (x
∗)2 in the data fit term results in the domination

of the predictive variance by the observation noise.
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4.3.3 Predictive Parametric Gaussian Processes

To address this miss-match, the authors introduce a parametric GP regression model

which directly targets the predictive distribution in 30.

Lppgpr =
N∑
i=1

logN
(
yi | µf (xi) , σ

2
obs + σf (xi)

2)− βregKL(q(u)||p(u)) (31)

The parameters m,S, Z, the observation noise, and the kernel Hyperparameters can be

optimized via gradient methods.

4.3.4 Deep Sigma Point Process

Deep Sigma Point Processes are inspired by DGPs and their flexible function priors

through the composition of multiple GPs. The main challenge with DGPs is their in-

ference scheme.

Analogous to the PPGPR, DSPPs try to target the predictive Distribution of DGPs di-

rectly. Unfortunately, the predictive distribution for a DGP is a continuous mixture of

Normal distributions and cannot be computed in a closed form. Instead, the continuous

mixture is replaced with a parametric finite mixture. Using Gauss-Hermite-Quadrature,

the continuous mixture is approximated by an S-component mixture of Dirac delta dis-

tributions controlled by weights w(s) and quadrature points E (s). For more details on the

quadrature rules used to derive the DSPP, see the derivation in Jankowiak et al. (2020a).

As for PPGPR, the objective function coincides to regularized maximum likelihood esti-

mation

Ldspp =
N∑
i=1

log pdspp (yi | xi)− βreg

∑
KL (32)

The main difference between DSPPs and DGPs is twofold. First, DGPs are trained by

approximating the Evidence Lower Bound in Eq. 26 while DSPP is trained via a regu-

larized maximum likelihood objective that targets the predictive distribution of DGPs.

Second, in the DGPs the latent function values are sampled while for the DSPP they are

parameterized via a learnable quadrature rule. Apart from these differences, the two mod-

els are very similar as they make use of the same parameters apart from the quadrature

parameters. The total computational complexity of DSPP is given by O(DM3), where D

refers to the number of GPs in the hidden layers.
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4.4 Other Methods

4.4.1 Neural Network Gaussian Process

Neal (1995) showed the equivalence between a single-layered infinitely wide neural network

with an i.i.d prior to its parameters and a Gaussian Process. Williams (1996) demon-

strated that the i.i.d prior over weights and biases can be substituted with a corresponding

GP prior over functions and thus enabling exact Bayesian inference for regression. Lee

et al. (2017) extend these works to multi-layer neural networks and create a covariance

kernel for GPs that is equivalent to multi-layer infinitely wide neural networks. For a re-

view of the correspondence between single-layer neural networks and GPs, see Neal (1995)

and Williams (1996).

I’ll briefly review the correspondence between multi-layer neural networks and GPs. Con-

sider an L-layer infinitely wide neural network. The output for the ith component zli at

layer l will be

zli(x) = bli +
∞∑
j=1

W l
ijx

l
j(x), xl

j(x) = ϕ
(
zl−1
j (x)

)
, (33)

where ϕ is a non-linear function, xl
i the post-nonlinearity transformation of the output of

the previous layers and W l
i,j and bli are the i.i.d weights and biases at layer l. If zl−1

j is a

GP, then zl is a sum of i.i.d terms so that any finite collection {zli(x1), ..., zli(x
k)} will have

a joint multivariate Gaussian distribution and zli ∼ GP (0, K l). The covariance function

can be recursively calculated via a deterministic function F which only depends on the

nonlinearity ϕ:

K l (x, x′) = σ2
b + σ2

wFϕ

(
K l−1 (x, x′) , K l−1(x, x), K l−1 (x′, x′)

)
(34)

This can be iteratively computed to obtain KL for the GP describing the network’s final

output. The function F can be analytically computed for particular kernels, e.g. ReLU.

For others, the authors provide a numerical approximation. In summary, Neural Network

Gaussian Process (NNGP) refers to the GP prior induced by an infinitely wide neural

network. Thus, a neural network with random initialization can be interpreted as prior

over functions. As a deep infinitely wide neural network can be described as a GP, this

allows for full exact Bayesian inference. The work by Lee et al. (2017) allows analyzing

how neural networks work and revisiting this from a function space of view. Furthermore,

this allows examining towards what functions neural networks are biased at initialization.

Jacot et al. (2018) build on this and show that the behavior of neural networks during

training via gradient descent can be explained by a kernel, the Neural Tangent Kernel.

Both kernels can be examined in the neural tangents package (Novak et al. (2020)).
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Even though NNGPs have interesting theoretical properties, I will not consider them in

my experiments. As I have demonstrated in Chapter 3, scalability is an issue for fully

Bayesian training. Lee et al. (2017) used 64 CPUs to analyze datasets with up to 50.000

data points. As I am interested in methods, that can scale to million data points, NNGP

will be disregarded for the experiments. Lee et al. (2017) state that they are intending to

look into scalability methods. Thus, NNGP may be considered at a future point in time.

4.4.2 Scalable Gaussian Process Regression Using Deep Neural Networks

Similar to DKL, Huang et al. (2015) proposes to use a feature-mapping function as input

into a GP. Instead of a DNN, they use a stacked denoising auto-encoder (SDAE). The

internal representation of the last layer is used as an explicit feature map for calculating

the covariance function. The idea is, that the model can learn a much more meaning-

ful representation of the data through the feature-mapping function of the SDAE. The

model training can be divided into two steps. First, the SDAE is pretrained in an un-

supervised manner. Afterward, the parameters of the SDAE can be treated as kernel

Hyperparameters which are fine-tuned by maximizing the MLL. To reduce the computa-

tional complexity, Huang et al. (2015) use the FITC approximation (Quinonero-Candela

and Rasmussen (2005)).

4.4.3 Improving Output Uncertainty Estimation and Generalization in Deep

Learning via Neural Network Gaussian Processes

Iwata and Ghahramani (2017) propose to use a DNN for the mean function of a GP.

The idea stems from GPs excelling at local generalization, due to their local interpolation

properties. However, GPs fail to generalize in regions where there are no training data. A

GP with zero mean predicts zero for test points far from training samples. DNNs on the

other hand have good generalization behavior for previously unseen inputs by learning

multiple levels of distributed representations. By combining GPs and DNNs in this way,

the proposed method can improve generalization performance. The parameters of the

GP are trained via SVI while the DNN parameters are optimized via stochastic gradient

descent (SGD). The authors alternate between SVI and SGD for each minibatch.
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5 Experiments

I will conduct a benchmark study on two insurance tariff datasets and 4 regression tasks

taken from the OpenML repository (Vanschoren et al. (2014)) to compare the generaliza-

tion performance and uncertainty estimation quality of the presented methods.

5.1 Experiment Setup

To evaluate the methods presented in chapter 4, I chose two small-sized datasets (<10k

data points), two medium-sized datasets (10-100k data points), and two large-sized datasets

(∼500k data points). See A.1 for more details.

Hyperparameter optimization (HPO) via a Tree-structured Parzen Estimator (TPE) was

conducted to find the optimal configuration for each method and each dataset. To ensure

unbiased results, nested resampling was used to find the optimal Hyperparameter con-

figurations (Bischl et al. (2012)). I used 5-Fold cross-validation (CV) for the outer loop

to estimate the generalization performance. Mean-squared error (MSE), mean-absolute

error (MAE), maximum absolute error (MaAE), and negative log-likelihood (NLL) were

chosen as evaluation criteria. For the insurance datasets, the most important metric is

the MaAE as each insurance tariff prediction can not deviate more than a certain amount

from its true value due to regulatory requirements. For the inner loop, I used 4-Fold

cross-validation for the small and medium datasets for more stable results, while a simple

train-test split was used for the large datasets to find an optimal Hyperparameter con-

figuration. Additionally, I implmented early stopping with the MSE criterion. The MSE

criterion was chosen over the MaAE criterion, as it considers the whole validation set

while strongly punishing outliers. The fear was, as MaAE only considers one observation

from the validation set, the TPE would lose out on valuable information. A time-based

pruner was also used to speed up the HPO and to favor good and not too-costly archi-

tectures. Additionally, Hyperband was used for the large datasets to speed up the HPO

even further.

For each of the 5 outer loop iterations, 100 HPO trials were conducted. This means

that for each model and each dataset a total of 500 Hyperparameter configurations were

evaluated. For the inner loop, all models were trained for a maximum of 400 epochs with

5 early stopping iterations based on the MSE. Once an optimal configuration was found,

all models, except DKL, were retrained for a maximum of 1000 iterations with 10 early

stopping iterations based on the MLL or ELBO. As DKL suffered from stability issues,

the model was trained for the same number of epochs as the configuration found by the
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inner HPO loop. This will be discussed in detail in Section 6. For more details on the

HPO Study setup, see A.2.

Deep Kernel Learning: I slightly altered the architecture from the original architecture

proposed by Wilson et al. (2016). The feature extractor search space was taken from the

Auto-Pytorch Tabular paper (Zimmer et al. (2021)). Furthermore, Wilson et al. (2016)

restricts the output size of the feature extractor to two neurons. I extend this up to four

neurons, as more output neurons showed great potential during testing. However, the

number of grid points for DKL grows exponentially with the number of output neurons,

which is why I had to reduce the grid size for a larger output neuron size. In addition

to the RBF and SM Kernel, I considered the Matern Kernel with nu ∈ {0.5, 1.5} for my

search space.

DKL training was limited by GPU memory constraints, as it does not allow for mini-

batching. As at the beginning of this thesis, DKL was considered one of the more

promising methods, I decided to not include the whole r1 08 dataset and instead only

a subsample of up to 600.000 data points.

Variational Deep Kernel Learning (VDKL): To reduce the memory issues of DKL,

I replaced the KISS-GP kernel approximation with the variational inference strategy pro-

posed by Hensman et al. (2015). The inducing points are now learned, instead of being

placed over a grid. This follows the framework proposed by Bradshaw et al. (2017).

VDKL thus is a sparse variational GP with a DNN as a feature extractor. Up to 20 out-

put neurons are considered for the DNN since I was no longer restricted by the memory

issues induced by the grid size in DKL. As I ran into difficulties combining VDKL with

the SM kernel, the SM kernel was removed from the search space. The rest remains as in

DKL above.

Deep Gaussian Process: The search space for the DGP implementation differs slightly

from the models evaluated in Salimbeni and Deisenroth (2017). The structure of my

DGP architectures is governed by two variables: n gp layers refers to the number of

hidden layers in the DGP model and n gp layers represents the number of GPs in each

GP hidden layer. In this architecture, the number of GPs is the same in each layer.

Neural Network Deep Gaussian Process (NNDGP): This architecture was inspired

by Jankowiak et al. (2020a), where they combined the idea of DKL and DGPs. A DNN

was used as a feature extractor and then fed into a DGP architecture. The neural net-

work parameters are jointly trained with the DGP parameters with the doubly stochastic

variational inference framework presented in 4.2.3.

Deep Sigma Point Process: The search space design follows the one by DGPs, which
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means that in every layer the number of GPs is the same. For the rest of the architecture,

the search space of by Jankowiak et al. (2020a) was used.

Baselines: As baselines with strong generalization performance on tabular datasets Ran-

dom Forest and XGBoost were chosen. As a bayesian deep learning baseline, Deep Ensem-

bles (DE) by Lakshminarayanan et al. (2017) was chosen. Here, the network architecture

search space follows, like DKL, the Auto-Pytorch Tabular search space. I use random

initialization of the neural network parameters along with random shuffling of the data

points.

For details about the Hyperparameter search space, see A.3.

All model implementations were based on PyTorch and GPyTorch (Gardner et al. (2018)).

The code can be found on https://github.com/likai97/GP-NN-Hybrids. The Hyperpa-

rameter search was done using the Optuna Hyperparameter Optimization Framework

(Akiba et al. (2019)). For all GP-based models, both features and outputs were scaled

using normalization. For the Deep Ensemble, the features were scaled using standard-

ization. All models were trained using the AdamW optimizer (Loshchilov and Hutter

(2017)).

All experiments were performed on a Linux machine with one NVIDIA Tesla V100 GPU

and 16 GB of memory.

5.2 Benchmark Results

The Benchmark Results are summarized in Figures 2 - 4. Individual results can be found

in Appendix A.4. NNDGP was only evaluated on small and medium-sized datasets, due

to its extremely slow training speed and poor generalization performance.

5.2.1 K2204 and R1 08 Results

My results in Figure 2 show that for the K2204 dataset, VDKL outperforms all other

methods in terms of MSE and most importantly MaAE. As this dataset is fairly small, it is

not too surprising that all Hyperparameter configurations found for VDKL have a feature

extractor with just one hidden layer (see Appendix A.4.2). For K2204 BPV, DSPP and the

DE baseline show almost equally good performance with regard to MSE and MaAE. On

the K2204 PPV dataset, the second-best model classes are DSPPs with regard to MaAE.

DE fall slightly behind and show equally good performance with DKL and RF. DKL

and NNDGP show highly variable results over all 5 outer CV-splits, which are especially

pronounced for NNDGP. This may be the result of the model classes’ susceptibility to
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overfitting and stability issues, which I am going to explore in more detail in Section 6.

The DGP results show less variability, but its performance falls behind VDKL, DSPP,

and DE in both metrics. Surprisingly, the XGB baseline does not show good performance

and falls behind all methods with regard to MSE.
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Figure 2: Benchmark Results for the K2204 datasets. Figure a) and b) display the Mean

Squared Error over the 5 nested resampling splits. Figure c) and d) exhibit the Maximum

Absolute Error (a lower score is better). VDKL, DSPP, and DE show great performance

for both metrics.

The results differ slightly for the R1 08 dataset. Note, that the results in Figure 3 are

not for the entire R1 08 dataset but instead a subset of 600K randomly sampled data

points. The boxplots show that for the R1 08 BPV dataset the best-performing models

are VDKL, DGP, and DE with respect to MSE and MaAE. DSPP, which showed great

results on the K2204 datasets, falls short in predictive performance.

As VDKL, DGP, and DE showed great results over both BPV and PPV, these methods

were applied to the entire R1 08 dataset. The results are displayed in table 1. Due to

time constraints, only a single train/test split was conducted using the best configuration

found over the subset of R1 08. Each model was trained for a maximum of 400 epochs

with 3 early stopping iterations. The results for the full dataset however are very similar

to the results on the subset of R1 08, indicating that the results and configurations are
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transferable. Even though DE achieved better predictive results compared to VDKL,

they required upwards of 7 times the training time. Further investigation might go into

training VDKL for more epochs with longer patience for early stopping to see whether

better results can be achieved.
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Figure 3: Benchmark Results for the R1 08 datasets. Figure a) and b) display the Mean

Squared Error over the 5 nested resampling splits. Figure c) and d) exhibit the Maximum

Absolute Error (a lower score is better). VDKL, DGP, and DE show great performance

for both metrics.

R1 08 BPV R1 08 PPV

VDKL DGP DE VDKL DGP DE

MSE 0.039 0.0011 4e-05 8.6e-06 9.3e-05 9.3e-06

MaAE 0.794 0.796 0.729 0.052 0.069 0.041

NLL -0.25 -0.329 -4.35 -1.882 -1.845 -4.49

Train time in s 737 29347 15708 1595 3700 11461

Table 1: Results for the entire R1 08 dataset with 7.6M observations. A single 75:25

train-test split was conducted. The best Hyperparameter configuration for each dataset

from Appendix A.4 was chosen. The training time is displayed in seconds.
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5.2.2 OpenML Results

For the OpenML regression datasets, I display the results in Figure 4. XGB shows con-

sistently strong performance with regard to MSE over all four datasets in contrast to its

poor performance on insurance tariff data. RF produces almost equally good performance

except on the Year dataset.

For the small Wine Quality dataset, all GP methods demonstrate similar performance

except for NNDGP. Unsurprisingly, some architecture found for DGPs revert to a standard

GP (see Appendix A.4.3). A similar picture arises for the Elevators dataset with the small

exception of the poor performance by the DE baseline. For the Diamond dataset, DGPs

and DSPPs exhibit fairly stable results, equalling the performance of RF and XGB. For

the Year dataset, VDKL outperforms all GP methods and only falls behind XGB. DKL

shows quite stable results here, exceeding DGP, DSSP, and DE.

Comparing the GP-based models and DE for the Wine and Year dataset to the Deep

Ensemble Results achieved by Lakshminarayanan et al. (2017), they fall behind slightly

on the Wine dataset, but VDKL outperforms their results on the Year dataset.
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Figure 4: Mean Squared Error results over 5 nested resampling splits for the OpenML

regression datasets Wine, Elevators, Diamonds, and Year (a lower score is better).
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5.2.3 Negative Log Likelihood Comparison

Proper scoring rules assess the quality of predictive uncertainty (Gneiting and Raftery

(2007)). I follow the example of Lakshminarayanan et al. (2017) and use the negative

log-likelihood as UQ metric. The results are displayed in Figure 5.

DE show good performance over all datasets except for the Elevator datasets. They show

especially good results on the insurance datasets, outperforming all other methods except

for the R1 08 BPV dataset. DSPPs achieves lower NLL than DGPs on the Diamonds and

Year datasets and show equal results for the other datasets. This is in line with expectation

as the idea of DSPP was to directly target the predictive distribution because Havasi

et al. (2018) have shown that DGP posterior approximations can degrade the calibration

of the test time predictive distribution. VDKL exhibits comparable results to DGP. DKL

demonstrates poor NLL performance likely due to overfitting behavior by the feature

extractor as demonstrated by Ober et al. (2021) and van Amersfoort et al. (2021), which

I am going to discuss in detail in Section 6.
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Figure 5: Negative Log-Likelihood results for the K2204, R1 08 and OpenML regression

datasets. A lower NLL score is better.
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5.3 Model Prediction Analysis

In this section, I will analyze the prediction accuracy of the three best-performing models,

VDKL, DSPP, and DE, on the K2204 datasets. All visualizations will only display the

results of the first outer nested resampling split.
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Figure 6: Prediction Analysis for the first HPO study of Variational Deep Kernel Learning

for the K2204 BPV and K2204 PPV datasets. Plots a) and b) show the true values vs

Residuals. Plot c) shows the data points of the BPV dataset, where the absolute values

of the residuals exceeded the threshold of 0.0005. Plot d) shows the data points of the

PPV dataset, where the absolute values of the residuals exceeded the threshold of 0.05.

In Figure 6, the Residuals for VDKL are displayed. For both BPV and PPV the residuals

seem to be normally distributed around 0. Looking at Figure 6 c) and d), VDKL seems to

struggle accurately predict the tariff premium for Male insurance holders. Furthermore, it

appears to perform not too well on tariffs, which lie on the edge of possible policyholder’s

age and contract duration combinations. As K2204 is a fictitious dataset, new data points

can be created in these regions to further improve the model.

Inspecting the residual plots in Figure 7, DSPP displays larger residuals for short contract

durations on the BPV dataset and for older male policyholders on the PPV dataset.

In Figure 8 c), no clear pattern can be observed for which data points DE is struggling.

For PPV, DE seems to struggle on the ridge of possible age and contract durations.
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Figure 7: Prediction Analysis for Deep Sigma Point Process on the K2204 BPV and PPV

datasets. Plots a) and b) show the true values vs Residuals. Plots c) and d) show the

data points, where the absolute values of the residuals exceeded the thresholds 0.001 and

0.1.
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Figure 8: Prediction Analysis for Deep Ensembles on the K2204 BPV and PPV datasets.

Plots a) and b) show the true values vs Residuals. Plots c) and d) show the data points,

where the absolute values of the residuals exceeded the thresholds 0.001 and 0.2.
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5.4 HPO Routine Analysis

In this section, I will analyze the results of the conducted Hyperparameter Optimization

study. I will focus on the K2204 dataset and the best-performing models VDKL, DSPP,

and DE. All visualizations will only display the results of the first outer nested resampling

split.

In Figure 9, I visualized the optimization history, the Hyperparameter feature importance,

and the Hyperparameter search history for the most important Hyperparameters. Optuna

calculates the feature importance using the normalized functional analysis of variance

method by Hutter et al. (2014). Looking at the optimization history, you can see that the

amounts of trials used seems to be sufficient. For both datasets, the minimum is found

around 60 trials. An accurately chosen learning rate seems to be of high importance for

VDKL. For both datasets, the learning rate search converges to be between 0.001-0.01.

Also interesting in Figure 9 c) is that the number of output neurons parameter n out

converges to be between 3-7, which makes sense as the K2204 dataset is low-dimensional.

Figure 10 displays the study results for the DSPP. An optimal configuration for the K2204

PPV dataset seems to be quickly found. Inspecting the optimization history for K2204

BPV however, it appears the search has not converged yet, indicating that the number

of HPO trials might have been too low in this case. For both datasets, one hidden layer

looks to give the best results.

The Deep Ensemble baseline performs fairly well on both K2204 datasets. What is in-

teresting here is that although the HPO converges to an approximately equal maximum

number of neurons, for PPV the search converges to a higher number of layers. This is

consistent over all nested resampling splits, see A.4.6. The models seem to need a higher

capacity for PPV, even though the formula for PPV only consists of one component (see

Section 2), while the formula for BPV consists of two separate components.
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(a) K2204 BPV - Optimization History (b) K2204 PPV - Optimization History
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(d) K2204 PPV - Hyperparameter Search

History
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Figure 9: Results for the first HPO study of Variational Deep Kernel Learning on the

K2204 BPV and PPV datasets. Figures a) and b) display the average Mean Squared

Error over four inner CV splits. Figures c) and d) exhibit the Hyperparameters evaluated

over time and the MSE the configuration scored. Figures e) and f) show the normalized

feature importance of the Hyperparameters calculated using the normalized functional

analysis of variance.
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(a) K2204 BPV - Optimization History (b) K2204 PPV - Optimization History

(c) K2204 BPV - Search History (d) K2204 PPV - Search History

Figure 10: Results for the first HPO study of Deep Sigma Point Process on the K2204

BPV and PPV datasets. Figures a) and b) display the average MSE for the evaluated

configurations. Figures c) and d) exhibit the evaluated Hyperparameters.

(a) K2204 BPV - Optimization History (b) K2204 PPV - Optimization History

(c) K2204 BPV - Search History (d) K2204 PPV - Search History

Figure 11: Results for the first HPO study of Deep Ensembles for the K2204 BPV and

K2204 PPV datasets. Figures a) and b) display the average MSE for the evaluated

configurations. Figures c) and d) exhibit the evaluated Hyperparameters.
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6 Model Discussion

In this section, I am gonna share the lessons I learned from the benchmark study and high-

light the advantages and disadvantages of the models concerning performance, stability,

scalability, uncertainty estimation, and ease of use.

Deep Kernel Learning: The DKL benchmark results had higher variance and consis-

tently displayed worse performance on the insurance tariff datasets compared to the other

GP-based methods. Wilson et al. (2016) claim that DKL does not need regularization

as it is guarded against overfitting due to the model complexity being automatically cali-

brated through the optimization of the MLL. However, looking at Figure 2, DKL training

is rather volatile. Ober et al. (2021) agrees that the automatic calibration holds when

selecting a small number of Hyperparameters but that for models such as DKL with many

Hyperparameters MLL training can encourage overfitting. Strategies to address the over-

fitting issue include regularization of the feature extractor (van Amersfoort et al. (2021);

Liu et al. (2020)) and fully bayesian training (Ober et al. (2021)).

Even with displaying competitive results on the OpenML datasets, scalability remains

an issue for DKL due to memory constraints. The KISS-GP approximation costs about

O(N) storage, thus limiting the applicability of DKL by the underlying GPU hardware.

Training DKL on datasets with up to a million data points was possible, but going farther

than that meant running into CUDA memory errors as DKL does not allow for mini-batch

training. For this reason, the aforementioned experiments were not trained on the whole

R1 08 dataset with 7.6M data points and instead on just a subsample of 600k data points.
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Figure 12: Example training curve for a

DKL Model. The blanks in the training

loss curve are areas where the calcula-

tion of the MLL failed for DKL.

Even though DKL was rather straightforward

to implement using the GPytorch package, the

models proved difficult to train with two po-

tential points of failure. In contrast to the re-

maining methods, the calculation of the MLL

could break down during training, see Figure

12. Near the minimum of the MLL, the in-built

GPytorch MLL would once in a while return a

NaN value. Training further would often lead to

substantially worse performance, as can be seen

by the oscillating test loss curve. Therefore, I

implemented an extra early stopping criterion

to stop training once a NaN value was reached.
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The second issue also revolves around the computation of the MLL. Gardner et al. (2018)

use a modified batched version of linear conjugate gradients for the computations of the

MLL and its derivatives in the GPytorch package. Occasionally during my HPO loop,

the conjugate gradient method would not converge, slowing down training and degrading

results.

Variational Deep Kernel Learning: VDKL showed consistently good predictive re-

sults over all datasets and outperformed the other GP-based method on the insurance

tariff datasets. The variability in the VDKL results is far less than compared to the

DKL results. This most likely stems from using stochastic mini-batching as this can help

mitigate the overfitting issue for DKL as found by Ober et al. (2021).

Examining the UQ capabilities of DKL and VDKL, it regularly performs worse than the

DE baseline. The issue is not as pronounced for VDKL as for DKL most likely due to

the stochastic mini-batch training. This is in line with research by Ober et al. (2021) and

van Amersfoort et al. (2021) which show these models to underperform in uncertainty

estimation. van Amersfoort et al. (2021) show that for certain feature extractors, out-

of-distributions data points can get mapped close to representations of in-distribution

data points. They propose to use a bi-Lipschitz constraint on the feature extractor as

this results in a feature representation that is sensitive to changes in the input but also

generalizes due to smoothness.
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Figure 13: Train time of the final configura-

tions for Variational Deep Kernel Learning.

As VDKL relies on a sparse approxima-

tion of the kernel matrix through inducing

points and thus allows for mini-batching,

memory constraints were not as big of an

issue compared to DKL. In addition to

that, the predictive performance for the

R1 08 dataset was competitive with the

DNN-based DE, even with selecting a small

number of inducing points compared with

the number of observations. The train-

ing time in seconds is displayed in Figure

13. Surprisingly, the training speed for the

R1 08 datasets where roughly the same as for the 10 times smaller Diamonds dataset.

The Year dataset with a comparable number of observations to the R1 08, but with 10

times the variable took 2h hours in the maximum. Comparing the training speed on the
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full R1 08 dataset to DGP in Table 1, VDKL achieved better results concerning MaAE

in a much shorter amount of time.

The implementation for VDKL was straightforward. Compared to DKL, VDKL proved

much easier to train and did not suffer from the same stability issues as DKL. The ar-

chitecture of the feature extractor is highly dependent on the task at hand and needs

therefore to be chosen carefully. Pre-training of the feature extractor can improve results.

Deep Gaussian Process: The benchmark results for DGPs were highly competitive

with VDKL on the R1 08 dataset and the OpenML Regression tasks. Only for the K2204

dataset, the performance lags behind. This supports the findings of Bui et al. (2016)

that DPGs, through the stacking of the GPs, can automatically construct kernels that

work well for a given task and can counteract the damage to the representational power

through sparse approximations

The uncertainty estimation capabilities are on par with VDKL but are generally worse

than DE. Havasi et al. (2018) attributes this to the uni-modal Gaussian approximation of

the posterior distribution. In their research, they show that the posterior distribution is

non-Gaussian for every dataset they examine and therefore propose a Hamiltonian Monte

Carlo based sampling technique.
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Figure 14: Train time of the final configura-

tions for Deep Gaussian Processes.

The training speed for DGPs is displayed in

Figure 14. For the small and medium-sized

datasets, the training speed can be as much

as twice as high compared to VDKL. For

the subset of the R1 08, the differences in

training speed are even more pronounced

with DGP taking multiple hours compared

to VDKL which gets similar or better per-

formance in a much shorter amount of

time. The same holds true for the entire

R1 08 dataset in Table 1.

The design of the search space for DGP

required many iterations as some DGP architectures required a substantial amount of

memory. The search space had to be fine-tuned with respect to the maximum depth,

width, and number of inducing points per GP. Damianou and Lawrence (2013), Salim-

beni and Deisenroth (2017), Bui et al. (2016) and Havasi et al. (2018) only used the

RBF kernel in their experiments. The introduction of the Matern Kernel improved the
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predictive results on the small and medium-sized datasets. All in all, the DGP was quite

pleasant to train with regard to stability and predictive performance with the exception

of training speed.

Neural Network Deep Gaussian Process: NNDGPs predictive performance has

shown the highest variability of all models. Contrary to the experiment results found

by Jankowiak et al. (2020a), that a feature extractor can improve the predictive perfor-

mance of a DGP, my results show that it can even worsen it.

NNDGP has been highly difficult to train compared to the other methods. One reason

could be the immense amount of parameters, as it combines DGP and VDKL parameters

in one model. Glancing back at the benchmark results in Figure 2 and 4, the best NNDGP

result can be on par or slightly better than the best DGP result, indicating the potential

as found by Jankowiak et al. (2020a). The authors trained their model with multiple

restarts and only fully trained the model with the best training NLL. I did not utilize

multiple restarts. Instead, I used random initialization of inducing points as in DGPs

and pretraining of the feature extractor as in VDKL. Less variable results might have

been found with a better initialization strategy and also imploring the multiple restart

strategy.

Due to the highly variable results and even slower training speed than DGPs, NNDGP

was not benchmarked for the R1 08 and Year datasets.

Deep Sigma Point Process: DSPPs were introduced as a parametric model inspired

by the compositional structure of DGPs. They showed competitive results with VDKL

on the small and medium-sized datasets but fell behind DGPs and VDKL in predictive

performance on the R1 08 and Year datasets.

As DSPP directly targets the predictive distribution of DGPs in the training objective,

they show better-calibrated uncertainty estimates on the Diamonds and Year dataset and

equal results for the other datasets. They still fall short of the estimates by the DE

baseline.

Figure 15 exhibits the training speed for DSPP. For the small and medium-sized datasets,

the training time is comparable with DGP. For the R1 08 and Year datasets, DSPPs have

faster training speed but worse generalization performance compared to DGPs.

Due to the similarity to DGPs, the same search space was used at first. However, DSPP

proved to be even more memory intensive than DGPs, causing CUDA memory in my

early trials. By reducing the number of inducing points, the number of GP layers, and
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Figure 15: Train time of the final configurations for Deep Sigma Point Process.

batch size I landed on a suitable search space. Altogether, DSPP were stable in their

training and proved to have a good performance on small and medium-sized datasets.

7 Conclusion

I reviewed the current state of Gaussian Process and neural network hybrid models for

regression tasks and their application for PAS migration. I then conducted a benchmark

study on two insurance tariff datasets and four OpenML regression tasks and compared

the results to a Deep Ensemble baseline.

I found that VDKL showed great predictive performance on both the insurance datasets

and OpenML regression tasks while being significantly faster compared to the other exam-

ined methods given the same number of epochs and patience. It showed good uncertainty

estimation capabilities on the OpenML regression tasks but fell behind DE on the insur-

ance datasets. DGP showed good performance on the R1 08 and OpenML datasets but

struggled on the K2204 dataset. DSPP exhibited good performance in both predictive

performance and uncertainty estimation on the small and medium-sized regression tasks

but performed worse on R1 08 and the Year dataset. DE showed great predictive per-

formance with superior uncertainty estimates compared to the GP-based methods on the

insurance datasets.

All in all, Variational Deep Kernel Learning and Deep ensembles should be further ex-

plored in their application to insurance tariff migration due to their great predictive

performance, scalability, and good uncertainty estimates. Further research may go into

more recent ensemble methods, such as Neural Ensemble Search by Zaidi et al. (2021).
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A Appendix

A.1 Datasets

In this table, you can see all datasets used for the benchmark study, the number of

observations n, and the number of variables p. K2204 and R1 08 are insurance tariff

datasets. Wine, Elevators, Diamonds, and Year are taken from openml.org.

Dataset Name OpenML Dataset ID n p
K2204 / 5839 3
Wine 287 6497 11
Elevators 216 16599 18
Diamonds 42225 53940 9
Year 44027 515345 90
R1 08 small / 600000 9
R1 08 / 7496192 9

Table 2: HPO Study Datasets

A.2 Study Set Up

Below, you can see the HPO setup. Each method was evaluated 100 times. The time

budget refers to the maximum time a Hyperparameter configuration can be trained before

being pruned. For the dataset with less than 100K Observation, 4-Fold CV was used to

get more stable results. All models were trained in parallel. For the large datasets, a

simple train-test split was used with an additional Hyperband pruner.

Dataset Name Time Budget Inner Validation Loop Method Pruner Type
K2204 10min 4-fold CV None
Wine 10min 4-fold CV None
Elevators 15min 4-fold CV None
Diamonds 30min 4-fold CV None
Year 45min 0.75/0.25 Train/Test Split Hyperband
R1 08 small 45min 0.75/0.25 Train/Test Split Hyperband

Table 3: Study Set Up

A.3 Model Search Space

In the following tables, you can see the Hyperparameter Search Space used in the optuna

HPO study for the small and medium sized datasets. Note, that for the larger datasets

with more than 500K observations, the search space was restricted slightly for some

methods, usually a slightly smaller grid size or number of inducing points. This was done

in order to avoid Memory Errors.

I
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Variable Name Description Range Log
n max Maximum number of neu-

rons in feature extractor
U(64, 1024)

n layer Number of layers in feature
extractor

U(2, 5)

n out Number of output neurons
in feature extractor

U(2, 4)

mean type Mean Type [Constant, Linear]
kernel type Kernel Type [RBF, Matern(nu=0.5),

Matern(nu=1.5), Spectral
Mixture]

num mixtures Number of spectral mix-
tures for Spectral Mixture
Kernel

U(2, 8)

lr Learning Rate U(1e-04, 1e-01) ✓

grid size Grid Size
If n out=2: U(10, 400)
If n out=3: U(10, 50)
If n out=4: U(10, 20)

initialize fe Initialize Feature Extractor [True, False]

Table 4: Deep Kernel Learning Search Space

Variable Name Description Range Log
n max Maximum number of neu-

rons in feature extractor
U(64, 1024)

n layer Number of layers in feature
extractor

U(2, 5)

n out Number of output neurons
in feature extractor

U(2, 20)

mean type Mean Type [Constant, Linear]
kernel type Kernel Type [RBF, Matern(nu=0.5),

Matern(nu=1.5)]
lr Learning Rate U(1e-04, 1e-01) ✓
batch size Batch Size [512, 1024, 2048]
num inducing Number of inducing points U(50, 2000) ✓
initialize fe Initialize Feature Extractor [True, False]
minit Inducing point Initializa-

tion
[random, kmeans]

Table 5: Variational Deep Kernel Learning Search Space

Variable Name Description Range Log
n gp layers Number of GP layers U(1, 5) ✓
n gp out Number of GPs per layer U(1, 4) ✓
kernel type Kernel Type [RBF, Matern(nu=0.5),

Matern(nu=1.5)]
lr Learning Rate U(1e-04, 1e-01) ✓
batch size Batch Size [256, 512, 1024]
num inducing Number of inducing points

in each hidden layer
U(50, 1000) ✓

num samples Number of likelihood sam-
ples

U(2, 15)

Table 6: Deep Gaussian Process Search Space
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Variable Name Description Range Log
n max Maximum number of neurons in

feature extractor
U(64, 1024)

n layer Number of layers in feature ex-
tractor

U(2, 5)

n out Number of output neurons in fea-
ture extractor

U(2, 20)

n gp layers Number of GP layers U(1, 5) ✓
n gp out Number of GPs per layer U(1, 4) ✓
kernel type Kernel Type [RBF, Matern(nu=0.5),

Matern(nu=1.5)]
lr Learning Rate U(1e-04, 1e-01) ✓
batch size Batch Size [256, 512, 1024]
num inducing Number of inducing points in

each hidden layer
U(50, 1000) ✓

num samples Number of likelihood samples U(2, 15)
initialize fe Initialize Feature Extractor [True, False]

Table 7: Neural Network Deep Gaussian Process Search Space

Variable Name Description Range Log
n dspp layers Number of DSPP hidden layers U(1, 5) ✓
n dspp out Number of GPs per hidden layer U(1, 5) ✓
lr Learning Rate U(1e-04, 1e-01) ✓
batch size Batch Size [256, 512, 1024]
num inducing Number of inducing points in

each hidden layer
U(50, 800) ✓

num quadrature sites Number of quadrature sites U(5, 10)
beta Beta [0.01, 0.05, 0.2, 1.0]

Table 8: Deep Sigma Point Process Search Space

Variable Name Description Range Log
n max Maximum number of neurons in

feature extractor
U(64, 1024)

n layer Number of layers in feature ex-
tractor

U(2, 4)

lr Learning Rate U(1e-05, 1e-01) ✓
batch size Batch Size [256, 512, 1024,2048]

Table 9: Deep Ensemble Search Space
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Variable Name Description Range Log
n estimators Number of Trees U(5, 500) ✓
max depth Maximum Tree Depth U(5, 100) ✓
min samples split Minimum number of samples to

split an internal node
U(2, 25) ✓

min samples leaf Minimum number of samples to
be at a leaf node

U(1, 25)

max features Number of features to consider
when looking for a split

[sqrt, auto]

Table 10: Random Forest Search Space

Variable Name Description Range Log
num boost round Maximum Number of Boosting

Rounds
10000

max depth Maximum Tree Depth U(5, 75)
learning rate Learning Rate U(0.001, 0.1) ✓
colsample bytree Subsample ratio of columns when

constructing each tree
U(0.2, 0.6) ✓

subsample Subsample ratio of the training
instances

U(0.4, 0.8) ✓

reg alpha L1 regularization term on weights U(0.01, 10) ✓
reg lambda L2 regularization term on weights U(1e-08, 10) ✓
gamma Gamma U(1e-08, 10) ✓
min child weight Minimum sum of instance weight

needed in a child
U(2, 100) ✓

Table 11: XGBoost Search Space
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A.4 Configurations found by HPO

The best configurations as found by the Hyperparameter Optimization in each split.

A.4.1 Deep Kernel Learning

outer run 1 2 3 4 5
n max 706 166 625 650 225
n layers 2 2 2 2 5
n out 4 3 3 4 4
mean type linear constant linear constant linear
kernel type rbf rbf matern1.5 matern1.5 rbf
lr 0.07858 0.07444 0.07531 0.07798 0.00134
grid size 13 30 14 19 15
initialize fe True False False False True
MSE 7.3e-07 3.1e-06 6.4e-07 1.03e-05 1.6e-07
MAE 0.0007 0.0013 0.0006 0.002 0.0003
Max Error 0.0032 0.0073 0.0063 0.0149 0.0024
NLL -4.438 -4.048 -5.003 -4.122 -1.025

Table 12: DKL - K2204 BPV

outer run 1 2 3 4 5
n max 143 354 788 403 717
n layers 2 2 2 2 2
n out 3 3 3 3 3
mean type linear constant constant linear linear
kernel type matern0.5 matern0.5 matern0.5 matern1.5 matern1.5
lr 0.0926 0.0754 0.0861 0.0708 0.0711
grid size 37 33 14 16 29
initialize fe False True False True True
MSE 0.022 0.042 0.06 0 0.012 0.005
MAE 0.109 0.158 0.211 0.099 0.055
Max Error 1.168 0.851 0.747 0.367 0.396
NLL -0.461 0.623 1.105 -0.367 -0.598

Table 13: DKL - K2204 PPV
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outer run 1 2 3 4 5
n max 940 793 782 554 148
n layers 3 5 2 5 5
n out 4 3 4 4 3
mean type constant linear linear linear linear
kernel type rbf rbf rbf matern1.5 rbf
lr 0.0008 0.0005 0.0044 0.0017 0.0001
grid size 17 27 15 20 45
initialize fe True True True True False
MSE 0.489 0.507 0.469 0.507 0.479
MAE 0.538 0.557 0.539 0.544 0.542
Max Error 3.17 3.475 3.293 2.953 3.198
NLL 1.58 1.596 1.468 1.557 1.605

Table 14: DKL - Wine

outer run 1 2 3 4 5
n max 645 846 870 504 693
n layers 4 4 3 5 2
n out 4 4 3 4 3
mean type constant linear linear constant linear
kernel type rbf rbf rbf rbf rbf
lr 0.0001 0.0001 0.0001 0.0001 0.0752
grid size 18 11 20 19 42
initialize fe True True True True True
MSE 5e-06 5e-06 5e-06 5e-06 8e-06
MAE 0.0017 0.0016 0.0016 0.0017 0.0019
Max Error 0.019 0.017 0.029 0.012 0.023
NLL -2.912 -2.904 -2.987 -2.909 -4.446

Table 15: DKL - Elevators

outer run 1 2 3 4 5
n max 705 266 711 562 193
n layers 2 2 2 3 4
n out 3 3 2 3 3
mean type linear constant linear linear linear
kernel type matern0.5 matern1.5 rbf matern1.5 matern1.5
lr 0.0009 0.0031 0.0305 0.0005 0.0225
grid size 23 38 347 28 27
initialize fe False True True True False
MSE 553329.75 379790.81 352204.31 374353.68 431235.94
MAE 453.66 346.57 326.19 358.32 345.49
Max Error 12292.01 7269.53 10183.71 5718.19 16212.13
NLL 9.633 9.484 7.406 9.629 8.897

Table 16: DKL - Diamonds
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outer run 1 2 3 4 5
n max 724 969 995 571 429
n layers 4 2 2 4 4
n out 2 2 2 2 2
mean type constant constant constant constant linear
kernel type rbf matern1.5 matern1.5 matern1.5 rbf
lr 0.0001 0.0488 0.0012 0.0002 0.0001
grid size 103 48 31 145 186
initialize fe True False False True True
MSE 82.29 152.07 83.41 81.89 81.90
MAE 6.43 10.54 6.40 6.24 6.32
Max Error 69.79 69.12 80.22 70.93 71.05
NLL 4.29 3.31 4.30 4.30 4.29

Table 17: DKL - Year

outer run 1 2 3 4 5
n max 808 748 663 606 343
n layers 3 5 3 4 5
n out 2 2 2 2 2
mean type linear constant constant linear constant
kernel type matern1.5 matern1.5 rbf rbf rbf
lr 0.0393 0.0121 0.0114 0.0003 0.0415
grid size 95 221 34 54 259
initialize fe False False True True True
MSE 0.014 0.023 0.0028 0.014 0.048
MAE 0.085 0.112 0.129 0.088 0.162
Max Error 2.815 2.473 1.952 2.868 2.197
NLL 2.629 3.255 3.214 3.720 3.044

Table 18: DKL - R1 08 BPV

outer run 1 2 3 4 5
n max 182 1024 1024 511 915
n layers 2 4 4 2 4
n out 2 2 2 2 2
mean type linear constant constant linear constant
kernel type rbf rbf rbf matern1.5 matern1.5
lr 0.025 0.01 0.01 0.025 0.032
grid size 141 300 300 116 152
initialize fe False False False False False
MSE 0.0007 0.0007 0.051 0.0008 0.0008
MAE 0.019 0.019 0.137 0.022 0.23
Max Error 0.297 0.199 1.558 0.247 0.217
NLL 0.908 1.656 1.670 1..305 0.671

Table 19: DKL - R1 08 PPV
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A.4.2 Variational Deep Kernel Learning

outer run 1 2 3 4 5
n max 645 930 171 963 503
n layers 2 2 2 2 2
n out 10 6 13 9 6
mean type linear constant linear constant constant
kernel type rbf rbf matern1.5 rbf rbf
lr 0.0006 0.0029 0.0004 0.003 0.002
batch size 512 512 512 512 512
num inducing 175 949 52 811 95
initialize fe True True True False True
minit kmeans kmeans random kmeans random
MSE 3.49e-08 1.17e-07 7.5e-07 7.46e-08 1.46e-07
MAE 0.00013 0.00024 0.00068 0.0002 0.00029
Max Error 0.0013 0.0018 0.0028 0.0016 0.0018
NLL -4.412 -4.829 -4.124 -4.769 -4.842

Table 20: VDKL - K2204 BPV

outer run 1 2 3 4 5
n max 945 369 778 236 82
n layers 2 2 2 2 3
n out 10 11 15 9 15
mean type constant constant constant constant constant
kernel type matern1.5 rbf matern1.5 matern1.5 rbf
lr 0.004 0.002 0.004 0.004 0.001
batch size 512 512 512 512 512
num inducing 299 664 897 1487 396
initialize fe True False True False True
minit kmeans random kmeans kmeans kmeans
MSE 0.013 0.003 0.0004 0.002 0.005
MAE 0.072 0.037 0.016 0.037 0.058
Max Error 0.64 0.31 0.11 0.14 0.21
NLL -0.141 -0.134 -0.148 -0.186 -0.148

Table 21: VDKL - K2204 PPV
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outer run 1 2 3 4 5
n max 687 860 641 242 723
n layers 4 3 4 3 3
n out 19 5 16 10 19
mean type constant constant constant constant constant
kernel type rbf matern0.5 matern1.5 matern1.5 matern1.5
lr 0.0015 0.0001 0.0014 0.003 0.002
batch size 512 512 512 512 512
num inducing 916 1419 792 264 58
initialize fe True True True False True
minit random random random kmeans random
MSE 0.51 0.55 0.52 0.50 0.51
MAE 0.49 0.54 0.51 0.54 0.54
Max Error 4.08 3.19 3.83 3.19 5.05
NLL 1.023 1.080 1.527 0.170 0.175

Table 22: VDKL - Wine

outer run 1 2 3 4 5
n max 854 748 535 350 805
n layers 3 5 4 4 4
n out 8 10 4 18 8
mean type constant constant constant constant constant
kernel type rbf rbf matern1.5 matern1.5 matern1.5
lr 0.0009 0.0005 0.0004 0.0002 0.0006
batch size 512 512 512 512 512
num inducing 826 164 1707 55 233
initialize fe False True True True True
minit kmeans random kmeans kmeans random
MSE 4e-06 5e-06 5e-06 4e-06 5e-06
MAE 0.0015 0.0017 0.0016 0.0015 0.0016
Max Error 0.014 0.013 0.0196 0.0119 0.0114
NLL -5.75 -5.64 -5.63 -5.53 -5.65

Table 23: VDKL - Elevators

outer run 1 2 3 4 5
n max 827 721 856 368 767
n layers 3 3 5 3 4
n out 12 5 14 8 20
mean type constant constant constant constant constant
kernel type matern0.5 rbf rbf matern0.5 matern0.5
lr 0.0035 0.004 0.0007 0.0008 0.0001
batch size 512 512 512 512 512
num inducing 946 99 392 1401 687
initialize fe True True False False False
minit random kmeans kmeans random random
MSE 352684.94 326883.94 335607.09 302789.16 385089.13
MAE 311.53 316.42 304.56 293.14 314.08
Max Error 16702.43 5394.03 6976.53 6122.79 12513.64
NLL 6.83 6.83 6.83 6.80 6.82

Table 24: VDKL - Diamonds
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outer run 1 2 3 4 5
n max 910 765 634 549 306
n layers 3 2 3 3 2
n out 12 10 9 11 3
mean type constant constant linear constant linear
kernel type matern1.5 matern1.5 matern0.5 matern1.5 matern0.5
lr 0.00026 0.0011 0.00025 0.0001 0.0002
batch size 2048 1024 1024 1024 1024
num inducing 1029 1194 494 395 914
initialize fe False False True True False
minit random random random kmeans random
MSE 75.24 72.13 79.70 80.88 76.60
MAE 5.92 6.11 6.07 5.96 6.10
Max Error 74.99 72.13 79.70 80.88 76.60
NLL 2.67 2.68 2.68 2.67 2.67

Table 25: VDKL - Year

outer run 1 2 3 4 5
n max 1024 141 675 259 688
n layers 4 3 5 3 4
n out 2 9 10 14 2
mean type constant constant constant constant constant
kernel type rbf matern1.5 rbf rbf rbf
lr 0.01 0.0028 0.017 0.0037 0.021
batch size 8192 2048 2048 2048 8192
num inducing 1000 690 375 1052 931
initialize fe False True False False False
minit random kmeans kmeans random kmeans
MSE 0.0003 0.0012 0.0005 0.0002 0.0006
MAE 0.012 0.025 0.017 0.009 0.019
Max Error 0.61 0.91 0.31 0.28 0.20
NLL -0.25 -0.32 -0.32 -0.34 -0.31

Table 26: VDKL - R1 08 BPV

outer run 1 2 3 4 5
n max 1024 553 1024 757 366
n layers 4 4 4 2 2
n out 8 6 8 8 13
mean type constant constant constant linear linear
kernel type rbf rbf rbf matern1.5 matern0.5
lr 0.01 0.0042 0.01 0.032 0.002
batch size 1024 1024 1024 2048 1024
num inducing 1000 1889 1000 1708 56
initialize fe False False False True True
minit random random random kmeans random
MSE 0.00003 0.000004 0.000004 0.00005 0.00004
MAE 0.005 0.001 0.001 0.006 0.005
Max Error 0.073 0.032 0.104 0.088 0.088
NLL -1.858 -1.886 -1.887 -1.811 -1.864

Table 27: VDKL - R1 08 PPV
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A.4.3 Deep Gaussian Process

outer run 1 2 3 4 5
n gp layers 2 1 2 2 2
n gp out 1 4 3 3 1
kernel type matern0.5 matern0.5 matern0.5 matern0.5 matern0.5
batch size 256 256 256 256 512
lr 0.0046 0.0038 0.0049 0.0077 0.0065
num inducing 571 349 664 413 204
num samples 7 8 6 15 3
MSE 2e-06 4e-06 1e-06 2e-06 3e-06
MAE 0.001 0.0013 0.0009 0.0011 0.0013
Max Error 0.008 0.012 0.006 0.007 0.009
NLL -4.78 -4.73 -4.8 -4.76 -4.67

Table 28: DGP - K2204 BPV

outer run 1 2 3 4 5
n gp layers 1 1 2 1 2
n gp out 2 1 2 1 4
kernel type matern0.5 matern0.5 matern0.5 matern0.5 matern0.5
batch size 256 256 256 256 512
lr 0.0072 0.0043 0.0089 0.0039 0.0066
num inducing 673 522 568 755 378
num samples 13 8 9 7 7
MSE 0.038 0.032 0.022 0.03 0.025
MAE 0.15 0.13 0.11 0.13 0.12
Max Error 1.16 1.43 0.75 0.75 0.82
NLL -0.057 -0.044 -0.05 -0.07 -0.04

Table 29: DGP - K2204 PPV

outer run 1 2 3 4 5
n gp layers 1 1 1 1 1
n gp out 3 1 2 4 4
kernel type rbf matern1.5 rbf matern1.5 matern1.5
batch size 256 512 256 256 512
lr 0.0061 0.0019 0.0135 0.0065 0.0083
num inducing 329 976 51 169 83
num samples 10 13 12 4 14
MSE 0.497 0.483 0.485 0.513 0.481
MAE 0.556 0.547 0.537 0.552 0.541
Max Error 3.22 3.16 2.81 3.12 3.04
NLL 0.15 0.14 0.14 0.17 0.14

Table 30: DGP - Wine
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outer run 1 2 3 4 5
n gp layers 2 1 1 3 2
n gp out 3 3 3 4 3
kernel type matern1.5 matern0.5 rbf matern1.5 matern1.5
batch size 256 256 256 256 256
lr 0.0038 0.0073 0.0022 0.0077 0.003
num inducing 152 334 427 104 375
num samples 12 4 4 4 7
MSE 4e-06 4e-06 4e-06 4e-06 4e-06
MAE 0.0014 0.0015 0.0015 0.0016 0.0014
Max Error 0.01 0.014 0.019 0.011 0.014
NLL -5.72 -5.66 -5.69 -5.69 -5.73

Table 31: DGP - Elevators

outer run 1 2 3 4 5
n gp layers 1 2 1 1 2
n gp out 3 3 3 2 4
kernel type matern1.5 matern1.5 matern1.5 matern1.5 matern0.5
batch size 512 256 256 512 512
lr 0.0015 0.0019 0.0016 0.0031 0.0085
num inducing 624 514 722 581 574
num samples 9 4 6 15 12
MSE 308664.65 304443.78 316624.72 304119.41 295596.94
MAE 298.61 299.84 299.44 309.58 295.48
Max Error 6101.09 5098.9 6514.66 5131.26 6672.86
NLL 6.83 6.83 6.84 6.84 6.83

Table 32: DGP - Diamonds

outer run 1 2 3 4 5
n gp layers 1 2 2 2 1
n gp out 3 3 3 1 3
kernel type matern1.5 matern1.5 rbf rbf matern1.5
batch size 512 1024 512 2048 1024
lr 0.011 0.007 0.008 0.013 0.008
num inducing 59 138 185 297 380
num samples 15 6 10 12 15
MSE 110.17 86.14 86.87 86.58 86.12
MAE 8.52 6.61 6.48 6.46 6.36
Max Error 67.99 70.47 76.86 71.62 70.11
NLL 2.85 2.73 2.73 2.73 2.73

Table 33: DGP - Year
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outer run 1 2 3 4 5
n gp layers 3 1 2 1 1
n gp out 3 1 2 3 3
kernel type rbf rbf rbf rbf rbf
batch size 1024 1024 1024 1024 1024
lr 0.0042 0.0022 0.0017 0.0044 0.0025
num inducing 300 53 769 99 246
num samples 15 5 7 2 14
MSE 0.002 0.003 0.002 0.002 0.001
MAE 0.033 0.041 0.031 0.033 0.020
Max Error 0.69 0.82 0.43 0.75 0.42
NLL -0.299 -0.212 -0.326 -0.255 -0.314

Table 34: DGP - R1 08 BPV

outer run 1 2 3 4 5
n gp layers 1 1 1 1 2
n gp out 1 2 2 3 2
kernel type rbf rbf rbf rbf rbf
batch size 1024 1024 512 512 1024
lr 0.0024 0.0039 0.0017 0.0052 0.0029
num inducing 478 704 698 406 386
num samples 7 11 13 10 7
MSE 0.0001 0.00007 0.0001 0.0002 0.00009
MAE 0.009 0.007 0.0088 0.011 0.007
Max Error 0.049 0.042 0.059 0.086 0.074
NLL -1.851 -1.859 -1.864 -1.842 -1.848

Table 35: DGP - R1 08 PPV
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A.4.4 Neural Network Deep Gaussian Process

outer run 1 2 3 4 5
n gp layers 1 4 1 4 1
n gp out 2 3 1 4 1
n max 189 609 885 555 577
n layers 4 4 4 2 2
n out 15 6 20 14 17
batch size 256 256 256 256 512
lr 0.0029 0.0055 0.002 0.003 0.0029
num inducing 113 197 490 50 50
num samples 4 10 12 6 2
MSE 6.9e-06 4.9e-05 3e-06 4e-06 2e-06
MAE 0.0023 0.0054 0.0014 0.0016 0.0009
Max Error 0.009 0.027 0.004 0.006 0.017
NLL -4.52 -4.33 -4.82 -4.62 -4.34

Table 36: NNDGP - K2204 BPV

outer run 1 2 3 4 5
n gp layers 3 2 2 2 3
n gp out 1 4 2 2 2
n max 885 119 600 285 258
n layers 2 4 4 3 5
n out 9 10 4 9 7
batch size 512 256 256 256 256
lr 0.0019 0.0072 0.0092 0.0084 0.0043
num inducing 358 233 202 391 357
num samples 4 9 11 13 15
MSE 0.0144 0.2957 0.1306 0.0608 0.0494
MAE 0.0931 0.4566 0.2747 0.2032 0.1786
Max Error 1.251 2.542 2.321 1.066 0.736
NLL -0.02 0.47 0.25 0.11 006

Table 37: NNDGP - K2204 PPV

outer run 1 2 3 4 5
n gp layers 1 4 1 4 1
n gp out 2 3 1 4 1
n max 189 609 885 555 577
n layers 4 4 4 2 2
n out 15 6 20 14 17
batch size 256 256 256 256 512
lr 0.0029 0.0055 0.002 0.003 0.0029
num inducing 113 197 490 50 50
num samples 4 10 12 6 2
MSE 6.9e-06 3.9e-05 7.4e-06 1.05e-05 3.8e-07
MAE 0.0017 0.0054 0.0021 0.0028 0.0005
Max Error 0.02 0.026 0.014 0.008 0.0042
NLL 0.16 0.16 0.41 0.40 0.50

Table 38: NNDGP - Wine
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outer run 1 2 3 4 5
n gp layers 5 4 4 5 4
n gp out 2 4 4 4 1
n max 653 489 490 707 852
n layers 3 2 3 5 5
n out 4 10 5 11 2
batch size 512 256 512 512 256
lr 0.0006 0.0002 0.0001 0.0001 0.0006
num inducing 423 440 77 52 341
num samples 11 9 15 9 13
MSE 0.00005 0.00004 0.00004 0.00005 0.00005
MAE 0.005 0.005 0.004 0.005 0.005
Max Error 0.05 0.05 0.06 0.05 0.05
NLL -3.01 -3.00 -3.15 -2.98 -3.12

Table 39: NNDGP - Elevators

outer run 1 2 3 4 5
n gp layers 2 2 2 3 3
n gp out 2 2 2 3 3
n max 431 587 972 771 558
n layers 2 3 3 4 4
n out 7 9 15 5 7
batch size 256 256 256 256 256
lr 0.008 0.004 0.037 0.004 0.001
num inducing 73 138 199 345 505
num samples 9 4 8 6 12
MSE 353533.1 414757.1 4721145.3 317888 367269.6
MAE 337.5 373.9 380.3 321.2 352.9
Max Error 12899.9 5776.4 7283.2 5379.2 14410.0
NLL 6.87 7.03 7.02 6.85 6.92

Table 40: NNDGP - Diamonds
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A.4.5 Deep Sigma Point Process

outer run 1 2 3 4 5
n dspp layers 1 1 1 1 1
n dspp out 5 3 2 2 3
batch size 256 256 512 256 256
lr 0.0002 0.0003 0.0003 0.0003 0.0002
num inducing 131 71 353 691 620
num quadrature sites 8 5 8 6 5
beta 0.01 0.05 0.01 0.01 0.01
MSE 1.6e-07 2.7e-07 5e-07 1.7e-06 2.7e-07
MAE 0.00029 0.00039 0.00056 0.00117 0.00041
Max Error 0.002 0.005 0.003 0.003 0.002
NLL -4.565 -4.833 -3.388 -4.78 -4.089

Table 41: DSPP - K2204 BPV

outer run 1 2 3 4 5
n dspp layers 1 1 2 1 1
n dspp out 2 2 1 3 2
batch size 256 256 256 256 256
lr 0.0002 0.0002 0.0003 0.0003 0.0005
num inducing 788 744 479 141 155
num quadrature sites 7 9 9 7 10
beta 0.01 0.01 0.01 0.01 0.01
MSE 0.0035 0.0059 0.0197 0.0039 0.0479
MAE 0.0467 0.0629 0.1334 0.0512 0.1914
Max Error 0.266 0.466 0.349 0.229 0.585
NLL 0.0828 0.8656 -0.2147 0.0164 -0.1687

Table 42: DSPP - K2204 PPV

outer run 1 2 3 4 5
n dspp layers 3 2 2 1 1
n dspp out 3 4 4 4 5
batch size 256 256 512 256 256
lr 0.006 0.0034 0.008 0.0002 0.0077
num inducing 474 432 667 662 61
num quadrature sites 7 9 8 5 7
beta 0.01 0.05 0.01 0.01 0.20
MSE 0.6 0.495 0.522 0.51 0.457
MAE 0.64 0.564 0.588 0.544 0.531
Max Error 3.389 2.921 3.257 2.909 3.394
NLL 0.22 0.151 0.382 0.447 0.083

Table 43: DSPP - Wine
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outer run 1 2 3 4 5
n dspp layers 1 1 1 1 1
n dspp out 2 2 2 2 1
batch size 256 256 256 256 512
lr 0.0014 0.003 0.0023 0.0007 0.0006
num inducing 650 712 441 652 189
num quadrature sites 9 7 6 5 5
beta 1 1 0.01 0.01 0.20
MSE 4e-06 4e-06 4e-06 4e-06 4e-06
MAE 0.0015 0.0014 0.0015 0.0015 0.0015
Max Error 0.014 0.026 0.024 0.013 0.017
NLL -5.777 -5.792 -5.767 -5.825 -5.672

Table 44: DSPP - Elevators

outer run 1 2 3 4 5
n dspp layers 1 3 2 2 1
n dspp out 5 4 5 5 5
batch size 256 256 256 256 512
lr 0.011 0.0135 0.01 0.017 0.008
num inducing 194 198 163 236 692
num quadrature sites 6 5 5 5 5
beta 0.2 0.2 0.01 0.05 0.01
MSE 325110.28 323600.59 320756.91 288972.84 322821.47
MAE 295.92 296.24 284.46 284.75 297.33
Max Error 5845.91 5105.99 6677.17 4922.98 13589.05
NLL 6.3 6.3 6.28 6.26 6.27

Table 45: DSPP - Diamonds

outer run 1 2 3 4 5
n dspp layers 3 2 1 2 3
n dspp out 3 4 3 4 4
batch size 2048 512 2048 1024 512
lr 0.016 0.004 0.004 0.007 0.008
num inducing 50 217 108 300 186
num quadrature sites 8 5 7 5 8
beta 0.05 1.0 0.20 1.0 1.0
MSE 92.9 84.02 86.2 83.3 118.9
MAE 7.3 6.5 6.4 6.3 8.1
Max Error 67.4 67.4 79.58 69.6 76.4
NLL 2.6 2.5 2.6 2.5 2.9

Table 46: DSPP - Year
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outer run 1 2 3 4 5
n dspp layers 2 3 2 3 2
n dspp out 2 2 3 4 4
batch size 2048 1024 1024 1024 1024
lr 0.0088 0.0138 0.0122 0.0144 0.0045
num inducing 150 241 146 547 91
num quadrature sites 5 10 10 7 6
beta 1 0.2 0.01 0.05 0.01
MSE 0.004 0.009 0.008 0.072 0.012
MAE 0.054 0.078 0.078 0.258 0.094
Max Error 0.926 1.656 1.467 1.148 1.425
NLL -0.31 -0.31 -0.30 -0.27 -0.29

Table 47: DSPP - R1 08 BPV

outer run 1 2 3 4 5
n dspp layers 2 2 1 2 2
n dspp out 2 4 1 3 2
batch size 2048 2048 2048 512 2048
lr 0.019 0.006 0.033 0.011 0.006
num inducing 163 776 472 66 396
num quadrature sites 9 10 5 8 10
beta 0.2 1.0 0.05 0.01 1.0
MSE 0.0003 0.00003 0.0001 0.0002 0.0001
MAE 0.014 0.004 0.008 0.013 0.008
Max Error 0.17 0.099 0.193 0.135 0.193
NLL -1.82 -1.86 -1.84 -1.78 -1.85

Table 48: DSPP - R1 08 PPV
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A.4.6 Deep Ensemble

outer run 1 2 3 4 5
n max 227 304 393 542 348
n layers 3 3 3 4 3
lr 2e-05 2e-05 1e-05 1e-05 1e-05
batch size 512 1024 512 512 512
MSE 4e-07 5.5e-07 3.7e-07 5e-07 4.3e-07
MAE 0.0005 0.0005 0.0004 0.0005 0.0005
Max Error 0.0026 0.0029 0.0028 0.0023 0.0019
NLL -6.09 -5.45 -5.68 -5.33 -6.13

Table 49: DE - K2204 BPV

outer run 1 2 3 4 5
n max 239 876 375 904 201
n layers 4 4 4 4 4
lr 0.0004 9e-05 0.0003 5e-05 0.0005
batch size 512 512 512 512 512
MSE 0.018 0.006 0.011 0.003 0.016
MAE 0.083 0.047 0.061 0.035 0.078
Max Error 0.85 0.57 0.91 0.44 0.87
NLL -1.42 -1.36 -0.67 -1.63 -1.07

Table 50: DE - K2204 PPV

outer run 1 2 3 4 5
n max 668 996 943 900 963
n layers 3 4 2 2 2
lr 0.0028 0.0004 0.0021 0.0033 0.0012
batch size 512 512 512 512 512
MSE 0.47 0.45 0.44 0.47 0.43
MAE 0.53 0.53 0.52 0.52 0.51
Max Error 3.36 2.99 3.29 2.82 3.2
NLL 0.104 0.079 0.067 0.109 0.049

Table 51: DE - Wine

outer run 1 2 3 4 5
n max 1017 287 554 821 932
n layers 5 6 6 4 6
lr 0.000021 0.000097 0.000022 0.000023 0.000020
batch size 8124 8124 8124 512 2048
MSE 0.000122 0.000056 0.000237 0.000134 0.000187
MAE 0.008688 0.005595 0.012509 0.008660 0.012281
Max Error 0.057 0.042 0.246 0.197 0.05
NLL -1.82 -1.38 -0.63 -1.45 -1.41

Table 52: DE - Elevators
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outer run 1 2 3 4 5
n max 924 968 686 52 920
n layers 2 2 2 4 2
lr 0.032 0.019 0.013 0.0115 0.013
batch size 512 512 512 512 512
MSE 849109.56 303990.69 331165.84 400592.34 302748.63
MAE 289.60 282.74 290.71 307.19 283.63
Max Error 75791.84 4974.049 9417.63 13011.88 8744.75
NLL 6.03 6.03 6.1 6.02 6.08

Table 53: DE - Diamonds

outer run 1 2 3 4 5
n max 877 335 696 101 283
n layers 2 2 2 3 4
lr 0.0016 0.0027 0.029 0.0035 0.0020
batch size 512 512 1024 512 512
MSE 86.6 148.8 88.8 87.4 94.6
MAE 6.42 9.07 6.67 6.38 7.29
Max Error 245.5 209.2 104.3 437.7 144.9
NLL 2.68 3.31 2.79 2.67 2.82

Table 54: DE - Year

outer run 1 2 3 4 5
n max 745 847 992 695 873
n layers 6 5 5 5 6
lr 4e-05 4e-05 1e-05 7e-05 4e-05
batch size 512 512 512 512 1024
MSE 0.00011 0.00011 0.00006 0.00019 0.00036
MAE 0.008 0.007 0.006 0.011 0.015
Max Error 0.55 0.71 0.23 0.38 0.60
NLL -3.35 -3.51 -3.85 -3.36 -2.93

Table 55: DE - R1 08 BPV

outer run 1 2 3 4 5
n max 40 53 531 138 361
n layers 5 6 2 5 3
lr 0.0002 0.0004 0.0003 0.0001 0.0001
batch size 512 512 1024 1024 512
MSE 0.000014 0.00007 0.000007 0.000025 0.000007
MAE 0.0028 0.0067 0.0013 0.0041 0.0021
Max Error 0.078 0.085 0.11 0.09 0.05
NLL -4.43 -3.34 -5.4 -3.8 -4.61

Table 56: DE - R1 08 PPV
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A.4.7 Random Forest

outer run 1 2 3 4 5
n estimators 110 163 75 169 162
max depth 21 36 36 41 16
min samples leaf 1 1 1 1 1
min samples split 2 2 2 2 2
max features all sqrt all all sqrt
MSE 5.33e-07 6.98e-07 6.38e-07 7.07e-07 6.77e-07
MAE 0.0004 0.0006 0.0005 0.0005 0.0006
Max Error 0.005 0.004 0.005 0.005 0.006

Table 57: RF - K2204 BPV

outer run 1 2 3 4 5
n estimators 197 151 146 156 134
max depth 47 29 38 12 47
min samples leaf 1 1 1 1 1
min samples split 2 2 3 3 2
max features all sqrt all all all
MSE 0.007 0.01 0.009 0.01 0.008
MAE 0.05 0.07 0.06 0.07 0.05
Max Error 0.54 0.49 0.48 0.59 0.54

Table 58: RF - K2204 PPV

outer run 1 2 3 4 5
n estimators 372 402 73 296 167
max depth 34 41 41 43 21
min samples leaf 1 1 2 1 1
min samples split 2 2 2 2 2
max features sqrt all sqrt sqrt sqrt
MSE 0.39 0.35 0.34 0.38 0.33
MAE 0.44 0.42 0.42 0.43 0.42
Max Error 3.41 3.54 2.54 2.84 2.95

Table 59: RF - Wine

outer run 1 2 3 4 5
n estimators 397 230 456 361 481
max depth 47 38 28 40 78
min samples leaf 1 1 2 1 1
min samples split 2 2 4 3 3
max features all all all all all
MSE 8e-06 7e-06 7e-06 7e-06 7e-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.03 0.02 0.04 0.02 0.02

Table 60: RF - Elevators
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outer run 1 2 3 4 5
n estimators 380 440 341 304 459
max depth 65 50 20 19 97
min samples leaf 1 1 1 1 1
min samples split 9 5 5 9 16
max features all sqrt all all sqrt
MSE 296984.19 300438.14 308578.82 296715.98 296594.85
MAE 270.3 269.43 273.49 271.51 270.63
Max Error 5790.27 6076.36 6566.03 12583.93 9961.32

Table 61: RF - Diamonds

outer run 1 2 3 4 5
n estimators 225 248 250 249 249
max depth 32 28 39 50 39
min samples leaf 8 8 6 6 8
min samples split 8 10 6 4 6
max features all all all all all
MSE 81.8 81.0 81.4 81.6 80.6
MAE 6.35 6.33 6.33 6.33 6.30
Max Error 70.15 74.46 76.53 66.73 74.15

Table 62: RF - Year

outer run 1 2 3 4 5
n estimators 128 160 172 176 99
max depth 13 13 12 13 13
min samples leaf 15 15 10 15 15
min samples split 15 9 14 11 4
max features all all all all all
MSE 0.05 0.05 0.12 0.05 0.05
MAE 0.17 0.17 0.27 0.17 0.17
Max Error 1.28 1.77 2.12 1.22 1.21

Table 63: RF - R1 08 BPV

outer run 1 2 3 4 5
n estimators 30 150 10 240 11
max depth 37 29 40 35 28
min samples leaf 1 1 1 1 2
min samples split 8 4 5 3 3
max features all all all all all
MSE 1.4e-07 1.4e-07 1.6e-07 1.4e-07 1.7e-07
MAE 7e-05 7e-05 8e-05 7e-05 9e-05
Max Error 0.005 0.004 0.005 0.004 0.004

Table 64: RF - R1 08 PPV
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A.4.8 XGBoost

outer run 1 2 3 4 5
n estimators 664 709 584 1355 490
max depth 9 11 7 4 7
learning rate 0.086 0.071 0.088 0.07 0.1
colsample bytree 0.56 0.51 0.6 0.54 0.53
subsample 0.57 0.53 0.66 0.64 0.64
reg alpha 0.18 0.39 0.018 0.04 0.02
reg lambda 6.21 0.0004 0.001 0.002 0.004
gamma 9.38e-08 1.42e-04 6.13e-06 5.05e-07 1.05e-07
min child weight 13.58 24.68 15.25 11.36 11.34
MSE 4e-06 5e-06 4e-06 4e-06 4e-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.01 0.01 0.01 0.01 0.01

Table 65: XGB - K2204 BPV

outer run 1 2 3 4 5
n estimators 664 709 584 1355 490
max depth 8 4 6 4 11
learning rate 0.08 0.08 0.08 0.09 0.08
colsample bytree 0.57 0.53 0.6 0.6 0.22
subsample 0.53 0.64 0.47 0.69 0.71
reg alpha 0.02 0.01 0.02 0.01 0.09
reg lambda 0.01 0.18 0.001 0.16 0.00004
gamma 7.36e-07 6.62e-06 1.36e-06 4.88e-06 2.29e-05
min child weight 12.89 16.92 14.97 16.46 20.34
MSE 0.05 0.05 0.05 0.05 0.86
MAE 0.18 0.18 0.17 0.18 0.72
Max Error 1.11 0.96 1.06 0.98 4.06

Table 66: XGB - K2204 PPV

outer run 1 2 3 4 5
n estimators 299 183 261 172 566
max depth 47 36 30 12 25
learning rate 0.03 0.05 0.02 0.05 0.01
colsample bytree 0.59 0.48 0.6 0.6 0.59
subsample 0.69 0.59 0.55 0.47 0.8
reg alpha 0.05 0.05 0.02 0.02 0.01
reg lambda 0.86 4.38e-06 1.22e-08 2.34e-02 8.87e-07
gamma 3.29e-04 2.09e-05 1.29e-06 7.22e-04 1.13e-08
min child weight 3.83 3.4 5.41 5.48 4.77
MSE 0.39 0.34 0.34 0.40 0.32
MAE 0.42 0.4 0.41 0.44 0.38
Max Error 3.7 3.13 2.71 2.68 2.89

Table 67: XGB - Wine
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outer run 1 2 3 4 5
n estimators 3308 1573 1089 681 2541
max depth 40 4 56 37 5
learning rate 0.054 0.069 0.063 0.088 0.96
colsample bytree 0.38 0.41 0.55 0.58 0.49
subsample 0.66 0.43 0.45 0.52 0.74
reg alpha 1.1 0.38 0.54 0.4 1.28
reg lambda 1.97e-04 2.54 0.046 1.81e-08 4.4e-08
gamma 7.48e-05 7.7e-08 5.69e-05 2.11e-06 1.72e-06
min child weight 18.62 12.38 28.31 16.5 3.08
MSE 5e-06 4e-06 5e-06 5e-06 4e-06
MAE 0.002 0.002 0.002 0.002 0.002
Max Error 0.02 0.02 0.03 0.02 0.02

Table 68: XGB - Elevators

outer run 1 2 3 4 5
n estimators 266 562 511 261 522
max depth 72 49 16 28 52
learning rate 0.065 0.036 0.078 0.87 0.084
colsample bytree 0.57 0.51 0.6 0.47 0.48
subsample 0.54 0.72 0.59 0.72 0.8
reg alpha 0.33 0.43 0.96 0.44 0.99
reg lambda 9.7e-08 1.13e-05 2.19e-08 1.12e-04 1.55e-06
gamma 2.6e-04 7.06e-04 1.84e-08 1.53e-04 1.71e-057
min child weight 4.81 4.54 3.5 33.91 2.44
MSE 298920.73 300966.62 315999.61 292805.28 298428.54
MAE 275.33 277.04 282.61 281.54 280.42
Max Error 5257.6 6201.39 8100.32 8754.91 8892.31

Table 69: XGB - Diamonds

outer run 1 2 3 4 5
n estimators 840 469 742 494 519
max depth 44 46 42 46 46
learning rate 0.0557 0.0552 0.069 0.0552 0.0552
colsample bytree 0.59 0.59 0.48 0.59 0.59
subsample 0.65 0.63 0.80 0.63 0.63
reg alpha 2.37 1.47 1.64 1.47 1.47
reg lambda 2.6e-08 2.7e-08 7.9e-06 2.7e-08 2.7e-08
gamma 2.3e-06 2.6e-05 7.8e-07 2.6e-05 2.6e-05
min child weight 84.1 63.1 75.4 63.05 63.05
MSE 73.03 72.98 72.85 73.42 72.46
MAE 5.95 5.96 5.94 5.95 5.93
Max Error 70.33 69.94 73.18 68.52 70.43

Table 70: XGB - Year
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outer run 1 2 3 4 5
n estimators 664 709 584 1355 490
max depth 43 6 69 39 29
learning rate 0.086 0.084 0.099 0.81 0.071
colsample bytree 0.53 0.46 0.46 0.57 0.58
subsample 0.75 0.56 0.45 0.4 0.56
reg alpha 1.4 1.1 0.43 1.14 2.21
reg lambda 1.68e-04 0.0018 3.74e-07 1.84e-06 0.18
gamma 1.86e-08 8.67e-06 2.8e-06 1.72e-04 2.18e-06
min child weight 2.81 33.26 10.49 2.41 3.46
MSE 0.011 0.013 0.013 0.015 0.014
MAE 0.07 0.08 0.07 0.09 0.08
Max Error 1.94 2.10 1.81 2.14 2.48

Table 71: XGB - R1 08 BPV

outer run 1 2 3 4 5
n estimators 888 621 1376 578 526
max depth 48 4 60 11 40
learning rate 0.065 0.081 0.023 0.0997 0.087
colsample bytree 0.326 0.392 0.4427 0.247 0.434
subsample 0.409 0.722 0.634 0.621 0.792
reg alpha 0.018 0.102 0.432 0.035 0.59
reg lambda 4.08e-02 2.5e-08 4.6e-03 1.8e-05 2.5e-05
gamma 1.0e-06 1.47e-07 1.2e-04 1.1e-07 2.5e-7
min child weight 8.32 2.92 18.22 50.19 37.75
MSE 0.0002 0.0001 0.0002 0.0002 0.0002
MAE 0.009 0.007 0.010 0.009 0.011
Max Error 0.15 0.09 0.09 0.15 0.09

Table 72: XGB - R1 08 PPV
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