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Abstract

Marginal effects (ME) are a well-known framework to interpret feature effects in tra-

ditional statistical models. In part, their appeal is based on their simplicity and con-

ceptual connection to beta coefficients in linear regression models. Forward marginal

effects (fME) are a new class of MEs designed as a model-agnostic method for in-

terpreting feature effects in machine learning (ML) models. They are computed as

a forward difference in prediction due to a specified change in feature values. This

thesis introduces fme, an R package that computes fMEs for arbitrary supervised re-

gression models. As of now, it is the only R package with the ability to estimate MEs

for tree-based learners, such as the popular random forests or gradient-boosted trees.

The main objective of this implementation is to facilitate a full workflow of computing

fMEs for regression models: extrapolation point detection, estimating the non-linearity

of the prediction function along the forward difference, aggregating MEs, identifying

feature subspaces through recursive partitioning, and visualizing results. The main

idea is to separate the functionality into modular components implemented as classes,

allowing for maximum flexibility in extending the design. In this way, fme can be easily

expanded to new models or visualization methods. While fme internally works on a

R6 object-oriented class system, it provides convenient wrapper functions for a highly

intuitive user experience.
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1 INTRODUCTION

1 Introduction

While the excellent predictive performance of machine learning (ML) models has been

demonstrated in a variety of settings, the biggest challenge to a more widespread adop-

tion of ML systems likely resides in a perceived lack of interpretability (Doshi-Velez and

Kim, 2017). Specifically, in supervised learning, there is some interest in interpreting model

properties in a way similar to beta coefficients in linear regression models. Marginal effects

(ME) are a popular method for interpreting feature effects in traditional statistical models,

such as logistic regression or generalized linear models (GLM), and are implemented in a

wide variety of R packages. However, they have not yet been used as a model-agnostic

interpretation method in supervised ML.

Scholbeck et al. (2022) introduce forward marginal effects (fME) to overcome some of

the conceptual deficiencies of traditional MEs. They are computed as a forward difference

in prediction due to a specified change in feature values. This thesis implements fMEs as

a method to interpret feature effects in R. The result of this work is fme, a fully functional

and documented R package designed to compute fMEs for arbitrary supervised regression

models. To our knowledge, this is the only R package that implements the concept of MEs

as a model-agnostic interpretation method. By implication, this means MEs can now be

computed for popular ML models like random forests or gradient-boosted trees. Fme allows

users to compute, analyze and visualize feature effects for numerical and categorical fea-

tures. For numerical features, this comprises both univariate and bivariate feature changes.

Furthermore, fme performs extrapolation detection and estimates the non-linearity of the

shape of the prediction function along the forward difference. As a further tool, it allows

for semi-global interpretations of MEs by partitioning the feature space into subspaces with

more homogeneous MEs.

The thesis is structured as follows: Chapter 2 explains the theoretical background.

We introduce the necessary notation, conceptualize interpretability in ML and provide a

short survey of methods for interpreting feature effects. We review the existing method-

ology of MEs, in particular the framework for computing fMEs as suggested by Scholbeck

et al. (2022). Technical aspects of the implementation, including software design and class

architecture, are covered in chapter 3. We show how to install and use the fme package in

chapter 4. Using real-life data of bike sharing usage in Washington, D.C., we demonstrate

its main functionalities, user interface and outputs. Lastly, chapter 5 summarizes the main

results and discusses the challenges and tasks for fme’s further development.

The reader can find the source code of the developer version of fme on GitHub1.

1https://github.com/holgstr/fme.
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2 BACKGROUND

2 Background

2.1 Notation and Terminology

In supervised ML, the goal is to infer a model that maps features from the training data to

an target, and then use this model to predict on (potentially unseen) data from the same

underlying distribution (Bischl et al., 2021). Consider a data set D with n observations

where each observation (x(i), y(i)) consists of a p-dimensional vector of feature variables

x(i) = (x(i)
1 , . . . , x

(i)
p ) ∈ X and a scalar target variable y(i) ∈ Y. Thus, the set of all

feature values in D, often called feature matrix, can be represented by {x(i)}n
i=1 and the

set of all target values by {y(i)}n
i=1. An arbitrary feature subspace is denoted by X[ ] ⊊ X .

A partitioning P = {X[1], . . . , X[m]} divides the feature space X in m mutually disjoint

(specific) partitions, with
⋃̇m

i=1X[i] = X . It is assumed that all observations in D are

independently and identically distributed and sampled from an usually unknown underlying

probability distribution PXY , defined on the sample space X ×Y. The corresponding random

variables are X = (X1, . . . , Xp) and Y . Let P = {1, . . . , p} be the index set denoting all

features and S = {1, . . . , s} ⊆ P be a subset of P . The feature values of a single observation

in the dimensions represented by S are denoted by x(i)
S . Complementary feature values are

indexed by −S or −j. In this way, we can express an observation x(i) as (x(i)
S , x(i)

−S).

Each of the p dimensions of the vector x(i) is of numerical or categorical type, meaning

entries are either real numbers or elements of a finite set of distinct categories, e.g., city

names or blood groups. Within supervised ML, a common task is (univariate) regression,

where the target variable y(i) ∈ Y ⊆ R is of numerical type. A learner is a procedure

or computer algorithm that maps a data set D to a prediction function f̂ : X → Y, which

becomes f̂ : X → R in the case of a regression task. A major objective of supervised ML is

to minimize the generalization error of the model f̂ , i.e., the expected performance of the

prediction function on new observations sampled from Pxy that were not used for learning.

Here, performance is often measured by a function that maps a prediction from f̂ and the

true value of the target variable y(i) to some metric, such as mean squared error or mean

absolute error.

There is a wide range of learners that can be used to generate prediction functions. A

learner typically restricts the set of admissible prediction functions and then uses a simple

rule or iterative algorithm to identify a prediction function f̂ . An example for a more

complicated learner are random forests (Breiman, 2001), as implemented in the ranger R

package (Wright and Ziegler, 2017). Here, the learner constructs a large number of decision

trees, each of which is trained on a bootstrap sample of D. A decision tree is “grown” by a

forward-looking algorithm that recursively partitions the feature space in a way that creates

2
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subspaces as homogeneous as possible with respect to the target variable. In the context of

decision trees, such subspaces are commonly referred to as nodes. The unpartitioned feature

space is called root node and the subspaces of the final partitioning are called terminal nodes.

2.2 Interpretability in Supervised Machine Learning

2.2.1 What is Interpretability?

The advent of ML and an ever-expanding range of learners has been accompanied by a

growing desire to understand what a model has learned from the data. Efforts to make ML

model outputs explainable and interpretable can be summarized with the terms Explainable

Artificial Intelligence (XAI) or Interpretable Machine Learning (IML). However, consensus

seems to be weak on what exactly interpretability means in the context of (supervised) ML.

Murdoch et al. (2019) note that indeed “[o]n its own, interpretability is a broad, poorly

defined concept”, and attempt to define it as “the extraction of relevant knowledge from a

machine-learning model concerning relationships either contained in data or learned by the

model.” Here, knowledge can be understood to be what may provide insight into what a

particular audience perceives as relevant for the given task. One aspect that makes a precise

definition of interpretability so challenging is that it highly depends on the perspective of

the user. In some cases, a visualization can provide the most meaningful insights, in others,

a mathematical equation may be preferred.

Murdoch et al. (2019) suggest to guide potential trade-offs of choosing one interpre-

tation method over another by three desiderata: predictive accuracy, descriptive accuracy,

and relevancy. The first aspect, predictive accuracy, maps to what we have described before

as the generalization error of a supervised ML model. If a model cannot be expected to pre-

dict well on data it has not been trained on, any interpretation falls short of its objective,

as the underlying relationship between feature and target variables has not been approxi-

mated well enough. As for the second aspect, descriptive accuracy relates to the post hoc

analysis stage. Often, an interpretation method reduces the complex representation learned

by a model to a simpler one. While this is a desired property in many cases, it can lead

to substantial distortions in the inferred relationship between feature and target variables.

This is especially relevant for models where the prediction function is based on interactions

of the feature variables with one another, often in a highly non-linear fashion, e.g., neural

networks. Lastly, any interpretation method needs to have relevancy, i.e., it needs to be

capable of providing the intended insight into the relationship the user wants to understand.

3
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2.2.2 Interpreting Feature Effects

Considering the question of interpretability of supervised ML models, one is often inter-

ested in feature effects, i.e., the learned relationship between feature and target variables.

In principle, there are two pathways to achieve interpretability in this context. The first

one is to select models such that the shape of their prediction function can be leveraged

to offer means of interpretation. They allow for model-based interpretations. The other

one is to detach model selection from interpretation altogether. This allows for greater

flexibility in the choice of a learner, as considerations about model-inherent interpretability

can be discarded. After a model has been trained, an interpretation method is chosen in

a subsequent, post hoc interpretation stage. Such an interpretation method approximates

the modelled relationship between feature and target variables in a way that often enables

an audience to gain insight into the true underlying relationship. This allows for model-

agnostic interpretations. Notably, post hoc interpretation does not necessarily run contrary

to model-based interpretation: There are settings where users may benefit from conduct-

ing a model-agnostic interpretation even if they have trained a model which offers (some)

inherent interpretability. For example, estimated beta coefficients of a logistic regression

model can be interpreted with respect to how an increase of the feature variable by one

unit changes the odds ratio (multiplicatively, by a factor of exp(βj)). This insight can be

further enriched by a model-agnostic interpretation method that allows for an interpretation

on the level of the probability scale, e.g., average marginal effects. Subsequently, we provide

a short overview of both model-based and model-agnostic interpretations for feature effects

in supervised ML.

Model-based interpretation of feature effects

Model-based interpretation solely relies on a model’s prediction function to interpret feature

effects. Molnar (2022) lists some of the most widely used interpretable models. They are

linear regression, logistic regression, generalized linear models (GLM), generalized additive

models (GAM), decision trees, and others. Among these, linear regression and its extensions

(see, for example, Hastie et al., 2009) can likely be counted as the most well-known modeling

framework in statistics and ML. One could argue that its perceived attractiveness stems in

part from its intuitive interpretability: Given the absence of feature interactions, an increase

of the j-th feature variable by one unit changes the expected target variable by βj . The

simplicity of the prediction function lets users interpret a linear regression model directly

through the explicit coefficient estimates. Furthermore, it lends itself to global as well as

local interpretations, as the beta coefficients are assumed to be constant over the entire

feature space.
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Generalizations of the linear model may allow for a more flexible modeling of the

feature-target relationship. For example, a GLM as introduced by Nelder and Wedderburn

(1972) may be a better model to fit a target variable that does not follow a normal dis-

tribution, but rather a Poisson or Gamma distribution. Often, interpretation of a GLM is

not as straightforward as that of a linear regression model. However, its prediction function

exhibits properties that facilitate insights into the modeled relationship between feature and

target variables. More specifically, the choice of assumed distribution and link function de-

termines how the estimated beta coefficients can be interpreted. Molnar (2022) notes that

most GLMs are less interpretable than linear regression models, especially because any non-

identity link function severely restricts interpretation. Furthermore, it is argued that other

learners, e.g., ensemble methods such as random forests or gradient-boosted trees, tend to

achieve better performance than linear models. On the upside, such expected gains in model

performance are desired on the grounds of the desideratum of predictive accuracy. On the

downside, a model may hardly be inherently interpretable if it consists of hundreds of base

learners as the aforementioned ensemble learners. In part, this has led to efforts to separate

interpretation from model building.

Model-agnostic interpretation of feature effects

Ribeiro et al. (2016a) suggest that confining ML to interpretable models implies a serious lim-

itation. They argue the desire for inherent interpretability impairs unnecessary constraints

on the choice of model. This hints at a general trade-off between model complexity and

interpretability, as observed by Freitas (2014). However, the lack of interpretability seems

to be an impediment to the further adoption of ML models. Therefore, model-agnostic in-

terpretation frameworks can be used to bridge the gap between arbitrarily complex models

and the valid desire to explain a model’s predictions.

Ribeiro et al. (2016a) explain the rationale for such an approach: Firstly, predictive

accuracy does not need to be sacrificed on the grounds of explainability concerns. Secondly,

interpretation methods can be tailored to the information need, while keeping the model

fixed. This allows for combining explanations of different types to obtain a comprehen-

sive, multi-pronged understanding of the underlying feature-target relationship. Thirdly, as

model selection and interpretation do not depend on each other, a model-agnostic approach

can easily take advantage of switching to a different model, especially as this is not uncom-

mon in typical ML pipelines. Model-agnostic interpretation therefore builds upon treating

the original model as a black box, which means that the model’s prediction function can be

known to the user, but interpretations are not derived directly from the prediction function

itself. Rather, information is extracted from the black box in a second step. There are
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many ways to do this. In general, a distinction between local and global model-agnostic

interpretation methods is made (see, e.g., Molnar, 2022).

Local model-agnostic interpretation methods of feature effects

Local interpretation methods provide explanations for predictions on individual observa-

tions. For example, Individual Conditional Expectation (ICE) plots (Goldstein et al., 2015)

visualize the modeled relationship between one or more features and the predicted target

variable. For a single observation and feature, this means the feature vector is held constant

in all other dimensions and changed only in the dimension of the selected feature. The

feature value is then changed according to a grid and the respective predictions are plotted,

isolating the effect the feature has on the model’s prediction for a single observation.

Alternatively, local surrogate models, such as Local interpretable model-agnostic ex-

planations (LIME) (Ribeiro et al., 2016b), try to approximate a model’s local behavior with

an interpretable surrogate model. LIME trains the surrogate model on a perturbed sam-

ple of the observation of interest, where the training instances are weighted by a proximity

measure. The surrogate model, e.g., a linear regression model or decision tree, is then used

to analyse feature effects. The specific implementation of LIME for tabular data depends

on hyperparameters such as the choice of the smoothing kernel, which influences the sample

used for training the surrogate model. Slack et al. (2020) suggest that LIME explanations

are susceptible to deliberate manipulation. Alvarez-Melis and Jaakkola (2018) find that

LIME explanations of neighboring observations have high instability and are often incon-

sistent. Molnar (2022) concludes that although local surrogate models are very promising,

LIME in its current form cannot be safely applied.

Counterfactual explanations are a local interpretation method which specify the small-

est change to an individual observation’s feature values that results in a pre-defined change

of the model’s prediction. Compared to LIME, counterfactuals (Wachter et al., 2018) rely on

fewer assumptions that might impose limitations on its interpretability. Arguably, the need

to decide on how to handle the possibility of multiple competing counterfactual explanations

poses the biggest obstacle in their application (Molnar, 2022).

Shapley values (Štrumbelj and Kononenko, 2014) measure how much the concrete value

of a feature contributes to the difference between the model’s prediction for the individual

observation and the mean prediction (over all observations), given the observation’s feature

values. The underlying concept has its origin in game theory and has inspired Shapley addi-

tive explanations (SHAP) (Lundberg and Lee, 2017), a framework which estimates Shapley

values with more efficient procedures.
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Global model-agnostic interpretation methods of feature effects

Global interpretation methods provide explanations for the average behavior of a model. For

example, the partial dependence (PD) plot (Friedman, 2001) visualizes a model’s prediction

as a function of one or more features. This is done by computing the average prediction of

the ML model over all observations in the training data, while changing only the feature

variables of interest. Therefore, PD plots are the global equivalent of ICE plots, which

means they can be conveniently displayed in the same plot, e.g., as implemented in the iml

R package (Molnar et al., 2018). Although the interpretation of PD plots is straightforward,

they can face a limitation in their assumption of independence between individual features,

which can become problematic if features are correlated (Molnar, 2022).

Accumulated local effects (ALE) (Apley and Zhu, 2020) constitute an effort to cor-

rect this shortcoming. In the presence of correlated features, they seek to avoid averaging

predictions of unlikely observations. This is done by partitioning the feature of interest in

many small intervals and computing differences in predictions rather than simple averages

for each interval. The differences calculated for the observations within each interval are

then accumulated and centered, resulting in a straightforward interpretation: For a given

value of the feature variable, the estimated ALE measures the effect of the feature value

on the prediction, compared to the average prediction. The computation of effects within

intervals ensures that ALE works with the conditional rather than the marginal distribution

of a feature, which alleviates the main problem of PD plots. Molnar (2022) highlights a

potential shortcoming of ALEs: For convenience, ALE plots display a smoothed curve of

the effect, which invites for a global interpretation along perceived gradual changes of the

feature value. However, ALEs are calculated separately for each interval using different ob-

servations. Therefore, it is argued that an interpretation across intervals is not permissible,

especially in the presence of correlated features.

2.3 Marginal Effects

2.3.1 Existing Methodology

Marginal effects (ME) are a widely used concept in statistics and other fields, such as

economics (see, for example, Greene, 2012). They have a long history in application, which

is arguably grounded upon its connection to the interpretation of the simple linear regression

model: “[...] [M]arginal effects should measure the change in the expected value of y as one

independent variable increases by unity while all other variables are kept constant” (Bartus,

2005). As noted before, for linear regression models, the ME of a feature variable corresponds

to the estimated beta coefficient (in the absence of feature interaction). This is simply an
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implication of the linearity of the prediction function. However, the shape of the prediction

function of many ML models cannot be leveraged to allow for a straightforward computation

of MEs based on estimated model parameters. Therefore, a variety of techniques have

been devised to compute MEs for both categorical and numerical features, a survey of

which is provided by Scholbeck et al. (2022). Among those for numerical features, the most

commonly used framework for MEs is based on estimating the partial derivative of the

prediction function w.r.t. the feature variable of interest. For example, this can be done by

approximating with a finite (forward) difference:

MEj,x(i) =
∂f̂(X)
∂Xj

|X=x(i)
≈

f̂(x(i)
1 , . . . , x

(i)
j + h, . . . , x

(i)
p ) − f̂(x(i))

h
, h > 0 (1)

One advantage of a derivative-based definition is the widespread familiarity with the concepts

of derivatives and finite differences. On the contrary, the estimate may depend on the kind

of finite difference used (forward, backward or central) and the choice of the step size h.

This can lead to deviations between the estimates of MEs of different software packages,

depending on the concrete approximation used. Scholbeck et al. (2022) discuss the most

prominent weakness of this class of MEs. Their criticism reflects on the default interpretation

of derivative-based MEs: if the feature value increases by one unit, the predicted outcome

should increase by the estimated ME. This intuition holds true for linear prediction functions

but not for non-linear prediction functions. The fact that the interpretation of the ME

requires a step size h (with h = 1 being the default) much larger than h in Eq. 1 can easily

mislead one into confusing the tangent value of the prediction function f̂ at point x(i) with

the true value of f̂ at point (x(i)
1 , . . . , x

(i)
j + h, . . . , x

(i)
p ).

For the R programming language for statistical computing (R Core Team, 2021), there

is a variety of packages that allow users to compute MEs for different trained ML mod-

els. The margins package is an open-source implementation of Stata’s (StataCorp, 2019)

margins command by Leeper (2021) that uses central differences to estimate the partial

derivative numerically. Here, MEs can be calculated through calling margins(), which is a

generic function of the package. Additionally, the package includes further functions that

allow for visualizations of the computed MEs. It can be used for regression models of classes

lm (linear regression), glm (GLM), and loess (local polynomial regression).

The effects package (Fox, 2003) and the mfx package (Fernihough, 2019) mark other

efforts to compute and visualize MEs in R. However, they share the detriment of being

restricted to the model subclass of GLMs. The marginaleffects package (Arel-Bundock,

2022) features compatibility for a wider range of models, e.g., GAMs as implemented in

the mgcv package (Wood, 2011). It estimates MEs as partial derivatives with a forward

8
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differences approach. Its visualizations are created with ggplot2 (Wickham, 2016), enabling

a user-friendly, flexible extension of plots.

All of the aforementioned R packages are severely restricted in the space of ML models

they can be applied to. While they can be used for R objects of class lm, glm, and some others,

they cannot be used for tree-based models, e.g., R objects of class ranger, randomForest,

or xgboost. Scholbeck et al. (2022) note this is a constraint induced by the derivative-based

ME: most observations lie on piecewise constant parts of the prediction function and have a

finite difference of zero when h is small enough. As a consequence, the lack of compatibility

with the popular subclass of tree-based ML models makes derivative-based MEs ill-suited

to serving as a general post hoc interpretation tool for supervised regression models.

2.3.2 Forward Marginal Effects

Forward marginal effects (fME) are a new class of MEs introduced by Scholbeck et al. (2022).

They are motivated to compensate for the shortcomings of derivative-based MEs and entail

a simple, more intuitive definition of MEs. For a single numerical feature variable, the fME

of an observation is defined as follows:

fMEx(i), hj
= f̂(x(i)

1 , . . . , x
(i)
j + hj , . . . , x(i)

p ) − f̂(x(i)) (2)

Note that this is simply the forward difference of the prediction function at point x(i). The

step size hj can be specified w.r.t. the required scale of interpretation. Most of the time, this

can be a unit change: hj = 1. In practice, it can be any number one finds most useful for the

purpose of interpretation, e.g., for a feature variable ’annual household income in euros’, it

could be hj = 1,000. The merit of fMEs is that contrary to derivative-based MEs, the step

size used for effect estimation is the same as the (implied) step size used for interpretation.

As the fME is computed without dividing by the step size, it is interpreted as a change

in prediction (rather than a rate of change): if the j-th feature value increases by hj , the

predicted outcome increases by the estimated fME.

The univariate fME can be extended to incorporate multivariate changes in numerical

feature values: for the feature subset S = {1, . . . , s} ⊆ P affected by the multivariate step,

the multivariate change (x(i)
1 +h1, . . . , x

(i)
s +hs) of an observation is denoted by (x(i)

S +hS),

an observation’s unaffected features are denoted by x(i)
−S . Thus, the multivariate fME of an

observation becomes:

fMEx(i), hS
= f̂(x(i)

S + hS , x(i)
−S) − f̂(x(i)) (3)
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Scholbeck et al. (2022) further propose an univariate observation-wise ME for categor-

ical features. Equivalent to the step size hj for a numerical feature, a reference category ch

is chosen for the categorical feature of interest x(i)
j . Correspondingly, the unaffected features

are denoted by x(i)
−j . For observations with x

(i)
j ̸= ch, the ME is then computed as follows:

MEx(i), ch
= f̂(ch, x(i)

−j) − f̂(x(i)) (4)

This definition corresponds to the fME insofar as the model’s prediction for the unaltered

observation serves as reference point and is compared against the prediction for the altered

observation. Drawing from this similarity, we could refer to the modification of x(i) to

(ch, x(i)
−j) in Eq. 4 as categorical step in the same way as we do to the modification of x(i)

to (x(i)
S + hS , x(i)

−S) in Eq. 3 as (multivariate) numerical step.

Extrapolation point detection

Computing fMEs as in Eq. (3) and categorical MEs as in Eq. (4) requires changing feature

values of observations in the training data. This creates artificial data points that can be

located outside of the multivariate joint distribution of the data PX . Furthermore, it can

lead to predictions in areas of X with a low density of training points (Molnar et al., 2020).

This is much less a challenge for derivative-based MEs than it is for fMEs. Derivative-based

MEs as defined in Eq. (1) are typically estimated with h being close to zero. On the other

hand, fMEs are defined for arbitrary step sizes.

There are many ways to identify such extrapolation points (EP). For example, King and

Zeng (2006) define an EP as an observation outside of the convex hull of the training data.

Scholbeck et al. (2022) discuss a multi-step approach termed Monte-Carlo extrapolation

classification (MCEC). In general, they argue to exclude EPs from the data used to calculate

fMEs. Their workflow suggests to classify an observation as EP if it is located outside of

the multivariate envelope of the training data after the change in feature values. Using this

simple criterion, the set of EPs for training data D and a step hS can be represented as the

following index vector:

ED, hS
= { i | (x(i)

S + hS , x(i)
−S) /∈ [min(x1), max(x1)] × . . . × [min(xp), max(xp)] }

⊆ {1, . . . , n}
(5)

where min(xj) and max(xj) denote the minimum and maximum values in the j-th dimension

across all observations in D, respectively. Note that the multivariate envelope is only sensibly

defined for numerical features.
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Non-linearity measure (NLM)

As the fME is not designed to capture information about the prediction function’s shape

along the forward difference, Scholbeck et al. (2022) devise a non-linearity measure (NLM) to

close this gap. Defined in arbitrary dimensions, the NLM quantifies how well the multivariate

secant along the forward difference as a linear reference function can describe the shape of

the prediction function. The multivariate secant of an observation x(i) and step size hS

along the forward difference is:

gx(i), hs
(t) =



x
(i)
1 + t · h1

...

x
(i)
s + t · hs

...

x
(i)
p

f̂(x(i)) + t · fMEx(i), hS


, t ∈ [0, 1] (6)

In order to compare the multivariate secant with the prediction function along the forward

difference, the concept of the coefficient of determination R2 is extended to continuous

integrals. In analogy to R2, this means comparing the squared deviation of the prediction

function and the secant with the squared deviation of the prediction function and its mean.

Both deviations are computed as line integrals along the same path through the feature

space. For a single observation, γ(t) yields the parametrization of the path through X :

γ(t) =


x

(i)
1
...

x
(i)
p

 + t ·



h1
...

hs

0
...

0


, t ∈ [0, 1] (7)

with γ(0) = x(i) and γ(1) = (x(i)
S + hS , x(i)

−S). The line integral of the squared deviation

between the prediction function and the multivariate secant along the forward difference is

represented by:

(I) =
∫ 1

0

(
f̂(γ(t)) − gx(i), hs

(γ(t))
)2 ∥∥∥∂γ(t)

∂t

∥∥∥
2
dt (8)
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and the line integral of the squared deviation between the prediction function and the mean

prediction along the forward difference is represented by:

(II) =
∫ 1

0

(
f̂(γ(t)) − f̂

)2 ∥∥∥∂γ(t)
∂t

∥∥∥
2
dt (9)

with the mean prediction f̂ as the integral of the prediction function along the forward

difference divided by the length of the path:

f̂ =

∫ 1
0 f̂(γ(t))

∥∥∥ ∂γ(t)
∂t

∥∥∥
2
dt∫ 1

0

∥∥∥ ∂γ(t)
∂t

∥∥∥
2
dt

=
∫ 1

0
f̂(γ(t))dt (10)

and ∥∥∥∂γ(t)
∂t

∥∥∥
2

=
√

h2
1 + . . . + h2

s (11)

The line integrals can be approximated with Simpson’s rule or other methods. Correspond-

ing to the definition of the R2, the NLM is computed as follows:

NLMx(i),hS
= 1 −

(I)
(II) (12)

An NLM of 1 indicates that the prediction function is equivalent to the secant and, therefore,

linear. A lower value implies increasing non-linearity, a negative value suggests the mean

prediction to predict better than the multivariate secant. Scholbeck et al. (2022) recommend

to use a hard (lower) bound of zero to indicate non-linearity.

2.3.3 Aggregations of marginal effects

Often, one is more interested in the interpretation of MEs for a set of observations rather

than for a single one. Consider one wants to aggregate MEs over the entire data set D.

The two most commonly used concepts to aggregate MEs are the marginal effect at means

(MEM) and the average marginal effect (AME) (see, for example, Williams, 2012). Both

concepts can be applied to derivative-based MEs and fMEs, respectively.

Marginal effect at means (MEM)

The idea of the MEM is to to compute the ME for a single observation that is representative

for the distribution PX . Therefore, feature values are replaced by their sample mean. In the
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case of fMEs, the MEM for a multivariate change in feature values is:

MEMD, hS
= f̂

 1
n

n∑
i=1

x(i)
S

 + hS ,
1
n

n∑
i=1

x(i)
−S

 − f̂

 1
n

n∑
i=1

x(i)

 (13)

Note that this version of the MEM is only defined for observations with exclusively numerical

features, as categorical features cannot be averaged.

Average marginal effect (AME)

The AME is the average of all MEs computed for the observations in D. In the case of

fMEs, the AME for a multivariate change in feature values is:

AMED, hS
=

1
n

n∑
i=1

fMEx(i), hS
=

1
n

n∑
i=1

(
f̂(x(i)

S + hS , x(i)
−S) − f̂(x(i))

)
(14)

In contrast to the MEM, the AME can be computed for data with both numerical and

categorical features, providing greater practical utility.

Beyond that, the AME can be used to aggregate the observation-wise MEs for cate-

gorical features as defined in Eq. (4). It is computed as follows:

AMED, ch
=

1
n

n∑
i=1

MEx(i), ch
=

1
n

n∑
i=1

(
f̂(ch, x(i)

−j) − f̂(x(i))
)

∀i : x
(i)
j ̸= ch (15)

Conditional average marginal effects (cAME) on feature subspaces

Scholbeck et al. (2022) discuss how aggregating MEs across the entire feature space X can

fail to capture the heterogeneity of MEs. In order to compromise between the benefit of

aggregation and the desire to conduct a more local evaluation of feature effects, they suggest

to compute AMEs conditional on a feature subspace X[ ] ⊊ X . The resulting conditional

average marginal effect (cAME) may then serve as a device for semi-global interpretations.

The cAME for numerical fMEs as defined in Eq. (3) is computed for observations represented

as index vector I = { i | x(i) ∈ X[ ] } ⊊ {1, . . . , n}:

cAMED, I, hS
=

1
| I |

∑
i∈I

fMEx(i), hS
=

1
| I |

∑
i∈I

(
f̂(x(i)

S + hS , x(i)
−S) − f̂(x(i))

)
(16)
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The cAME for categorical MEs as defined in Eq. (4) is computed for observations represented

as index vector J = { i | x(i) ∈ X[ ] ∧ x
(i)
j ̸= ch } ⊊ {1, . . . , n}:

cAMED, J , ch
=

1
| J |

∑
i∈J

MEx(i), ch
=

1
| J |

∑
i∈J

(
f̂(ch, x(i)

−j) − f̂(x(i))
)

(17)

For the purpose of semi-global interpretations, they suggest to partition the feature

space into mutually exclusive subspaces. This should be done in a way that results in

subspaces containing observations with more homogeneous MEs. The partitioning can be

conducted with recursive partitioning (RP) algorithms like CART (Breiman et al., 1984) or

CTREE (Hothorn et al., 2006). Subsequently, one computes cAMEs for each partition of

the feature space. In a similar way, a conditional average non-linearity measure (cANLM)

can be computed for such a subspace. The interpretation is as follows: For an arbitrary

partition X[ ], the cAME represents the average ME of observations that are located in

X[ ]. The cANLM then seeks to describe the average linearity of the shape of the predic-

tion function along the forward difference for observations located in X[ ]. Thus, one gets a

comprehensive overview of the behavior of the ML model across subsets of the feature space.
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3 Implementation

The idea of the fme package is to separate the functionality into modular components imple-

mented as classes. The package is written entirely in R and in accordance with open-source

software design principles. Users can review the source code by inspecting the corresponding

GitHub repository and provide dynamic feedback regarding potential malfunctions, feature

requests or similar issues.

This chapter describes the main idea of fme. Section 3.1 provides an overview about

the design principles used to guide the implementation. The illustrations of design patterns

are inspired by the framework used by Gamma et al. (1995). In section 3.2, we introduce

the class architecture used and the functionality contained within each class.

3.1 Software Design Principles

3.1.1 Object-Oriented Design

The modular design principle mentioned above can be realized effectively with object-

oriented programming (OOP). R is a programming language that is both functional and

object-oriented (Morandat et al., 2012). It offers multiple class-based OOP systems, the

most notable ones being S3, S4 and R6 (Wickham, 2019). Whereas S3 and S4 are included

in base R, R6 is provided by the R6 package (Chang, 2021). The fme package relies on R6

for its class architecture and on S3 methods for enhanced user convenience.

R6

All classes are implemented as R6 classes. Instantiating an object of a R6 class can be done

through class$new(). R6 utilizes the OOP paradigm of encapsulation, which implies that

methods belong to classes. A method of an R6 object can be called by object$method().

In the same way, fields can be called by object$field. This has the advantage that

the user may quickly identify appropriate methods and fields of an R6 object by typing

object$ in the console in RStudio. A further advantage of R6 is method chaining, i.e.,

calling multiple methods sequentially on the same object can be expressed efficiently as

object$method()$method(). This works for the same method as it does for different ones.

On the contrary, many users are likely not familiar with the R6 syntax, such as the infix op-

erator $. In the implementation, this is alleviated with the help of wrapper functions. Here,

a wrapper function is a generic R function that simply masks the underlying R6 commands.

For example, the fme() function is a wrapper for FME$new()$compute(). This allows users

to access the package’s main functionality in the way that is most convenient for them.
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S3 methods

As mentioned before, fme implements classes exclusively in R6. However, it provides addi-

tional functions that are commonly called S3 methods (see, for example, Wickham, 2019).

These methods have their origin in the S3 OOP system, but can be defined for R6 objects

as well. In principle, a S3 method is a function that can be applied to objects of differ-

ent classes, with the internal implementation of the function being specific to the class of

the object provided as argument. So far, the fme package includes the well-established S3

methods print(), summary(), and plot() for its two main classes, FME and Partitioning.

3.1.2 Defensive Programming

In software engineering, defensive programming is a concept that entails software behaving

in a predictable manner in the case of unexpected user actions (Wickham, 2014). For

example, if a user provides an unsuitable argument to a function, it is helpful to throw an

error in combination with an informative error message. This has the merit of enabling

efficient debugging and preventing logical errors, i.e., errors that do not necessarily cause

the program to terminate or crash but produce wrongful output. In fme, this is facilitated

through the use of the checkmate package (Lang, 2017). For the three main classes of

fme that the user is expected to interact with (Predictor, FME and Partitioning), it is

ensured that if arguments required at instantiation have the wrong form, an informative

error message is displayed. For an example of fme’s use of assertions, the reader is referred

to chapter 4.

3.1.3 Polymorphism

In OOP, polymorphism relates to class inheritance (Gamma et al., 1995). The benefit of

inheritance-based polymorphism is that many classes can share the same interface without

the need to define the interface separately for each class. In practice, this means that a super-

class contains the relevant minimal functionality that is inherited by each of the subclasses.

The subclasses can contain additional functionality, such as supplemental fields or methods.

They may also override methods and fields of the superclass. Thereby, polymorphism allows

for a more flexible design. For example, Fig. 1 illustrates how fme utilizes polymorphism

to implement a versatile framework for finding feature space partitions. The abstract su-

perclass Partitioning provides the interface shared by its subclasses PartitioningRpart

and PartitioningCtree. Beyond that, a subclass-specific method growTree() is defined.

This means that regardless of the type of RP algorithm used to grow the tree to compute

the feature space partitioning, an instance of the subclass responds in the expected way to

the methods (e.g., plot()) defined in the superclass.
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Partitioning
(Abstract) Superclass

PartitioningRpart
Subclass

PartitioningCtree
Subclass

growTree()

growTree()

inherit from

plot()

Figure 1: Illustration of polymorphism for a simplified example of the Partitioning
classes in fme. The subclasses PartitioningRpart and PartitioningCtree inherit the
plot() method from the superclass Partitioning. In addition, each of the subclasses
defines a separate method growTree() that depends on the specific RP algorithm used.

3.1.4 Adapter Pattern

The adapter pattern is a structural pattern that converts the interface of one class into that

of another (Gamma et al., 1995). This can become necessary if one wants to make inde-

pendently developed class libraries with incompatible interfaces work together. The general

idea is that an adapter class provides a uniform abstraction of different interfaces. The

functionality contained in the adaptee classes is transformed and expressed in a unified form

in the interface of the adapter class. The corresponding structure is exemplified in Fig. 2. In

fme, ML models produced by different R packages are consolidated in objects of the adapter

class called Predictor. This has the main objective to give rise to a unified predict()

method. As a result, one can expect different models expressed in the Predictor object to

generate predictions in exactly the same shape, regardless of how they were implemented in

their original class interfaces.

3.1.5 Strategy Pattern

The strategy pattern is a behavioral pattern that encapsulates an algorithm in a class termed

strategy class (Gamma et al., 1995). Other classes which use the algorithm maintain a ref-

erence to an object of the strategy class and forward the task of running the algorithm

encapsulated therein. Fig. 3 illustrates this principle. In fme, EPs are computed as part

of the compute() method of the FME class. However, the explicit algorithm for EP de-

tection is detached from the rest of the program. The algorithm is embedded in its own

strategy class called ExtrapolationDetector. The FME object delegates EP detection to

ExtrapolationDetector, which returns an index vector ED, hS
representing the set of EPs.

The strategy pattern confers multiple advantages. Firstly, the behavior of the algorithm
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Predictor
(Abstract) Superclass

PredictorMLR3
Subclass

PredictorRandomForest
Subclass

LearnerRegr

mlr3

randomForest

randomForest

predict_newdata()

predict()predict()

predict()

adapts

adapts

Class

Class

Figure 2: Illustration of the adapter pattern for a simplified example of the Predictor
classes in fme. The subclass PredictorMLR3 adapts the predict newdata() method from
the class LearnerRegr of the mlr3 package. The subclass PredictorRandomForest adapts
the predict() method from the class randomForest of the randomForest package. Conse-
quently, all objects of class Predictor have a predict() method that can be expected to
produce predictions of the same type and format.

implemented as strategy becomes easier to understand, as it is contained in its own class.

Secondly, encapsulating an algorithm in its own strategy class means the algorithm can be

changed independently of the class(es) using it. This design also allows for a flexible and un-

complicated extension of the algorithm: a different implementation of EP detection can be

added by defining a subclass of ExtrapolationDetector that overwrites the computeEP()

method. Thirdly, the strategy pattern allows for efficient reuse of algorithms in case they

are shared by two or more classes.

FME
Class

ExtrapolationDetector
Class

EPConvexHull
Subclass

computeEP()

computeEP()

strategy

compute()

EPMcec
Subclass

computeEP()

Figure 3: Illustration of the strategy pattern for a simplified example of EP de-
tection in fme. The strategy class ExtrapolationDetector implements the algo-
rithm for detecting EPs. The class FME requires EP detection and forwards this task
to ExtrapolationDetector. The subclasses EPMcec and EPConvexHull overwrite the
computeEP() method in the superclass and implement different methods of the EP de-
tection algorithm, as described in section 2.3.2. Transparency indicates a class is still under
development and not part of the current version of fme.
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3.2 Class Architecture

This section provides an overview of fme’s classes and an idea of how they are constructed,

how they relate to other classes and how they could be extended. Fields and methods

of a class may be referenced for this purpose. For a comprehensive overview of all fields

and methods, the reader is referred to the GitHub repository. Fig. 4 illustrates the classes

currently implemented or under development and the respective relationships between them.

3.2.1 Predictor Classes

As noted in section 3.1.4, the Predictor class is an adapter class which enables a uniform

expression of various ML models and the training data. Predictor is an abstract superclass

and cannot be instantiated. It has the sole purpose of defining fields and methods that each

of its subclasses must have. The subclasses of Predictor can be instantiated. The current

implementation of fme has two subclasses: PredictorMLR3 and PredictorRandomForest.

Creating a new instance of a subclass of Predictor requires the following arguments:

• model: The ML model one wants to use to compute fMEs or categorical MEs. It

must possess the ability to generate predictions for an arbitrary observation x ∈ X

according to its prediction function f̂ .

• data: The data one wants to use to compute fMEs or categorical MEs. This can be

the data the ML model was trained on. It must be a data.table or data.frame. In

the latter case, it will be transformed to a data.table object internally. The column

names of data must indicate the names of the feature and target variables.

• target: A string indicating the name of the target variable.

At instantiation, Predictor extracts feature names, feature types and the feature

matrix from data, and stores the model. Throughout fme, we rely on data.table (Dowle

and Srinivasan, 2021) as a dependency to store and handle data frames. This is because it

is faster and scales better with larger data sets than base R’s data.frame.

Furthermore, the class has a predict() method that depends on the subclass of

Predictor that was instantiated. The specific implementation of predict() is a conse-

quence of the design of model, which varies between different algorithms and packages. At

the moment, Predictor offers support for a range of ML models through its subclasses:

• PredictorMLR3: Provides compatibility for regression models trained with the mlr3

package (Lang et al., 2019). The package is continuously extended and gives access to

a wide range of popular learners.
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Partitioning
(Abstract) Superclass

PartitioningRpart
Subclass

PartitioningCtree
Subclass

growTree()

growTree()

compute()

PartitioningPlot
Class

plot()

Predictor
(Abstract) Superclass

PredictorMLR3
Subclass

PredictorRpart
Subclass

predict()

predict()

FME
Class

ExtrapolationDetector
Class

EPConvexHull
Subclass

computeEP()

computeEP()

finds EPs

compute()

EPMcec
Subclass

computeEP()

contains model

plot()

FMEPlotUnivariate
Subclass

FMEPlotBivariate
Subclass

plot()

plot()

FMEPlotCategorical
Subclass

plot()

FMEPlot
(Abstract) Superclass

plot()

NonLinearityMeasure
Class

nlmCompute()

computes NLM

plots results

plot()

Pruner
Class

prune()

plots result

prunes tree

contains fME results

fme(...)

makePredictor(...)

came(...)

Figure 4: Class diagram of fme’s classes and their dependencies. Methods are visualized
for the purpose of indicating the main functionality of a class and classes may contain more
methods than shown here. Transparency indicates a class is still under development and
not part of the current version of fme. Functions in blue boxes are wrapper functions that
can be used for instantiation of the respective class.
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• PredictorRandomForest: Provides compatibility for regression models trained with

the randomForest package (Liaw and Wiener, 2002).

The design benefits from the polymorphism enabled by R6’s class system. As a conse-

quence, fme can be extended dynamically to offer compatibility for model objects from

other packages by defining a new subclass of Predictor. Most of the time, this will require

only a few additional lines of code. Furthermore, for enhanced user experience, we provide

makePredictor() as a wrapper function for initializing the specific subclass required by the

class of model. The wrapper automatically instantiates the correct subclass, depending on

the type of ML model provided as argument. An example of this can be seen in chapter 4.

3.2.2 Forward Marginal Effect Class

After a Predictor has been instantiated to adapt the model, one can compute fMEs as

in Eq. (3) and categorical MEs as in Eq. (4) with the help of the FME class. In theory,

the definition of fMEs allows for a multivariate step in p dimensions of the feature space.

However, we believe that most of the time, a user would want for a maximum of two features

to be affected by the multivariate step, i.e., | S | ∈ {1, 2}. Restricting the fME to univariate

and bivariate changes also implies the results can be visualized in a meaningful way.

Creating a new instance of FME requires the following arguments:

• predictor: The Predictor object containing the model and training data.

• feature: In the case of the fME, the character vector with the names of the features

(one or two) affected by the multivariate step. In the case of the categorical ME, the

name of the categorical feature of interest.

• step.size: In the case of the fME, the numeric vector of the step lengths hS . In the

case of the categorical ME, the name of the reference category ch.

• ep.method: The method for EP detection. Currently, there are two options: ’none’

and ’envelope’. The latter implements the multivariate envelope strategy of Eq. 5 for

the numerical features in the training data.

• compute.nlm: A logical indicating whether NLMs should be computed for the fMEs.

• nlm.intervals: The number of subintervals used for the approximation of the NLM,

with a default of one. See section 3.2.5 for details.

After instantiation, the user calls the compute() method of the FME object to compute

MEs. This initiates the following workflow within the object: Firstly, an Extrapolation-

Detector is instantiated to identify EPs. Subsequently, the set of observations classified as
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EP is represented by an index vector stored in the field ExtrapolationDetector$extra-

polation.ids, which is forwarded to the FME object. This is an implementation of the

strategy pattern. The next step encompasses computing the MEs for each observation not

classified as EP. Note that the algorithm infers automatically from the feature argument

whether it should compute the fME for a numerical feature or the ME for a categorical fea-

ture. In the case of categorical MEs, observations from the reference category in the training

data are excluded. In a third optional step, the NLM is computed for each observation’s

fME if the step type is numerical. This instantiates a NonLinearityMeasure object for each

observation and forwards the resulting NLM estimate to the FME object. This design de-

ploys the strategy pattern, thereby allowing for a structural separation of the FME class and

the algorithm computing the NLM. After compute() is completed, the field FME$results

contains a data.table with MEs and NLMs for all non-EP observations.

In analogy to Predictor, FME has its own wrapper function. Here, fme() is wrapper

for FME$new()$compute() and returns the FME object after computing results. The results

can be visualized through the method plot(), which creates and plots an FMEPlot object.

3.2.3 Forward Marginal Effect Plot Class

FMEPlot is another example of how fme makes use of both the strategy pattern and the

advantages of polymorphism. In principle, we can distinguish between three categories of

FME objects, each of which demands its own approach to plotting results. Therefore, the

algorithm implementing FME$plot() is encapsulated in one of the following subclasses of

FMEPlot:

• FMEPlotUnivariate: Creates visualizations for a univariate numerical step, i.e., for

the fME as in Eq. 3 with | S | = 1. In this case, $plot() produces a scatterplot of

the non-EP observations, with the feature values x(i)
S on the x-axis and the effects

fMEx(i), hS
on the y-axis. In addition, the AME is displayed as a horizontal line. If

one has computed NLM values (by setting the argument compute.nlm = TRUE), NLMs

can be plotted alongside fMEs in a separate plot through $plot(with.nlm = TRUE).

Therefore, it is for the user to decide whether to plot fMEs exclusively or to get a more

comprehensive overview by extending the plot with NLMs. Similarly, this includes the

ANLM graphed as a horizontal line. As discussed in section 2.3.2, we use a hard lower

bound of zero for visualizing NLMs throughout fme.

• FMEPlotBivariate: Creates visualizations for a bivariate numerical step, i.e., for

the fME as in Eq. 3 with | S | = 2. In this case, $plot() produces a scatterplot

of the non-EP observations, with the values of the first feature on the x-axis and
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the values of the second feature on the y-axis. The colour of a point indicates the

direction and magnitude of the effect fMEx(i), hS
, according to a colour scale. Similar

to FMEPlotUnivariate, NLMs can be plotted next to fMEs with $plot(with.nlm =

TRUE). As with the bivariate fMEs, the colour of a point indicates the magnitude of

the NLM.

• FMEPlotCategorical: Creates visualizations for a categorical step, i.e., for the cat-

egorical ME as in Eq. 4 with reference category ch. In this case, $plot() produces

a histogram and kernel density estimate plot of the effects MEx(i), ch
for the non-EP

observations. In addition, the AME is displayed as a vertical line.

This design allows to tailor the implementation of $plot() to the needs of the under-

lying FME object. The polymorphism that shapes the class facilitates flexible modifica-

tion. For instance, one can change the visualization of a categorical step by overwriting

FMEPlotCategorical$plot(), leaving the other subclasses of FMEPlot unchanged.

Throughout FMEPlot, we rely on ggplot2 (Wickham, 2016) to create plots and cowplot

(Wilke, 2020) to arrange multiple plots into a grid. Furthermore, we deliberately utilize the

viridis colour scale (Garnier et al., 2021) embedded in ggplot2 for the visualizations cre-

ated by FMEPlotBivariate. This is because viridis can be perceived by users suffering from

the most common types of colour-blindness, a design feature we believe is ignored in many

popular R packages.

3.2.4 Extrapolation Detector Class

ExtrapolationDetector is a strategy class called exclusively by FME$compute() to identify

EPs by the method specified with ep.method. In principle, ExtrapolationDetector is

implemented to incorporate multiple methods of EP detection through its subclasses (see

Fig. 3). The current version of fme includes the EP detection method ’envelope’, i.e., the

multivariate envelope of Eq. 5 for the numerical features in the training data. As a result,

ExtrapolationDetector computes an index vector extrapolation.ids indicating the set

of observations that are classified as EPs. As a consequence, fme does not in its current

form implement any kind of EP detection for categorical MEs.

3.2.5 Non-linearity Measure Class

NonLinearityMeasure is a strategy class called exclusively by FME$compute() to compute

the NLM of an observation as in Eq. 12. As described in section 2.3.2, computing the NLM

requires approximating three line integrals. A common way to do so is by Simpson’s 3/8

rule (see, e.g., Abramowitz and Stegun, 1972), which is defined for an arbitrary interval [a, b]
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and a function f(x):

∫ b

a

f(x) ≈ b − a

8

[
f(a) + 3f

(
2a + b

3

)
+ 3f

(
a + 2b

3

)
+ f(b)

]
(18)

In fme, we use a form of the composite Simpson’s 3/8 rule, which divides [a, b] in n subin-

tervals of equal size and approximates each subinterval with Eq. 18. The user can specify

n with the argument nlm.intervals at the time of instantiation of an FME object, with

a default value of one. In this way, the user is given the option to reduce the approxi-

mation error and get a more precise estimate of the true non-linearity of the prediction

function along the forward difference. Of course, this comes at the cost of an increased use

of computational resources. This consideration is important as even at nlm.intervals =

1, computing NLMs accounted for over 99% of the total computing time of FME$compute()

in our use case (see chapter 4), a large part of which is spent on repeated evaluations of the

prediction function. This is because for each of the three line integrals to be approximated,

the prediction function has to be evaluated 4 × n times.

3.2.6 Feature Space Partitioning Classes

The Partitioning class implements the idea of facilitating semi-global interpretations

through partitioning the feature space X into a set of mutually exclusive subspaces where

MEs are more homogeneous, as discussed in section 2.3.3. Scholbeck et al. (2022) suggest

to use the coefficient of variation (CoV) as a scale-invariant measure for the homogeneity of

MEs in a subspace, where a lower value indicates higher homogeneity. Here, the CoV is a

variable’s (sample) standard deviation divided by the absolute value of its mean. A parti-

tioning P = {X[1], . . . , X[m]} divides the feature space in m partitions, with
⋃̇m

i=1X[i] = X .

The task to find a suitable partitioning is not a trivial one. In principle, we believe there

are two criteria that should guide the process by which a partitioning is created:

• The homogeneity of MEs in each partition: Partitioning the feature space only makes

sense if one observes heterogeneous MEs across the entire feature space X to begin

with. Furthermore, if the partitioning does not result in more homogeneous subspaces,

one will be better off by discarding the partitioning and conducting a global interpre-

tation of MEs.

• The number of partitions m: While a higher number of partitions may enable a more

local interpretation of feature effects, it runs the risk of introducing too much com-

plexity, and thereby impeding interpretability. Usually, this is aggravated when the

number of dimensions of the feature space that are affected by the partitioning is high.
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For example, partitionings that affect one, two or three dimensions of the feature space

can be illustrated graphically. However, this is not reasonably possible with more than

three dimensions.

In fme, we define two alternative approaches to finding a suitable partitioning P:

• max.cov: Find a partitioning P where the MEs in each partition have a CoV of at

most max.cov. Among multiple partitionings that fulfil this criterion, select the one

with the lowest number of partitions m for reduced complexity. The user can specify

max.cov, thus ensuring a certain degree of homogeneity is attained in every subspace.

• number.partitions: Find a partitioning P with an exact number of partitions m,

where number.partitions is specified by the user. This can be helpful in situations

where a user may not necessarily want to specify a minimum degree of homogeneity

but wants to find out whether partitioning may lead to more homogeneous subspaces.

Furthermore, this approach ensures that the complexity of P is limited by holding m

fixed. Of course, it must be ensured that the way such partitionings are identified can

be expected to produce (relatively) homogeneous subspaces.

As mentioned before, RP algorithms like CART and CTREE represent an efficient

way to produce decision trees that can be used to partition the feature space into mutually

disjoint subspaces. However, they have two major drawbacks: Firstly, neither CART nor

CTREE use the CoV as a split criterion. For instance, CART splits a parent node such

that the between-groups sum-of-squares is minimized (Therneau and Atkinson, 2022b). This

means they may not necessarily provide the most efficient way to optimize for lower CoV in

the child nodes. Secondly, none of the two have a stopping criterion w.r.t. the number of

terminal nodes, i.e., the number of partitions m.

In fme, we try to address these issues as best as possible by inducing the RP algorithm

(either CART or CTREE) to produce a relatively large tree and prune the tree until a CoV-

related optimality criterion is met. We find that such an approach can work well to identify

partitionings with substantially more homogeneous subspaces. In addition, results can be

obtained in a reasonable amount of time owing to the greediness of the RP algorithms used

to grow the tree. For the max.cov approach, we iteratively prune the tree until only the

root node is left. Among all the decision trees which are created as intermediate steps of

this procedure, we identify the smallest tree (with the lowest number of terminal nodes)

that fulfils the max.cov criterion. For the number.partitions approach, we simply prune

the tree until the tree has exactly as many terminal nodes as specified.
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Partitioning class

Partitioning is an abstract class with two subclasses, each of which uses a different RP

algorithm to grow a large decision tree that can be used for subsequent pruning:

• PartitioningCtree: The partitioning is identified with a decision tree created by

the CTREE algorithm, which is part of the R package partykit (Hothorn and Zeileis,

2015).

• PartitioningRpart: The partitioning is identified with a decision tree created by

the CART algorithm, implemented in the R package rpart (Therneau and Atkinson,

2022a).

After one has computed MEs and the results are stored in an FME object, a partitioning can

be constructed by instantiating a Partitioning object and computing the result with the

wrapper function came() (an allusion to cAME), which requires the following arguments:

• effects: An FME object with MEs computed.

• number.partitions: The number of partitions m, implements the eponymous strat-

egy explained above. The minimum possible value is 2, the maximum is 8. This

argument can be omitted if the user desires the max.cov approach.

• max.cov: The maximum CoV of MEs in every partition, implements the eponymous

strategy. This argument can be omitted if the user desires the number.partitions

approach.

• rp.method: The RP algorithm used to create the initial (large) tree. Currently,

there are two options: ’rpart’ and ’ctree’. This determines the respective subclass of

Partitioning that will be instantiated.

• tree.control: A control argument overwriting the defaults for the RP algorithm

that is induced to grow a large tree. This must match the structure of rpart.control

or ctree.control. This argument is for the experienced user who wants to finetune

the behavior of the RP algorithm. This argument can be omitted.

Note that the user has to select one of two alternative strategies. If the procedure

is able to find a partitioning that fulfils the respective criterion, the decision tree which

represents the final partitioning is stored in the field tree. We use the party class from the

partykit package to represent decision trees independently of the RP algorithm, as rpart()

and ctree() express decision trees in different formats. This uniform representation of

tree structures and the polymorphism of the Partitioning class allow for a flexible future

extension to other RP algorithms.
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Sometimes, came() may not be able to identify a suitable partitioning. Often, this is

due to max.cov being chosen too low. Furthermore, in our experience the max.cov criterion

may lead to higher homogeneity (as compared to the root node) in most but not all terminal

nodes . Sometimes, this is the case when the cAME of a terminal node is close to zero, which

can lead to a very high CoV as the (absolute of the) cAME represents the denominator in

the CoV formula.

After a partitioning has been found, one can extract instructive summary statistics

of the partitions from the field results, or simply inspect the results in a reader-friendly

way by calling summary(). In both cases, one is provided with information regarding the

number of partitions, the number of observations assigned to each partition, the cAME, the

CoV of MEs in each partition and, if applicable, the ANLM and the CoV of NLMs in each

partition. Moreover, as the partitions are represented as terminal nodes in the corresponding

decision tree, results provides the same information for all parent nodes in the tree. In

this way, the user may gain insights into how further pruning of the tree would affect the

homogeneity of MEs. In addition, a partitioning and the corresponding descriptive statistics

can be visualized by calling plot(). This instantiates a PartitioningPlot object.

Pruner class

Pruner is a strategy class called by Partitioning$compute() to prune a tree. After a large

tree has been constructed by the RP algorithm, Pruner is used to iteratively reduce the

complexity of the tree until it has the desired size. Firstly, Pruner identifies all pairs of

terminal nodes in the tree that share the same parent node and are therefore candidates for

pruning. Then, the CoV of MEs is computed for each parent node of the candidate nodes.

Lastly, pair of the candidate nodes with the parent node with the lowest CoV is pruned. The

merit of this procedure is that pruning is conducted in a fashion inclined towards selecting the

most homogeneous parent node. Pruner is called iteratively by Partitioning$compute()

until the desired result is obtained.

Partitioning plot class

PartitioningPlot is a strategy class called by Partitioning$plot() that contains all

necessary functionality to visualize a partitioning, returning a ggplot object. It consists of

three parts:

• A graphic representation of the decision tree that describes the partitioning. This in-

cludes the names of the feature variables used for splitting the nodes, the (numeric and

categorical) split points and lines connecting the labels to illustrate the tree structure.

• Descriptive statistics for each partition, equivalent to the information contained in the
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field Partitioning$results. As every partition corresponds to a terminal node in

the decision tree, the statistics appear right below the terminal node they belong to.

• Histograms of the MEs in each partition, including the cAME as a vertical line.

Furthermore, if applicable, histograms of the NLMs in each partition, including the

cANLM as a vertical line. As before, we use zero as a hard lower bound for visualizing

NLMs.

We rely on the ggparty package (Borkovec and Madin, 2019) to represent the tree-like

structures contained in party objects in a format that is compatible with ggplot.
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4 Demo

Fme was designed to provide an easily extensible, modular framework for computing and

interpreting fMEs for arbitrary supervised regression models. This chapter gives an overview

of the necessary steps required for estimating and computing feature effects with fme. It

illustrates its main functionalities and showcases how common user demands are addressed.

The example introduced below can be reproduced by downloading and running the script

from https://github.com/holgstr/fme/blob/master/inst/Demo.R.

4.1 Installation, Data and Model

Installation

The latest version of fme can be installed and loaded directly from the console with the

devtools package (Wickham et al., 2021):

library(devtools)
install github("holgstr/fme")
library(fme)

Data: bike sharing demand in Washington, D.C.

For demonstration purposes, we will consider usage data from the Capital Bike Sharing

scheme in Washington, D.C. (Fanaee-T and Gama, 2014). It was obtained from the OpenML

database (Vanschoren et al., 2013) and contains information about hourly bike sharing usage

in Washington, D.C. for the years 2011-2012. The original data set has 17,379 observations

and 15 variables. Here, we consider a subset of the data: We are interested in predicting

count (the total number of bikes lent out to users) during the period from 7 to 8 a.m. The

data used for training the model has 727 observations and 11 variables. Table 1 provides an

overview of the data.

Model

Fme was designed for arbitrary regression models. Currently, support for randomForest and

mlr3 is provided. However, users can create their own Predictor subclass to adapt other

models with a few lines of code. In this example, we train a random forest with ranger

with the mlr3 framework, predicting count with the remaining variables as features of the

model:

library(mlr3verse)
task = as task regr(x = bikes, id = "bikes", target = "count")
forest = lrn("regr.ranger")$train(task)
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Variable Name Description Range

season Season of the year (spring, summer, autumn, winter). {0, 1, 2 , 3}
year Year (2011, 2012). {0, 1}
month Month of the year. [1, 12]
weekday Day of the week. [1, 7]
holiday If a day is a holiday (yes, no). {0, 1}
workingday If a day is neither weekend nor holiday (yes, no). {0, 1}
weather Weather situation (clear, misty, rain). {0, 1, 2}
temp Temperature in degrees Celsius (°C). [0.82, 34.44]
humidity Humidity (relative). [0, 1]
windspeed Windspeed in miles per hour (mph). [0.00, 40.99]
count (target) Total number of bikes lent out to users. [6, 839]

Table 1: Description of the training data from the Washington, D.C. bike sharing scheme.

4.2 Computing and Interpreting Marginal Effects

The regression model trained in section 4.1 can be adapted to fme by instantiating the

corresponding subclass of Predictor:

pred = PredictorMLR3$new(model = forest, data = bikes, target = "count")

Alternatively, this can be done with a wrapper function, which automatically creates the

correct subclass of Predictor:

pred = makePredictor(model = forest, data = bikes, target = "count")

The Predictor class is important for the inner mechanics of fme and for users who want to

adapt their own models through self-made subclasses. However, instantiating a Predictor

is not required in the standard workflow for computing MEs. Fme provides wrapper functions

for all necessary functions in the package. As R6 syntax can be confusing to some users, we

recommend to use the wrappers and will do so for the remainder of this chapter.

Categorical features

The default workflow for computing MEs for categorical and numerical features requires

only one function: fme(). To view the documentation, simply type ?fme in the console.

Assume we want to compute the ME for a categorical feature as in Eq. 4. For instance, one

could be interested in the effect of rainy weather on the bike sharing demand, i.e., the ME of

changing the feature weather to ’rain’ for observations where weather is either ’clear’

or ’misty’:

effects = fme(model = forest, data = bikes, target = "count",
feature = "weather", step.size = "rain")
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By doing so, we have created an object of class FME:

class(effects)
##[1] "FME" "R6"

As is common with R objects, we can produce a summary for effects to inspect it:

summary(effects)
##
## Forward Marginal Effects Object
##
## Step type:
## categorical
##
## Feature & reference category:
## weather, rain
##
## Extrapolation point detection:
## none, EPs: 0 of 657 obs. (0 %)
##
## Average Marginal Effect (AME):
## -53.801

As weather is a factor variable, fme inferred that this implies a categorical step. Since the

default option for EP detection is ’none’, no EPs were detected in the training data. We

can see the that the estimated AME is −53.801. This means that on average, we can expect

rainy weather to contribute negatively to bike sharing usage, as compared to clear and misty

weather. Note that this interpretation does not allow for a comparison between rainy and

misty or rainy and clear days, respectively. Rather, we compare rainy to non-rainy days.

In our training data, non-rainy days are comprised of 214 misty and 443 clear days. For

further analysis, we could extract the estimated AME from the FME object or inspect MEs

computed for individual observations:

effects$ame
##[1] -53.80098

head(effects$results)
## obs.id fme
##1: 1 0.7416677
##2: 3 -6.3319125
##3: 4 -12.8569499
##4: 5 -13.6807424
##5: 7 -11.5924678
##6: 9 1.4546422
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For categorical feature steps, we can visualize the empirical distribution of the estimated

MEs:

plot(effects)
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Figure 5: MEs for the feature change in weather with step.size = ’rain’.

The output of plot(effects) is displayed in Figure 5. The histogram and kernel density

estimate have negative skewness. For more than 150 observations, the ME is close to zero.

While few observations exhibit positive MEs, the majority has negative MEs, with values

up to minus 190.

Numerical features

Next, we consider numerical features, beginning with a univariate change. For instance,

one might be interested in the fME of an increase in temperature by 3 degrees Celsius (°C)

on bike sharing usage. Thus, we compute fMEs for the feature temp and step.size = 3.

Moreover, to examine the shape of the prediction function along the forward difference,

we compute NLMs (depending on the computer, this can take some time2). We exclude

observations classified as EP with ep.method = ’envelope’:

effects2 = fme(model = forest, data = bikes, target = "count",
feature = "temp", step.size = 3, ep.method = "envelope",
compute.nlm = TRUE)

effects2$ame)
##[1] 8.70945

effects2$anlm)
##[1] 0.06

2approx. three minutes on a 2021 Macbook Air.
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We estimate an AME of 8.7 and an ANLM of 0.06. The latter indicates a highly non-linear

prediction function along the forward difference. Again, we visualize results with plot().

Furthermore, we include NLMs in the plot and add minimal noise to the individual points

to reduce overlapping:

plot(effects2, with.nlm = TRUE, jitter = c(0.2, 0))
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Figure 6: fMEs and NLMs for the feature change in temp with step.size = 3. Direction
and length of the arrows indicate the step length of the feature change. Negative NLM
values are white colored.

The output is visualized in Fig. 6. The effect of a temperature increase by 3 °C on bike

sharing usage seems to vary for different values of temp. While the fMEs tend to be positive

for lower temperatures between 0 °C and 17 °C, they tend to be negative for higher tem-

peratures above 17 °C. Next, we consider bivariate changes in feature values. For instance,

assume one wants to estimate the effect of a decrease in temperature by 2 °C combined

with a decrease in humidity by 10 percentage points, i.e., the fME for feature = c(temp,

humidity) and step.size = c(−2, −0.1):

effects3 = fme(model = forest, data = bikes, target = "count",
feature = c("temp", "humidity), step.size = c(-2, 0.1),
ep.method = "envelope", compute.nlm = TRUE)

plot(effects3, with.nlm = TRUE, jitter = c(0.1, 0,02))

Fig. 7 represents the corresponding output. We could extract summary statistics from the

FME object in the same way as before, and get AME = 0.64 and ANLM = 0. Whereas the

AME is a global estimate of the expected ME, effects could be heterogeneous. Thus, we will

consider semi-global interpretations in the next step.
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Figure 7: fMEs and NLMs for the bivariate feature change in (temp, humidity) with
step.size = (−2, −0.1). Direction and length of the arrows indicate the step length of
the feature changes.

4.3 Finding Feature Subspaces for Semi-Global Interpretations

For the purpose of enabling semi-global interpretations on feature subspaces, fme provides

the came() function. To view the documentation, simply type ?came in the console. Assume

one wants to investigate whether the fMEs computed in the example of Fig. 7 can be assigned

to subspaces of the feature space where effects are more homogeneous. In this example, we

are interested in finding a partitioning with three partitions:

subspaces = came(effects = effects3, number.partitions = 3)

The came() function throws an error if the RP algorithm did not succeed in finding a suitable

partitioning. As usual, we can inspect the result with summary():

summary(subspaces)
##
## PartitioningCtree of an FME object
##
## Method: partitions = 3
##
## n cAME CoV(fME) cANLM CoV(NLM)
## 722 0.6382352 32.079175 -0.003834562 247.513745 *
## 358 -6.7855826 2.337526 0.081459950 10.658651
## 295 5.1501882 3.554864 -0.143634479 7.106654
## 69 19.8657809 1.527629 0.151318200 6.410529
## ---
## * root node (non-partitioned)
## cANLM: ≤ 0 implies non-linearity, 1 implies linearity
##
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## AME (Global): 0.6382
## ANLM (Global): 0

We can infer from the summary that the fMEs in the root node have a CoV of 32. Fur-

thermore, we can see that the CoV is substantially smaller in the three terminal nodes

(partitions). Thus, one can conclude that the partitioning successfully identified feature

subspaces with more homogeneous effects. The best way to investigate the partitions is to

plot the Partitioning object:

plot(subspaces)
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Figure 8: Partitioning of effects3 with number.partitions = 3. The histograms show
the distribution of fMEs and NLMs within the partitions.

In this case, we get a decision tree that assigns observations to a feature subspace according

to the weather situation (weather) and temperature (temp). The information contained

in the boxes below the terminal nodes are equivalent to the summary output and can be

extracted from subspaces$results. This redundancy makes it as easy as possible for users

to find and access relevant data for interpretation and further analysis of a partitioning.

With cAMEs of −6.79, 5.15, and 19.87, respectively, the expected ME is estimated to vary
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substantially in direction and magnitude across the subspaces. For example, the cAME

is negative for non-rainy days with temperatures below 18.9 °C. For non-rainy days with

temperatures above 18.9 °C, the cAME turns positive. Lastly, the cAME is the highest on

rainy days. In all three partitions, the cANLM indicates a highly non-linear shape of the

prediction function with values ranging from −0.14 to 0.15.

The alternative method of finding partitionings is max.cov, which tries to find the

smallest tree that conforms to a maximum CoV of MEs in all partitions. For instance, recall

the example of the effect of a change in the categorical feature weather to the reference

category ’rain’ (see Fig. 5). We can try to find a partitioning of the corresponding FME

object with max.cov = 3 and a custom specification of rpart with the following code:

subspaces2 = came(effects = effects, max.cov = 3, rp.method = "rpart",
tree.control = rpart.control(minsplit = 100, cp= 0.1))

plot(subspaces2)

True False

workingday

n = 442

cAME = -79.04

CoV(fME) = 0.55

n = 215

cAME = -1.91

CoV(fME) = 2.76

0

50

100

150

200

-200 -150 -100 -50 0

fME

0

50

100

150

200

-200 -150 -100 -50 0

fME

Figure 9: Partitioning of effects with max.cov = 3. The histograms show the distribu-
tion of fMEs within the partitions.

As visualized in Fig. 9, this can be achieved with only two subspaces, represented by a

decision tree with a split in the feature workingday. Thus, the ME of rainy weather seems

to depend on whether a day is a working day or not. On working days, the estimated ME

of rain is −79.04. On non-working days, the effect seems to be much smaller, with a cAME

of −1.91. In both partitions, the CoV is smaller than max.cov = 3. In our experience, the

max.cov method often results in partitionings of that size (m = 2).
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In section 3.1.2, we explained the merit of defensive programming as a guiding principle

in software design. Fme seeks to improve the user experience by ensuring that sensible

inputs are provided to its functions, and throws informative error messages if otherwise. For

instance, assume a user is confused by the way partitionings can be identified and provides

two incompatible arguments to came():

came(effects = effects2, max.cov = 1.5, number.partitions = 8)
##Error in came(effects = effects, max.cov = 1.5, number.partitions = 2) :
## Must supply either ’number.partitions’ or ’max.cov’.

Note that in its current form, fme allows for a maximum of eight partitions in a

partitioning. This is due to limitations in ggparty’s ability to generate plots for decision

trees of this size. An example of a partitioning created with number.partitions = 8 for a

feature change in temp with step.size = 3 is visualized in Fig. 10 and can be reconstructed

with the following code:

plot(came(effects = effects2, number.partitions = 8))

As noted before, a partitioning represented by a large decision tree can impede interpretabil-

ity. In this example, the decision tree has split points in five features: season, weather,

temp, workingday, and year. Moreover, as with temp, features can be selected repeatedly

as split points, further complicating the interpretation.
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5 Conclusion and Outlook

Throughout this thesis, we have established the merit of fMEs, a new class of MEs, as a rele-

vant contribution to the family of methods for interpreting feature effects in supervised ML.

In this context, we introduced fme, a fully functional R package for computing, analyzing

and visualizing fMEs. This includes fMEs for univariate and bivariate changes in numerical

features, and observation-wise categorical MEs for changing feature values to a reference

category. Additionally, fme implements further elements of the application workflow sug-

gested by Scholbeck et al. (2022): detecting EPs, computing NLMs, and interpretations

conditional on feature subspaces.

As described in chapter 3, fme benefits from the R6 OOP framework, which allows for

a modular design that is open to future extensions in its functionality. While fme exploits

the advantages of an object-oriented design, it circumvents the downsides of the relatively

complicated R6 syntax by providing wrapper functions for a more intuitive user interface.

The use of assertions for checking user-provided arguments and a documentation of the main

functions contribute to a smooth user experience.

In principle, fme can be applied to arbitrary supervised regression models in R. Through

its native support of mlr3, it already extends its coverage to a multitude of different learners.

By implication, this means at present fme is the only R package that can be used to compute

MEs for tree-based models, such as random forests or gradient-boosted trees.

Moreover, fme facilitates semi-global interpretations of fMEs through finding feature

subspaces with more homogeneous effects that are identified with RP algorithms. In this

respect, its class design enables a uniform representation and visualization of decision trees

created by different RP methods. Nonetheless, we have identified several ways by which fme

could be improved, outlining a clear path for the further development of the package.

Extension to classification models

The current version of fme is restricted to regression tasks. However, as Scholbeck et al.

(2022) note, the concept of fMEs can be generalized to multi-dimensional predictions, e.g.,

multi-class classification. In addition, the current class design of fme can be straightfor-

wardly applied to binary classification tasks. In principle, this should merely require an

additional subclass of Predictor and some minor changes to FMEPlot.

Uncertainty quantification for AMEs and cAMEs

Scholbeck et al. (2022) suggest to quantify the uncertainty in effect estimation by construct-

ing confidence intervals (CI) for AMEs and cAMEs. Equivalently, CIs can be computed for

the ANLM and cANLM, respectively.
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Speeding up NLM estimation

At the moment, computing NLMs accounts for almost the entire run time of fme(). There-

fore, one priority for future development efforts should be to accelerate NLM estimation. As

NLMs are computed observation-wise, the obvious way to do so is through parallelization,

which exploits modern processor architectures to perform multiple calculations simultane-

ously (McCallum and Weston, 2011). Furthermore, efforts should be made to investigate

whether the current class design of NonLinearityMeasure can be improved, as we require a

separate instance of this class for each observation to compute the NLM. Lastly, one could

consider using alternative methods for numerical integration, some of which would entail

fewer evaluations of the prediction function and, therefore, shorter run times.

Alternatives to rpart and ctree

In chapter 3, we discussed the shortcomings of rpart and ctree w.r.t. the objectives of fme.

In this context, we believe a comparable RP method with the number of terminal nodes as

additional optional stopping criterion and with the CoV as loss function would likely result

in a more streamlined process of finding suitable feature subspaces. This becomes even more

important as the current implementation is not straightforward to understand, a potential

deterrent to its adoption by users.

More refined semi-global interpretations

Another avenue of further development may reside in enhancing the interpretability of fea-

ture subspaces. In some way, this relates to addressing the demands of different research

domains. For instance, consider the example of bike sharing usage in Washington, D.C.

introduced in chapter 4. Assume one has computed the MEs for a change in the categorical

feature weather to the reference category ’rain’. If we now want to determine whether

MEs are heterogeneous w.r.t. to the temperature (temp) (as compared to the entire feature

space), the current implementation fails to provide meaningful tools to investigate this ques-

tion. Thus, the design of the Partitioning class could be modified to identify subspaces

only in a specific subset of the features.

On a further note, some researchers may only be interested in finding subspaces w.r.t.

the features that were affected by the multivariate step. In the example of the bivariate

feature change in temp and humidity, this means that partitions would be described entirely

by two-dimensional intervals of these variables. This comes with the advantage that such

a partitioning can be visualized in the same plot as the fMEs, with intervals graphed as

vertical and horizontal lines.
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