
Bachelor Thesis

Transformer Model for Genome Sequence
Analysis

Noah Hurmer

Supervisors: Dr. Mina Rezaei, Hüseyin Anil Gündüz, Martin Binder
Date: July 27th, 2022

Declaration of Originality

I confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been made
to the work of others.

Munich, July 27th, 2022

. .
Noah Hurmer

Abstract

A multitude of problems faced in genomic research are subject to a scarcity of high
quality labeled data, and attaining such often requires expensive and time consuming
physical experimentation under laboratory conditions. However, through technolog-
ical advances enabling high throughput sequencing, an abundance of unlabeled data
is now readily available. To take advantage of this, the bioinformatics field has
sought to apply semi-supervised learning methods through representation learning
on genomic tasks, often adapting models originally developed in Natural Language
Processing for use on genomic data. One such model is known as the Transformer
Encoder and we will investigate its ability to produce useful representations training
on unlabeled data in order to taxonomically classify read-level nucleotide sequences
downstream. To this end, the success of bacteriophage identification is evaluated
under self-supervised, semi-supervised as well as strictly supervised training using
different label scarcity scenarios. Additionally, alterations to the method of tok-
enization and the pretext task during self-supervised training are explored for their
benefits on the model’s accuracy. While conducted experiments imply that this
application of the Transformer model on genomics data may not yet be perfected
to its full maturity, they also show that this architecture provides an increase in
classification accuracy of the downstream task compared to existing methods at the
cost of more resource intensive training. Moreover, it appears that the model lends
itself well to transfer learning, as the gained representations seem to generalize well
to another dataset of different origin. The viability of the Transformer Encoder
approach, especially for generalization to a broader panel of divergent tasks, merits
further research.

Contents

1 Introduction 3
1.1 Understanding Genomic Data . 3
1.2 Thesis Structure and Contributions 4

2 Learning Representations from Genomics Data 5
2.1 Motivation and Related Work . 5
2.2 Deep Learning in NLP . 6

2.2.1 Attention Mechanisms . 6
2.2.2 Transformer . 7
2.2.3 BERT . 8

2.3 DNABERT . 9
2.3.1 Data Preprocessing . 9
2.3.2 Pretraining . 9
2.3.3 Finetuning . 10

3 BERT Application Experiments for GenomeNet 11
3.1 Virus Phage/Non-Phage Dataset . 11
3.2 Experiments . 12

3.2.1 Scaled Semi-Supervised Trials 12
3.2.2 VIRBERT . 15
3.2.3 VIRBERT-mask8 . 16
3.2.4 VIRBERT-stride3 . 16
3.2.5 DNABERT6 . 17
3.2.6 Finetuning . 17

3.3 Baselines . 18

4 Results 19
4.1 Pretraining . 19
4.2 Linear Evaluation . 19
4.3 Semi-Supervised Learning . 20
4.4 Transfer Learning . 22

5 Conclusion and Future Direction 23
5.1 Discussion . 23
5.2 Improvement Ideas . 24

5.2.1 Tuning . 24
5.2.2 NSP-like Task . 24
5.2.3 Preprocessing and Tokenization 25

1

CONTENTS

List of Abbreviations 27

List of Figures 28

List of Tables 29

Bibliography 30

A Appendix 37
A.1 Task-Specific Sequence Creation . 37

A.1.1 Examples for Evaluation . 37
A.1.2 Examples for Finetuning . 37

A.2 Definitions . 37
A.2.1 AdamW . 37
A.2.2 Cross Entropy Loss . 38
A.2.3 Metrics . 38
A.2.4 Task Level Types . 39

A.3 Self-genomenet . 39
A.4 HPO . 40
A.5 Training Time . 41
A.6 Self-Supervised Trials . 41

2

1. Introduction

1.1 Understanding Genomic Data

A genome is defined as the complete set of genetic material of an organism and
contains all of the instructions to build and maintain itself. This information is
encoded as DNA, a four letter language often referred to as the language of life.
Each letter represents a nucleotide base - adenine (A), thymine (T), guanine (G), and
cytosine (C) - and the specific order of these nucleotides in a sequence defines specific
traits or functions [NIH, 2020]. Deciphering this code is far from trivial and what we
do know originates from experimentation and computational analysis [Brown, 2002].
With the rise of complex Deep Learning (DL) methods and scientific progress in fast
and automated sequencing of genomes, a foundation to substitute some of the slow
and expensive experimentation with accurate computational analysis has been laid
in order to annotate genomes, identify genes and determine their function.

Since encoding information into a sequence can be seen as much as a language
as our human communication tools, genomic DL models often have direct origins
in Natural Language Processing (NLP) [Asgari and Mofrad, 2015]. Powerful NLP
models employ self-supervised representation learning, a method to gain knowledge
from an abundance of unlabled data. This is meant to understand meaning, gram-
mar and structure of a language and therewith assist in solving downstream tasks
where the limited amount of task-specific data would inhibit the recognition of such
structures. Training on omics-data1 poses a very similar issue, as obtaining an-
notated examples of genome sequences requires manual experimentation that can
often be very expensive, whereas sequencing genomes via Next Generation Sequenc-
ing (NGS) [Buermans and den Dunnen, 2014] and established databases such as
GenBank [Sayers et al., 2019] offer a multitude of available sequences that can be
used for self-supervised training.

The GenomeNet project intends to identify and create Deep Learning architectures
well suited for analysis of genomic data. Such models are meant to advance the capa-
bilities to identify new genomic structures, impute missing nucleotides and classify
genomic data under sparse label conditions [BMBF, 2020].

1Omics is the study of multiple biological fields ending in -ome and generally aims to analyze
biological molecules [Vailati-Riboni et al., 2017]. Usually, this involves data of sequential nature.

3

CHAPTER 1. INTRODUCTION

1.2 Thesis Structure and Contributions

In accordance with the goals of GenomeNet, the objective of this thesis is to analyze
the potential of semi-supervised learning through a Bidirectional Encoder Trans-
former architecture (BERT) on virus genome data. To this end, models based on
DNABERT [Ji et al., 2021] are trained in a self-supervised manner on a collection of
virus genomes. A small scale test framework is created in order to deduce optimal
hyperparameter settings and explore different preprocessing, tokenization and pre-
text task strategies. Apart from the original setup of DNABERT [Ji et al., 2021], two
differing strategies are pursued and pretrained full scale. Thereafter, the gained rep-
resentations are then finetuned and evaluated through the downstream classification
task of identifying bacteriophages from short (read-level) sequences of nucleotides.
This task is performed over various label scarcity scenarios and sequence lengths. A
Hyperparameter Optimization (HPO) framework is implemented, with which some
finetuning parameter optimization is performed for semi-supervised training. The
accuracy over this task is then compared to a baseline model, pretrained on the same
data (self-genomenet by Gündüz et al. [2022]). Additionally, the transfer learning
capability of the DNABERT model structure is explored.

4

2. Learning Representations from
Genomics Data

2.1 Motivation and Related Work

Deep Learning has shown improvements over previous methods in a variety of appli-
cations in bioinformatics [Zhang et al., 2020]. These include fields such as biomedical
image processing [Pereira et al., 2016, Chakravarty and Sivaswamy, 2019], disease
prediction and modeling [Guo et al., 2018, Hwang et al., 2017], drug property or
interaction prediction [Aliper et al., 2016, Yan et al., 2021] as well as function or
specific binding site prediction from omics data [Alipanahi et al., 2015, Zhou and
Troyanskaya, 2015]. Many methods proposed to be applied on omics sequences use
recurrent or convolutional networks (RNN/CNN) in order to capture patterns and
dependencies in the data. Trabelsi et al. [2019] show that combinations of the two,
such as a CNN-BiLSTM [Hu et al., 2019, Quang and Xie, 2016], especially with an
additional encoding network as used in an architecture they name ECBLSTM, reg-
ularly outperform others. Representation learning via adapted language models has
been used to improve upon the performance of multiple downstream tasks such as
sequence annotation, splice and binding site identification and enhancer prediction
[Clauwaert and Waegeman, 2022, Ji et al., 2021, Le et al., 2019]. Iuchi et al. [2021]
summarize existing representation learning applications on biological sequences.

Self-supervised models have prevailed in NLP, as they take advantage of readily
available amounts of unlabeled data in the form of texts to pretrain model weights
and representations in a self-supervised manner. These can then be finetuned with a
much smaller task-specific labeled dataset [Devlin et al., 2018, Radford et al., 2018,
Peters et al., 2018]. Such approaches aim to learn an understanding of the language
and show an improvement over supervised models, especially if annotated training
data is very limited [Wang et al., 2020]. The architecture of a Bidirectional Trans-
former Encoder as introduced by Devlin et al. [2018] is among the self-supervised
NLP models that have been found to be useful in representation learning of genomics
data and therefore implemented multiple times with differing downstream tasks in
mind [Rives et al., 2020, Ji et al., 2021, Le et al., 2021, Mo et al., 2021, Avsec et al.,
2021].

Concerning the model evaluation task of identifying bacteriophages, which is con-
ducted during the experiments in this thesis, Ho et al. [2022] provide an overview
of conventional approaches to such a task.

5

CHAPTER 2. LEARNING REPRESENTATIONS FROM GENOMICS DATA

2.2 Deep Learning in NLP

Most sequence transduction models prior to the introduction of the Transformer
architecture were built of either convolutional or recurrent networks wrapped in
an encoder-decoder structure [Cho et al., 2014, Sutskever et al., 2014, Kalchbrenner
et al., 2016]. A common task for NLP sequence transduction is neural machine trans-
lation (NMT). There the encoder embeds the input sequence or its subparts for the
decoder to reconstruct a sequence in an autoregressive manner in another language.
In order to tackle long range dependency issues associated with such network struc-
tures, attention mechanisms were introduced. These mechanisms typically connect
encoder and decoder with additional sets of trainable weights, allowing the decoder
to be influenced more or less by specific states of the encoder model.

2.2.1 Attention Mechanisms

Attention mechanisms, as introduced by Bahdanau et al. [2014], can be generalized
as a way to compute a weighted sum of representation states. This vector of weights
- also called a context vector comprised of weighted annotations - helps focus a model
onto the more important parts of a given input for a specific output. Moreover, it
allows a model to learn further reaching dependencies of an input sequence, tackling
the vanishing gradient issue of RNN architectures [Bahdanau et al., 2014, Bengio
et al., 1994, Pascanu et al., 2013]. These attention weights are dependent upon a
given query (q) and a set of key value pairs (K, V), and computed by a softmax
function. Attention is therefore calculated as in the following:

Attention(q,K, V)i =
exp(fatt(q, ki))∑
j exp(fatt(q, kj))

vi (2.1)

or in matrix notation:

Attention(Q,K, V) = softmax(fatt(Q,K))V (2.2)

where fatt represents the attention or alignment function. One such attention mech-
anism is referred to as dot-product attention, where the alignment function is given
as [Luong et al., 2015]:

fatt(Q,K) = KTQ (2.3)

Performing NMT with an encoder-decoder model that incorporates an attention
mechanism, the previous decoder state would represent a query, whereas the encoder
states provide keys and values.

6

CHAPTER 2. LEARNING REPRESENTATIONS FROM GENOMICS DATA

2.2.2 Transformer

While CNN based models such as ByteNet and ConvS2S [Kalchbrenner et al., 2016,
Gehring et al., 2017] already do away with some of the sequential computations of
LSTM or GRU architectures, thus leading to better parallelization and therewith
addressing some of the training time demand downsides, Vaswani et al. [2017] argue
to completely forgo any convolutional or recurrent layers and to rely solely on atten-
tion. The proposed model architecture of the Transformer combines only attention
and feed-forward layers in both encoder and decoder, allowing for parallel encoding
of all tokens in an input sequence. However, the removal of convolution and recur-
rence leads to the loss of positional information of the input tokens, therefore the
token representations are combined with positional encoding vectors. These can ei-
ther be learned or defined by a combination of sine-cosine functions [Vaswani et al.,
2017].

The Transformer consists of 6 identical encoder and decoder blocks. Each encoder
block includes a multi-head self-attention layer followed by a fully connected feed-
forward layer, both possessing a residual connection (see figure 2.1). The decoder
differs with the inclusion of another layer which performs attention between the
output of the encoder stack and the previous decoder attention layer.

Self-Attention Opposed to other attention mechanisms that map importance of
encoder states to an output (decoder) state, in self-attention the queries, keys and
values all come from the same input sequence. This allows a model to tend to
specific positions of a sequence more when computing the current (query) token
representation of that same input sequence. Self-attention therefore results in the
identification of dependence structures within a sequence and has been proven use-
ful in language tasks and language modelling [Merity et al., 2016, Paulus et al.,
2018]. Self-attention carries the benefit of smaller computational complexity com-
pared to recurrent or convolutional layers [Vaswani et al., 2017]. Additionally, the
path length for signals between dependencies within a model is shorter, which im-
proves the ability to learn long range dependencies [Hochreiter et al., 2001]. The
transformer uses self-attention in all layers except for the connected attention layer
in the decoder. The regular multi-head self-attention layer in the decoder performs
masked self-attention, which allows the model to only attend to previous tokens.

Multi-Head Attention In order to learn different dependency structures, the
Transformer employs multi-head attention. Instead of a single attention function of
full dimensionality, queries, keys and values are projected h times into representa-
tions of smaller dimensionality of dmodel

h
using different, learned projections [Vaswani

et al., 2017]. A scaled dot-product attention function

fatt(Q,K) =
QKT√
dkeys

(2.4)

7

CHAPTER 2. LEARNING REPRESENTATIONS FROM GENOMICS DATA

is then applied onto each projected triple of queries, keys and values before con-
catenating the results into a dimension of h ∗ dvalues. Finally, the result is linearly
projected once more (figure 2.1). Each multi-head attention layer therefore includes
h number of trainable projection matrices for queries, keys and values of the respec-
tive dimensions as well as a single trainable matrix of full model dimension.

MultiHead(M) = concat(head1, ..., headh)W
O (2.5)

where headi = Attention(QWQ
i , KWK

i , V W V
i)

Figure 2.1: Left: Pipeline of a single Transformer Encoder block. Middle: Inner
workings of a Multi-Head Attention Layer of dimensionality h. Right: Procedure
of Scaled Dot-Product Attention employed during self-attention in the Transformer.

2.2.3 BERT

Similar to other popular self-supervised NLP models such asGPT or ELMo [Radford
et al., 2018, Peters et al., 2018], the Bidirectional Encoder Representations from
Transformers architecture [Devlin et al., 2018] is constructed with self-attention
layers from the Transformer. Specifically, BERT - base stacks 12 Transformer
encoder blocks and raises the number of attention heads from 8 to 12 (each with
64 dimensions) compared to the implementation of Vaswani et al. [2017], which
causes an increase in representation size to 768. BERT operates in a self-supervised
manner which consists of creating representations by pretraining on an unlabled text
corpus just like the other models mentioned above. The learned representations are
later finetuned when training on task specific data. Critically however, Devlin et al.
[2018] claim an improvement over other models due to the bidirectionality of self-
attention enabled by its pretext objective of a masked language model, during which
input tokens are randomly masked and then predicted by an attached classification

8

CHAPTER 2. LEARNING REPRESENTATIONS FROM GENOMICS DATA

network (mlm-head) (see figure 2.2). This pretext task allows self-attention to be
trained on the entire sequence instead of just on preceding tokens, as done in a left
to right architecture [Radford et al., 2018]. The tokens defined to be predicted by
the model are simply replaced by a designated MASK token, a random different
token or left unchanged (by a ratio of 8:1:1) when training the entire model with
cross-entropy loss (see Appendix A.2.2). To account for inter-sentence relationship
importance of certain downstream tasks such as Question Answering, BERT also
includes a second pretext task of Next Sentence Prediction (NSP). Here, the model
is to predict whether or not two input sentences follow each other in the source from
which they were extracted. To realize this, two sentences are input separated by an
SEP token and a classification model head attached to the CLS token is trained on
this task.

2.3 DNABERT

As opposed to Mo et al. [2021] or Le et al. [2021], who combine a BERT -based
architecture with other model types, Ji et al. [2021] more directly adapt BERT for
application on genomics data with their implementation of DNABERT. It is pre-
trained on sequences extracted from the human genome in order to learn regulatory
code in gene expression. They report improvements in multiple downstream tasks
as well as display the explainability benefits of a self-attention based model.

2.3.1 Data Preprocessing

In order to input genome data into a BERT architecture, it has to assume a
language-like structure of sequences made up of separated tokens. In order to ac-
count for genome sequences that regularly surpass the input length capability of a
BERT model (512 tokens), subsequences have to be created. Ji et al. [2021] attain
these in two different ways. They split genomes into non-overlapping subsequences
of sampled length and also randomly sample subsequences of sampled length from
a genome. These are subsequently tokenized using all permutations of k-mer repre-
sentation, which creates tokens like a sliding window with a stride of 1 (see figure
3.2).

2.3.2 Pretraining

Similarly to other BERT variations or experiments such as roBERTa and Distil-
BERT [Liu et al., 2019, Sanh et al., 2019], DNABERT does away with the pretext
task of NSP. Representations are therefore created solely with help of the masked
language model. Not only do above mentioned experiments show at least similar
performance without NSP, removing it allows for full length input sequences of 512
tokens and eliminates the requirement of structural knowledge about the sequences
input into the model during self-supervised training.

9

CHAPTER 2. LEARNING REPRESENTATIONS FROM GENOMICS DATA

Because tokens are created using k-mer representation of stride 1, a k-mer is identical
to its preceding and succeeding in all but one character respectively. A token could
therefore be correctly inferred by its neighbors every time. To prevent this, instead
of randomly sampling a percentage m of tokens to mask, Ji et al. [2021] opt to mask
k consecutive tokens per sampled masking location. In order to keep the total ratio
of masked tokens the same, this sampled masking location percentage is dropped to
m
k
. k refers to the length of the k-mer.

2.3.3 Finetuning

Using different datasets, DNABERT is compared to previous state of the art perfor-
mance on the tasks of prediction of promoter regions, finding of splice and transcrip-
tion factor binding sites. Ji et al. [2021] claim improvements over existing methods
such as DeePromoter, DeepSEA and SpliceFinder [Oubounyt et al., 2019, Zhou and
Troyanskaya, 2015, Wang et al., 2019]. Additionally, transfer learning to other than
the organism used in pretraining is conveyed through tasks on ENCODE ChIP-seq
datasets of Mouse DNA [Stamatoyannopoulos et al., 2012].

Figure 2.2: Visualization of the (DNA)BERT pipeline for an input example of 301
tokens. The right model head represents the mlm training head attached during
pretraining, while the left model head is used for sequence classification and therefore
present during finetuning. Trafo represents a linear layer with GELU activation and
layer normalization, whereas Pooler here refers to a linear layer with tanh activation.

10

3. BERT Application Experiments
for GenomeNet

The aim of the following experiments is to compare the performance of the BERT
architecture on genome level tasks (see Appendix A.2.4) to other representation
learning models. To this end, three different adaptations of the BERT -based model
DNABERT, as introduced by Ji et al. [2021], are proposed. These and the base-
line model are pretrained in a self-supervised manner on a virus genome dataset.
Models are evaluated after training them in a supervised manner with different nu-
cleotide length and label scarcity scenarios on the task of identifying whether or not
a nucleotide sequence is an excerpt of a bacteriophage genome. In this section the
training procedures of the different BERT models as well as the baselines that are
compared to in chapter 4 will be outlined.

3.1 Virus Phage/Non-Phage Dataset

All self-supervised learning models are trained and evaluated on a compilation of
virus genome sequences. On August 2nd, 2021, all available virus genome data
on GenBank [Sayers et al., 2019] was downloaded and divided into two taxonomic
classes, bacteriophages and other viruses. The resulting data was split into train,
validation and test sets by approximate ratios of 70%, 20% and 10%. This col-
lection of approximately 40k FASTA-files includes about 1 billion nucleotides for
the bacteriophage class and 0.5 billion for other viruses. All of the following self-
supervised models are pretrained on nucleotide sequences created from unlabeled
data of the train split. Splitting and class-annotation was done by Gündüz et al.
[2022], resulting data was simply used here.

Evaluation

This dataset poses a binary classification task of nucleotide sequences between
viruses that are bacteriophages and viruses that aren’t. Bacteriophages are viruses
that only attack bacterial cells [Kasman and Porter, 2021]. They are very abundant
in nature, often target species specific and quite diverse in their genomic organi-
zation [Simmonds and Aiewsakun, 2018]. In metagenomic sequence applications,
taxonomic classification is often useful when applying NGS methods to analyze
DNA collected from a given environment [Pust and Tümmler, 2021]. Identifying
bacteriophages can be especially difficult, as they lack universal marker genes [Roux
et al., 2020]. In comparison to other classification tasks that exhibit themselves on
a range of nucleotides such as identifying transcription factor binding - or splice
sites [Ji et al., 2021], these classes are genome wide. The goal is therefore to infer

11

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

genome-level information from a short sequence.

Because NGS methods regularly return sequences of shorter length, 150- and 1000-
nucleotide sequences are randomly sampled without overlap from the test split to
be used evaluating this downstream task (see table 3.1). Macro-averaged recall
RecallM (in %) and F1-score are then used to measure model performance (see
Appendix A.2.3).

seq length 150nt 1000nt

non-phage 102027 35306
phage 86381 61101

total 188408 96407
ratio 1.18 0.58

Table 3.1: Number of examples to predict in the evaluation set for the phage/non-
phage task of each input length along with the class distribution of those examples.
See Appendix A.1.

3.2 Experiments

First, the setup of the aforementioned scaled test framework is outlined and its
results discussed. Based thereon, the three different setups used to pretrain a BERT -
based model are described. Since Ji et al. [2021] report a k of 6 to perform the best
in their experiments, all setups share the use of 6-mers. Additionally, training was
halted after 100k steps every time for comparability and resource reasons (see section
4.1).

3.2.1 Scaled Semi-Supervised Trials

Since it is not given that the pretraining parameters used by Ji et al. [2021] work opti-
mally with data and downstream tasks different to theirs, it was deemed necessary to
investigate the impact of some hyperparameters to the model’s performance. These
include learning rate, masking percentage, weight decay and warmup percentage.
Moreover, it was desired to benchmark some alterations to the process regarding
data preprocessing, k-mer creation and masking. Therefore, a scaled down testing
framework was created, which would allow for approximate inference of implemented
changes without the need to train full models.

Setup This framework is realized by pretraining the bert-small configuration on
huggingface, a scaled down version of BERT, which consists of only 4 stacked Trans-
former encoder blocks, only 8-dimensional multi-head attention layers as well as a
smaller representation dimensionality of 512 [Wolf et al., 2020, Bhargava et al., 2021].

12

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

While the batch size is kept at what the full models would have, a down-sampled
amount of input sequences are trained on, and the maximum number of steps is set
to 10k. Throughout all trials masking is the only pretext task used. Similarly, hy-
perparameters - apart from weight decay - of the optimizer AdamW (see Appendix
A.2.1) are not changed from the original DNABERT model implementation.

As pretraining loss only describes the model’s ability to predict masked tokens, it is
not inherently a metric indicating the model’s proficiency of any specific downstream
task. Therefore, all pretrained trial models have a linear classifier attached, and only
this layer is trained in a supervised manner on the 150nt long phage/non-phage task
with the same fixed parameters for all models. The accuracy achieved by each trial
on the validation data was mainly used to judge model performance. Detailed
information about the trial setup is available in the Appendix A.6.

mask % stride #nt/loc %nt hidden % for k=6

15 1 1 15
k

2.5

15 1 3 45
k+2

5.625

15 1 5 75
k+4

7.5

15 1 6 90
k+5

8.1818

15 k
2

k
2

15 15

15 k k 15 15

Table 3.2: Comparison of different masking and tokenization strategies experimented
with during scaled self-supervised trials with respect to their implication of nu-
cleotides hidden from the model during mlm training. Shown here are the hidden
nucleotides per masked location (#nt/loc), the percentage of nucleotides hidden
overall for any k (%nt hidden) and for a k of 6. The first row corresponds to vir-
BERT, the second to virBERT-mask8 and the fifth to virBERT-stride3 introduced
in section 3.2.

Trials The main concern facilitating the desire to test different setups, is the mask-
ing technique of Ji et al. [2021]. As stated in 2.3, because k consecutive tokens are
masked 15

k
% of the time, the amount of distinct nucleotides hidden from the model

is also only 15
k
%. On the k-mer representation level, one can in theory infer k − 1

characters of all of the masked tokens via its preceding and succeeding tokens, leav-
ing the prediction of the one hidden nucleotide per masking location down to a
choice of one out of the four existing bases (compare table 3.2). It is however not
at all guaranteed that a model learns this relationship, as the k-mers are converted
to representing vector tokens before they are fed into the model. Apart from simply
increasing the masking percentage, trial setups that mask more consecutive tokens
per location (mask k+x -setups) as well as setups that create k-mers with higher

13

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

strides of k
2
and k are experimented with in order to counteract this effect. On

the data preprocessing side, higher input sequence length lower bounds (and lower
sequence length upper bounds for higher stride trials) as well as a different input
sequence length distribution are examined. These changes are based on the notions
that input sequences of lengths less than 3 tokens are not advantageous and that
more differentiated input lengths may result in better generalization to tasks of dif-
ferent input lengths. Additionally, input sequences are created with different ratios
between non-overlap cut and sampled subsequences. A description of how this is
usually performed in DNABERT is available in section 3.2.2. Overall, 36 different
setups are trialed (see Appendix A.6).

Figure 3.1: Pretraining and Finetuning for some selected trials of the setup described
in section 3.2.1. base (green) here represents the scaled down version of virBERT
with all the same training parameters, while mask8 (blue) and stride3 (orange)
do so for the other two variants pursued full scale. base highLR (red) poses as
a baseline to the higher learning rate setups of stride3 and mask8 with an equal
learning rate of 1e−3 and is equal to base otherwise. Left: Cross-entropy loss of
mlm on a validation set during self-supervised pretraining. Right: Class averaged
recall during supervised finetuning with frozen representation model layers on the
150nt virus phage/non-phage classification task.

Results It is important to mention that these trial runs do not represent a sys-
tematic or exhaustive form of hyperparameter optimization. They merely serve as
indications for possible benefits that changes to the pretraining setup may have.
Because alterations in data preprocessing force dataset creation anew and since the
sets are sampled down to 10%, the runs are not necessarily trained on the exact same
examples. Additionally, increasing model performance on a single downstream task

14

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

may come to the detriment of other tasks. That being said, increasing learning rate
up to 1e−3 as well as warm-up percentage to 10% seems beneficial throughout all
setup variations. The base masking rate of 15% as well as weight decay of 0.01
generally perform best. Increasing masking percentage during training showed a
decrease in model accuracy on the evaluation task. While no masking setup is con-
sistently better throughout the range of learning rates applied, it can be seen that
mask+2 setups are on par or outperform standard setups of equal learning rate and
produce the best performing model of all stride 1 setups. Higher k-mer stride setups
typically do not perform as well as the standard setups for higher learning rates,
they do however improve on this task when input sequences are kept shorter (lower
sequence length upper bound). Even more so, when the model’s input capability is
hard limited to accept less tokens1. Generally, these setups exhibit a higher accuracy
delta during finetuning.

3.2.2 VIRBERT

The first DNABERT -based model, henceforth referred to as virBERT, is a recreation
of the training procedure used by Ji et al. [2021], complete with the suggested
self-supervised training parameters and data preprocessing. Instead of training on
sequences of the human genome, they are replaced by ones created from the train
split of the above-mentioned virus dataset.

In accordance with the approach of Ji et al. [2021], training subsequences are com-
piled in two ways. Firstly, all genome sequences are split without overlap. The
lengths of these splits are sampled between 5 and 510 nucleotides with a 50 percent
bias towards the full length of 510. Secondly, subsequences are randomly cut from
each full sequence. The length is likewise sampled as stated above. A ratio of 2
between the number of sampled to cut subsequences is set, thus there are twice as
many subsequences sampled than non-overlap splitting creates for each genome.

This approach yields ∼7.7M subsequences for all available virus genome data in
the train split. It was chosen to not balance pretraining data by class or length
per sequence, as per definition of the applied use of a self-supervised model, this
information is not necessarily available. Additionally, different contigs of the same
genome were each simply treated as a distinct sequence2. The created subsequences
are then transformed into 6-mers and shuffled.

All training hyperparameters were kept exactly the same as in the original imple-
mentation of Ji et al. [2021]. Therefore, the model was set to train over 200k steps
with a batch size of 2000 (achieved with gradient step accumulation). A masking

1Inputting sequences of shorter token length than the maximum the model is configured for,
leads to appended padding tokens. Limiting the model to an input sequence token length closer
to that of the actual input sequences, consequentially removes unnecessary tokens and atten-
tion/network connections.

2The FASTA-files downloaded and used here for training sometimes contain multiple uncon-
nected sections (contigs) of an organism’s genome, which have not been fully sequenced, connected
or arranged.

15

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

probability of 15% is selected for the first 100k steps, increasing to 20% thereafter.
AdamW (see Appendix A.2.1) is used as the optimizer with β1 = 0.9, β2 = 0.98
and ϵ = 1e−6. Model weight decay is set to 0.01. A learning rate of 4e−4 is linearly
increased over the first 10k steps (warm-up of 5% of total steps) and then linearly
decreased back to 0.

Figure 3.2: This figure shows how input tokens are created as k-mers from an
excerpt of a nucleotide sequence. The token with a dashed border represents a
sampled masking location for the mlm during pretraining. a) Tokenization for 6-
mer creation using all permutations (stride of 1), therefore representing the method
of DNABERT6. A sequence of 18 nucleotides creates 13 tokens this way. The
dashed green box shows tokens masked for the defined masking location for the
base virBERT setup. The blue box represents the mask range extension performed
for the virBERT-mask8 setup. Distinct nucleotides hidden from the model during
this masking operation are displayed in a color coordinated fashion in the sequence
above. b) 6-mer tokenization for the virBERT-stride3 setup, creating only 5 tokens
from 18 nucleotides. Similarly as in a), the orange box shows which tokens are
masked and the hidden distinct nucleotides are highlighted.

3.2.3 VIRBERT-mask8

Following the scaled pretraining trials, it was selected to train a full scale mask+2
DNABERT variant. This model masks 8 consecutive tokens, and a total of 15%
of tokens overall. This rate is not increased during training. The learning rate is
increased to 1e−3 and the number of warm-up steps to 20k. It is again set to train
for 200k steps and all parameters not mentioned remain the same as for virBERT.
Compared to that model, training data is created with a higher nucleotide length
lower bound of 36 instead of 5.

3.2.4 VIRBERT-stride3

As a third model, it was chosen to use a k-mer tokenization with a stride of 3 (see
figure 3.2). Due to the fact that this approach results in a model that can handle
longer input sequences in terms of distinct nucleotides and, inspired by the positive

16

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

effect limiting the amount of input tokens to the model had in the self-supervised
trials (see section 3.2.1), it was chosen to not only train with sequences of maximum
length of 1000nt (332 6-mers with stride 3) but also hard-limit the model to 340 input
tokens. This longer nucleotide length input allows for prediction of both task defined
sequence lengths without the need to concatenate representations, as is necessary in
order to predict 1000nt sequences in all stride 1 k-mer models. Genome subsequences
are created in much the same way as in virBERT-mask8, the only difference being the
higher nucleotide length upper bound of 1000. These are tokenized as 6-mers with a
stride of 3. This variant is also trained with a learning rate of 1e−3 and 20k warm-up
steps. 3 consecutive tokens are masked in all 5% sampled masking locations, leading
to a total masked token percentage of 15% and 6 hidden nucleotides per location.
This setup carries the benefit of deceased training time and resources compared to
the other BERT -based methods (see Appendix A.5).

3.2.5 DNABERT6

Since Ji et al. [2021] made versions of DNABERT pretrained on the human genome
available, it is possible to investigate the transfer learning capabilities of this ar-
chitecture on the same virus task without the need to retrain any model on differ-
ent pretraining data. While their experiments already show some transfer learning
through region level tasks on a different mammalian species, the mouse genome can
be confidently aligned on 40% of the human genome [Consortium, 2002], the same
cannot be said for the virus genome. DNABERT6 will be finetuned and evaluated
on the same 150nt and 1000nt long phage/non-phage classification task.

3.2.6 Finetuning

To finetune a BERT model for a sequence level classification task (as done here
with the phage/non-phage task), the pretext task network heads and all but the
first token representations are scraped. This starting token (CLS -token) is meant
to collect sequence level information and only the CLS token is then fed through
an additional projection layer to a classifier in order to predict the class of an input
sequence (see figure 2.2). All three virBERT models are finetuned with randomly
cut, class annotated subsequences of 150 and 1000 nucleotide length sequences over
three different label availability scenarios. The input sequences are balanced by class
and to a degree also by genome length. Further details are described in Appendix
A.1. Because sequences of length 1000nt, tokenized as k-mers with a stride of 1,
surpass the input token limitation of BERT -base, these sequences are split into two,
passed through individually, and then the sequence representations are concatenated
again3. This is done for all DNABERT -based models on the 1000nt task except for
virBERT-stride3, which can handle inputs up to 1024nt.

3This is achieved with a fully connected layer and a ReLU activation function.

17

CHAPTER 3. BERT APPLICATION EXPERIMENTS FOR GENOMENET

3.3 Baselines

Performance of the self-supervised virBERT -models will be compared to a baseline
constructed by self-genomenet, a self-supervised model proposed by Gündüz et al.
[2022], which is trained on the same virus data. The model is comprised of stacked
encoder (CNN) and context (LSTM) networks and learns representations through
the prediction of reverse complement nucleotide sequences. A more detailed de-
scription is available in the Appendix A.3. The reported results below are taken
directly from those experiments and are not recreated. As mentioned in section 3.1
however, the training data is identical and the test examples are created equally.
Comparisons to other self-supervised models, such as CPC [Oord et al., 2018] and
different language models, on this task is also available through the experiments of
Gündüz et al. [2022]. It is important to mention here, that the BERT -base model
(and therefore all DNABERT variations) has a representation size of 768 compared
to the baseline at 512. This not only creates a larger fully connected layer for linear
evaluation (see section 4.2), but is generally expected to contribute to better model
performance.

Additionally, performance of fully supervised virBERT training is provided. This
supervised-virBERT model is not pretrained, therefore only randomly initialized
before it is finetuned on the task data.

18

4. Results

4.1 Pretraining

All virBERT pretraining runs exhibit similar behaviour as reported by Ji et al. [2021]
for DNABERT6. There is a sharp validation loss decrease within the first 20k steps
followed by a much more gradual decrease thereafter (see figure 4.1). Validation
loss here refers to the mlm cross-entropy loss on a validation set, which is simply
a smaller set of sequences created equally as the training set. For DNABERT6,
training was halted after 120k steps, citing loss plateauing as the reason. While
figure 4.1 shows an indication of continual loss decrease even at 100k steps, virBERT
models were only pretrained to 100k steps due to resource constraints. As a result,
masking percentage increase in virBERT (base) was not facilitated, does however
also not show an increase in model performance in the scaled self-supervised trials
(see section 3.2.1). Figure 4.1 also indicates higher validation loss convergence points
for the mask8 and stride3 variants of virBERT, which is expected as their mlm setup
hides more nucleotides overall (compare table 3.2 and section 3.2.1). Pretraining
was conducted for 190h on 8 nvidia-A100-40Gb GPUs for virBERT & virBERT-
mask8 and 141h on 5 of the same GPUs for virBERT-stride3, which shows that
DNABERT -based models are much more resource intensive than any of the baselines
(see Apendix A.5).

4.2 Linear Evaluation

RecallM F1

self-genomenet 88.6 0.916
virBERT 97.8 0.986
virBERT-mask8 93.8 0.963
virBERT-stride3 92.6 0.956

Table 4.1: Model performance on the phage/non-phage classification task for 1000nt
long input sequences under linear evaluation of pretrained self-supervised models
reported in class averaged recall (in %) and F1-score.

As is common for evaluating self-supervised models, the representations gained while
pretraining are applied in a linear classification setting, during which all layers of the
representation networks are frozen and only a linear classifier layer is trained. Since
the variants virBERT and virBERT-mask8 operate in the split and concatenate
function for 1000nt inputs however, there is a linear layer with ReLU activation on

19

CHAPTER 4. RESULTS

top of the two gained CLS tokens of a sequence before the linear classifier in order
to combine the two output tokens to a single representation. Since this layer is not
present while pretraining, it is also not frozen here. Input sequences are created with
100% label availability for this purpose. Table 4.1 compares the virBERT -variants
performance to the baseline under such linear evaluation.

Figure 4.1: Left: Cross-entropy loss of mlm on the validation set during self-
supervised pretraining of the 3 different virBERT model setups. Right: Class
averaged recall during supervised finetuning of the 3 virBERT models with frozen
representation model layers on the 1000nt virus phage/non-phage classification task
for linear evaluation.

4.3 Semi-Supervised Learning

Here, all models are finetuned on the phage/non-phage classification task mentioned
in section 3.1. Three different label availability scenarios are artificially created by
limiting access to a specific subset of FASTA-files during training. These splits
result in exactly the same files for all models, so the available labels are also the
same throughout. As in the semi-supervised protocol of Henaff [2020], 1% and 10%
labeled data is used. Additionally, a very sparse label setting of 0.1% is trained on.
For all virBERT models, input sequences are created in a way as to maximize the
amount of samples (up to a limit) without over-representation of longer genomes
and repetition of shorter ones (see Appendix A.1). Models are always finetuned
with the same length sequences as they are evaluated. Tables 4.2 and 4.3 compare
model performance for 150 and 1000 nucleotide length sequences, respectively. Hy-
perparameters for supervised finetuning of virBERT models are decided on with the
aid of small HPO studies (see Appendix A.4).

20

CHAPTER 4. RESULTS

10% 1% 0.1%

RecallM F1 RecallM F1 RecallM F1

self-genomenet 78.2 0.785 75.3 0.751 67.2 0.700
supervised-virBERT 71.8 0.710 67.6 0.673 62.4 0.608
virBERT 85.7 0.851 82.2 0.821 77.8 0.780
virBERT-mask8 85.0 0.845 81.7 0.812 76.7 0.762
virBERT-stride3 80.8 0.801 75.1 0.757 65.6 0.654

Table 4.2: Performance results through semi-supervised training on sequences of
150 nucleotide length. Displayed are class-averaged accuracy RecallM and binary
F1-score. The percentages represent the three label availability scenarios during
finetuning on the phage/non-phage virus task.

Throughout all 6 scenarios, virBERT -based models show superior performance com-
pared to the baseline with the base virBERT implementation appearing the best on
average overall. Table 4.2 shows that while the mask8 variant is very similar in per-
formance to the base virBERT model, the stride3 variant produces less successful
class predictions for 150nt input sequences. In table 4.3 it is however evident, that
the stride3 variant exhibits similar or better accuracy than the other variants with
1000nt input sequences. Since the stride3 model variant has a shorter input length
it trains notably quicker than the other virBERT models (stride3 trains for 37% and
63% of the time spent by the base tokenization versions for 150 and 1000nt, respec-
tively). The pretrained virBERT -model manifests an about 20% increase in recall
over the strictly supervised baseline throughout all scenarios, generally increasing
in the label scarcer setups of 1% and 0.1%. The virBERT model also shows an
impressive accuracy on the low label scenario of 0.1%, surpassing self-genomenet by
about 16% and 20% in recall for 150 and 1000nt, respectively.

10% 1% 0.1%

RecallM F1 RecallM F1 RecallM F1

self-genomenet 94.0 - 85.9 - 73.1 0.846
supervised-virBERT 81.5 0.871 77.2 0.867 70.6 0.773
virBERT 97.9 0.986 94.4 0.968 87.8 0.930
virBERT-mask8 97.2 0.983 91.7 0.953 81.7 0.901
virBERT-stride3 98.1 0.988 90.9 0.949 87.2 0.927

Table 4.3: Comparison of semi-supervised training performance with a longer input
sequence length of 1000 nucleotides. As in table 4.2, performance is reported in
RecallM and F1-score over the three different label availability scenarios.

21

CHAPTER 4. RESULTS

4.4 Transfer Learning

This section is to investigate the capability of a self-supervised model to be used
on data of different origin to the one it was pretrained on. In this case, models are
trained on data from organisms of different biological classification in a self super-
vised manner before finetuning them on the phage/non-phage classification task. Ji
et al. [2021] provide a pretrained DNABERT6 model, which is identical to virBERT
except for the applied training data. They pretrain on sequences extracted from the
human genome. Gündüz et al. [2022] already report transfer learning performance
of the self-genomenet model for this virus task. There, the model is pretrained on
all available bacteria genomes from GenBank [Sayers et al., 2019]. Since the two
models are not pretrained on the same data, table 4.4 does not necessarily allow
for direct comparison, it merely indicates each model’s ability to effectively transfer
gained representations through self-supervised training onto tasks of different data
origin.

150nt 1000nt

model pt-data RecallM F1 RecallM F1

DNABERT6 human 79.2 0.799 96.6 0.978
self-genomenet bacteria - - 97.0 -

Table 4.4: Transfer learning performance of the Transformer architecture repre-
sented by DNABERT6, a virBERT eqivalent, pretrained on human genome se-
quences by Ji et al. [2021] and the baseline pretrained on a collection of bacteria
genomes.

22

5. Conclusion and Future Direction

5.1 Discussion

In this thesis we have explored the effectiveness of representation learning through
a Bidirectional Transformer Encoder architecture for genome data. To this end,
different variations of an adapted BERT model are pretrained in a self-supervised
manner on nucleotide sequences extracted from virus genomes. These models are
then finetuned on a binary taxonomic classification task under various label scarcity
scenarios.

In general, it can be concluded that the pretrained Transformer Encoder proves to
be a useful tool in analyzing genome sequences on a genome level task. We have
shown that the DNA input adaptation of BERT, implemented by Ji et al. [2021] as
DNABERT for use with human genome sequences, is also capable in learning rep-
resentations from virus genome sequences. Our virus pretrained version, referred to
as virBERT, outperforms the given baseline on all input length and label availabil-
ity setups on the task of identifying bacteriophages from read-level length genome
sequences. To reiterate however, a direct comparison between the model architec-
tures’ success is not exactly possible, since they differ in representation size by 33%.
The virBERT realization following the original setup of DNABERT6 also outper-
forms both of the permutations (mask8 and stride3) trialed on this task on average.
Therefore it seems that increasing the amount of nucleotides hidden from the model
during the self-supervised mlm training with these masking or tokenization alter-
ations does not increase model performance, partially contradicting learnings from
the scaled trials (see section 3.2.1). While the stride3 variant was theorized to per-
form better on 1000nt input sequences because it can handle such lengths without
splitting the input sequences, there is no directly observable evidence to support
this. It does however provide the same level of accuracy with a much lower resource
demand in both pretraining and finetuning than the base virBERT model on this
input length. Generally, it has to be acknowledged that the Transformer Encoder
model is very resource and training time intensive, even when compared to other
self-supervised models for genome sequence analysis (see table A.5).

An interesting observation of the conducted experiments is that all models trained
in these experiments over-predict the bacteriophage class throughout every setup.
Possibly the model learns to classify more noisy input sequences as phages, as these
might be more diverse in short genome excerpts. However, this may indicate that
the performance measures on the 1000nt task are skewed, as the distribution of
prediction data might be in favor of such a behavior (see table 3.1).

For a more definitive evaluation of this model architecture, it will be necessary to
investigate its performance on more differentiated downstream tasks. This could

23

CHAPTER 5. CONCLUSION AND FUTURE DIRECTION

include tasks on virus data such as performed by Wu et al. [2021], who attempt
to classify bacteriophages as virulent or temperate, predicting a phages host as
done by Boeckaerts et al. [2021] or determining whether or not a virus can infect
humans [Bartoszewicz et al., 2021]. It should however, definitely also extend to
tasks on other organisms and tasks of strictly sequence or token range level (see
Appendix A.2.4) such as the T6SS -dataset provides [Li et al., 2015]. Training the
Transformer Encoder architecture is rather expensive and real-world applications
such as classifying genomic sequences extracted from an environment can include
DNA from multiple different organisms. Hence, it may be of interest to examine
the performance of a model that has been pretrained on a collection of data from
different biological kingdoms/domains/classes.

5.2 Improvement Ideas

5.2.1 Tuning

While the virBERT models represent a considerable increase in performance on the
low label availability scenarios of the applied virus classification task compared to
the baseline, finetuning the pretrained self-supervised models exhibits a tendency
to overfit very quickly. Altering the hyperparameters weight decay, dropout rate
and learning rate does not seem to have a major impact on this behavior and/or
lead to a less accurate model. More exhaustive HPO on these label scarce scenarios
may lead to better training behavior and model performance. Because decreasing
model complexity typically also combats this, an argument may be made to explore
a smaller BERT size in this context. The bert-medium setup on huggingface may
be suitable and also provides for a more fair comparison to baselines such as self-
genomenet with the same representation size of 512 [Bhargava et al., 2021].

5.2.2 NSP-like Task

Although some conducted experiments on BERT show no performance gain from
NSP for downstream language tasks [Liu et al., 2019], this additional pretext task
was originally designed to capture sequence level understanding and specifically
trains the CLS token during pretraining. As mentioned in section 3.2.6, all but this
CLS token of the output of a BERT model is discarded during sequence classifi-
cation with the standard implemented model head. With this in mind, it seems
possible that reinstating some sort of sequence level pretext task might raise the
model’s performance on sequence or genome-wide downstream tasks such as the
bacteriophage identification used in the above experiments. This would not neces-
sarily have to manifest itself in prediction of whether or not two sequences directly
follow each other [Mo et al., 2021], but could take on the form of predicting if two
sequences originate from the same genome or similar. Implementing this might how-
ever exclude some available data from pretraining as it requires some existing form
of annotation of the sequences.

24

CHAPTER 5. CONCLUSION AND FUTURE DIRECTION

5.2.3 Preprocessing and Tokenization

Stride3 Improvements Since the virBERT-stride3 variant performed on par with
the standard model for 1000nt inputs, and because hiding more consecutive tokens
during pretraining did not show an increase in performance on the downstream
task, it may be of interest to train a stride3 model while masking less tokens in
series during self-supervised training. The scaled trials also revealed an increase in
150nt classification accuracy for a stride3 model setting when pretraining sequence
length distribution is more diverse. Incorporating some of these changes may result
in a model that performs best on this task over all input length scenarios whilst
consuming less time to train.

Input Length Limitation An obvious downside of the use of a BERT -based
architecture and a k-mer tokenization method is the length limitation of input se-
quences. Depending on the stride of the k-mer creation, DNABERT models and
its derivatives are limited to specific sequence lengths, especially during pretraining.
This might inhibit the discovery of very long range dependency structures within
genomic sequences and thereby render the model useless or less performant on long
input sequence downstream tasks. Another recently implemented BERT use for a
similar task attempts to tackle this issue with the inclusion of an upstream encoding
network [Shang et al., 2022].

Model-based Genome Sequence Segmentation Opposed to the typical word-
part tokens used in NLP, the created k-mers in DNABERT are not only overlapping
but also random. As the input sequences and its lengths are sampled, the k-mers
and therefore also the embeddings input into the model change just by sampling a
sequence one nucleotide later. Assuming the removal of this randomness improves
the model’s understanding of the input language, it may be beneficial to prefix a
language creation model. Liang [2012], for example, attempts to segment DNA into
words using a statistical model. Another approach could be a minmax algorithm
that creates as few distinct but as long as possible segments. Because this would
create segments of varying length, it probably also considerably increases vocabulary
size. Whether or not this is beneficial is however unclear.

25

Acknowledgements and Reproducibility

This reasearch has been made possible by the contribution of Yanrong Ji, Zhihan
Zhou, Han Liua and Ramana V Davuluri with their publication of the DNABERT
model code.

Sincere thanks goes to the supervisors of this thesis (namely Dr. Mina Rezaei,
Hüseyin Anil Gündüz and Martin Binder) for support and guidance throughout the
project as well as to the GenomeNet team for its cooperation, especially towards
René Mreches and Philipp Münch of the HZI for helpful discussions.

This work has been funded in part by the German Federal Ministry of Education
and Research (BMBF) under Grant No.01IS18036A, Munich Center for Machine
Learning (MCML). Support in computational resources have also been provided
under Prof. Dr. Bernd Bischl of the Statistical Learning and Data Science chair at
LMU Munich.

All code required to reproduce the experiments conducted can be found on github at
https://github.com/minimops/DNABERT. A link to downloadable pretrained mod-
els is also made available there.

26

List of Abbreviations

Expression Representing

BERT Bidirectional Encoder Representations from Transformers
BiLSTM Bidirectional LSTM model
CNN Convolutional Neural Network
DL Deep Learning
DNABERT BERT model adapted for DNA as input
ECBLSTM Embedding-Convolution-BiLSTM
GELU Gaussian Error Linear Units
GPU Graphics processing unit
GRU Gated-Recurrent-Units
HPO Hyperparameter Optimization
LSTM Long-Short-Term-Memory
mlm Masked Language Model
NGS Next-Generation Sequencing
NMT Neural Machine Translation
NN Neural Network
nt Nucleotide(s)
Phage/Non-Phage Bateriophage/other Virus
ReLU Rectified Linear Unit
RNN Recurrent Neural Networt
tanh Tangent Hyperbolic Function

27

List of Figures

2.1 Inner workings of a Transformer Encoder block 8
2.2 Visualization of the (DNA)BERT pipeline 10

3.1 Pretraining and Finetuning of scale trial runs 14
3.2 k-mer tokenization for virBERT . 16

4.1 Pretraining and Finetuning of virBERT models 20

A.1 Hyperparameter importance during finetuning 40
A.2 Trials of base tokenization . 42
A.3 Trials with more consecutively masked tokens 43
A.4 Trials of higher k-mer stride . 43

28

List of Tables

3.1 Evaluation Datasets . 12
3.2 Comparing different masking setups 13

4.1 Model performance during linear evaluation 19
4.2 Model performance on 150nt inputs 21
4.3 Model performance on 1000nt inputs 21
4.4 Transfer Learning performance . 22

A.1 Selected Hyperparameters . 40
A.2 Pretraining Time . 41
A.3 Training Time during supervised finetuning 41
A.4 Trials of base tokenization . 42
A.5 Trials with more consecutively masked tokens 43
A.6 Trials of higher k-mer stride . 43

29

Bibliography

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2019.

B. Alipanahi, A. Delong, M. Weirauch, and B. Frey. Predicting the sequence specificities
of dna- and rna-binding proteins by deep learning. Nature biotechnology, 33, 07 2015.
doi: 10.1038/nbt.3300.

A. Aliper, S. Plis, A. Artemov, A. Ulloa, P. Mamoshina, and A. Zhavoronkov. Deep
learning applications for predicting pharmacological properties of drugs and drug
repurposing using transcriptomic data. Molecular Pharmaceutics, 13(7):2524–2530,
2016. doi: 10.1021/acs.molpharmaceut.6b00248. URL https://doi.org/10.1021/
acs.molpharmaceut.6b00248. PMID: 27200455.

E. Asgari and M. R. K. Mofrad. Continuous distributed representation of bio-
logical sequences for deep proteomics and genomics. PLOS ONE, 10(11):1–15,
11 2015. doi: 10.1371/journal.pone.0141287. URL https://doi.org/10.1371/
journal.pone.0141287.

Ž. Avsec, V. Agarwal, D. Visentin, J. R. Ledsam, A. Grabska-Barwinska, K. R. Tay-
lor, Y. Assael, J. Jumper, P. Kohli, and D. R. Kelley. Effective gene expression
prediction from sequence by integrating long-range interactions. bioRxiv, 2021. doi:
10.1101/2021.04.07.438649. URL https://www.biorxiv.org/content/early/2021/
04/08/2021.04.07.438649.

D. Bahdanau, K. Cho, et al. Neural machine translation by jointly learning to align and
translate. arxiv preprint arxiv: 1409.0473. 2014.

J. M. Bartoszewicz, A. Seidel, and B. Y. Renard. Interpretable detection of novel human
viruses from genome sequencing data. NAR Genomics and Bioinformatics, 3(1), 02
2021. ISSN 2631-9268. doi: 10.1093/nargab/lqab004. URL https://doi.org/10.1093/
nargab/lqab004. lqab004.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks / a publication of the IEEE
Neural Networks Council, 5:157–66, 02 1994. doi: 10.1109/72.279181.

P. Bhargava, A. Drozd, and A. Rogers. Generalization in NLI: Ways (not) to go beyond
simple heuristics. In Proceedings of the Second Workshop on Insights from Negative
Results in NLP, pages 125–135, Online and Punta Cana, Dominican Republic, Nov.
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.insights-1.18.
URL https://aclanthology.org/2021.insights-1.18.

30

https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1021/acs.molpharmaceut.6b00248
https://doi.org/10.1371/journal.pone.0141287
https://doi.org/10.1371/journal.pone.0141287
https://www.biorxiv.org/content/early/2021/04/08/2021.04.07.438649
https://www.biorxiv.org/content/early/2021/04/08/2021.04.07.438649
https://doi.org/10.1093/nargab/lqab004
https://doi.org/10.1093/nargab/lqab004
https://aclanthology.org/2021.insights-1.18

BIBLIOGRAPHY

BMBF. Genomenet – entwicklung und evaluierung von genomenet für die de novo
identifizierung von noch unbekannten genomischen strukturen und zur proba-
bilistischen dna-sequenzimputation - dlr gesundheitsforschung, Apr 2020. URL
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-
evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php.

D. Boeckaerts, M. Stock, B. Criel, H. Gerstmans, B. De Baets, and Y. Briers. Predicting
bacteriophage hosts based on sequences of annotated receptor-binding proteins. Scien-
tific Reports, 11, 01 2021. doi: 10.1038/s41598-021-81063-4.

T. Brown. Chapter 7, Understanding a Genome Sequence. Oxford: Wiley-Liss, 2002. URL
https://www.ncbi.nlm.nih.gov/books/NBK21136/.

H. Buermans and J. den Dunnen. Next generation sequencing technology: Advances
and applications. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Dis-
ease, 1842(10):1932–1941, 2014. ISSN 0925-4439. doi: https://doi.org/10.1016/
j.bbadis.2014.06.015. URL https://www.sciencedirect.com/science/article/pii/
S092544391400180X.

A. Chakravarty and J. Sivaswamy. Race-net: A recurrent neural network for biomedical
image segmentation. IEEE Journal of Biomedical and Health Informatics, 23(3):1151–
1162, 2019. doi: 10.1109/JBHI.2018.2852635.

K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https:

//aclanthology.org/D14-1179.

J. Clauwaert and W. Waegeman. Novel transformer networks for improved sequence
labeling in genomics. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, 19(1):97–106, 2022. doi: 10.1109/TCBB.2020.3035021.

M. G. S. Consortium. Initial sequencing and comparative analysis of the mouse genome.
Nature, 420(6915):520–562, 12 2002. doi: 10.1038/nature01262.

J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. 2018. URL https://arxiv.org/abs/
1810.04805.

J. Gehring, M. Auli, D. Grangier, D. Yarats, and Y. N. Dauphin. Convolutional sequence
to sequence learning. In International conference on machine learning, pages 1243–1252.
PMLR, 2017.

H. A. Gündüz, M. Binder, X.-Y. To, R. Mreches, P. C. Münch, A. C. McHardy,
B. Bischl, and M. Rezaei. Self-genomenet: Self-supervised learning with reverse-
complement context prediction for nucleotide-level genomics data, 2022. URL https:

//openreview.net/forum?id=92awwjGxIZI.

31

https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.gesundheitsforschung-bmbf.de/de/genomenet-entwicklung-und-evaluierung-von-genomenet-fur-die-de-novo-identifizierung-von-10890.php
https://www.ncbi.nlm.nih.gov/books/NBK21136/
https://www.sciencedirect.com/science/article/pii/S092544391400180X
https://www.sciencedirect.com/science/article/pii/S092544391400180X
https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://openreview.net/forum?id=92awwjGxIZI
https://openreview.net/forum?id=92awwjGxIZI

BIBLIOGRAPHY

D. Guo, M. Li, Y. Yu, Y. Li, G. Duan, F.-X. Wu, and J. Wang. Disease inference
with symptom extraction and bidirectional recurrent neural network. In 2018 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pages 864–868,
2018. doi: 10.1109/BIBM.2018.8621182.

O. Henaff. Data-efficient image recognition with contrastive predictive coding. In H. D.
III and A. Singh, editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 4182–4192.
PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/henaff20a.html.

S. F. S. Ho, N. Wheeler, A. D. Millard, and W. van Schaik. Gauge your phage: Bench-
marking of bacteriophage identification tools in metagenomic sequencing data. bioRxiv,
2022. doi: 10.1101/2021.04.12.438782. URL https://www.biorxiv.org/content/
early/2022/05/24/2021.04.12.438782.

S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In S. C. Kremer and J. F.
Kolen, editors, A Field Guide to Dynamical Recurrent Neural Networks. IEEE Press,
2001.

S. Hu, R. Ma, and H. Wang. An improved deep learning method for predicting dna-
binding proteins based on contextual features in amino acid sequences. PLOS ONE,
14:e0225317, 11 2019. doi: 10.1371/journal.pone.0225317.

U. Hwang, S. Choi, H.-B. Lee, and S. Yoon. Adversarial training for disease prediction
from electronic health records with missing data. arXiv preprint arXiv:1711.04126,
2017.

H. Iuchi, T. Matsutani, K. Yamada, N. Iwano, S. Sumi, S. Hosoda, S. Zhao, T. Fuku-
naga, and M. Hamada. Representation learning applications in biological sequence
analysis. Computational and Structural Biotechnology Journal, 19:3198–3208, 2021.
ISSN 2001-0370. doi: https://doi.org/10.1016/j.csbj.2021.05.039. URL https://

www.sciencedirect.com/science/article/pii/S2001037021002208.

Y. Ji, Z. Zhou, H. Liu, and R. V. Davuluri. DNABERT: pre-trained Bidirectional Encoder
Representations from Transformers model for DNA-language in genome. Bioinformat-
ics, 37(15):2112–2120, 02 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/btab083.
URL https://doi.org/10.1093/bioinformatics/btab083.

N. Kalchbrenner, L. Espeholt, K. Simonyan, A. v. d. Oord, A. Graves, and
K. Kavukcuoglu. Neural machine translation in linear time. arXiv, 2016. doi:
10.48550/ARXIV.1610.10099. URL https://arxiv.org/abs/1610.10099.

L. Kasman and L. Porter. Bacteriophages. StatPearls [Internet]. Treasure Island, Septem-
ber 2021. URL https://www.ncbi.nlm.nih.gov/books/NBK493185/.

N. Q. K. Le, E. K. Y. Yapp, Q.-T. Ho, N. Nagasundaram, Y.-Y. Ou, and H.-Y.
Yeh. ienhancer-5step: Identifying enhancers using hidden information of dna se-
quences via chou’s 5-step rule and word embedding. Analytical Biochemistry, 571:
53–61, 2019. ISSN 0003-2697. doi: https://doi.org/10.1016/j.ab.2019.02.017. URL
https://www.sciencedirect.com/science/article/pii/S0003269719300788.

32

https://proceedings.mlr.press/v119/henaff20a.html
https://www.biorxiv.org/content/early/2022/05/24/2021.04.12.438782
https://www.biorxiv.org/content/early/2022/05/24/2021.04.12.438782
https://www.sciencedirect.com/science/article/pii/S2001037021002208
https://www.sciencedirect.com/science/article/pii/S2001037021002208
https://doi.org/10.1093/bioinformatics/btab083
https://arxiv.org/abs/1610.10099
https://www.ncbi.nlm.nih.gov/books/NBK493185/
https://www.sciencedirect.com/science/article/pii/S0003269719300788

BIBLIOGRAPHY

N. Q. K. Le, Q.-T. Ho, T.-T.-D. Nguyen, and Y.-Y. Ou. A transformer architecture
based on BERT and 2D convolutional neural network to identify DNA enhancers from
sequence information. Briefings in Bioinformatics, 22(5), 02 2021. ISSN 1477-4054.
doi: 10.1093/bib/bbab005. URL https://doi.org/10.1093/bib/bbab005. bbab005.

J. Li, Y. Yao, H. Xu, L. Hao, Z. Deng, R. Kumar, and H.-Y. Ou. Secret6: A web-based
resource for type vi secretion systems found in bacteria. Environmental Microbiology,
17, 01 2015. doi: 10.1111/1462-2920.12794.

W. Liang. Segmenting dna sequence into words based on statistical language model.
Nature Precedings, 2012. doi: 10.1038/npre.2012.6939.1.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,
and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

T. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages 1412–1421, Lisbon, Portugal, Sept.
2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1166. URL
https://aclanthology.org/D15-1166.

S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer Sentinel Mixture Models. arXiv
e-prints, art. arXiv:1609.07843, Sept. 2016.

S. Mo, X. Fu, C. Hong, Y. Chen, Y. Zheng, X. Tang, Z. Shen, E. P. Xing, and Y. Lan.
Multi-modal Self-supervised Pre-training for Regulatory Genome Across Cell Types.
arXiv e-prints, art. arXiv:2110.05231, Oct. 2021.

NIH. A brief guide to genomics, Aug 2020. URL https://www.genome.gov/about-
genomics/fact-sheets/A-Brief-Guide-to-Genomics.

A. v. d. Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive
coding, 2018. URL https://arxiv.org/abs/1807.03748.

M. Oubounyt, Z. Louadi, H. Tayara, and K. T. Chong. Deepromoter: Robust pro-
moter predictor using deep learning. Frontiers in Genetics, 10, 2019. ISSN 1664-
8021. doi: 10.3389/fgene.2019.00286. URL https://www.frontiersin.org/article/
10.3389/fgene.2019.00286.

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In S. Dasgupta and D. McAllester, editors, Proceedings of the 30th Interna-
tional Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pages 1310–1318, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL
https://proceedings.mlr.press/v28/pascanu13.html.

33

https://doi.org/10.1093/bib/bbab005
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/D15-1166
https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
https://arxiv.org/abs/1807.03748
https://www.frontiersin.org/article/10.3389/fgene.2019.00286
https://www.frontiersin.org/article/10.3389/fgene.2019.00286
https://proceedings.mlr.press/v28/pascanu13.html

BIBLIOGRAPHY

R. Paulus, C. Xiong, and R. Socher. A deep reinforced model for abstractive sum-
marization. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=HkAClQgA-.

S. Pereira, A. Pinto, V. Alves, and C. A. Silva. Brain tumor segmentation using convo-
lutional neural networks in mri images. IEEE Transactions on Medical Imaging, 35(5):
1240–1251, 2016. doi: 10.1109/TMI.2016.2538465.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.
Deep contextualized word representations. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 2227–2237, New Orleans, Louisiana,
June 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1202.
URL https://aclanthology.org/N18-1202.

M.-M. Pust and B. Tümmler. Identification of core and rare species in metagenome
samples based on shotgun metagenomic sequencing, fourier transforms and spectral
comparisons. ISME Communications, 1:2, 03 2021. doi: 10.1038/s43705-021-00010-6.

D. Quang and X. Xie. DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences. Nucleic Acids Research, 44(11):e107–e107,
04 2016. ISSN 0305-1048. doi: 10.1093/nar/gkw226. URL https://doi.org/10.1093/
nar/gkw226.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma,
and R. Fergus. Biological structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. bioRxiv, 2020. doi: 10.1101/622803. URL
https://www.biorxiv.org/content/early/2020/12/15/622803.

S. Roux, D. Páez-Espino, I.-M. A. Chen, K. Palaniappan, A. Ratner, K. Chu, T. B. K.
Reddy, S. Nayfach, F. Schulz, L. Call, R. Y. Neches, T. Woyke, N. N. Ivanova, E. A.
Eloe-Fadrosh, and N. C. Kyrpides. IMG/VR v3: an integrated ecological and evo-
lutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids
Research, 49(D1):D764–D775, 11 2020. ISSN 0305-1048. doi: 10.1093/nar/gkaa946.
URL https://doi.org/10.1093/nar/gkaa946.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:
smaller, faster, cheaper and lighter. ArXiv, abs/1910.01108, 2019.

E. W. Sayers, M. Cavanaugh, K. Clark, J. Ostell, K. D. Pruitt, and I. Karsch-Mizrachi.
GenBank. Nucleic Acids Research, 48(D1):D84–D86, 10 2019. ISSN 0305-1048. doi:
10.1093/nar/gkz956. URL https://doi.org/10.1093/nar/gkz956.

J. Shang, X. Tang, R. Guo, and Y. Sun. Accurate identification of bacteriophages from
metagenomic data using Transformer. Briefings in Bioinformatics, 23(4), 06 2022. ISSN
1477-4054. doi: 10.1093/bib/bbac258. URL https://doi.org/10.1093/bib/bbac258.
bbac258.

34

https://openreview.net/forum?id=HkAClQgA-
https://aclanthology.org/N18-1202
https://doi.org/10.1093/nar/gkw226
https://doi.org/10.1093/nar/gkw226
https://www.biorxiv.org/content/early/2020/12/15/622803
https://doi.org/10.1093/nar/gkaa946
https://doi.org/10.1093/nar/gkz956
https://doi.org/10.1093/bib/bbac258

BIBLIOGRAPHY

P. Simmonds and P. Aiewsakun. Virus classification – where do you draw the line? Arch
Virol. 2018 Aug, 2018.

J. Stamatoyannopoulos, M. Snyder, R. Hardison, B. Ren, T. Gingeras, D. Gilbert,
M. Groudine, M. Bender, R. Kaul, T. Canfield, E. Giste, A. Johnson, M. Zhang, G. Bal-
asundaram, R. Byron, V. Roach, P. Sabo, R. Sandstrom, A. Stehling, and L. Adams.
An encyclopedia of mouse dna elements (mouse encode). Genome biology, 13:418, 08
2012. doi: 10.1186/gb-2012-13-8-418.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

A. Trabelsi, M. Chaabane, and A. Ben-Hur. Comprehensive evaluation of deep learning
architectures for prediction of DNA/RNA sequence binding specificities. Bioinformatics,
35(14):i269–i277, 07 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/btz339. URL
https://doi.org/10.1093/bioinformatics/btz339.

M. Vailati-Riboni, V. Palombo, and J. J. Loor. What Are Omics Sciences?, pages 1–7.
Springer International Publishing, Cham, 2017. ISBN 978-3-319-43033-1. doi: 10.1007/
978-3-319-43033-1 1. URL https://doi.org/10.1007/978-3-319-43033-1 1.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

R. Wang, Z. Wang, J. Wang, and S. Li. Splicefinder: ab initio prediction of splice sites
using convolutional neural network. BMC Bioinformatics, 20, 12 2019. doi: 10.1186/
s12859-019-3306-3.

S. Wang, M. Khabsa, and H. Ma. To pretrain or not to pretrain: Examining the benefits
of pretrainng on resource rich tasks. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages 2209–2213, Online, July 2020.
Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.200. URL
https://aclanthology.org/2020.acl-main.200.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu,
C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing: System Demonstrations, pages
38–45, Online, Oct. 2020. Association for Computational Linguistics. URL https:

//www.aclweb.org/anthology/2020.emnlp-demos.6.

35

https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1093/bioinformatics/btz339
https://doi.org/10.1007/978-3-319-43033-1_1
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2020.acl-main.200
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

BIBLIOGRAPHY

S. Wu, Z. Fang, J. Tan, M. Li, C. Wang, Q. Guo, C. Xu, X. Jiang, and H. Zhu. DeePhage:
distinguishing virulent and temperate phage-derived sequences in metavirome data with
a deep learning approach. GigaScience, 10(9), 09 2021. doi: 10.1093/gigascience/
giab056. URL https://doi.org/10.1093/gigascience/giab056. giab056.

X.-Y. Yan, P.-W. Yin, X.-M. Wu, and J.-X. Han. Prediction of the drug–drug interaction
types with the unified embedding features from drug similarity networks. Frontiers
in Pharmacology, 12, 2021. ISSN 1663-9812. doi: 10.3389/fphar.2021.794205. URL
https://www.frontiersin.org/article/10.3389/fphar.2021.794205.

Y. Zhang, J. Yan, S. Chen, M. Gong, G. Dongrui, M. Zhu, and W. Gan. A review on
the application of deep learning in bioinformatics. Current Bioinformatics, 15, 07 2020.
doi: 10.2174/1574893615999200711165743.

J. Zhou and O. Troyanskaya. Predicting effects of noncoding variants with deep learning-
based sequence model. Nature methods, 12, 08 2015. doi: 10.1038/nmeth.3547.

36

https://doi.org/10.1093/gigascience/giab056
https://www.frontiersin.org/article/10.3389/fphar.2021.794205

A. Appendix

A.1 Task-Specific Sequence Creation

A.1.1 Examples for Evaluation

The process of creating input sequences for prediction is mimicked from the process
employed in self-genomenet. For genome sequences shorter than the input length
times a limit per genome of 64, a starting nucleotide is sampled out of the first
10% of the sequence. From this point on, as many as possible examples are drawn
without overlap. For longer genome sequences, 64 examples are randomly extracted
without overlap.

A.1.2 Examples for Finetuning

Nucleotide sequences of the desired length are sampled for each FASTA-file up to a
maximum cap without replacement. For genome sequences that cannot accommo-
date this number of examples, they are drawn with replacement until they do, up
to a defined limit of how many repetitions there are to be. Examples are created
with these set parameters and then balanced by class. Exact calls that lead to the
datasets used can be found on github. For 150nt length inputs, sequence creation
results in ∼ 8M examples for 10% of lables, ∼ 2M for 1% and ∼ 500k for 0.1%.
For inputs of 1000nt length, ∼ 2M examples are created for 10% of lables, ∼ 500k
for 1% and ∼ 166k for 0.1%. The lower number of examples here is mainly chosen
for memory reasons and is not a limit to how many could be created.

A.2 Definitions

A.2.1 AdamW

AdamW represents the applied optimizer during training of the above experiments.
It is an amendment of Adam, in which weight decay is decoupled from the gradient-
based update. This optimizer was proposed by Loshchilov and Hutter [2019]. Its
algorithm is depicted in Algorithm 1.

37

APPENDIX A. APPENDIX

Algorithm 1 AdamW

1: given: α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8, λ ∈ R
2: initialize: time step t ← 0, parameter vector θt=0 ∈ Rn, first moment vector

mt=0 ← 0, second moment vector vt=0 ← 0, schedule multiplier νt=0 ∈ R
3: repeat
4: t← t+ 1
5: ∇ft(θt−1)← SelectBatch(θt−1) ▷ select batch and return the corresponding

gradient
6: gt ← ∇ft(θt−1)
7: mt ← β1mt−1 + (1− β1)gt ▷ here and below all operations are element-wise
8: vt ← β2vt−1 + (1− β2)g

2
t

9: m̂t ← mt/(1− βt
1) ▷ β1 is taken to the power of t

10: v̂t ← vt/(1− βt
2) ▷ β2 is taken to the power of t

11: νt ← SetScheduleMultiplier(t) ▷ can be fixed, decay, or also be used for
warm restarts

12: θt ← θt−1 − νt
(
αm̂t/(

√
v̂t + ϵ) + λθt−1

)
13: until stopping criterion is met
14: return optimized parameters θt

A.2.2 Cross Entropy Loss

CE (t, f(s)) = −
C∑
i

tilog (f(s)i) (A.1)

where t are labels and f(s) are class probabilities

A.2.3 Metrics

Binary F1-score:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2× Precision×Recall

Precision+Recall
(A.2)

TP = TruePositives; FP = False Positives; FN = FalseNegatives

where baceriophages represent the positive class.

38

APPENDIX A. APPENDIX

Macro averaged Recall (RecallM) in %:

RecallM = 100×
∑n

i=1Recall(ci)

n
(A.3)

for ci ∈ C Set of Classes and n Number of Classes

A.2.4 Task Level Types

The concept of different task levels is used throughout. It refers to what the class
of the task encompasses. Genome-level tasks therefore constitute a classification
of a sequence into a class that refers to the entire genome (identifying bacterio-
phages would be an example of this), whereas tasks of token-range (or region), like
the recognition of certain protein binding sites, imply that the labeled class of the
sequence refers to a window containing a limited number of tokens only. Exam-
ples of token-level tasks may include imputing of a few nucelotides or recognizing
short mutations and predicting following genome sections an example of a strictly
sequence-level task.

A.3 Self-genomenet

Gündüz et al. [2022] propose a contrastive self-supervised architecture of stacked en-
coding and recurrent networks to learn representations of nucleotide sequences. This
model aims to exploit the fact that one strand of DNA is always accompanied by its
reverse-complement, a sequence running in opposite direction with complementary
nucleotides. Here, genome sequence excerpts of varying length are split into two
non-overlapping subsequences. The convolutional encoding network then further
splits these into shorter, overlapping patches for which representations are learned.
All patches of the second subsequence are, however, turned into their respective
reverse-complements beforehand. Both sequences are concurrently fed into a con-
volutional encoder network and then an LSTM based context network. The pretext
task manifests itself in a linear prediction network, where learned embeddings are
to predict embeddings of the opposite (following) subsequence contrastively. Other
patches of the same minibatch are used as negative examples. This approach claims
high efficiency through the model symmetry given by training on a sequence and
its reverse-complement as well as sharing weights of the context and prediction net-
works.

The model is trained with a single convolutional layer of 1024 filters with k = 24 and
s = 6, leading to patches of length 24 and overlap of 6, followed by an LSTM layer
with 512 hidden units. A batch size of 512 was used for self-supervised training.

39

APPENDIX A. APPENDIX

A.4 HPO

The implemented Hyperparameter Optimization framework is built on the package
optuna [Akiba et al., 2019]. For this setup, some finetuning parameters for virBERT
models are selected with studies of about 40 trials per model. These parameters in-
clude learning rate, weight decay, dropout rate, batch size and warm-up percentage.
While the 10% label availability data split is used, examples are sampled down to a
quarter of what the full set would have. As figure A.1 also shows, batch size seems
least important to model performance throughout. Hence an equal batch size of
256 is selected for 150nt inputs and 64 for 1000nt inputs. All model variants prefer
a lower dropout rate of 10%. Table A.1 depicts the parameters selected for 150nt
input sequences over the 10% label availability scenario. Notably, other parameters
have also been experimented with full scale. These performed best however.

Figure A.1: Importance of hyperparameters during finetuning on the 150nt
phage/non-phage task for virBERT.

model batch size dropout% learning rate weight decay warm-up%

virBERT 256 0.1 1.6e−5 1.0 0.2
virBERT-mask8 256 0.1 2.0e−5 0.1 0.2
virBERT-stride3 256 0.1 3.0e−5 0.1 0.2

Table A.1: Hyperparameters selected for the 3 different virBERT variations during
finetuning on the 150nt phage/non-phage task with 10% label availability.

40

APPENDIX A. APPENDIX

A.5 Training Time

model Training time #GPUs GPU Type accumulated time

self-genomenet 158 - RTX 2080 Ti -
virBERT 190 8 A100 1520
virBERT-mask8 190 8 A100 1520
virBERT-stride3 141 5 A100 705

Table A.2: A rough estimation of the time spent pretraining the different models
in hours. For virBERT models, time spent validating the model during training
is included. The time reported for self-genomenet includes finetuning on the 0.1%
label task.

150nt 1000nt

model #GPUs steps/h #GPUs steps/h steps/h/gpu

virBERT(-mask8) 1 4870 2 3564 1782
virBERT-stride3 1 13158 1 4478 4478

Table A.3: Comparison of the achieved training steps per hour between the different
tokenization approaches of base and stride3. Batch sizes are equal per input length
task. This is taken from finetuning the pretrained models in a supervised fashion
on the phage/non-phage classification task with 10% label availability. Time spent
validating during training is included.

A.6 Self-Supervised Trials

After pretraining each trial (on average 13h on 4 A100 GPUs), a linear layer with
a softmax classifier is attached to each model. Only this layer is then trained in
a supervised manner with 4M class-balanced examples of 150 nucleotide length on
the virus phage/no-phage task. This is done over 2 epochs with a learning rate of
2e−5 and a dropout rate of 0.3. We evaluate a trial’s performance on 1.5M examples
created from the validation split of the data.

Masking more tokens per masking location was attempted by masking k+2, k+4
and k+5 tokens in a row, hiding 3, 5 and 6 nucleotides per k+x masked tokens,
respectively. For trials with higher strides of 3 and 6, the masking strategy was
adjusted to always hide 6 nucleotides from the model, so to 3 successive tokens for
a stride of 3 and just 1 for a stride of 6. Dataset preprocessing changes are explored
in multiple ways. Since a sequence cut length lower-bound of 5 nucleotides, as Ji
et al. [2021] suggests, is theorized to be low, as a sequence of 5 creates an empty

41

APPENDIX A. APPENDIX

input for 6-mers and in general results in lower length sequences on average, higher
cut length lower-bounds of 12 and 36 are examined. A bias of 0.3 towards maximum
length input sequences, compared to Ji et al. [2021] implementation of a bias of 0.5,
is also tested. Additionally, the effect of the ratio between non-overlap cut sequences
and randomly sampled ones is explored, ranging from no non-overlap sequences to
a ratio of 3 (times more samples sequences). Because models with inputs tokens of
higher stride need longer length sequences to attain the same input lengths, they
generally have a higher ratio of sampled sequences to achieve the same amount of
examples to train on. The maximum input lengths are however also changed in some
of the higher stride trial runs, reducing the number of nucleotides per sequences to
1000 and 510.

Results

The three figures below (A.2, A.3, A.4) show the accuracy on the 150nt phage/non-
phage task of some of the trials conducted. The plots depict supervised learning
with frozen representation layers and the tables the respective trial’s change to its
pretraining parameters. Over all figures, low refers to 3e−4, base to 4e−4, med to
6e−4 and high to 1e−3 in terms of learning rate. If not specified, the learning rate is
that of base.

id description

base base virBERT
1 mask% 20
2 med lr
3 low lr
5 lower weight decay
8 higher low b
9 higher ratio
12 med lr, fluid mask%
13 high lr

Figure A.2: Different setups for the standard virBERT setup. A comparison of runs
base, 2, 3 and 13 reveals 1e−3 to be the most suitable learning rate. Trial 1 (vs. base)
shows that increasing masking percentage does not improve accuracy (even when
fluid: 12 vs. 2). The higher sequence input lower bound length trial (8) appears no
different to base, whereas increasing the ratio of randomly sampled to non-overlap
cut input sequences (9) performs worse.

42

APPENDIX A. APPENDIX

id description

7 m8, med lr
14 m8, med lr, mask% 20
15 m10, med lr
19 m8, high lr
20 m10, high lr
21 m11, high lr
26 m8, lr 2e−3

30 = 19 but warm-up% 10

Figure A.3: Comparison of some of the trials where more than k tokens are masked.
mx refers to the number of consecutively masked tokens. Similarly to base trials,
performance increases with learning rate up to 1e−3 (19, 20, 21), whereas an even
higher learning rate (26) performs considerably worse. While they are never far
apart, mask8 setups emerge as the best variant.

id description

11 s3, base lr
16 s6, base lr
17 s3, high lr
18 s6, high lr
25 s3, upp b 1000nt
28 s3, upp b 510nt, cap
29 s3, upp b 510nt
31 s3, upp b 1000nt, cap
33 = 31 but lower bias

Figure A.4: stride-x variant trials of virBERT. Trials 25 through 33 also employ the
high learning rate. A tokenization with a stride of 3 performs better than a stride
of 6 in these trials. Trial 9 and 25 show, that reducing the upper bound of input
sequence lengths closer to that of the task increases prediction accuracy. Similarly,
the more diverse input length distribution of trial 33 with a lower bias towards
maximum length inputs of 0.3 hints at the same effect. Additionally, trial 28 (vs.
29) and trial 31 (vs. 25) both demonstrate that limiting the number of tokens a
model accepts also achieves better results.

43

	Introduction
	Understanding Genomic Data
	Thesis Structure and Contributions

	Learning Representations from Genomics Data
	Motivation and Related Work
	Deep Learning in NLP
	Attention Mechanisms
	Transformer
	BERT

	DNABERT
	Data Preprocessing
	Pretraining
	Finetuning

	BERT Application Experiments for GenomeNet
	Virus Phage/Non-Phage Dataset
	Experiments
	Scaled Semi-Supervised Trials
	VIRBERT
	VIRBERT-mask8
	VIRBERT-stride3
	DNABERT6
	Finetuning

	Baselines

	Results
	Pretraining
	Linear Evaluation
	Semi-Supervised Learning
	Transfer Learning

	Conclusion and Future Direction
	Discussion
	Improvement Ideas
	Tuning
	NSP-like Task
	Preprocessing and Tokenization

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Appendix
	Task-Specific Sequence Creation
	Examples for Evaluation
	Examples for Finetuning

	Definitions
	AdamW
	Cross Entropy Loss
	Metrics
	Task Level Types

	Self-genomenet
	HPO
	Training Time
	Self-Supervised Trials

