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Abstract

Hypothesis-generating, exploratory research and hypothesis-testing, confirmatory research
are both essential to progress in science. However, failing to separate the two types of
research can lead to non-replicable results when exploratory findings are misperceived or
intentionally presented as confirmatory. To transparently conduct strictly confirmatory
analyses, the practice of publicly registering research plans before the data analysis has
become increasingly popular. This process is called pre-registration. For a number of
applied research fields and study types, templates to aid researchers in specifying suffi-
ciently detailed plans are available. In the context of methodological statistical research,
the exploratory-confirmatory distinction has received little attention in the scientific liter-
ature so far. Consequently, there is no guidance available regarding the pre-registration
of methodological research in particular. To address this gap, this thesis proposes an ap-
proach for a strictly confirmatory real-data study in this field and provides a corresponding
pre-registration template for comprehensively planning such a study. The suggested ap-
proach is illustrated with a large-scale benchmark experiment, and its results more or less
confirm the findings of an existing simulation study. Specifically, the illustration indicates
that random forests (a) require more events per variable (EPV) than logistic regression
to realize their predictive performance potential and (b) are highly optimistic even when
generated with a large number of EPV. It also demonstrates how pre-registration can pre-
vent over-optimistic results, thereby suggesting that the adoption of the proposed approach
could lead to more credible methodological statistical research.
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1 Introduction

In the last two decades, it has been repeatedly demonstrated that the findings of many
studies cannot be replicated in applied research disciplines such as psychology (Open Sci-
ence Collaboration 2015), medicine (Ioannidis 2005) and economics (Camerer et al. 2016).
Among other things, publication bias, questionable research practices like p-hacking and
analytical flexibility contribute to the non-replicability of research findings (Munafò et al.
2017).
In connection with those reasons, the distinction between exploratory and confirmatory
research has received increasing attention in recent years. The former is also referred to as
hypothesis-generating, data-contingent research or by the term postdiction, and the lat-
ter is also called hypothesis-testing, data-independent research or prediction. Exploratory
research does not necessarily involve a specified hypothesis and seeks to identify patterns
in observed data, thereby generating hypotheses for future studies. These hypotheses
can then be tested on new data with a confirmatory analysis, which requires the a priori
specification of a clear hypothesis. To make progress in science, both of these stages are
essential (Wagenmakers et al. 2012; Nosek et al. 2018; Nilsen et al. 2020; Schwab and Held
2020). However, null hypothesis significance testing and p-values are only valid and retain
their diagnosticity for purely confirmatory research (Wagenmakers et al. 2012; Nosek et al.
2018).
In practice, many researchers blur the line between exploratory and confirmatory analyses.
This can be problematic, because it opens up the possibility of exploratory findings being
misperceived or presented as results from a confirmatory analysis, which can happen unin-
tentionally because of cognitive biases or deliberately by exploiting the analytical flexibility
to present a desired result. Whether intentional or not, presenting an exploratory finding
as confirmatory leads to overconfidence in the result and increases the chance of it being
a false positive result that cannot be replicated (Nosek et al. 2018; Button et al. 2013).
To clearly and transparently distinguish the two types of research, thereby ensuring the
purely confirmatory nature of a study, the public registration of analysis plans prior to
collecting or accessing data has been suggested (Wagenmakers et al. 2012; Nosek et al.
2018). This practice is called pre-registration and has become increasingly popular in recent
years (Simmons et al. 2021). Together with clarifying the distinction between exploratory
and confirmatory research, pre-registration addresses questionable research practices like
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1 Introduction

p-hacking, selective reporting of desired results and HARKing (“hypothesizing after the
results are known”, Kerr 1998; Hardwicke and Ioannidis 2018).
It has recently been suggested that issues such as publication bias, selective reporting
and fishing for significance also affect methodological statistical research, leading to over-
optimistic results that are not replicable (Boulesteix et al. 2020). Therefore, it could be
argued that clearly distinguishing the two research stages through pre-registration would
also be useful in this field. In fact, in the context of real-data benchmark experiments, the
adoption of pre-registration and study protocols has been identified as potentially help-
ful in reference to clinical research where those elements are already standard practice
(Boulesteix et al. 2017). For both clinical trial protocols and pre-registration documents
for applied research, various templates exist for different study types to aid researchers in
specifying all relevant details.
However, while there have been some pre-registered methodological studies,1 neither the
exploratory-confirmatory distinction nor the concept of a confirmatory real-data study
have been explored in the context of methodological statistical research. Consequently, no
template is available for the pre-registration of this kind of research in particular.
Therefore, the aim of this thesis is to explore, conceptualize and illustrate the idea of a
deliberately confirmatory real-data study in the field of methodological statistics. As the
central part of the presented approach, this thesis proposes the pre-specification of a com-
prehensive research protocol, similar to those used in clinical trials, and suggests a template
for such a protocol. This study protocol template shall serve as the starting point of a
guideline for confirmatory studies in methodological statistical research. Furthermore, the
included illustration aims to provide new confirmatory insights on the sample size needed
for binary prediction models from a large-scale benchmark experiment.
This thesis is structured as follows. Chapter 2 outlines the initial concept of a confirmatory
real-data study in methodological statistical research after reviewing related existing con-
cepts and by discussing relevant aspects. In Chapter 3, the previously detailed approach
is applied to a research question regarding the events per variable (EPV) in binary classi-
fication and the results of that study are reported. Then, in Chapter 4, the initial study
concept is reflected upon in the context of the application and limitations are discussed.
Lastly, Chapter 5 summarizes the findings of this thesis.

1See https://preregister.science for recent examples.
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2 Concept

This chapter outlines the initial concept of a confirmatory study in methodological sta-
tistical research. Firstly, Section 2.1, provides a brief overview of pre-registration and
connections to clinical research, as both serve as the basis and inspiration for the concept.
Section 2.2 follows with a discussion of various aspects of a confirmatory study and its
associated research protocol. The components of the proposed study protocol and the
concept in general are summarized in form of a template in Section 2.3.

2.1 Background: pre-registration and clinical research

The important clear distinction between exploratory, hypothesis-generating and confir-
matory, hypothesis-testing research is often not observed in practice. Pre-registration is
recognized as an effective tool to facilitate this distinction and is characterized by the time-
stamped registration of a study prior to collecting or accessing data (Nosek et al. 2018).
The registration is realized by archiving a document on a public independent registry such
as the Open Science Framework, which can be used to register research from all disciplines.
The contents and level of detail in pre-registration documents can vary, ranging from just
a basic study design to comprehensive research protocols (Munafò et al. 2017).
By publicly registering hypotheses, study design, methods and analysis plan before the be-
ginning of a study, pre-registration addresses several different questionable research prac-
tices (QRPs; Hardwicke and Ioannidis 2018; Munafò et al. 2017). These practices include
exploiting the researcher degrees of freedom to achieve statistical significance (p-hacking;
Simmons et al. 2011), selective reporting of desired results and HARKing (“hypothesizing
after the results are known”, Kerr 1998). In the context of methodological statistics, specif-
ically real-data benchmark experiments, examples of QRPs are the post hoc exclusion of
certain benchmarked methods or datasets and performing many different benchmark vari-
ations in the hope of finding the superiority of a particular method (Boulesteix et al. 2017;
Nießl et al. 2022a). Whether researchers engage in these practices intentionally or not, pre-
registration allows for an accessible assessment of their extent by others who can compare
the published analyses and results to the publicly archived study plan, provided the pre-
registered study protocol is sufficiently detailed. Thus, one would expect pre-registration
to reduce the presence of the mentioned QRPs.
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2 Concept

Closely related to pre-registration are Registered Reports (RRs), a publishing initiative
launched in 2013 by the journal Cortex (Chambers 2013) and referred to as “reviewed
pre-registration” (van 't Veer and Giner-Sorolla 2016). As of September 2022, RRs have
been adopted by over 300 journals,1 including interdisciplinary ones that may be suitable
for confirmatory methodological statistics studies (Nießl et al. 2022a).
In the RRs format, the conventional publication process with peer review is split into two
stages and pre-registration is integrated. In the first stage, before the study is conducted,
a detailed research proposal and analysis plan is peer-reviewed. Following this, accepted
proposals are offered in-principle acceptance, guaranteeing the publication of the results if
the authors adhere to their pre-registered protocol and interpret the findings appropriately.
Then, the authors conduct the study and subsequently submit a final manuscript for the
second stage peer review. In case of a positive evaluation regarding protocol adherence and
results interpretation, the RR article is then published (Hardwicke and Ioannidis 2018).
The RRs publishing model is an extension of pre-registration and, therefore, also mitigates
the previously mentioned issues addressed by pre-registration. Additionally, RRs prevent
publication bias since the publishing decision is made before results are known and thus not
influenced by the nature of the results (Munafò et al. 2017). Furthermore, this adaptation
of pre-registration has the added benefit of facilitating outside feedback and discussion by
peers in the early stages of the research process.
While the concept proposed in this thesis is based around the idea of pre-registration in
general, the suggested contents, possibly with some minor adjustments, should also be
sufficient for a first-stage submission of a RR article.

In clinical research, explicitly confirmatory studies have been established and deemed nec-
essary for decades. In the traditional classification of clinical trials into four phases, there
is a clear distinction between the exploratory Phase I and Phase II trials and the confir-
matory trials in Phase III and Phase IV (Umscheid et al. 2011; Sedgwick 2014).
Essential for those confirmatory studies, motivated by apparent publication bias and in
an effort to increase transparency in research involving human subjects, pre-registration
has become standard practice for clinical trials in the last 20 years (Munafò et al. 2017;
De Angelis et al. 2004). Pre-registration in this context refers to the registration of a trial
before patient enrollment and is required by law in many countries (Nosek et al. 2018; Reg-
ulation (EU) No 536/2014). Public trial registration is also a requirement for publication
in leading biomedical journals (De Angelis et al. 2004) and has been one of the principles
in the Declaration of Helsinki since 2013 (World Medical Association 2013).

1See https://www.cos.io/initiatives/registered-reports for a list of journals that publish RRs to
different extents.
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While the entry in a trial registry provides a brief summary, the study protocol serves
as the detailed description and is the foundation of a clinical study (Chan et al. 2013a).
Not only is the required information included in a trial registration not as detailed as in
a study protocol, certain key aspects may not be covered at all in that brief summary.
For example, the widely adopted WHO Trial Registration Data Set listing the minimum
required 24 registration items does not require researchers to specify the analysis plan at
the time of registration (World Health Organization 2018).
Furthermore, it should be noted that, while both basic trial registration and study protocol
are compiled before the start of a trial, the pre-registration of the latter has not been nearly
as common in the past compared to the former. Recent analyses of randomized clinical
trials published in 2012 and 2016 found that most available protocols were made public
a long time after the start of the trial (Campbell et al. 2022) and that the vast majority
of available protocols is not dated prior to patient enrollment (Spence et al. 2019). This
sub-optimal practice is mentioned here to note a critical aspect where the later proposed
concept goes beyond its clinical inspirations, in this case by adhering to comprehensive
pre-registration as previously described.

Although the conceptualization of a confirmatory study in methodological statistical re-
search is original, transferring concepts from clinical to statistical research is not a novel
approach. Boulesteix et al. (2017) suggest that adopting established clinical practices
such as sample size calculations, strict inclusion criteria and trial protocols could improve
real-data benchmark experiments common in statistical research. The ideas suggested by
Boulesteix et al. (2017) are discussed in more detail in various parts of the following section
2.2 along with other considerations.

Due to their established and frequent use, clinical trial protocols and their contents have
been the topic of guidelines for decades (Tetzlaff et al. 2012). To improve the quality of
trial protocols, the SPIRIT (Standard Protocol Items: Recommendations for Interventional
Trials) statement and checklist were published in 2013 (Chan et al. 2013a). This guideline
provides an evidence-based minimum set of 33 items and is endorsed as an international
standard (Rivera et al. 2020). In addition to guidelines, an abundance of clinical protocol
templates from universities, research organizations, government agencies and journals is
available online.
Along with the growing popularity of pre-registration in non-clinical disciplines, several
pre-registration templates have also been proposed and are available online (Stewart et al.
2020; see also https://osf.io/zab38/wiki/home/ for a variety of templates). Some of
them are generic and applicable in any discipline, while others are specific to certain
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fields or study types. Moreover, there are templates specifically for studies using pre-
existing data (van den Akker et al. 2019; Mertens and Krypotos 2019). Although developed
with psychological research in mind, these templates in particular are worth mentioning
given that real-data benchmark experiments are generally conducted with already existing
datasets.
The presented concept of a confirmatory study in methodological statistical research is
heavily built on the ideas of pre-registration and detailed study protocols as well as existing
work such as guidelines or templates.

2.2 A confirmatory real-data study in methodological
statistical research: aims and considerations

General considerations and aims

The purpose of a confirmatory study, by definition, is to evaluate pre-specified, so-called
a priori, hypotheses. To that end, one must generally have some information forming the
basis of these hypotheses, either theoretical in nature or from previous analyses. Without
enough information about a phenomenon or method, it may be advisable to first conduct
an exploratory study, similar to the process in clinical research. However, when the end
goal is a confirmatory study, one could also streamline this two-stage process by splitting
data into two subsets. The first subset of data would be analyzed to generate hypotheses
and, before testing them with the second subset, pre-registration would ensure the distinc-
tion between the two analyses (Nosek et al. 2018; Wagenmakers et al. 2012).

In methodological computational research, a common type of real-data study is a bench-
mark experiment that analyzes and compares a set of methods with respect to some per-
formance metric. Such a study could certainly be conducted in a confirmatory fashion
using pre-registration. However, the scope of the concept discussed here and the intended
use of the proposed template is much broader. The presented approach is intentionally
rather general to be utilizable for all kinds of hypotheses and all research with at least one
hypothesis that will be evaluated using real data. This includes, for example, comparison
studies with hypotheses about criteria other than standard performance measures or the
investigation of a single method with regard to some pre-defined metric. Independently
of the specific hypotheses, by combining a detailed protocol with pre-registration, the ap-
proach is designed to address QRPs and maximize transparency and reproducibility.
One study type for which the suggested approach may be particularly suitable is replication
studies whose primary purpose is to confirm previous methodological results. Although
considered important, they are still rare in statistical research (Boulesteix et al. 2020).
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Additionally, while replication studies are meaningful on their own, pre-registration and
adherence to a detailed protocol would further increase their credibility and impact.

As implied in the previous section, the impact and effectiveness of pre-registration depends
on the comprehensiveness of the archived document. For any field and type of research,
McPhetres (2020) describes what an effective pre-registration should contain and accom-
plish. He states that it should:

a) Restrict as many RDFs [researcher degrees of freedom] as possible
b) Detail all aspects of a study’s method and analysis
c) Detail information on decisions made during the planning stages
d) Specify how the results will be used and interpreted (McPhetres 2020,

p. 4)

These four aspects have guided the design of the pre-registration template for confirma-
tory methodological research suggested in this thesis with regard to its general contents.
Additionally, they should serve as general guidance when filling the template with the de-
tails of a specific study and determining whether the provided description needs further
refinement.
Regarding the level of detail in the described analysis plan, the standard general-purpose
pre-registration form by the Open Science Framework states that the author should ask
themselves whether there is “enough detail provided to run the same analysis again with
the information provided” (Bowman et al. 2020, p. 8). This may be used as a guiding
question for all parts of the protocol to ensure it is specific enough and therefore limit the
researcher degrees of freedom as much as possible.
Analytic flexibility and lack of detail in pre-specified statistical analysis plans are common
issues in clinical trials (Kahan et al. 2020). To address this problematic practice, Kahan
et al. (2020) outline a five-point framework for effective analysis pre-specification with the
goal of limiting p-hacking. The five covered aspects can easily be adapted for real-data
methodological studies; in fact, the original wording is already only somewhat specific to
clinical trials. Thus, this framework may also be used as guidance in the protocol writing
process.

The overall structure of the suggested protocol template is adapted from existing guidelines
and templates such as SPIRIT 2013 to incorporate previous design research and best
practices from clinical trials and other applied research fields. Some aspects of those
guidelines do not need to be adapted due to the fact that methodological statistical research
does not directly involve human subjects and mostly deals with pre-existing, anonymized
data. Examples of such aspects are the extensive safety and ethics considerations critical
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in clinical trial protocols. Furthermore, there are some important characteristics unique to
methodological real-data studies that additionally must be addressed in a research protocol.
These will be discussed in the following sections.

Dataset selection and number of datasets

In their analogy to clinical trials, Boulesteix et al. (2017) point out that in real-data bench-
mark experiments in statistical research datasets play the role of trial participants. While
different in nature, the selection of the statistical units is an important aspect in both study
types and should reflect the intended area of application and study objectives. Similar to
the practice in clinical trials, Boulesteix et al. (2017) advocate for the use of strict inclusion
and exclusion criteria in benchmark studies as well as the precise reporting of them. Such
criteria could, for example, reference the number of observations, the type of the outcome,
the subject matter of the datasets or their source. Strict dataset selection criteria clearly
define the scope of a study, and transparently reporting them allows others to fairly assess
the generalizability of findings (Boulesteix et al. 2017; Couronné et al. 2018). As men-
tioned, the post hoc exclusion of certain analyzed datasets in methodological studies can
be problematic as it can lead to biased results (Macià et al. 2013). The use of inclusion
and exclusion criteria alone does not fully address this issue since the criteria could be
adjusted, even if just slightly, after seeing the results. However, by reporting the precise
dataset selection criteria in a pre-registration, the a posteriori tuning of these criteria can
be avoided.
Given the large impact of the choice of datasets on results (Nießl et al. 2022a,b; Boulesteix
et al. 2013), the concept suggested in this thesis addresses the QRP of post hoc exclusions
even further to transparently ensure the integrity of a study. It is proposed that the en-
tire dataset selection process, including the check of exclusion criteria, be conducted prior
to pre-registration and that the complete list of selected datasets be included in the pre-
registration document. Besides making the specific analyzed datasets entirely transparent
before their analysis, this approach also allows the study’s researchers to check whether
the number of datasets is large enough as part of the planning of the study. If the dataset
selection is insufficient, this is realized prior to any analyses, which means the researchers
can then consider adjustments to the design or inclusion criteria of the study without un-
dermining its confirmatory nature.

The number of studied datasets is another aspect for benchmark experiments as it has,
for example, been suggested that method comparison studies are often underpowered due
to small numbers of considered datasets (Boulesteix et al. 2013; Boulesteix et al. 2015a).
While the proposed concept of a confirmatory methodological study is not limited to large-
scale studies with many datasets, an underpowered confirmatory study might not be able
to fulfill its intended purposes.

8



2 Concept

For real-data comparison studies using statistical tests, Boulesteix et al. (2015a) recom-
mend taking power considerations into account during planning to determine an adequate
number of datasets. To calculate the number of datasets needed to achieve a given power,
they suggest a simple method that is similar to formulas common in clinical trials. De-
pending on the existing literature for the selected methods and measures, one may need
to conduct a preliminary pilot study to obtain the standard deviation estimate necessary
for the power calculation.
For some methodological studies, the number of available datasets could also be limited
and further sampling might not be practical. In those cases, one may still calculate the
power that can be achieved with that limited fixed number of datasets, unless a necessary
pilot study would reduce the sample size too much.
Whether the number of studied datasets is based on statistical considerations or practi-
cal constraints, its determination or a rationale for it should be documented in the pre-
registration.

Prior knowledge, transparency, and neutrality

Real-data studies in methodological research generally involve pre-existing datasets. This
circumstance poses a risk to the clear distinction between exploratory and confirmatory
research that pre-registration intends to protect. After all, this distinction and thus the
possibility of completely confirmatory testing rely on the assumption that hypotheses and
analysis plans are formulated blind to the data that will be used in the study. Damaged
blinding due to prior knowledge can occur in different ways, for example, as a result of
reading previous studies or having analyzed some of the data (Nosek et al. 2018). Nosek
et al. (2018) note that this includes situations where the prior knowledge of certain data
concerns different outcomes than the ones of interest in the planned study.
In the context of methodological statistics, examples of this include knowing how cer-
tain methods conceptually similar to the studied methods have performed on the same
datasets or how the studied methods have performed on the selected datasets with respect
to a different measure. In both situations, the prior data knowledge might influence one’s
decisions regarding the planned analysis. To parts of methodological research, such as
machine learning research, the described issue is arguably particularly relevant in view of
the frequent use of the same benchmarking datasets and suites (Friedrich and Friede 2022;
Bischl et al. 2021).
Furthermore, the risk of harmful prior knowledge increases with the number of benchmark
experiments one conducts and reads about. This is especially the case if these past stud-
ies are concentrated on certain research fields, something that seems likely given usually
focused research interests.
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Since complete blindness is unlikely, researchers should transparently report their prior
knowledge in a pre-registration to maximize the validity of the analyses and inferences
(Nosek et al. 2018). This includes published and unpublished own work with the selected
datasets as well as previous studies by others using the data that one has encountered.

Neutrality is a related aspect that is particularly important for methodological research in
general and thus for confirmatory methodological studies. For comparisons of methods,
the importance of and need for neutral studies has been repeatedly emphasized in light of
possible bias in benchmark experiments that are conducted to demonstrate the performance
of a newly developed method (Boulesteix et al. 2013; Weber et al. 2019; Buchka et al. 2021).
Boulesteix et al. (2013, p. 8) define neutral comparison studies as benchmark experiments
that focus on the comparison itself and are conducted by “reasonably neutral” authors in
a rational way. Reasonably neutral authors are ones that do not have a preference among
the studied methods and are equally familiar with all of the methods (Boulesteix et al.
2017). These criteria can easily be adapted for confirmatory methodological studies in
general. However, Boulesteix et al. (2017) point out that these criteria are difficult to
fulfill in practice and that non-neutrality may arise subconsciously.
Especially given the reality that perfect neutrality is rarely possible, it is essential to
be transparent about the level of neutrality and familiarity with the studied methods.
As with many other pre-registration aspects intended to achieve maximum transparency,
a neutrality statement allows others to independently assess the credibility of a study.
Additionally, it helps reviewers of the analysis plan determine whether neutrality is a
substantial issue and if, for example, blinding strategies need to be implemented.

Planned analyses, contingencies and sensitivity analyses

The statistical analysis plan is arguably the most significant part of any pre-registration
and responsible for limiting the researcher degrees of freedom. Besides the previously
mentioned overall guidance regarding this aspect, some more content-specific considera-
tions regarding this part are presented here.
First, it should be noted that, although frequentist significance testing and p-values seem to
be the most common types of inferences in benchmark experiments, the proposed concept
of a confirmatory study is not limited to them. In accordance with the set goal of broad
applicability, the template is suitable for analyses using all kinds of information, such as
Bayes factors, credible intervals or effect sizes. Whatever inference criteria are employed,
the associated cut-off values or decision rules must be included in the analysis plan.
Furthermore, the analysis plan should contain details on the preprocessing, for example,
how missing values in the individual datasets will be treated or variables will be trans-
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formed. Additionally, one should specify contingencies for common issues and backup anal-
ysis plans, if applicable. Common relevant issues for methodological studies include miss-
ing values in the evaluation measures, non-convergence of algorithms in general (Boulesteix
et al. 2017) and unmet assumptions of statistical analytic techniques. Pre-specifying and
justifying analysis options for such issues ensure the integrity of the study, even if some-
thing does not go according to the original plan.

An illustration by Nießl et al. (2022a) shows that depending on design and analysis plan
choices, benchmark studies can lead to different results. Therefore, it is important to in-
vestigate the robustness of the results to changes in the made choices by considering alter-
native analysis strategies and reporting the corresponding results. In the pre-registration
template, alternative analysis strategies are to be included in the section for sensitivity
analyses which should be part of every confirmatory methodological study in some form.
Given that the performance of a method is dependent on dataset properties (Strobl and
Leisch 2022), this thesis also recommends to specify an investigation of the results with
regard to dataset characteristics in that section.
In addition to the plan for evaluating confirmatory hypotheses together with a sensitivity
analysis, one may also include planned exploratory studies in the pre-registration.

Reproducibility, software and data sharing

As previously specified, the information in the pre-registration should, at minimum, be
precise to a degree that it enables others to reproduce the study. For statistical research,
this relates especially to the used software and analysis code, all of which should be pub-
lished. Since the specific implementation of a statistical method could make a difference
and implemented default model parameters, for example, can vary, the pre-registration
should list the specific software packages (with version numbers) to aid reproductions.
Furthermore, the protocol template requires users to include a data sharing plan. Ide-
ally, all results data and, if possible, the analyzed datasets are openly accessible. Aside
from exact reproductions, others could then try alternative analysis strategies or sensitiv-
ity analyses beyond those in the original publication to further test the robustness of the
results (Hoffmann et al. 2021; Nießl et al. 2022a). Additionally, open results data allows
exploratory analyses by others which could form the basis for a different confirmatory
study.

Deviations from the plan and reporting of results

Since it is impossible to anticipate all contingencies and deviations from the study plan
do occur in practice, it must be addressed how they should be handled. For adjustments
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to the protocol after the initial pre-registration but before the start of the study, one can
simply update the registration and, if applicable, explain the changes. Reasons for this
kind of adjustment include results from planned pilot studies or feedback from others (of
course pilot studies and reviews could also happen prior to the initial pre-registration). All
updates and amendments to the protocol should be transparently logged, for example in
the appendix of the most recent version. Deviations from the protocol that occur while the
study is being conducted should be clearly indicated and justified in the reporting of the
results without exception, for example in a dedicated section to facilitate the assessment
of their extent.
Reporting in general is a crucial factor for the replicability of findings, and the lack of
guidance in that regard for methodological statistical research has been pointed out as
problematic (Boulesteix et al. 2020). While a comprehensive reporting guideline is be-
yond the scope of this thesis, the following principles related to pre-registration should
increase the reporting quality and transparency. Firstly, to address the QRP of selective
reporting, all pre-specified analyses and measures, including planned sensitivity and ex-
ploratory analyses, must be reported (Nosek et al. 2018). Secondly, confirmatory analyses
and exploratory analyses should be reported in separate sections to clearly distinguish
them. Lastly, a link to the registry entry should be provided to make readers aware of the
pre-registration. Additionally, one may want to include the entire protocol in an appendix
of the report, especially if one wants to refer to it in the text.
Regarding the publication of results, the pre-registration template has a section to specify
a dissemination policy. Aside from plans for a traditional peer-reviewed publication, this
section should clarify whether the results will be reported in the absence of acceptance by
a journal and, if so, where, when and in what form. This is an important point to consider
given that not all studies will be published in journals, for instance due to publication bias,
which is a phenomenon also present in methodological research (Boulesteix et al. 2015b,
2020).
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2.3 Suggested pre-registration protocol template

Section Expected information (if applicable)

0. Administrative
information

a) Study title, author, affiliation of involved people, funding
b) Pre-registration link, protocol version and date

1. Introduction
2. Background a) Previous work/existing literature

b) Description of the studied method(s)
c) Description of the collected/involved measure(s) (e.g.,

performance measures)

3. Study rationale,
objectives, research
questions and hypo-
theses

a) Overall study rationale and aims
b) Primary objectives, research questions and hypotheses
c) Secondary objectives, research questions and hypotheses
d) Exploratory objectives and research questions

4. Datasets a) Population, sources, inclusion and exclusion criteria
b) Selection process and its results

5. Prior knowledge and
neutrality

a) Known prior work based on the selected datasets, the ana-
lyzed measures in that work and its relation to the planned
study

b) Prior knowledge about the datasets themselves
c) Neutrality statement regarding the investigated methods

6. Benchmark experiment
plan

a) Benchmark design
b) Preprocessing procedure (e.g., handling of missing values

or certain kinds of variables in the individual datasets)
c) Method implementations and configurations

7. Analysis plan a) Confirmatory analyses (for each hypothesis separately)
- Operationalization of hypothesis and evaluation metric
- Statistical techniques to evaluate hypothesis
- Inference criteria

b) Sample size considerations
c) Contingencies and backup plans (e.g., for missing values in

the evaluation metric, outliers or assumption violations)
d) Alternative analysis strategies and sensitivity analyses
e) Exploratory and other planned analyses

8. Software
9. Dissemination a) Dissemination plan

b) Availability of code, data and materials
References
Appendix a) List of selected datasets

b) Protocol amendment history

Table 2.1: Suggested study protocol template for the pre-registration of a confirmatory real-data
study in methodological statistical research.
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In this chapter, the previously described concept of a confirmatory real-data study in
methodological statistical research is illustrated using a large-scale benchmark experiment.
This example study investigates the connection between prediction performance and the
number of events per variable for two binary classification methods: logistic regression and
random forests. Firstly, in Section 3.1, the corresponding research protocol is provided,
employing the template outlined in Section 2.3. Then the deviations from the protocol that
arose while conducting the study are detailed in Section 3.2. In Section 3.3, the results of
the planned and unplanned analyses are presented. Lastly, the findings as well as some
limitations of the study are discussed and summarized in the Section Section 3.4.

3.1 Study protocol

Administrative information

Title The connection between the number of events per variable
and prediction performance: a large-scale real-data study
comparing logistic regression and random forests

Author Felix Julian David Lange

Contributors and
their affiliation

Felix Julian David Lange, LMU Munich

Protocol version 1.1

Version date November 21, 2022

3.1.1 Introduction

Binary classification and the prediction of binary outcomes are common tasks in many
applied research fields. In the development of binary prediction models, a frequently con-
sidered concept is the number of events per variable (EPV) (Ogundimu et al. 2016). The
number of EPV is defined as the ratio of the number of observations in the minority class
of the outcome variable to the number of predictor variables (i.e., the degrees of freedom
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needed to represent them; van Smeden et al. 2019). Previous studies on the topic of EPV
are mostly (a) simulation studies, (b) focused on regression modeling and (c) not examin-
ing prediction performance.
This protocol is for a large-scale real-data benchmark experiment that investigates the
predictive performance of logistic regression and random forests in relation to the number
of EPV. The study aims to confirm two results from a simulation study by van der Ploeg
et al. (2014) by analyzing 75 real datasets, and its basic design is as follows. During the
benchmark, for each dataset, 24 data subsets with different numbers of EPV (ranging from
5 EPV to 500 EPV) will be sampled. A standard logistic regression model using all avail-
able variables and random forests with default hyperparameters will then be generated for
every subset. The prediction performance of the two methods will be primarily measured
by the area under the receiver operating characteristic curve (AUC) and through repeated
5-fold cross-validation. In addition to the primary confirmatory analyses, the robustness
of the results with respect to design and analysis choices and dataset characteristics will
be examined.

3.1.2 Background

Previous work/existing literature

The concept of EPV in the context of logistic and Cox regression analyses has been ex-
tensively studied through simulations. For these modeling techniques, several rules of
thumb have been suggested, recommending how many EPV should be available to develop
a prediction model. The most widely adopted minimal sample size criterion, especially in
clinical research, is the lower limit of 10 EPV (Ogundimu et al. 2016; van Smeden et al.
2019). Peduzzi et al. (1996), who studied the effect of the number of EPV on the regression
coefficients, proposed this rule. However, in recent years, the validity of this rule of thumb
and the usefulness of EPV criteria in general have been questioned (van Smeden et al.
2016, 2019).
The only known study investigating statistical techniques other than regression models
in this context is by van der Ploeg et al. (2014) and serves as the basis for the planned
benchmark. Van der Ploeg et al. (2014) compared the predictive performance of logistic
regression, classification and regression trees, support vector machines, neural nets and
random forests in relation to the EPV in three simulated datasets. They used AUC as a
performance measure and examined the optimism of the generated models (i.e., the dif-
ference between mean apparent and mean validated AUC). Van der Ploeg et al. (2014)
conclude that, in comparison with logistic regression, modern machine learning techniques
like support vector machines, neural nets and random forests require considerably more
EPV to reach a stable AUC and small optimism. Additionally, they note that the differ-
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ence in absolute performance between random forests and simple logistic regression models
is marginal in their examples.

Description of the studied methods

Logistic regression Logistic regression is a commonly used, standard approach to an-
alyze binary variables and models the following conditional probability of one of the two
classes of a binary variable of interest Y :

P (yi = 1 | xi1, . . . , xik) =
exp(β0 + β1xi1 + . . .+ βkxik)

1 + exp(β0 + β1xi1 + . . .+ βkxik)
,

where xi1, . . . , xik are the explanatory variables and β0, β1, . . . , βk are the regression coeffi-
cients. The coefficients are the parameters of the model and estimated through maximum
likelihood estimation (Fahrmeir et al. 2021). The number of parameters is also used in the
calculation of the number of EPV (van Smeden et al. 2019). Predicted probabilities from
a model can be used to classify observations by setting the probability threshold that must
be exceeded to assign an observation to the modeled class. This study uses the common
default threshold of 0.5 (Couronné et al. 2018).

Random forest Random forest is an ensemble learning technique that was introduced
by Breiman (2001). The algorithm involves growing a large number of decision trees based
on bootstrap samples and aggregating their results. Compared to a single classification
tree, this aggregation of many trees leads to a reduction in variance. When growing one
of the classification and regression trees of the ensemble, the splitting of nodes is based on
purity and only a random selection of features is considered for each split. This aspect of
the random forest method reduces the correlation between individual trees, which further
improves the variance reduction (Hastie et al. 2009).
The random forest algorithm has several hyperparameters that can be tuned, such as the
number of features considered at each split or the minimum number of observations in
terminal nodes (Couronné et al. 2018). However, even without hyperparameter tuning,
random forests perform well on prediction problems (Hastie et al. 2009), though the gen-
erated models are somewhat hard to interpret (Couronné et al. 2018).

Description of the collected/involved measures

AUC The area under the receiver operating characteristic (ROC) curve (AUC) is a
measure of discriminative ability (i.e., how well a model can distinguish between the ob-
servations in the two outcome classes). A model with perfect discriminative ability has an
AUC of 1, while an uninformative model has an AUC of 0.5 (Steyerberg 2019). The AUC
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can also be interpreted as the probability that a random observation with the outcome has
a higher estimated outcome probability than a random observation without the outcome
(Hanley and McNeil 1982).

Accuracy The accuracy of a prediction model is another discrimination measure and
defined as the proportion of correctly classified observations (Metz 1978). As a result of
that definition, accuracy values range from 0 to 1 with higher values indicating better
predictive performance.

Brier score The Brier score is a measure of overall model performance and incorporates
calibration aspects in addition to discrimination aspects. It is a quadratic scoring rule and
defined as the mean squared difference between the true outcome class (0 or 1) and the
predicted probability. Consequently, Brier scores range from 0 to 1, and a lower Brier score
signifies better predictive performance (Steyerberg 2019).

3.1.3 Study rationale, objectives, research questions and hypotheses

Overall study rationale and aims

Complementary to the existing simulation studies, this study intends to provide real-data
evidence on the connection between prediction performance and the number of EPV. Its
overall aim is to confirm two results from van der Ploeg et al. (2014) using a large number
of real datasets.

Primary objectives, research questions and hypotheses

This study has two research questions and hypotheses, both are considered primary. To
clearly distinguish them in the protocol as well as the eventual results, they will be re-
ferred to as first and second hypothesis, respectively. The first research question is whether
random forests require more EPV than logistic regression models to achieve a stable pre-
dictive performance. Van der Ploeg et al. (2014) conclude from their simulations that “RF
[random forests] need far more events per variable to achieve a stable AUC-value than ...
LR [logistic regression]” (p. 13). It is expected that this is also the case for real datasets.
To assess this prediction, the following hypotheses will be used:

H0: Random forests need the same number of EPV as logistic regression
to achieve a stable predictive performance.

H1: Random forests need more EPV than logistic regression
to achieve a stable predictive performance.
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The second objective of the study is to investigate the optimism of random forest models
which is defined as the difference between the performance on the training data and the
test set performance. Van der Ploeg et al. (2014) remark that for their three simulated
datasets “the optimism of the RF [random forest] models remained high [≥ 0.01] ... even
at a large number (over 200) of events per variable” (p. 7) and “did not even converge
towards zero at the largest number of events per variable that we evaluated” (p. 9). To
confirm this finding in this study, the following hypotheses will be used:

H0: The optimism of the random forest models generated at 500 EPV is
equal to or smaller than 0.01.

H1: The optimism of the random forest models generated at 500 EPV is
larger than 0.01.

Exploratory objectives and research questions

At the time of writing, there are no plans for analyses unrelated to the two previously out-
lined confirmatory research questions. However, the planned sensitivity analyses described
in Section 3.1.7 are exploratory in nature, as their purpose is to examine the impact of
certain dataset characteristics on the results and no specific hypotheses regarding those
associations are made in advance.

3.1.4 Datasets

Population, sources, inclusion and exclusion criteria

The planned benchmark experiment concerns binary classification, and thus, the dataset
population of interest is the set of datasets with binary target variables. The source of the
datasets used in this study is the OpenML platform (Vanschoren et al. 2013), where users
can upload all kinds of datasets and their machine learning results. As of September 2022,
the OpenML database includes 22,160 public datasets, which can be filtered by status
(“active”/“verified”, “deactivated” or “in preparation”) and various dataset characteristics.
The origin of the available datasets varies. Some are previously unpublished datasets;
others are re-uploads of datasets from other sources, such as the UCI Machine Learning
Repository (Dua and Graff 2017) or Kaggle.com. Resulting from uploads of identical
duplicates, transformed datasets or sampled datasets, the database often has multiple
versions of the same original dataset.
To select suitable datasets, the following eligibility criteria were defined based on other
classification benchmarks (Bischl et al. 2021; Grinsztajn et al. 2022) as well as the design
of the planned study.
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Inclusion criteria:

a) Active (i.e., “verified”) OpenML datasets without missing values
b) At least 625 EPV with a minimum of two feature variables
c) Fewer than 10,000 features

Exclusion criteria:

d) Cannot be loaded from OpenML
e) Duplicate of or overlap with another OpenML dataset
f) Missing values have been removed or imputed or rows have

been removed in other non-random ways
g) Too little information is available for a reliable assessment
h) Requires taking time or space dependency between observations

into account (time-series, stream-like or spatial data) or
requires grouped sampling (grouped observations)

i) Artificial datasets as well as simulated datasets that are
not connected to a real-world application

j) Fewer than two categorical or numeric features
k) No apparent target variable

The absence of missing values was required, as the treatment of missing data was not
meant to be addressed in this study to remove additional complexity with regard to the
preprocessing. The minimum number of EPV is 625 so that with 5-fold cross-validation,
the training data will always have at least 500 EPV, as this is roughly the largest number
of EPV in the study by van der Ploeg et al. (2014).1 It was determined to limit the number
of features to 10,000 to avoid computer memory issues. Moreover, this limit only excluded
nine datasets, seven of which also meet at least one of the exclusion criteria.
Datasets where missing values had been removed or imputed were excluded since the
inclusion of those datasets would be equivalent to indirectly addressing missing values.
Criterion f) also prevents subjective data subsets. Additionally, datasets without sufficient
information on their content were excluded, as these datasets cannot be reliably assessed
with regard to the other criteria. This information requirement does not mean that there
must be a scientific reference or source included in the OpenML dataset description, just
that there is enough information to make the selection decision. Criterion h) was added
as dependent observations would violate logistic regression assumptions and grouped ob-
servations would require more complex, non-standard cross-validation procedures.

1Originally, 1,000 EPV were planned as a minimum requirement. However, it was quickly realized that
this would reduce the set of eligible datasets too much.

19



3 Illustration

Selection process and its results

The dataset selection process can be broken down into two steps. First, the list of datasets
is reduced in R through automated checks of eligibility. Second, the remaining datasets are
manually reviewed for exclusion, a process that is documented in a spreadsheet. Following
this manual selection, it is also determined and noted whether the selected datasets require
some form of preprocessing.
In the case of this study, the automated part in R reduced the number of potential datasets
J from 22,160 to 752. After the manual eligibility check of those, 128 suitable datasets
were left. However, this selection included a cluster of datasets containing the same type
of data. Specifically, 39 datasets had QSAR (quantitative structure–activity relationship)
data with molecular fingerprints as features.2 Without going into more detail, including
this group would clearly be an overrepresentation of this one specific type of data. There-
fore, the study only includes one of these 39 datasets, specifically the one with the most
observations. Thus, the final dataset selection for this study was a group of 90 datasets. Of
the 90 datasets, 15 were used in a pilot study, leaving 75 datasets for the main benchmark
experiment.3 Figure 3.1 shows the dataset selection process in the form of a flowchart.

3.1.5 Prior knowledge and neutrality

Known prior work based on the datasets

The only known work that incorporates a dataset selection approach similar to the one
described above is a study by Couronné et al. (2018). In their large-scale benchmark exper-
iment, they compared the prediction performance of logistic regression and random forests
using 243 real datasets from the OpenML database. However, due to different inclusion cri-
teria and the continued growth of the OpenML database since 2016,4 the overlap between
their selection and the 90 datasets selected for this study is small: Only ten datasets are
included in both the study by Couronné et al. (2018) and this one. Moreover, of those ten,
nine are subject to preprocessing in this study and, consequently, might differ substantially
from the unprocessed datasets analyzed in Couronné et al. (2018).
As in the planned benchmark, Couronné et al. (2018) evaluated prediction performance
using AUC, accuracy and Brier score. Therefore, it is known how both investigated meth-
ods perform over a large selection of real datasets from OpenML. However, this knowledge
does not affect the study described here since the absolute performance values are not the
focus of the planned benchmark and the overlap between the analyzed dataset selections
is insignificant.

2In the dataset selection spreadsheet, the datasets belonging to this cluster can easily be identified: all
their names start with “QSAR-TID”.

3Lists of the two dataset groups can be found in Table A.1 and Table A.2 in the protocol appendix.
4Couronné et al. (2018) selected the datasets for their study in October 2016.
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All datasets available on OpenML
on September 12, 2022 (J=22,160)

Datasets manually checked
w.r.t. eligibility criteria (J=752)

Datasets excluded using R (J=21,408):
a) Was not active/verified (J=17,825)
b) Contained missing values (J=711)
c) Had fewer than 625 EPV or fewer

than two predictors (J=2,539)
d) Had more than 10,000 feature

variables (J=9)
e) Met other exclusion criteria

(J=324)

Datasets that met the
eligibility criteria (J=128)

Selected datasets (J=90)

Datasets excluded to avoid
cluster of similar datasets (J=38)

Datasets used in pilot study (J=15)

Datasets for main study (J=75)

Figure 3.1: Dataset selection flowchart. Regarding the exclusions using R, the order in which the
exclusion reasons are listed is also the order in which they were determined.

Prior knowledge about the datasets themselves

The author of this protocol has not analyzed any of the datasets that will be used for the
main benchmark experiment.5 However, during the dataset selection process, in order to
check the eligibility criteria and determine if preprocessing is needed, the datasets were
inspected to a certain extent. These superficial examinations were limited to extracting
outcome class sizes and determining the type of data in variables. Furthermore, even
within those limitations, the inspections never went on longer than necessary to make the
decision at hand.

515 of the 90 datasets were used in a pilot study that is described in Section 3.1.7, leaving 75 datasets
for the main benchmark experiment. None of these 75 datasets have been analyzed.
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Neutrality statement for the investigated methods

Regarding the two methods investigated in this study, the author has no personal preference
or conflict of interest and is more or less equally familiar with both of them. Additionally,
the author has no publications on either method but has previously used logistic regression
models and random forests on individual datasets.

3.1.6 Benchmark experiment plan

Benchmark design

To evaluate logistic regression and random forests for different dataset sizes, this study em-
ploys repeated stratified cross-validation (CV) and training data subsets. For each analyzed
dataset, the benchmark experiment involves the following steps. First, in the first layer of
sampling, stratified 5-fold CV is repeated 10 times, resulting in 50 iterations. Then, for ev-
ery first-layer iteration (i.e., every 80/20 train-test split), the training data is sampled into
subsets corresponding to different numbers of EPV (second layer of sampling). Specifically,
24 training data subsets for numbers of EPV ∈ {5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175,
200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500} are created using stratified ran-
dom sampling. The subsets are sampled in a nested way such that one subset contains all
the previous smaller subsets. Figure 3.2 shows the two layers of sampling for one dataset.
Each training subset as well as the full training data is then used to train a logistic regres-
sion model and a random forest model. The resulting 25 models for each method for this
one CV fold are evaluated using the same test data.

Figure 3.2: Visualization of the two layers of sampling used for a given dataset in the study.
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Over all CV iterations for one dataset, this two-layer sampling procedure therefore leads to
50 (iterations) ∗ 25 (training sets) = 1,250 models for each method. For every model, the
three mentioned performance measures — AUC, accuracy and Brier score — are calculated
using the corresponding training and test data, resulting in six performance values for each
trained model.

Preprocessing procedure

Before the benchmark experiment, the datasets are preprocessed to a certain degree. Re-
lated to and in preparation for this preprocessing, some issues connected to the mlr3 pack-
age employed for the benchmark must be addressed. The mlr3 setup works by converting
the OpenML datasets into mlr3 task objects using the metadata supplied by OpenML. On
these mlr3 tasks, the machine learning algorithms are then applied. However, for some
datasets the OpenML metadata is insufficient or incorrect, which will cause errors when
trying to convert them into mlr3 tasks or issues after the conversion during the benchmark.
To avoid such problems, the following preparations must be made: (a) if mlr3 cannot de-
termine the task type for a dataset, determine the task type; (b) if mlr3 cannot identify
a default target variable, identify the target and (c) correct the target type, if necessary
(some binary classification tasks are recognized as regression tasks because the target is
wrongly encoded as numeric).

Regarding the actual preprocessing, the following steps are performed as necessary:

1. Remove certain variables (e.g., IDs and other character
variables, redundant targets)

2. Correct feature types for incorrectly encoded features
3. Turn all categorical variables into dummy variables
4. Remove constant feature variables
5. Remove sparse feature variables (less than 10% of values

belonging to the minority class for dummy variables and less than
10% non-zero values for numeric features)

6. Transform the target to a binary variable (based on median
for regression tasks and majority class vs. rest for multiclass clas-
sification tasks)

7. Sample the maximum number of feature variables p possible while
ensuring at least 625 EPV

Step 3 was incorporated to facilitate the calculation of the number of parameters and to
ensure the same feature encoding across all datasets. Step 5 was included to reduce the risk
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of separation and constant features in the samples, especially considering the low number of
observations in the smaller training subsets. The decision to include non-binary problems
and dichotomize their targets in step 6 was made to increase the number of available
datasets.6 Furthermore, it is argued that the apparent issues with dichotomization (e.g.,
loss of information, discriminative ability and statistical power) are not that relevant to
the primary research questions investigated in this study.
Table A.3 in the protocol appendix summarizes the preprocessing outcomes for the 90
selected datasets.

Method implementations and configurations

For the logistic regression models, a simple model with all available predictors is fit using
the standard implementation in the glm() function from the R stats package (R Core
Team 2022). More complex models with, for example, interaction terms, quadratic terms
or splines are not considered, as this would require careful individual modeling for each
dataset which is not feasible for a large number of datasets.
The random forest models are fit using the implementation in the ranger R package and
its default parameters (Wright and Ziegler 2017). No hyperparameter tuning is performed
as this also seems unfeasible given the 1,250 random forest models for each dataset.

3.1.7 Analysis plan

First hypothesis

Operationalization of hypothesis and evaluation metric To operationalize the hy-
pothesis that random forests need more EPV than logistic regression to achieve a stable
predictive performance, it first has to be defined what is meant by “stable predictive perfor-
mance”. In the paper by van der Ploeg et al. (2014) from which this hypothesis originates,
the stability (or plateauing) of prediction performance in terms of AUC seems to have
been assessed visually using learning curves. Furthermore, they also used the word “good”
instead of “stable” to describe the desired predictive accuracy and assumed that prediction
performance monotonically increases with sample size. Taking these aspects into consid-
eration for the planned study, it was determined that a model has achieved a stable or
good predictive performance if its AUC is within 5% of the maximum achievable AUC.
Connecting this criterion to the number of EPV, the relevant evaluation metric for the
first hypothesis is the minimum number of EPV for each method at which the AUC of the
generated model is at least 95% of the maximum achievable AUC.

6Excluding datasets with non-binary targets would have reduced the number of available datasets from
90 to 37.
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In the context of the benchmark design described above, the evaluation metric is formal-
ized as follows. For CV iteration i = 1, . . . , 50 of a given dataset j, let AUCtest

ij (n) be the
test data AUC of the model generated using the training data subset with n EPV, and let
MaxAUCtest

ij be the test data AUC of the model generated using the full training data.
The minimum number of EPV at which a method achieves a good predictive performance
is then defined for iteration i of dataset j as

(EPVmin)ij = min
{
n ∈ EPV | AUCtest

ij (n) ≥ 0.95 ·MaxAUCtest
ij

}
,

where i = 1, . . . , 50, j = 1, . . . , J , and EPV = {5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175,
200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500}.
Therefore, EPVmin corresponds to the number of EPV of the smallest training data subset
for which the defined criterion is met.
Let (EPV RF

min)ij and (EPV LR
min)ij denote this minimum number of EPV for random forests

and logistic regression, respectively. To evaluate whether random forests need more EPV
than logistic regression, the ratio between the EPVmin for the two methods
(EPV RF

min)ij/(EPV LR
min)ij is calculated for every iteration. The ratios are then aggregated

over all 50 CV iterations using the geometric mean to estimate the ratio for a given dataset
j:

̂EPVminRatioj = EPVminRatioj =

(
50∏
i=1

(EPV RF
min)ij

(EPV LR
min)ij

) 1
50

=

(∏50
i=1(EPV RF

min)ij

) 1
50

(∏50
i=1(EPV LR

min)ij

) 1
50

=
(EPV RF

min)j

(EPV LR
min)j

=

̂(EPV RF
min)j

̂(EPV LR
min)j

This ratio is used to evaluate the hypothesis. If the ratio is exactly 1, random forests
and logistic regression models need the same number of EPV to achieve a good predictive
performance. If it is > 1, random forests need more EPV, and if it is < 1, logistic
regression models need more EPV. Therefore, the null hypothesis is that the population
mean ratio (µRF/LR = µRF /µLR) is equal to 1. Since ratios are inherently asymmetric and
generally not normally distributed, the statistical analysis is performed on the (natural)
log-transformed ratios, leading to the following final hypotheses:

H0: log(µRF /µLR) = log(µRF )− log(µLR) = log(1) = 0

H1: log(µRF /µLR) = log(µRF )− log(µLR) > log(1) = 0
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Statistical techniques to evaluate hypothesis After applying the natural log-trans-
formation above, the null hypothesis can be tested with a one-sided t-test for differences
between paired measurements, assuming that the log differences are approximately nor-
mally distributed. With dj denoting the difference for dataset j, the sample mean of the
log differences d̄ is calculated as follows:

d̄ =
1

J

J∑
j=1

dj =
1

J

J∑
j=1

log( ̂(EPV RF
min)j)− log( ̂(EPV LR

min)j)

In addition to the t-test, the distributions of the log differences as well as the minimum
numbers of EPV will be visualized with boxplots. Furthermore, summary statistics such
as mean, median, quartiles and standard deviations will be computed for both the log-
transformed and the untransformed minimum numbers of EPV.

Inference criteria The inference will be based on the p-value and confidence interval of
the paired t-test using a nominal significance level of α = 0.05. As the hypothesis above is
one of two hypotheses tested in this study, a multiple test adjustment must be performed.
To control the family-wise error rate, the method by Bonferroni (1936) will be applied.
Even though the Bonferroni correction is rather conservative, it was chosen because it can
be easily incorporated into sample size calculations (Vickerstaff et al. 2019). As a result of
adjustment, the first hypothesis will be tested at α = 0.05/2 = 0.025.

Second hypothesis

Operationalization of hypothesis and evaluation metric For the second hypothe-
sis, the optimism of a model is defined as the difference between the prediction performance
on the training data and the test set performance, both measured in terms of AUC. As
stated in the hypothesis, only the random forest models trained on 500 EPV are examined
for this research question.
For CV iteration i = 1, . . . , 50 of a given dataset j, let AUCtrain

ij (500) and AUCtest
ij (500)

be the train and test data AUC of the model generated using the training data subset with
500 EPV. The optimism of the 500 EPV random forest model is then calculated as follows:

RFopt500ij = AUCtrain
ij (500)−AUCtest

ij (500) , i = 1, . . . , 50 , j = 1, . . . , J
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To estimate the optimism for a given dataset j, the values for the 50 CV iterations are
aggregated:

R̂Fopt
500

j =
1

50

50∑
i=1

RFopt500ij , j = 1, . . . , J .

These J values are used to evaluate the null hypothesis that the population mean optimism
of random forest models µRFopt is equal to or smaller than 0.01 against the alternative
hypothesis:

H0: µRFopt ≤ 0.01

H1: µRFopt > 0.01

Statistical techniques to evaluate hypothesis Under the assumption of approximate
normality, the above hypothesis can be tested using a one-sample one-sided t-test. The
sample mean optimism RFopt is given by

RFopt =
1

J

J∑
j=1

R̂Fopt
500

j .

Additionally, the distribution of the J optimism values will be visualized in a boxplot,
and summary statistics such as mean, median, quartiles and standard deviation will be
computed.

Inference criteria The inference will be based on the p-value and confidence interval of
the t-test. Like the first hypothesis, the second hypothesis will be tested at the significance
level α = 0.05/2 = 0.025 as a result of the Bonferroni correction.

Sample size considerations

The sample size for this study (i.e., the number of datasets) was not planned before the
dataset selection and was more determined by the number of available datasets and the
eligibility criteria. The goal was to include as many datasets as possible in the benchmark.
That meant including every eligible dataset while ensuring that the inclusion and exclusion
criteria fit the study’s objectives.
Although the sample size of the study was not determined through power considerations
and is rather fixed, power calculations can be useful in estimating the power of the study.
For the paired t-test used to evaluate the first hypothesis of this study, the power 1− β of
the test to detect a given log difference ∆ can easily be calculated for a given number of
datasets J , a given standard deviation σ and the determined significance level α = 0.025

(Boulesteix et al. 2015a).
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Given that no studies with the exact same evaluation metric or hypothesis exist, a small
pilot study was conducted to obtain a rough estimate of the standard deviation. To that
end, 15 of the 90 selected datasets were randomly sampled and analyzed as planned.
The number of datasets in the pilot study was chosen more or less arbitrarily with the
intent to balance the reduction of datasets available for the main study and the reduction
in precision of the pilot study variance estimate. The pilot study yielded the standard
deviation estimate σ̂pilot = 0.96 for the log difference. To adjust and inflate this imprecise
estimate, the so-called upper confidence limit (UCL) approach by Browne (1995) was
employed. Specifically, the upper confidence levels 80% and 95% for the estimated standard
deviation were considered based on previous studies (Whitehead et al. 2015). Lastly, the
scenario of the standard deviation being twice as high as the estimate from the pilot study
was included in the power considerations.
Using these four standard deviation estimates, Figure 3.3 illustrates the power calculations
for various values of J and ∆. It shows that the study should generally have sufficient
power. With the 75 available datasets, the t-test might not be able to detect a rather small
log difference of 0.405 (indicating that random forests need 50% more EPV than logistic
regression). However, an effect of 0.693 (corresponding random forests needing twice as
many EPV as logistic regression) is detected with at least 80% power under all considered
standard deviation scenarios. Should the true effect be even larger, as van der Ploeg et al.
(2014) suggest, it should be detected with near 100% power under the assumption that
the standard deviation is within the considered range.
The protocol appendix includes analogous plots for the second hypothesis (see Figure A.1).

Contingencies and backup plans

This section addresses two issues that might arise during the study: missing values and
unmet assumptions of the chosen statistical techniques. The issue of missing values is, in
theory, twofold in this study. Firstly, there is the possibility of missing values in the col-
lected performance measures (AUC, accuracy, Brier score). Secondly, missing values may
also arise in the calculated evaluation metrics, either because of the mentioned missing
AUC performance values or by design. Due to the fact that only the evaluation metrics
are interpreted in this study and considering that this interpretation is quite removed from
the absolute performance values, only missing values in the evaluation metrics (RFopt500ij

and (EPVmin)ij) will be explicitly imputed. Missing AUC performance values will there-
fore only be addressed indirectly.
It should be noted that the RFopt500ij values will only be missing if the corresponding
performance values are missing, but the (EPVmin)ij values can also be missing if no per-
formance values are missing, namely when no training data subset generates a model with
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σ̂pilot = 0.96 σ̂80UCL = 1.17 σ̂95UCL = 1.4 σ̂ = 2σ̂pilot = 1.92
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Figure 3.3: Power plots for first hypothesis, so ∆ refers to the log difference between the needed
numbers of EPV for random forests and logistic regression. The four colored lines
represent four standard deviation estimates (or scenarios) based on the pilot study
results. The dashed black line indicates the number of datasets that will be analyzed
in the main benchmark experiment (75).

an AUC within 5% of the MaxAUC. For both evaluation metrics, a 20%-threshold rule
is defined to deal with possible missing values. Previous studies have applied similar rules
for the imputation of performance values (Bischl et al. 2013; Herrmann et al. 2021). In
this study, the 20%-threshold rule is specified as follows. If the values for (EPVmin)ij or
RFopt500ij are missing in less than 20% of the 50 CV iterations, the missing values are
imputed using the mean value of the remaining iterations. If the values for (EPVmin)ij
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or RFopt500ij are missing in more than 20% of the 50 CV iterations, the missing values are
imputed using the worst possible value. For RFopt500ij , the “worst possible value” is defined
as 0.5, representing the scenario of a perfect AUCtrain

ij (500) of 1 minus an AUCtest
ij (500)

of 0.5 that corresponds to random prediction. For (EPVmin)ij , the “worst possible value”
is the number of EPV in the full training data of iteration i (i.e., the number of EPV used
to generate the MaxAUCtest

ij in the first place).

The possibility of statistical assumptions of the employed t-tests not being met is addressed
with the following back up plans. For the t-tests, the assumption of approximate normality
is particularly critical and will be checked with Shapiro-Wilk tests and Q-Q plots. In case
of a violation, the non-parametric Wilcoxon signed-rank test will be performed as an
alternative.

Alternative analysis strategies and sensitivity analyses

Two types of sensitivity analyses will be performed for the results of the benchmark. Firstly,
the connection between dataset characteristics and the results will be explored for both
research questions. For that purpose, the 75 analyzed datasets are grouped by certain
dataset characteristics. The subgroups will then be re-analyzed separately and differences
in the results will be visualized. Table 3.1 lists the dataset meta-features and correspond-
ing categories or cut-off values that are used to define subgroups of datasets.

Meta-feature Categories/cut-offs

Original task type
prior to dichotomization

Regression tasks, multiclass classification
tasks, binary classification tasks

Types of features
Only numeric features, only binary
features, features of both types

Number of observations (n) 5,000, 10,000, 30,000, 100,000

Number of features (p) 3, 5, 10, 20

Total number of EPV (EPV tot) 700, 1,250, 5,000

Events fraction (pctevt) 0.2, 0.4, 0.5

Table 3.1: Considered dataset meta-features and chosen meta-feature values to define dataset sub-
groups for the first type of sensitivity analysis.
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For the numerical meta-features, the cut-offs are based on the distribution of the respec-
tive feature and all subgroups contain at least ten datasets. The subgroups based on the
categorical meta-features also contain at least ten datasets, except for the subgroup with
the originally multiclass datasets (only has nine datasets).
The results of the subgroup analysis for each of the two research questions will be visual-
ized in boxplots, similar to the ones shown in Couronné et al. (2018, Fig. 5).

The second type of performed sensitivity analysis examines which results alternative anal-
ysis strategies would have obtained. It is only conducted for the first research question as
the operationalization of that hypothesis was heavily based on several design and analy-
sis choices. The decisions made and the alternative options considered in the sensitivity
analysis are specified in Table 3.2.

Design or analysis choice Default Alternative options

Performance measure AUC Accuracy, Brier score7

Performance threshold in
evaluation metric (stability
threshold)

95% 90%, 99%

Handling of missing values
in evaluation metric

20%-threshold rule Worst, mean, weighted

Aggregation of evaluation
metric values across CV
iterations (within a dataset)

Geometric mean Median

Aggregation of evaluation
metric values across
datasets

Geometric mean Median

Table 3.2: Considered design and analysis choices and corresponding options for the second type
of sensitivity analysis. ’Default’ refers to the choices made for this study (i.e., the ones
used in the primary, confirmatory analyses).

While most of the listed options are fairly self-explanatory, the alternative strategies for
handling missing values are briefly described in the following. For a given CV iteration

7Since the perfect Brier score is 0 (and not 1, which is the perfect value for AUC and accuracy), the
evaluation metric for the first hypothesis is defined slightly differently when the Brier score is used.
The definition of the evaluation metric for accuracy and Brier score can be found in Section A.4 in the
protocol appendix.
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with a missing minimum number of EPV, the “worst” approach means always imputing
the number of EPV of the full training data (i.e., the highest number of EPV possible
for a dataset). The “mean” option corresponds to replacing the missing value with the
mean of the other iterations. If the specified threshold is not achieved in any iteration,
the “mean” approach also fills in the “worst” value. The “weighted” imputation method
combines the previous two options by weighing them according to the proportion of CV
iterations requiring imputation (see Nießl et al. 2022a for a similar approach).
Similar to Nießl et al. (2022a), all combinations of the options listed in Table 3.2 will be
examined, resulting in 3 ∗ 3 ∗ 4 ∗ 2 ∗ 2 = 144 combinations and aggregated results for the
first research question. Each choice’s impact on the aggregated minimum numbers of EPV
for random forests and logistic regression will be assessed using scatterplots where the
144 different results will be visualized. Additionally, boxplots grouped by the considered
options will be generated to compare the ranges of the results.

Exploratory and other planned analyses

Besides the mentioned analyses, statistics and visualizations, one additional analysis is
planned at the time of writing. Following van der Ploeg et al. (2014), learning curves
will be generated that show the connection between the prediction performance or the
optimism (on the y-axis) and the number of EPV (on the x-axis).

3.1.8 Software

The study is conducted using R (version 4.2.1; R Core Team 2022), and the key R packages
are noted here. The OpenML datasets are accessed via the OpenML package (version 1.10.0;
Casalicchio et al. 2019). The benchmark experiment is performed using the mlr3 package
(version 0.14.0; Lang et al. 2019), and within the mlr3 framework, the random forests are
fit using the ranger package (version 0.14.1; Wright and Ziegler 2017). The tidyverse

packages (Wickham et al. 2019) are used for data manipulation and visualization.
A comprehensive list of all packages and versions used for the dataset selection, the bench-
mark experiment and the analysis can be found in the session information that will be
provided in the electronic appendix after the completion of the study.

3.1.9 Dissemination

Dissemination plan

At the time of writing, there are no plans to publish the results of the planned study in a
scientific journal or elsewhere.
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Availability of code, data and materials

All datasets considered, selected and analyzed in this study are publicly available on
OpenML.org and can easily be downloaded, either directly from the website or through
programming interfaces. Individual datasets are uniquely identified by their “data.id”,
which are included in the lists of selected datasets in the appendix as “Data ID”.
All code used for the dataset selection, the benchmark experiment and the analysis will
be provided in the electronic appendix along with instructions on how the results can be
reproduced. All results data and the spreadsheet documenting the check of the eligibility
criteria will also be provided.

3.2 Deviations from the study protocol

With regard to the primary confirmatory analysis of the two pre-specified hypotheses, there
were no deviations from the study protocol (though the alternative, non-parametric test
that was planned as a contingency had to be performed). However, the sensitivity analyses
were conducted slightly differently than originally planned to present a more comprehensive
assessment of the results’ robustness. Firstly, Spearman’s correlation coefficients were
computed to evaluate the relationship between the metrics and the dataset characteristics
from an additional angle. Secondly, the examination of alternative analysis strategies was
expanded regarding the considered alternative options. In addition to the three previously
specified performance thresholds (90%, 95%, and 99%), two further thresholds, 92.5% and
97.5%, were included as alternative options. Furthermore, dataset characteristics were
incorporated in this analysis by considering dataset subgroups, again similar to Nießl et al.
(2022a). For each of the four numerical meta-features listed in the protocol (Table 3.1),
the 75 datasets were split into two subgroups based on the median of the meta-feature,
resulting in eight subgroups. Overall, these adjustments to the considered analysis options
increased the option combinations from 144 to 2,160 (9 dataset selections (all datasets
and eight subgroups) ∗ 3 performance measures ∗ 5 performance thresholds ∗ 4 imputation
methods ∗ 2 ∗ 2 aggregation methods). The third and last change to the sensitivity analyses
was the addition of a boxplot that shows more directly how specifically changes in the
performance measure and threshold would have influenced the results of the confirmatory
analysis of the first hypothesis.
Finally, as part of the exploratory analyses, comparisons between logistic regression and
random forest with respect to absolute performance values are presented in reference to
Couronné et al. (2018), which were also not planned in the protocol.
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3.3 Results

The following presents the results of the planned and additional analyses, roughly in the
same order as their descriptions in the analysis plan. First, the results of the primary
confirmatory analysis of the two pre-specified hypotheses are described in Section 3.3.1.
The sensitivity of these results to dataset characteristics and study design choices is exam-
ined in Section 3.3.2. Lastly, in Section 3.3.3, the exploratory findings from the additional
planned and unplanned analyses are presented.

3.3.1 Confirmatory analyses

First hypothesis

The evaluation of the hypothesis that random forests require more EPV than logistic re-
gression to reach stable or good predictive performance yielded the following results. To
come within 5% of the AUC performance of the respective full training dataset model, lo-
gistic regression models needed 7.18 EPV on average (geometric mean [GM]; first quartile
[Q1]: 5.55, median: 6.51, third quartile [Q3]: 8.93), while random forest models required
19.41 EPV on average (GM; Q1: 6.03, median: 16.32, Q3: 46.49). Consequently, over the
75 datasets, the geometric mean of the ratio between the minimum numbers of EPV for
random forests and logistic regression was 2.70 (Q1: 1.00, median: 2.36, Q3: 6.32). For 51
of the 75 datasets (68%), random forests had a higher average minimum number of EPV
than logistic regression, while the opposite was true for 16 datasets (21.33%). For the
remaining eight datasets (16.67%), random forest and logistic regression models required
the same number of EPV to surpass the 95%-threshold, namely the smallest possible value
of 5 EPV.
In all CV iterations of all datasets at least one of the 24 EPV subsets came within 5% of
the MaxAUCtest, meaning that there were no missing values in the evaluation metric and,
thus, no imputation was necessary.

As specified in the protocol, the natural logarithm of the aforementioned ratio, the so-
called log difference, serves as the basis for the statistical test of the first hypothesis. The
arithmetic mean of the log difference between the minimum EPV numbers for random
forests and logistic regression was 0.995 (Q1: 0.000, median: 0.860, Q3: 1.843). Figure
3.4 shows the distribution of the mentioned metrics for the 75 analyzed datasets, with
the lower-right panel showing the log difference values. The reported summary statistics
and the other boxplots in Figure 3.4 clearly demonstrate that the range and variability of
values in general differs greatly between the two investigated modeling approaches.
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Figure 3.4: Minimum numbers of EPV for random forests and logistic regression as well as the
ratio between them for the 75 analyzed datasets. The blue points show the geometric
means in the first row and the arithmetic means in the second row.

In order to determine the appropriate statistical test, the normality of the distribution
of the log differences was examined.8 The Shapiro-Wilk test yielded a significant p-value
(p < 0.001), so the null hypothesis that the population is normally distributed was rejected.
Therefore, as specified in the protocol, the non-parametric Wilcoxon signed-rank test for
paired samples was performed. The result of this test was a significant p-value (p < 0.001),
providing clear evidence against the hypothesis that random forests need the same number
of EPV as logistic regression to achieve a stable predictive performance.9

Second hypothesis

The second hypothesis concerned the optimism of random forest models, which was defined
as performance on the training data minus performance on the test data, both measured
in terms of AUC. It was hypothesized that the optimism of random forest models trained
using 500 EPV is larger than 0.01.

8A histogram with a density curve as well as the Q-Q plot for the log difference values is included in
Appendix B (Table B.1).

9The planned paired t-test was also performed, and its result would have led to the same conclusion
(p-value < 0.001, 95%-CI for the log difference: [0.775,+∞]).

35



3 Illustration

Across the 75 datasets, the (arithmetic) mean optimism of the 500 EPV random forests
was 0.107 (Q1: 0.008, median: 0.0637, Q3: 0.141). The boxplot in Figure 3.5 shows the
distribution of the optimism values.

0.0 0.1 0.2 0.3 0.4 0.5
Optimism

Figure 3.5: Mean optimism of random forests trained using 500 EPV for the 75 analyzed datasets.
The blue point shows the arithmetic mean.

The inspection of the Q-Q plot and a histogram (see Appendix B for both) made clear that
the distribution of the optimism values is not approximately normal. The Shapiro-Wilk
test also had a p-value smaller than 0.001. Consequently, the planned non-parametric
alternative, the Wilcoxon signed-rank test, was conducted again, yielding a significant p-
value (p < 0.001). Therefore, just as with the first hypothesis, the statistical test confirmed
the second pre-specified hypothesis of this study.10

3.3.2 Sensitivity analyses

Sensitivity of results to dataset characteristics

To examine the robustness of the results from the previous two subsections to dataset
characteristics, the 75 datasets were divided into subgroups based on six meta-features:
Original task type prior to dichotomization, types of features, number of observations (n),
number of features (p), total number of EPV (EPV tot) and events fraction (i.e., percentage
of observations in the minority outcome class, pctevt).
Figure 3.6 illustrates the variation in the values of the tested metrics between the subgroups
defined by the first two categorical meta-features.
For both confirmatory hypotheses, the subgroup results differ from the results in Section
3.3.1 in roughly the same way. Compared to the analysis with all datasets, random forests
and logistic regression seem to perform more similarly in terms of required EPV on tasks
whose target did not have to be dichotomized or that had binary features. Moreover,
for datasets with at least some binary variables, the median log difference is close to 0,
which would be equivalent to random forest and logistic regression models needing the

10The planned one-sample t-test was also performed, and its result would have led to the same conclusion
(p-value < 0.001, 95%-CI for the optimism value: [0.083,+∞]).
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same number of EPV. For the same subgroups, the optimism of the random forests is also
lower compared to the original results. The analysis of the dichotomized regression tasks
alone does not produce noticeably different metrics than the one with all 75 datasets, but
slightly higher log differences and optimism values would be reported if only transformed
multiclass classification tasks or datasets with exclusively numeric features were analyzed.
Of course, the fact that the separate analysis of the subgroups affects the log difference
and optimism values in a similar manner may also be caused by confounding.
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Figure 3.6: Mean log difference and optimism for subgroups of the 75 analyzed datasets based on
categorical meta-features. The blue points show the overall arithmetic means.

To investigate the connection between the results and the remaining four numeric meta-
features, dataset subgroups were defined based on different cut-off values for each meta-
feature. These cut-off values were documented in the protocol and chosen in such a way
that each subgroup had at least ten datasets. The boxplots in Figure 3.7 display the
values of the tested metrics across the datasets in a given subgroup. For each meta-
feature cut-off value t, this figure shows the values for the datasets below the cut-off and
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for the remaining datasets. Additionally, the boxplots from Section 3.3.1 are included
in the rightmost position of each panel, and the histograms in the bottom row show the
distribution of the meta-features’ values (log scale).
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Figure 3.7: Mean log difference (top) and optimism (middle) for subgroups of the 75 analyzed
datasets based on numerical meta-features. The blue points show the arithmetic means.
On the bottom, histograms for the numerical meta-features are displayed, with vertical
lines for the cut-off values defining the subgroups (x-axis is on a logarithmic scale).

Overall, for both metrics separately, the interquartile ranges only vary slightly across the
different dataset groups with few exceptions, though there is some variation in the sub-
group medians and, to a lesser extent, in the subgroup means. For the log differences,
the most notable disparities in distributions or means between two subgroups are at the
cut-off value 0.2 for the events fraction meta-feature (pctevt) and at the cut-off value 3 for
the number of features (p). The boxplots for these variables show that random forests
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require more EPV than logistic regression when the percentage of observations in the mi-
nority outcome class or the number of features is lower. For the optimism of random forest
models, one can infer from the plots a small negative association with the total number of
EPV of a dataset.
To assess the associations between the two metrics and meta-features more precisely, Spear-
man’s correlation coefficients were computed in addition to the previous planned analyses.
Table 3.3 contains those coefficients along with the p-value of the corresponding correlation
test.

Meta-feature

Log difference Optimism

Spearman’s ρ Spearman’s ρ

p-value
Spearman’s ρ Spearman’s ρ

p-value

n 0.006 0.957 -0.032 0.784
p -0.071 0.546 0.029 0.804

pnum 0.038 0.744 0.230 0.047
pbin -0.205 0.078 -0.254 0.028

EPV tot 0.025 0.831 -0.170 0.145
pctevt -0.143 0.220 -0.064 0.585

Table 3.3: Correlations between the dataset meta-features and the log difference and optimism.
pnum and pbin refer to the number of numeric and binary features, respectively. Corre-
lations with p-values < 0.05 are written in bold.

The results of the correlation analysis corroborate the conclusions drawn from the plots.
Most of the considered associations are very small, and only the meta-features related
to the types of variables are significantly correlated with one of the metrics. Aside from
the significant correlations, small associations exist with the number of total EPV and
the events fraction. In view of these findings, it is concluded that the result of the first
confirmatory hypothesis is not very dependent on certain dataset characteristics, at least
not on those considered in this section. The confirmatory analysis of random forest model
optimism may be slightly more sensitive to meta-features, though probably also only to a
rather limited extent.

Sensitivity of results to design and analysis choices

To evaluate the sensitivity of the results from another perspective, alternatives to the de-
cisions made during the study design or analysis were systematically investigated. To this
end, a set of considered alternative options for various study design choices was deter-
mined. The different strategies examined in the sensitivity analysis are then all possible
combinations of those options.
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As mentioned, the set of considered options was expanded from the one specified in the
study protocol by considering different dataset subgroups and two additional performance
thresholds. Table 3.4 contains the updated list of considered options with those used in
the confirmatory analysis denoted as the default option.

Design or analysis choice Considered options

Dataset selection
All 75 datasets (default), eight
subgroups (< or ≥ median of n, p,
EPV tot, pctevt)

Performance measure AUC (default), accuracy, Brier score

Performance threshold in
evaluation metric (stability threshold)

90%, 92.5%, 95% (default), 97.5%, 99%

Handling of missing values in
evaluation metric

20%-threshold rule (default), worst,
mean, weighted

Aggregation of evaluation metric
values across CV iterations (within a
dataset)

Geometric mean (default), median

Aggregation of evaluation metric
values across datasets

Geometric mean (default), median

Table 3.4: Updated list of considered design and analysis choices and corresponding options for the
second type of sensitivity analysis. ’Default’ refers to the options used in the primary,
confirmatory analyses.

This set of options resulted in 9∗3∗5∗4∗2∗2 = 2,160 combinations (i.e., considered design
and analysis strategies). For each combination, the same analysis process that was used
for the confirmatory analysis of the first research question in Section 3.3.1 was completed:
(1) for each dataset and method, compute the evaluation metric EPVmin for all 50 CV
iterations; (2) impute missing values, if necessary; (3) aggregate the 50 evaluation metric
values for each dataset and (4) aggregate those average values across all the analyzed
datasets, resulting in a single average minimum number of EPV each method needed to
surpass the performance threshold. Therefore, the sensitivity analysis described in this
section examined 2,160 possible results from which one could have been reported as the
primary, overall study result if a researcher had made the corresponding choices from the
specified options. Accordingly, the following analysis also demonstrates how variable the
results of this study would have been without the pre-specification of an analysis plan.
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The aggregated minimum numbers of EPV for the two modeling approaches (i.e., the result
of each of the 2,160 analysis strategies) were visualized in scatterplots (see Appendix B).
It is apparent from these plots that primarily the choices of performance measure and
threshold are systematically associated with the results. Since the dataset selection did not
seem to noticeably influence the results, only the 240 combinations involving all datasets
were analyzed further to obtain more straightforward visualizations. The aforementioned
connection between a given performance measure-threshold combination and the estimated
required numbers of EPV across all datasets is clearly visible in Figure 3.8. As expected,
a higher stability threshold generally led to a higher estimate, especially within a given
performance measure. Moreover, the use of Brier scores resulted in much higher estimates
compared to AUC and accuracy for all considered thresholds.
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Figure 3.8: Scatterplot of the aggregated minimum EPV results of the 240 considered analyses,
colored by performance threshold and with shapes reflecting the performance measure.
For both axis, a logarithmic scale is used. Slight jitter was added to visually separate
overlapping points.

41



3 Illustration

Similar observations can be made with Figure 3.9, where one can see the variation in the
ratios, indicating by what factor random forests required more EPV, across the possible
analysis options if one choice is fixed. For example, even when a hypothetical researcher
restricts their analysis to AUC performance, they could conclude that random forest models
need nine times as many EPV as logistic regression models or need the same number just
depending on the other analysis choices.
Furthermore, the boxplots in Figure 3.9 also confirm the impression from the scatterplots
included in the appendix that the imputation method alone did not particularly impact
the results. The same was generally true for the aggregation methods, though the choice
of the method for averaging across datasets did have some effect.
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Figure 3.9: Boxplots by design or analysis choice for the aggregated results of the 240 considered
analyses, fixing one option at a time. The blue points show geometric means, and the
dashed blue line indicates the geometric mean of the actual confirmatory analysis.

The second panel of Figure 3.9 shows that the results vary much less for the highest and
lowest stability threshold than for the thresholds 92.5%, 95% and 97.5%. This is because,
for the middle three thresholds, the differences between possible results for the three mea-
sures are quite large.11 Given this interaction and how the other considered choices have

11This aspect can be observed in Figure B.7 in Appendix B, which contains plots similar to the one in
Figure 3.9 but stratified by both performance measure and thresholds.
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rather minor impacts, the following final sensitivity analysis was performed. Keeping all
choices other than performance measure and threshold fixed at their specified “defaults”
(see Table 3.4), the calculation of the log differences from Section 3.3.1 was repeated for
the 15 combinations of the two choices to assess their influence directly on the metric used
in the statistical test.
Thus, the boxplots in Figure 3.10 show the same kind of boxplot as in the lower-right panel
in Figure 3.4 but for all considered measure-threshold combinations. The boxplot from the
actual confirmatory analysis from Section 3.3.1 is the third one from the left in Figure
3.10, and the arithmetic mean of the log differences for a given measure-threshold choice
is represented by the blue point. It is clear that, depending on the choice, vastly different
results could have been reported. Using “90% of MaxAccuracy” as the indicator for a stable
or good prediction performance would have led to a mean log difference of 0.33, which is
equivalent to random forest requiring 39% more EPV than logistic regression on average.
Meanwhile, choosing a threshold that is harder to surpass, such as 97.5% or 99%, together
with the Brier score would have resulted in a mean log difference of 2.28, suggesting that
random forests need almost ten times as many EPV (exp(2.28) = 9.78).
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Figure 3.10: Log differences for all 15 performance measure-threshold combinations while leaving
the other analysis options at their defaults (20%-threshold rule imputation and geo-
metric mean aggregation). The blue points show arithmetic means, and the dashed
blue line indicates the arithmetic mean of the actual confirmatory analysis.
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Overall, regarding design and analysis choices, it can be concluded that the result regarding
the first hypothesis from Section 3.3.1 is especially sensitive to changes in the performance
measure and the stability threshold. The decisions made regarding datasets, missing values
imputation and values aggregation, on their own, only have a small effect on the result, if
they have one at all. Finally, it should be pointed out that none of the 2,160 considered
analysis strategies led to the average required number of EPV being higher for logistic
regression than for random forests. At most, both modeling techniques needed the same
number of EPV, namely the smallest possible value of exactly 5 EPV. This was the case
for 160 of the 2,160 combinations, 12 of which were part of the 240 that did not involve
dataset subgrouping.

Important context for many of the previous findings and something that can partly explain
them is the extent to which there are missing values in the evaluation metric (i.e., the
number of CV iterations where no subset meets the performance requirement). Table
B.1 provides a detailed overview of this aspect for the 15 measure-threshold combinations
(see Appendix B). Noteworthy in this regard is that logistic regression models reached the
given threshold of the given measure in almost all iterations, while random forests failed
to do so for up to 31% of them. Secondly, in addition to the general expected increase
in missing values when the threshold is raised, there was a clear disparity between the
different performance measures. While using AUC and accuracy essentially only led to
missing values when a 97.5% or 99% threshold was chosen, evaluations with respect to the
Brier score required imputation even when only 90% of the goal performance needed to
be achieved and in far more iterations in general. Given that imputation likely results in
a drastically higher EPV values, especially if the total EPV of a dataset is large, these
aspects can somewhat clarify why the choice of the Brier score would have resulted in so
distinctly different results.

3.3.3 Additional exploratory and unplanned analyses

Learning curves for predictive performance and optimism

To provide an additional perspective on the relation between the prediction performance
or the optimism and the number of EPV, so-called learning curves were generated. These
learning curves are conceptually similar to those presented in van der Ploeg et al. (2014),
though in their visualization, they did not show data aggregated across multiple datasets
and used a different reference point for their relative performance evaluation.
Figure 3.11 shows the first pair of learning curves, which concerns the AUC performance
of the training subset model relative to the performance of the model trained on the full
training data of the same iteration. Whereas in the previous analyses, this metric of relative
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performance was used to define stability, the plot here indicates what level of performance
in relative terms the two methods achieved on average for a certain training set size. It
should be noted that while outliers are not displayed for a more concise visualization, they
clearly influenced the arithmetic mean values that are included in the plot as a line. A
few observations can be made from that plot. Firstly, the results from the confirmatory
analyses are somewhat visible in that logistic regression models reached the 95%-threshold
for the median between 5 and 10 EPV (actual estimated geometric mean value from Section
3.3.1: 7.18 EPV) and random forests did so somewhere between 10 and 20 EPV (actual
estimated value: 19.41 EPV). Secondly, it is also quite obvious that the interquartile range
differed greatly between the two methods. While applying logistic regression resulted in
relative performance values between 99% and 100% for more than 50% of the datasets
at 75 EPV, the random forests only came reasonably close to such a distinction when
they were trained with at least 350 EPV. These much longer boxes of the boxplots at
all training set sizes illustrate that random forest models were generally more variable.
Overall, Figure 3.11 provides additional evidence from a different, visual perspective that
logistic regression models reached their predictive potential with much fewer observations.

80

85

90
91
92
93
94
95
96
97
98
99

100

105

5 EPV

10 EPV

20 EPV

30 EPV

40 EPV

50 EPV

75 EPV

100 EPV

125 EPV

150 EPV

175 EPV

200 EPV

225 EPV

250 EPV

275 EPV

300 EPV

325 EPV

350 EPV

375 EPV

400 EPV

425 EPV

450 EPV

475 EPV

500 EPV

Max. 
EPV

Training dataset size

%
 o

f M
ax

A
U

C

Logistic regression Random forests

Figure 3.11: Learning curves and boxplots showing the mean percentage of the test AUC of the
complete training set models (MaxAUC) that was achieved at different training set
sizes. Note that outliers are not displayed for a more concise visualization.

Plotted in Figure 3.12, the second pair of learning curves relate to the second hypothesis of
this study and show the mean AUC optimism values for the 75 datasets for each training
dataset size. As in the previous plot, there is a clear disparity in variability between
values for the two methods. The mean optimism of random forest models decreased slowly
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with increasing training observations, and the extreme values for a few datasets heavily
influenced the mean estimate. However, when considering the median optimism, the overall
trend was only slightly different. In fact, even when using all available training data, which
corresponds to 10,276 EPV on average, the median optimism of the random forest models
was not below 0.04.
Regarding the optimism of logistic regression models, van der Ploeg et al. (2014) reported
that in their three simulations, the modeling approach needed approximately 55–127 EPV,
18–23 EPV and 14–28 EPV, respectively, to achieve a mean optimism below 0.01. The
results from the current study overlap at least in the first of those ranges, as a mean
optimism below 0.01 for the 75 analyzed datasets was reached somewhere between 75 and
100 EPV. When examining the median optimism, the condition was fulfilled with even
fewer observations, somewhere between 40 and 50 EPV.
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Figure 3.12: Learning curves and boxplots showing the optimism of logistic regression models and
random forests in terms of AUC at different training set sizes.

In the third and final plot with learning curves, in Figure 3.13, the mean absolute test set
performance in terms of AUC is visualized for each EPV subset size. It shows that, on
average, random forests outperformed logistic regression for every training dataset size. Be-
sides this observation, logistic regression models reached a stable mean AUC much quicker.
However, the average predictive performance of random forests continually improved with
more observations, resulting in increasingly larger differences between the mean AUC val-
ues of the two methods. The differences in performance between random forests and logistic
regression on the same datasets are presented in more detail in the following section.
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Figure 3.13: Learning curves showing the mean AUC test set performance of logistic regression
and random forests at different training set sizes.

Evaluation and comparison of absolute performance measures

In this study, the predictive performance of models was intentionally evaluated in relative
terms. However, as an additional analysis, the absolute values for AUC, accuracy and Brier
score were also examined and compared between the two methods in reference to Couronné
et al. (2018). In their benchmark experiment with 243 datasets, they used a setup similar
to this study, also investigating logistic regression and random forests in their default
configurations and with respect to the three mentioned performance measures. Therefore,
the following analysis was performed to see whether their results could be replicated with
the 75 datasets analyzed in this study. For this direct comparison, only the test set
performance of the models trained with the complete training data was considered and the
paired differences for each dataset were calculated as random forest model performance
minus logistic regression model performance. Therefore, for AUC and accuracy, a positive
difference indicates that random forests perform better, whereas for the Brier score, a
negative difference signifies the same.
Table 3.5 lists the results from both studies in the form of means and standard deviations.
While both methods performed worse in this study than in Couronné et al. (2018) across
all measures, the general direction of the results did not change, with random forests
clearly outperforming logistic regression for the 75 analyzed datasets. In fact, for AUC
and accuracy, the paired performance differences between the modeling approaches were
even noticeably larger compared to Couronné et al. (2018). Furthermore, their finding that
“the differences in performance tend to be larger for auc [AUC] than for acc [accuracy] and
brier [Brier score]” (p. 7) is also true for the results of this study.
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Couronné et al.
(2018, p. 7)

This study

µ σ µ σ

AUC RF 0.867 0.147 0.795 0.172
LR 0.826 0.149 0.731 0.166
RF − LR 0.041 0.088 0.064 0.107

Accuracy RF 0.854 0.134 0.791 0.154
LR 0.826 0.135 0.753 0.142
RF − LR 0.029 0.067 0.039 0.064

Brier score RF 0.102 0.080 0.133 0.084
LR 0.129 0.091 0.158 0.77
RF − LR -0.027 0.054 -0.025 0.048

Table 3.5: Performances of random forests (RF) and logistic regression (LR) in the benchmark
experiment by Couronné et al. (2018) and the presented study as well as the differences
between their performances (RF − LR).

To examine the differences for the training subsets as well and to illustrate their trend
with increasing training set size, the plot in Figure 3.14 was generated. At 5 EPV, the
difference in the AUC performance of the two methods is rather small (below 0.02), even
smaller for the other two measures, and may not be considered significant. By 50 EPV,
random forests outperform logistic regression models by over 0.04 in AUC, over 0.02 in
accuracy and under -0.01 in Brier score on average. Beyond 225 EPV, the differences only
changed marginally for all three measures.
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Figure 3.14: Mean differences in performance between random forests and logistic regression at
different training set sizes.
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3.4 Discussion and conclusion

The presented study was intended to provide insight on the connection between predic-
tion performance and the number of EPV for two binary classification methods, logistic
regression and random forests, and aimed to confirm two specific hypotheses. The first
hypothesis was that random forests need more EPV than logistic regression to achieve a
stable predictive performance, and the second hypothesis was that random forest models
are highly optimistic (optimism > 0.01) even if they are generated using a large number of
EPV. To evaluate these hypotheses, this study applied the methods to 75 real datasets in
an elaborate benchmark experiment. The following briefly summarizes and contextualizes
the main results of the study and discusses some limitations.
This study confirmed both the first and second hypotheses, as the results of the analyzed
data indicate clear and definite support for each of them. With respect to the first one,
the factor by which random forests require more EPV than logistic regression to achieve
a stable predictive performance was estimated to be 2.7. The mean optimism of random
forest models trained using 500 EPV, which is the quantity of interest for the second hy-
pothesis, was estimated in this study to be 0.107.
A thorough sensitivity analysis regarding dataset characteristics as well as design and
analysis choices showed that the mentioned EPV ratio between random forests and logistic
regression is primarily dependent on the chosen performance measure and the threshold
used to indicate stability. By varying these two parameters within certain considered op-
tions, the result of the primary analysis hypothetically could have been a factor between
1.39 and 9.78, validating the reported conclusion of the actual confirmatory analysis. Fur-
thermore, the sensitivity analysis suggests that dataset characteristics such as the number
or percentage of observations in the minority outcome class had little to no impact on the
result or estimated quantity for either hypothesis.
As a byproduct of the evaluation of the first hypothesis, the minimum number of EPV
needed for stable prediction performance was estimated to be 7.18 for logistic regression
and 19.41 for random forests.

The primary reference point for this study was the work by van der Ploeg et al. (2014),
which is the only known study investigating the relation between the number of EPV and
prediction performance for both logistic regression and random forests. Specifically, the
hypotheses tested in the presented study were based on two main results of van der Ploeg et
al.’s simulation study to assess their validity on a large number of real datasets. Therefore,
the confirmation of both of them here means that the presented results are in line with
the corresponding conclusions of van der Ploeg et al. (2014). However, while the studies
are in agreement regarding the overall conclusion, there are some differences in the specific
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estimated quantities. Van der Ploeg et al. (2014) reported that “a stable AUC was reached
by LR [logistic regression] at approximately 20 to 50 events per variable” (p. 1), which is
considerably higher than the estimate from the presented study (7.18 EPV), although the
gap may just be the result of differences in the study design. Besides the apparent contrast
between a study with three simulated datasets and one analyzing 75 real datasets, the con-
cept of prediction performance stability was evaluated slightly differently. Van der Ploeg
et al. (2014) seem to have assessed a method’s AUC stability visually based on learning
curves for each dataset and additionally required the AUC optimism of a given model to
be <0.01 to consider its performance stable. Meanwhile, the presented study evaluated the
concepts of performance stability and model optimism separately and assessed the former
quantitatively using a clearly defined measure of relative performance.
Regarding other research on the topic of EPV, it can be noted that the minimum EPV
estimate for logistic regression complies with the widely adopted rule of thumb of 10 EPV
that is used as a minimal sample size criterion for the development of prediction models
(Ogundimu et al. 2016; van Smeden et al. 2019). However, it should also be noted that,
in recent years, the validity of this rule of thumb and the usefulness of EPV criteria in
general have been questioned (van Smeden et al. 2016, 2019). It has been suggested to
avoid such simple rules altogether and instead use a multi-criteria approach to calculate
the minimum necessary sample size (Riley et al. 2018). Therefore, the results from this
study should not be translated into generalized rules of thumb either. Rather, they could
provide another perspective and orientation in conjunction with other considerations.
As an exploratory analysis, random forests and logistic regression were also compared with
respect to their absolute performance, and in the 75 analyzed datasets, the former outper-
formed the latter on average across all considered performance measures (AUC, accuracy
and Brier score). This result is contrary to the corresponding finding by van der Ploeg
et al. (2014), who suggest that the difference in predictive performance between the two
methods is small. However, it is in line with the result of the similarly designed large-
scale real-data benchmark experiment by Couronné et al. (2018), though in the presented
study, both methods consistently exhibited slightly worse performances compared to their
benchmark. This difference may simply be caused by the different dataset selections. Fur-
thermore, the reason for the slightly different results could also be that in the presented
benchmark, preprocessed datasets were analyzed, while Couronné et al. (2018) used un-
processed datasets. As part of the preprocessing, the set of features was reduced for 61 of
the 75 datasets, which could have led to a loss of information, contributing to the worse
average performances.12

12It should also be noted that there is a small overlap between the dataset selections of the two studies:
Ten datasets were included in both benchmark experiments, nine of which were subject to preprocessing
in the presented study.
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Many limitations exist in the presented study, beginning with the fact that the analyzed
datasets all come from a single database (OpenML) and thus do not represent a random
selection from the population of interest (i.e., all datasets with a binary outcome variable).
The sampling of datasets is a general issue in benchmark experiments, which is why their
results should be interpreted as conditional on the given dataset selection (Boulesteix et al.
2017). In the case of this study, the selection consists of a rather large number of datasets
from various subject areas, though it also includes datasets with non-binary targets. How-
ever, as part of the selection process, datasets that had an apparent overlap in data with
another suitable dataset were excluded. Therefore, the selected datasets may be assumed
to be sufficiently independent.
Further limitations contributing to a possibly reduced generalizability of the results stem
from the intentionally made design decisions, the first one being the minimum dataset size
(625 EPV with two features) required by the chosen study design. Secondly and central
to the analysis, the definition of prediction stability might not be considered ideal for the
investigated hypothesis. Under the assumption that prediction performance monotonically
increases with sample size, it was determined that a model has achieved a stable predictive
performance when its performance is at least 95% of the maximum achievable one (i.e.,
the performance of the respective full training dataset model). Not only was the threshold
of 95% more or less chosen arbitrarily, even with a different threshold, a more intuitive
alternative interpretation of the defined metric might be that a model has reached or come
within a reasonable margin of the predictive performance potential of the corresponding
method. Using this interpretation, the metric and results still provide valuable insights;
they just would not be directly connected to the work by van der Ploeg et al. (2014). How-
ever, since they only assessed the stability visually, some quantitatively calculable metric
had to be defined to test the hypothesis.
Finally, limitations arise from the preprocessing decisions, particularly the dichotomization
of regression targets at the median and the sampling of features. Both of these choices
were made deliberately to increase the number of included datasets and the likely result-
ing loss of information was considered acceptable since the absolute performance of the
methods was not the focus of the study. However, two other potential issues are associated
with these decisions. The splitting of numeric targets at the median, which was chosen to
maximize the number of events, resulted in 31 datasets with an events fraction between
0.47 and 0.5 (in addition to the nine datasets meeting this condition that had binary or
multiclass original targets). While an analysis differentiating between the three types of
the untransformed targets did not yield a noteworthy result, this very high concentration
at just a few values could have influenced the performed analyses, most directly probably
the sensitivity analyses regarding the events fraction meta-feature. Moreover, the propor-
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tion of datasets with an events fraction in the mentioned range is very likely much higher
in this study than in the population of all binary classification datasets, possibly reducing
the generalizability of results further.
The potential issue with the reduction of the feature set through sampling is that it might
have reduced some datasets to such a high degree that they no longer resemble the original
underlying real-world application. It is difficult to assess when this might have been the
case; however, for the 41 datasets where features needed to be sampled to arrive at the
necessary number of EPV, the set of features was reduced by about 75% (calculated from
the number of non-sparse features).

Acknowledging and within these limitations, the presented study contributes further evi-
dence on the relationship between the number of EPV and the predictive performance of
logistic regression and random forests. In the context of research on the topic of EPV in
general, it is the first benchmark experiment with a large number of real datasets and, thus,
provides insights from a different perspective than the many existing simulation studies in
this area.
Besides confirming the general direction of two results from previous simulations, the study
also illustrates the effects design and analysis choices can have on results through sensitiv-
ity analyses.
Future research could explore the topic of prediction stability further, both in connection
to the EPV and in general. Additionally, it might be interesting to investigate the research
questions of this study for other machine learning approaches or with other benchmark
designs. Finally, more pre-registered confirmatory studies with many datasets should be
conducted to assess the validity of results from other simulation studies, especially if those
studies led to rules of thumb that are now widely used in practical applications.
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In the following, the proposed concept of a confirmatory study in methodological statis-
tics and several associated limitations are discussed. First, in Section 4.1, the practical
application of the outlined study concept and suggested template is reflected upon in the
context of the presented illustration and beyond. Then, in Section 4.2, limitations of pre-
registration in general and the concept specifically are described and possible directions
for future research are suggested.

4.1 Reflections on the practical application of the concept

When following the strictly confirmatory study approach outlined in this thesis, one is
faced with a rather intimidating task: determining and precisely specifying every aspect
of a study before any data exploration. This is arguably not how most people commonly
approach research projects. The reason why it is so intimidating is the implied magnitude
of the made decisions which are meant to be final, since any substantial deviation later
on could be viewed as an intentional attempt to influence the results. Accordingly, such a
task requires careful consideration of many things, including eventualities that might arise
during the study. Consequently, it takes a considerable amount of time, though it has been
argued that a detailed plan can save time in later stages of the research process (Lindsay
et al. 2016). This was true for the presented illustration. Particularly time-consuming
was the dataset selection process, which took the majority of the time spent on the study
protocol. Among other aspects, this fact resulted from the choice of the source from which
the datasets were selected, OpenML. While the database may seem appealing with over
22,000 available datasets and meta-feature filtering capabilities, it is not without flaws.
The quality varies heavily among the datasets and corresponding available metadata, even
though the datasets are referred to as “verified” by OpenML. This makes a fully automatic
selection process unreliable, resulting in a large number of datasets that must be manually
checked for eligibility (in the case of the illustration: 752). Of course, in a context other
than this thesis, the dataset selection would likely not be determined by one person, not
only to make the process more efficient but also to avoid unwarranted exclusions.
Deviations from the protocol are an inherently practical issue and likely unavoidable to
a certain extent even with the most meticulous planning. In the illustration, the devia-
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tions were small and only resulted in a more comprehensive sensitivity analysis, although
this does not mean that this will be generally the case. Reviews of pre-registered studies
from different applied research fields consistently found that deviations, both disclosed
and undisclosed, are a common occurrence (Claesen et al. 2021; Ofosu and Posner 2021;
Heirene et al. 2021). However, like in the illustration, deviations, even if undisclosed, are
not necessarily attempts to exploit researcher degrees of freedom (Claesen et al. 2021).
Nonetheless, reporting them in their entirety is considered essential to the approach pro-
posed in this thesis.
One of the side benefits of pre-registration is that the detailed plan reminds researchers
what the purpose and hypothesis of the study is and guides the reporting of the results.
Additionally, it is meant to help them in avoiding unintentional QRPs. This was found to
be the case when conducting the presented study. Without the protocol, one’s focus might
have unintentionally shifted to the exploratory results or one might have excluded some
analyses that were deemed useful before analyzing the data.
As a final meta-observation with respect to the illustration, it should be noted that it did
not reveal any critical aspects missing from the suggested template. Therefore, this thesis
argues that the template provides a good structure and guide to comprehensively plan a
confirmatory methodological study and, thus, is serving its intended purpose.

Taking a more general perspective, there are several issues that one should be aware of
when conducting a real-data confirmatory study based on the suggested approach and that
one may use to evaluate the practicality of the proposed concept.
A key practical consideration possibly damaging the concept’s usefulness, especially com-
pared to the more common pre-registration of studies that collect new data, is that re-
searchers likely already have access to the datasets they plan to analyze. This opens up
the possibility of analyzing the dataset prior to pre-registration and makes it difficult for
others to assess whether that is the case. The pre-registration of this kind of data and
possible solutions to this issue have been discussed in the context of applied research where
the associated analysis is referred to as “analysis of preexisting data” or “secondary data
analysis” (Mertens and Krypotos 2019; Weston et al. 2019; van den Akker et al. 2019).
However, the most widely applicable solution is to be as transparent as possible about
one’s knowledge about the data (Nosek et al. 2018). This was considered in the creation
of the suggested template, which has a section dedicated to declaring prior knowledge.
Another issue related to dataset access that is specific to the proposed approach concerns
the dataset selection process. To address the QRP of post hoc dataset exclusions, which
is particularly relevant in the context of real-data methodological studies, it was decided
that the entire dataset selection process, including the check of exclusion criteria, must be
conducted prior to pre-registration. This can require the researcher to access datasets to
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some degree which could potentially be problematic, although it is possible to maintain
the validity of the pre-registration by accessing the datasets only superficially and only as
much as necessary to make a selection decision. Since it is then not only evident that the
analyzed data existed prior to pre-registration but also that it has already been accessed,
this aspect expects significant trust from other researchers. To reduce the risk of harmful
prior knowledge, one could potentially delegate the check of the eligibility criteria to an
independent group of people that is not involved in the planning of the study.
Finally, there is the issue of using the same datasets in multiple studies, which poses a
threat to the intended confirmatory nature of the studies that builds on the assumption
that hypotheses and analysis plans are formulated blind to the analyzed data. Naturally,
the risk of harmful prior knowledge due to overlapping dataset selections increases with
the number of benchmark experiments one conducts. Whether this will be a problem in
practice is uncertain, but it is easy to imagine scenarios where it might, for example, if the
total number of datasets available for a certain setting or subject matter is small.

4.2 Limitations of the concept and directions for future
research

Since pre-registration is a central component of the concept proposed in this thesis, some
limitations are shared by both. First, neither pre-registration in general nor confirmatory
methodological studies specifically lead to definitive results (Nosek and Lakens 2014). Not
only can even adequately-powered studies produce a Type I or Type II error, the results
of real-data benchmark experiments are always dependent on the set of analyzed datasets.
Secondly, as noted in Section 2, pre-registration of confirmatory studies is only effective if
the pre-registered document is comprehensive and sufficiently restricts the researcher de-
grees of freedom. A recent comparison of two types of pre-registration found that a more
structured format was associated with better specificity (Bakker et al. 2020). The tem-
plate suggested in this thesis is already quite structured, but future versions could provide
more detailed descriptions and example answers. Another way for researchers to ensure
that their plan is specific enough is to perform the described analysis on a mock dataset
(Wagenmakers et al. 2018) or, in the case of methodological studies, on a set of datasets
not selected for the actual study.
Lastly, both pre-registration in general and the suggested template, even if extremely
specific, cannot prevent misguided research questions, severely flawed study designs or
poor statistical practices. They do, however, make such issues transparent and detectable
(Nosek et al. 2018). Moreover, if these flaws are unintentional, feedback from others on
the protocol can help to correct them before the study is conducted, which is preferable to
conducting a poor study that is then heavily criticized afterwards.
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The following describes limitations specific to the suggested concept and template and
presents ideas for possible future research.
The most obvious one is that the scope of the thesis and thus the template was intention-
ally restricted to real-data studies. Consequently, the other common empirical study type
in methodological research, simulation studies, does not entirely fit within the suggested
approach. The adjustment necessary to accommodate them might not be that extensive,
but the two study types were considered distinct enough to warrant this separation to
keep the template as straightforward as possible. Moreover, in the context of simulation
studies in methodological research, some literature related to study protocols already ex-
ists. In earlier work, Burton et al. (2006) and Smith and Marshall (2010) emphasize the
importance of simulation protocols and discuss considerations that must be made in that
regard. More recently, Morris et al. (2019) proposed a structure for simulation study plans
and advocated writing a protocol before the code. This structured approach has, in turn,
been employed in two pre-published protocols by Kipruto and Sauerbrei (2022) and Pawel
et al. (2022), with the latter explicitly referencing the distinction between exploratory and
confirmatory findings. These existing works should be considered when designing a pre-
registration template for confirmatory simulation studies in the future. Lastly, the issues
regarding data access mentioned in the previous section are even more relevant for simu-
lated data because there is even less or no separation between the researcher and the data
compared to analyses of existing datasets.
The issues regarding the data access during the planning of the study could also be consid-
ered a limitation of the template in its current form. It could be argued that this unclear,
blurry line between the researcher and the data undermines the goal of transparency since
it is impossible to tell from the outside to what degree the data has been accessed even if
the researcher tries to describe it. As suggested in the previous section, a solution to this
problem could be to delegate the dataset selection process to uninvolved people. Therefore,
a possible adjustment to the template could be to add a subsection for the specification
of such a practice. Alternatively, one could also invert the relevant design decision that
the dataset selection must be completed before the pre-registration, though this would
essentially make post hoc dataset exclusions possible again.
Another limitation may stem from the fairly broad definition of a real-data confirmatory
study in methodological statistics as any study with at least one pre-specified hypothesis
that will be evaluated using real data. The choice of this general scope was also intentional
to not preemptively restrict the applicability of the approach from its first version, knowing
that it could always be narrowed in later iterations. However, it could be argued that the
current definition and scope is too broad and unspecific to be useful in practice. Therefore,
possible future directions could also be to define a more precise framework for confirmatory
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studies or a precise general framework to distinguish between exploratory and confirma-
tory research in methodological statistics. Either case could involve specifying mandatory
template contents or requirements a study would need to meet to be considered confir-
matory. In theory, this could ensure that only high-quality studies fall under this label.
Possible considerations in this context could be minimum requirements with respect to the
number of datasets, the neutrality of the study, the amount of existing previous work or
the planned sensitivity analysis. One could also narrow the defined scope by limiting the
acceptable inference techniques or making the dissemination of the results regardless of
the study outcome mandatory, similar to clinical trials.
Regardless of the specific adjustments or future direction in this area, input from a number
of methodological researchers is likely required to fine-tune the initial concept and template
proposed in this thesis.
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The aim of this thesis was to explore, conceptualize and illustrate the idea of a deliber-
ately confirmatory real-data study in the field of methodological statistics. To this end, an
approach constructed by adapting a combination of the ideas behind pre-registration and
clinical trial protocols to the context of methodological statistical research was proposed
in this thesis. As the central part of this approach, a template was suggested to aid in
the pre-specification of a comprehensive research protocol. This protocol template was de-
signed after considering several aspects of real-data methodological studies and built upon
existing templates and guidelines from applied research fields.

The protocol template and deliberately confirmatory research approach proposed in this
thesis were illustrated using a study that investigated the predictive performance of logistic
regression and random forests in relation to the number of events per variable (EPV). In
a large-scale benchmark experiment involving 75 datasets, models were trained with data
subsets corresponding to different numbers of EPV and the stability of their predictions
was evaluated using a pre-defined relative performance metric. The results of the study
indicate strong support for the following two specified confirmatory hypotheses:

1. Random forests need more EPV than logistic regression to achieve
a stable or good predictive performance, or in other words, to
realize their predictive performance potential.

2. Random forest models are highly optimistic (indicated by an op-
timism > 0.01), even if they are generated using a large number
of EPV, such as 500 EPV.

Therefore, the presented study provides new confirmatory evidence on the relationship be-
tween the number of EPV and the predictive performance of logistic regression and random
forests. In the context of research on the topic of EPV in general, it is the first large-scale
real-data benchmark experiment and, thus, provides insights from a different perspective
than the many existing simulation studies in this area. However, one must be cognizant of
the fact that the confirmatory conclusions from the study, like most findings from real-data
benchmark experiments, are conditional on the set of analyzed datasets. Furthermore, the
presented study has several limitations due to design, preprocessing and analysis decisions.
Besides the primary results, the benchmark analysis also illustrated how important the
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public pre-specification of hypotheses and plans is for studies that are meant to be confir-
matory. In the presented illustration, choosing a performance measure or stability criterion
after the analysis, something that is not noticeable without pre-registration, could have
resulted in very different, possibly over-optimistic estimates. Thus, the study provides a
fitting motivating example of using pre-registration to limit researcher degrees of freedom
and the central role pre-registration has in the proposed approach for confirmatory studies.
After reflecting upon the suggested pre-registration template in the context of the appli-
cation, it was determined that no critical elements were missing from it. Therefore, it is
argued that the template provides a good structure and guide to comprehensively plan a
confirmatory methodological study and thus serves its intended purpose.
To ensure the wide applicability of the proposed approach and template, the concept of
a confirmatory real-data study was intentionally defined without many restrictions as any
study with at least one pre-specified hypothesis that will be evaluated using real data.
Considered advantageous, it can therefore be used for all kinds of studies and hypotheses
involving real datasets. Although the approach may be particularly suitable for studies like
the presented illustration where the primary purpose is to replicate (i.e., confirm) previous
methodological results. Moreover, with minor modifications, the template can even be used
to plan exploratory research. However, possible future adjustments to the initial concept
also include a much more precise and narrow definition of a confirmatory methodological
study and the specification of requirements a study must meet to be considered confirma-
tory. Those requirements could be related to aspects such as the number of datasets, the
neutrality of the study, the amount of existing previous work or the dissemination of the
results.

In conclusion, the work in this thesis represents the first exploration and conceptualization
of the idea of a deliberately confirmatory study in the context of methodological statistical
research. The clearer distinction between exploratory and confirmatory research in practice
that is implied by this idea would be a significant step towards more credible, less overly
optimistic and more replicable methodological statistical research. While more input from
others is needed to comprehensively evaluate and fine-tune the initial concept and the
suggested pre-registration template, this thesis argues that the provided work is a good
starting point for future meta-research on this topic.
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A Protocol appendix

A.1 Selected datasets

Data
ID

Name Original
task type

n pctevt nevt p

405 mtp regr 4,450 0.5 2,220 3
558 bank32nh regr 8,192 0.5 4,096 6
1502 skin-segmentation binclassif 245,057 0.21 50,859 3
3277 QSAR-TID-10980 regr 5,766 0.5 2,883 4
40668 connect-4 multclassif 67,557 0.34 23,084 29
41167 dionis multclassif 416,188 0.01 2,469 3
41168 jannis multclassif 83,733 0.46 38,522 54
42395 SantanderCustomer

Satisfaction
binclassif 200,000 0.1 20,098 32

42468 hls4ml_lhc_jets_hlf multclassif 830,000 0.2 167,851 16
42721 Airlines_DepDelay_1M regr 1,000,000 0.41 405,990 13
43174 superconduct regr 21,263 0.5 10,547 16
43377 Pulsar-Dataset-HTRU2 binclassif 17,897 0.09 1,639 2
43450 Milan-Airbnb-Open-Data-

(only-entire-apartments)
regr 9,322 0.49 4,604 7

43635 League-of-Legends-Diamond-
Games-(First-15-Minutes)

binclassif 48,651 0.49 24,062 14

43904 law-school-admission-bianry binclassif 20,800 0.32 6,694 10

Table A.1: Dataset characteristics for the 15 datasets used in the pilot study (Data ID: OpenML
data ID, Original task type: task type before the dichotomization during preprocessing
(regression, binary classification, multiclass classification), n: number of observations,
pctevt: percentage of observations in the minority outcome class, nevt: number of ob-
servations in the minority outcome class, p: number of features).
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Data
ID

Name Original
task type

n pctevt nevt p

3 kr-vs-kp binclassif 3,196 0.48 1,527 2
44 spambase binclassif 4,601 0.39 1,813 2
189 kin8nm regr 8,192 0.5 4,096 6
273 IMDB.drama binclassif 120,919 0.36 43,779 13
287 wine_quality regr 6,497 0.2 1,277 2
308 puma32H regr 8,192 0.5 4,096 6
351 codrna binclassif 488,565 0.33 162,855 8
354 poker binclassif 1,025,010 0.5 511,308 15
416 yprop_4_1 regr 8,885 0.5 4,420 7
422 topo_2_1 regr 8,885 0.5 4,420 7
507 space_ga regr 3,107 0.5 1,553 2
537 houses regr 20,640 0.5 10,317 8
574 house_16H regr 22,784 0.5 11,347 16
953 splice binclassif 3,190 0.48 1,535 2
959 nursery binclassif 12,960 0.33 4,320 6
1120 MagicTelescope binclassif 19,020 0.35 6,688 10
1216 Click_prediction_small binclassif 1,496,391 0.04 66,781 3
1433 svmguide1 binclassif 7,089 0.44 3,089 4
1461 bank-marketing binclassif 45,211 0.12 5,289 8
1475 first-order-theorem-

proving
multclassif 6,118 0.42 2,554 4

1481 kr-vs-k multclassif 28,056 0.16 4,553 7
1489 phoneme binclassif 5,404 0.29 1,586 2
4134 Bioresponse binclassif 3,751 0.46 1,717 2
4534 PhishingWebsites binclassif 11,055 0.44 4,898 7
4545 OnlineNewsPopularity regr 39,644 0.49 19,562 31
23517 numerai28.6 binclassif 96,320 0.49 47,662 21
40672 fars multclassif 100,968 0.42 42,116 35
40996 Fashion-MNIST multclassif 70,000 0.1 7,000 11
41027 jungle_chess_2pcs_raw_

endgame_complete
multclassif 44,819 0.49 21,757 6

41081 SVHN multclassif 99,289 0.19 18,960 30
41082 USPS multclassif 9,298 0.17 1,553 2
41142 christine binclassif 5,418 0.5 2,709 4
41150 MiniBooNE binclassif 130,064 0.28 36,499 50
41159 guillermo binclassif 20,000 0.4 8,003 12
41161 riccardo binclassif 20,000 0.25 5,000 7
41163 dilbert multclassif 10,000 0.2 2,049 3
41214 freMTPL2freq regr 678,013 0.05 34,060 16
41228 Klaverjas2018 binclassif 981,541 0.46 453,202 96

Continued on next page

Table A.2: Dataset characteristics for the 75 datasets used in the main study.
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Continued from previous page

Data
ID

Name Original
task type

n pctevt nevt p

41990 GTSRB-HueHist multclassif 51,839 0.06 3,000 4
42092 house_sales regr 21,613 0.5 10,749 17
42208 nyc-taxi-green-dec-2016 regr 581,835 0.49 286,219 4
42225 diamonds regr 53,940 0.5 26,955 18
42477 default-of-credit-card-

clients
binclassif 30,000 0.22 6,636 10

42570 Mercedes_Benz_Greener_
Manufacturing

regr 4,209 0.5 2,103 3

42571 Allstate_Claims_Severity regr 188,318 0.5 94,159 103
42572 Santander_transaction_

value
regr 4,459 0.5 2,229 3

42688 Brazilian_houses regr 10,692 0.5 5,346 8
42726 abalone regr 4,177 0.5 2,081 3
42769 Higgs binclassif 1,000,000 0.47 470,080 28
42876 WorkersCompensation regr 100,000 0.5 49,996 8
42903 physicochemical-protein regr 45,730 0.5 22,861 9
43090 30mlday regr 300,000 0.5 150,000 23
43093 MiamiHousing2016 regr 13,932 0.5 6,957 11
43140 ACSPublicCoverage binclassif 1,138,289 0.3 338,456 18
43141 ACSIncome regr 1,664,500 0.5 829,343 10
43144 SGEMM_GPU_kernel_

performance
regr 241,600 0.5 120,800 24

43355 Brilliant-Diamonds regr 119,307 0.5 59,499 19
43390 Churn-for-Bank-

Customers
binclassif 10,000 0.2 2,037 3

43437 Gender-Recognition-by-
Voice

binclassif 3,168 0.5 1,584 2

43459 Metro-Manila-Flood-
Landscape-Data

regr 3,510 0.42 1,473 2

43527 Malware-Analysis-
Datasets-PE-Section-
Headers

binclassif 43,293 0.04 1,725 2

43534 Production-cross-sections-
of-Inert-Doublet-Model

regr 50,625 0.5 25,312 5

43546 AqSolDB-A-curated-
aqueous-solubility-dataset

regr 9,982 0.5 4,991 7

43617 Medical-Appointment binclassif 61,214 0.21 12,868 20
43622 Binary-Dataset-of-Phishing-

and-Legitimate-URLs
binclassif 11,000 0.5 5,500 8

Continued on next page

Table A.2: Dataset characteristics for the 75 datasets used in the main study.
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Continued from previous page

Data
ID

Name Original
task type

n pctevt nevt p

43745 Delinquency-Telecom-
Dataset

binclassif 209,593 0.12 26,162 25

43837 New-Delhi-Rental-Listings regr 17,890 0.48 8,565 13
43838 Municipal-Debt-Risk-

Analysis
binclassif 138,509 0.46 63,971 13

43846 400k-NYSE-random-
investments--financial-ratios

binclassif 405,258 0.35 140,818 22

43849 2018-Airplane-Flights regr 9,534,417 0.5 4,767,198 8
43873 sarcos regr 44,484 0.5 22,242 21
43892 national-longitudinal-

survey-binary
binclassif 4,908 0.38 1,853 2

43926 ames_housing regr 2,930 0.5 1,463 2
43963 CPS1988 regr 28,155 0.49 13,847 6
44027 year regr 515,345 0.47 244,074 90

Table A.2: Dataset characteristics for the 75 datasets used in the main study (Data ID: OpenML
data ID, Original task type: task type before the dichotomization during preprocessing
(regression, binary classification, multiclass classification), n: number of observations,
pctevt: percentage of observations in the minority outcome class, nevt: number of ob-
servations in the minority outcome class, p: number of features).

Data
ID

Number of features

removed as dummies constant sparse non-sparse p pnum pbin

44 0 57 0 19 38 2 2 0
189 0 8 0 0 8 6 6 0
273 0 1,001 0 988 13 13 0 13
287 0 11 0 0 11 2 2 0
308 0 32 0 0 32 6 6 0
351 0 8 0 0 8 8 8 0
354 0 75 0 60 15 15 0 15
405 0 202 0 10 192 3 3 0
416 0 251 39 152 60 7 7 0
422 0 266 5 35 226 7 7 0
507 0 6 0 0 6 2 2 0
537 0 8 0 0 8 8 8 0
558 0 32 0 0 32 6 6 0

Continued on next page

Table A.3: Preprocessing outcomes for all 90 selected datasets.
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Continued from previous page

Data
ID

Number of features

removed as dummies constant sparse non-sparse p pnum pbin

574 0 16 0 0 16 16 16 0
953 1 227 0 47 180 2 0 2
959 0 19 0 0 19 6 0 6
1120 1 10 0 0 10 10 10 0
1216 8 3 0 0 3 3 3 0
1433 0 4 0 0 4 4 4 0
1461 0 42 0 20 22 8 3 5
1475 0 51 0 0 51 4 4 0
1481 0 34 0 4 30 7 0 7
1489 0 5 0 0 5 2 2 0
1502 0 3 0 0 3 3 3 0
3277 1 1,024 0 894 130 4 0 4
4134 0 1,776 0 1,127 649 2 2 0
4534 0 38 0 5 33 7 0 7
4545 6 54 0 2 52 31 26 5
23517 0 21 0 0 21 21 21 0
40668 0 84 0 55 29 29 0 29
40672 0 338 0 303 35 35 5 30
40996 0 784 0 105 679 11 11 0
41027 0 6 0 0 6 6 6 0
41081 0 3,072 0 0 3,072 30 30 0
41082 0 256 0 0 256 2 2 0
41142 0 1,636 25 18 1,593 4 4 0
41150 0 50 0 0 50 50 50 0
41159 0 4,296 15 31 4,250 12 12 0
41161 0 4,296 13 20 4,263 7 7 0
41163 0 2,000 0 0 2,000 3 3 0
41167 0 60 6 0 54 3 3 0
41168 0 54 0 0 54 54 54 0
41214 1 43 0 27 16 16 6 10
41228 3 96 0 0 96 96 0 96
41990 0 256 0 13 243 4 4 0
42092 2 102 0 85 17 17 12 5
42208 3 507 0 503 4 4 1 3
42225 0 23 0 5 18 18 6 12
42395 1 200 0 0 200 32 32 0
42468 0 16 0 0 16 16 16 0
42477 1 82 0 46 36 10 6 4

Continued on next page

Table A.3: Preprocessing outcomes for all 90 selected datasets.
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Continued from previous page

Data
ID

Number of features

removed as dummies constant sparse non-sparse p pnum pbin

42570 1 555 12 440 103 3 0 3
42571 1 1,037 0 934 103 103 14 89
42572 1 4,991 256 4,359 376 3 3 0
42688 0 48 0 34 14 8 3 5
42721 0 799 0 786 13 13 3 10
42726 0 9 0 0 9 3 3 0
42769 0 32 0 4 28 28 24 4
42876 4 11 0 3 8 8 5 3
42903 0 9 0 0 9 9 9 0
43090 1 60 0 37 23 23 14 9
43093 1 28 0 13 15 11 9 2
43140 0 123 0 105 18 18 2 16
43141 2 285 0 275 10 10 2 8
43144 3 26 0 2 24 24 0 24
43174 0 81 0 0 81 16 16 0
43355 3 31 0 12 19 19 1 18
43377 0 8 0 0 8 2 2 0
43390 3 11 0 0 11 3 2 1
43437 0 20 0 0 20 2 2 0
43450 4 109 0 62 47 7 4 3
43459 0 4 0 0 4 2 2 0
43527 1 4 0 0 4 2 2 0
43534 7 5 0 0 5 5 5 0
43546 5 23 0 3 20 7 7 0
43617 6 136 0 111 25 20 1 19
43622 3 11 0 1 10 8 7 1
43635 4 14 0 0 14 14 14 0
43745 3 32 0 7 25 25 25 0
43837 4 22 0 8 14 13 7 6
43838 2 23 0 10 13 13 11 2
43846 3 72 0 50 22 22 18 4
43849 7 19 0 11 8 8 2 6
43873 6 21 0 0 21 21 21 0
43892 1 72 0 53 19 2 1 1
43904 0 17 0 7 10 10 5 5
43926 0 321 2 230 89 2 0 2
43963 0 8 0 2 6 6 2 4
44027 0 90 0 0 90 90 90 0

Table A.3: Preprocessing outcomes for the 90 datasets selected for the study. The information in
columns 2-7 follows the order of the preprocessing procedure described in Section 3.1.6
(pnum: number of sampled numeric features, pbin: number of sampled binary features).
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A.2 Power plots for second hypothesis

σ̂pilot = 0.12 σ̂80UCL = 0.14 σ̂95UCL = 0.17 σ̂ = 2σ̂pilot = 0.23
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Figure A.1: Power plots for second hypothesis, so ∆ refers to a difference in mean random forest
optimism. The four colored lines represent four standard deviation estimates (or sce-
narios) based on the pilot study results. The dashed black line indicates the number
of datasets that will be analyzed in the main benchmark experiment (75).
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A.3 Protocol amendment history

Change Rationale
Affected protocol
section(s)

Minimum required total
number of EPV was re-
duced from 1,000 EPV
to 625 EPV.

An early assessment of the datasets
available on OpenML showed that
requiring every dataset to have at
least 1,000 EPV in total, as origi-
nally intended, would lead to a
significantly smaller set of suitable
datasets.

4. Datasets

Table A.4: Changes compared to the previous version of the study protocol.

A.4 Definition of the evaluation metric for the first
hypothesis for accuracy and Brier score

For CV iteration i = 1, . . . , 50 of a given dataset j, let Acctestij (n) and BStest
ij (n) be the test

data accuracy and Brier score of the model generated using the training data subset with
n EPV, and let MaxAcctestij and MaxBStest

ij be the test data accuracy and Brier score
of the model generated using the full training data. Using threshold t = {0.9, 0.95, 0.99},
the minimum numbers of EPV at which a method achieves a good predictive performance
with respect to accuracy and Brier score are then defined for iteration i of dataset j as

(EPV Acc
min)ij = min

{
n ∈ EPV | Acctestij (n) ≥ t ·MaxAcctestij

}
and

(EPV BS
min)ij = min

{
n ∈ EPV | BStest

ij (n) ≤ 1

t
·MaxBStest

ij

}
,

where i = 1, . . . , 50, j = 1, . . . , J , and EPV = {5, 10, 20, 30, 40, 50, 75, 100, 125, 150, 175,
200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500}.
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B.1 For the confirmatory analyses
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Figure B.1: Histogram with density curve (top) and Q-Q plot (bottom) for the first hypothesis (log
difference).
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Figure B.2: Histogram with density curve (top) and Q-Q plot (bottom) for the second hypothesis
(optimism).
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B.2 For the sensitivity analyses
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Figure B.3: Scatterplot of the aggregated results of all 2,160 analyses, colored by dataset group.
For both axis, a logarithmic scale is used. Slight jitter was added to visually separate
overlapping points.
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Figure B.4: Scatterplot of the aggregated results of all 2,160 analyses, colored by performance
threshold and with shapes reflecting the performance measure. For both axis, a loga-
rithmic scale is used. Slight jitter was added to visually separate overlapping points.
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Figure B.5: Scatterplot of the aggregated results of all 2,160 analyses, colored by imputation
method. For both axis, a logarithmic scale is used. Slight jitter was added to vi-
sually separate overlapping points.
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Figure B.6: Scatterplot of the aggregated results of all 2,160 analyses, colored by aggregation
method. For both axis, a logarithmic scale is used. Slight jitter was added to vi-
sually separate overlapping points.
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AUC Accuracy Brier score
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Figure B.7: Boxplots by performance measure and threshold for the aggregated results of the 240
considered analyses, leaving the other analysis options at their defaults (20%-threshold
rule imputation and geometric mean aggregation). The blue points show geometric
means, and the dashed blue line indicates the geometric mean of the actual confirma-
tory analysis.
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Measure Threshold

Number of CV
iterations

Number of different
datasets

LR RF LR RF LR or RF

AUC 90% 0 0 0 0 0
92.5% 0 0 0 0 0
95% 0 0 0 0 0
97.5% 3 172 1 8 8
99% 31 540 5 23 24

Accuracy 90% 0 0 0 0 0
92.5% 0 0 0 0 0
95% 0 1 0 1 1
97.5% 1 151 1 7 7
99% 7 459 4 22 23

Brier score 90% 5 435 2 12 13
92.5% 5 553 2 13 14
95% 12 665 3 16 17
97.5% 19 845 3 25 25
99% 39 1,192 8 40 40

Table B.1: Number of missing values in the evaluation metric by method for the 15 considered
performance measure-threshold combinations. The number of missing values in each
cell in columns 3 and 4 is out of 3,750 total CV iterations (50 CV iterations ∗ 75
datasets). The numbers of different datasets with missing values in columns 5-7 are
always out of 75 total datasets.
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C Electronic appendix

The electronic appendix contains an electronic version of this thesis (MA_Lange.pdf), one
folder (R Code) and a README document. The folder R Code has the four subfolders Dataset
selection, Pilot study, Main study, and Functions. Also in that folder is the spread-
sheet that was used in the dataset selection process to document which datasets met at
least one exclusion criterion. More details on the electronic appendix and its contents can
be found in the included README.
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