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Abstract

Colorectal adenoma are precursor lesions on the pathway to cancer. Their removal in

screening colonoscopies has markedly reduced rates of cancer incidence and death.

Generic models of adenoma growth and transition to cancer can guide the implementation

of screening strategies. But adenoma shape has rarely featured as a relevant risk factor.

Against this backdrop we aim to demonstrate that shape influences growth dynamics and

cancer risk. Stochastic cell-based models are applied to a data set of 197,347 Bavarian out-

patients who had colonoscopies from 2006-2009, 50,649 patients were reported with ade-

noma and 296 patients had cancer. For multi-stage clonal expansion (MSCE) models with

up to three initiating stages parameters were estimated by fits to data sets of all shapes

combined, and of sessile (70% of all adenoma), peduncular (17%) and flat (13%) adenoma

separately for both sexes. Pertinent features of adenoma growth present themselves in con-

trast to previous assumptions. Stem cells with initial molecular changes residing in early

adenoma predominantly multiply within two-dimensional structures such as crypts. For

these cells mutation and division rates decrease with age. The absolute number of initiated

cells in an adenoma of size 1 cm is small around 103, related to all bulk cells they constitute

a share of about 10−5. The notion of very few proliferating stem cells with age-decreasing

division rates is supported by cell marker experiments. The probability for adenoma transit-

ing to cancer increases with squared linear size and shows a shape dependence. Com-

pared to peduncular and flat adenoma, it is twice as high for sessile adenoma of the same

size. We present a simple mathematical expression for the hazard ratio of interval cancers

which provides a mechanistic understanding of this important quality indicator. We conclude

that adenoma shape deserves closer consideration in screening strategies and as risk factor

for transition to cancer.

Author summary

The incidence of colorectal cancer has been markedly reduced by removal of adenoma in

screening colonoscopies. Adenoma contain precancerous cells which have already
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accumulated initial molecular changes on the pathway to cancer. Whereas adenoma size

has long been recognized as a major cancer risk factor, the role of adenoma shape has not

been studied intensively. Cell-based models ascribe the detected adenoma number and

size in large screening cohorts to biological processes of early mutation, cell division, inac-

tivation and transformation to cancer. They link different levels of biological organization

which cannot be provided by mere statistical association. With biologically-based model-

ing we investigate shape-specific features of adenoma development. Model results reveal

that adenoma of sessile, peduncular and flat shape exhibit differential growth dynamics,

tendency of regression and carcinogenic potential.

Introduction

Colorectal cancer ranks third in the list of worldwide cancer incidence and is the third leading

cause of cancer death in Germany [1, 2]. Screening colonoscopies can effectively reduce the

risk of contracting colorectal cancer by removal of adenoma as precursor lesions or timely

detection of carcinoma [3]. Computer models are widely used to assess and devise screening

strategies [4–6] and to predict the presence of high-risk adenoma [7] (and references therein).

The conceptual design of these models is based on compartments which pertain to different

phases of adenoma development on the pathway to cancer. For adenoma characterized with

size and histology, transition rates between compartments are estimated by fits to large data

sets from screening registries [6, 8].

Cell-based growth models are closer to biological reality and have been applied to assess the

efficiency of different screening approaches or to predict colorectal cancer risk from adenoma

detection [9, 10]. Jeon et al. [9] simulated adenoma prevalence with assumptions on size-

dependent adenoma detection rates, but actual model fits were performed with cancer inci-

dence data. Lang et al. [10] considered adenoma growth only for patients below age 50 yr and

discarded screening data for older patients because they did not observe relevant adenoma

increase in size. Both works [9, 10] represent stepping stones which leave room for a more

detailed exploration of adenoma growth.

The majority of screening studies were not interested in adenoma shape as a risk factor

which determines differential time patterns of growth and transition to cancer. Against this

backdrop we hypothesize that consideration of adenoma shape has an impact on screening

efficiency. We apply stochastic cell-based growth models and a simple model for transition to

cancer to screening data of 197,437 Bavarian outpatients with colonoscopies in the years

2006–2009. We perform combined and separate investigations for sessile, peduncular and flat

adenoma of both sexes. For the growth analysis we rely on the mathematical implementation

of Dewanji et al. [11] for multi-stage clonal expansion (MSCE) models. The preferred growth

models were identified by goodness-of-fit which measures their ability to simultaneously

describe the distribution of adenoma number and size. Goodness-of-fit also decides whether

clones of initiated cells in an adenoma prefer expansion in either two-dimensional (2d) or

three-dimensional (3d) structures. With the preferred shape-specific models we predict the

odds of pre-malignant cells in an adenoma to become either extinct or transit to cancer.

By descriptive evaluation of screening data Corley et al. [12] derived a hazard ratio for the

risk of interval cancer which decreases with improved adenoma detection rate (ADR). We

explain this much debated hazard ratio (see e.g. [13, 14]) by quantifying the dependence on

adenoma number and size with a simple analytical expression. This expression highlights the
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capability of biologically-based modeling to provide mechanistic understanding for statistical

associations.

Finally, we are investigating a data set out of clinical practice with sufficient detail to prevent

the development of colorectal cancer by screening colonoscopy. It was not designed to meet

our research aims and therefore has some limitations. Nevertheless, we strive to exploit the

available information adequately with MSCE models to characterize the formation of colorec-

tal adenoma and their transition to cancer. Wherever practicable we relate important model

results to biological measurements and underline the clinical relevance.

Materials and methods

Bavarian outpatient colonoscopies

We analyze a subset of 258,116 records from outpatient colonoscopies which were performed

by endoscopists as members of the Bavarian Association of Statutory Health Insurance Physi-

cians (BASHIP or Kassenärztliche Vereinigung Bayerns) from January 2006 to December

2009 [15]. Colonoscopies were executed in symptom-free persons for prevention but not for

diagnosis or surveillance. From multiple examinations of the same patient only the first exami-

nation was considered. 66,232 outpatients were diagnosed with adenoma or carcinoma. To

study adenoma growth exclusively, we removed 471 records with carcinoma diagnosis. Com-

pared to adenoma, carcinoma show a much faster growth and merit a separate treatment [16].

By demanding complete records for covariables histology, location, and adenoma size, count

and location we arrived at 50,649 records with positive adenoma diagnosis. Age at screening

ranged from 55 yr to 94 yr with mean age 65 yr similar for both sexes.

Adenoma counts were reported in three categories of 1, 2–4 or� 5. In the count categories

2–4 and� 5 the number of adenoma was set to 2 and 5, respectively. These are the most proba-

ble values under the assumption of Poisson-distributed counts. Under the same assumption

the categorical means are estimated to about 2.1 and 5.2 from the recorded data. They came

out similar for all shapes so that the bias from estimating counts in categories 2–4 and� 5 can

be neglected.

Linear size of adenoma has been grouped into four categories < 0.5, 0.5 − 1, 1 − 2 and> 2

cm. If more than one adenoma was detected only the category of the most advanced adenoma

has been reported. Usually the most advanced adenoma acquired the largest size and we make

this assumption in the present study. For the remaining adenoma (1 in count category 2–4 and

4 in count category� 5) a size between the detection limit and the upper size bound of the

largest adenoma must be assumed.

For the shape-specific analysis we assign the shape of the most advanced adenoma to all

reported adenoma in count categories 2–4 and� 5. Here we introduce a miss-classification

bias which affects about 13% of patients with higher adenoma counts. We could have avoided

miss-classification by analyzing the size distribution of the most advanced adenoma only. But

in this case our models would overestimate the adenoma size. Since we are interested in a real-

istic size for cancer risk estimation we decided to keep miss-classification.

Records with negative adenoma diagnosis have been added to preserve the dependency of

the adenoma detection rate (ADR) on age and sex [15]. The final data set for regression analy-

sis comprised 197,347 records. In about 25% colonoscopies adenoma were detected with

marked differences between women (20%) and men (32%).

In Fig A in S1 Text numbers of patients and ADRs for Bavarian patients are broken down

in 5 yr age groups. Shape-specific numbers for sessile, flat and peduncular adenoma are given

in Table B in S1 Text for both sexes. About 70% of adenoma were of sessile shape. The share of
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18% peduncular adenoma was slightly higher compared to 12% flat adenoma. Fig B in S1 Text

shows shape-specific patient numbers and ADRs.

Colorectal cancer cases have been recorded between 2006–2008 and are shown in Table C

in S1 Text. By demanding completeness for the same covariables as for adenoma we arrived at

296 cases. Mean age at cancer was about 68 yr with little variation between shape and sex. In

contrast to clinically relevant cases which prompted a diagnostic colonoscopy in hindsight

only preclinical cases are considered in the present study.

Adenoma growth model

Biological basics. The dominant molecular pathway in 70–80% of colon carcinoma is ini-

tiated by mutations in the APC gene [17, 18]. Initiated stem cells are susceptible to malignant

transformation as opposed to cells that are differentiated and incapable of transforming. Stem

cells do not belong to the bulk of glandular cells in an adenoma. They possess specific molecu-

lar changes which can in principle be characterized by adequate measurements. Inactivated

APC genes cause an upregulation of the Wnt signaling pathway and enhancement of cell pro-

liferation. APC mutations pertain to early adenoma. Further mutations in genes such as KRAS

or DCC occur later in carcinogenesis. Only three driver mutations might be rate limiting [19].

These gene defects cause chromosomal instability (CIN) or aneuploidy which is associated

with the loss of chromosomes 17p and 18. In late adenoma CIN cells have expanded into large

clones before a transforming mutation often in the p53 gene triggers the development of inva-

sive cancer.

In other pathways adenoma cells remain diploid with wild-type KRAS status. But they

show more diverse molecular changes such as micro-satellite instability (MSI) and epigenetic

silencing of the MLH1 gene from DNA methylation [17]. About 15–20% of colon carcinoma

occur in these pathways and they are often collectively merged into a single MSI pathway.

Model concept. Colorectal adenoma are pre-neoplastic lesions which originate from N
normal stem cells in colonic crypts [20]. Estimates for N range between 108 − 109 but do not

influence model behavior [21, 22]. In at first healthy stem cells molecular changes are accumu-

lated with different specification. The first step towards malignancy occurs for Nμ0 = XP cells

with rate μ0 where XP is termed Poisson strength. Subsequent changes are represented as tran-

sition rates μi between cell stages Si as shown in Fig 1. Conceptual models are distinguished by

transition sequences of different length. The models are denoted as K = 0 with transition rate

μ0, K = 1 with rates μ0, μ1 and K = 2 with rates μ0, μ1, μ2. Adenoma growth starts because cells

with early molecular changes possess a growth advantage. The symmetric division rate α
exceeds the inactivation rate β resulting in a net rate γ = α − β of clonal expansion. The last

pre-clonal mutation rate μK is termed initiating, preceding mutations are considered as pre-

initiating.

The implementation of the conceptual models is based on the mathematical framework

and notation of Dewanji et al. [11, 23] and Jeon et al. [24] for the multi-stage clonal expansion

(MSCE) model of cancer. By omission of the last transforming mutation ν and subsequent

tumor growth with net rate γc, the MSCE model is turned into a model of adenoma growth.

The rate ν will be estimated separately with a simple model of transition to cancer. Parameters

of conceptual models are derived from fits to shape-specific and combined adenoma data for

both sexes separately. Following the approach of Kaiser et al. [25] for radiation-induced colo-

rectal cancer, the preferred conceptual model is identified by goodness-of-fit.

Cell growth dimensionality. The growth model of Dewanji et al. [11] assumes that the

number of adenoma and the number of initiated cells are known in principle for each patient.

The adenoma number can be retrieved from the original data set (Table B in S1 Text).

PLOS COMPUTATIONAL BIOLOGY Shape-specific characterization of adenoma growth and cancer risk

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010831 January 23, 2023 4 / 22

https://doi.org/10.1371/journal.pcbi.1010831


Measurements for the number of initiated cells per adenoma are not straightforward so that

such numbers have to be estimated.

The stochastic growth model tracks probabilities for cell numbers per adenoma which accu-

mulate with age, but is not concerned with the spatial distribution of cells. In the present study

the unknown cell numbers are uniquely linked to adenoma size S measured in four

categories < 0.5 cm, 0.5 − 1 cm, 1 − 2 cm and> 2 cm. Many studies assume that cell numbers

increase with cubic power of linear size S3 [10, 24, 26, 27]. But early adenoma emerge from

crypts as 2d structures. They are gradually converted into late adenoma and carcinoma with

3d volumetric forms. (see e.g. [17], their Fig 1). Therefore, we decided not to rely on the com-

monly accepted 3d cell heap model but to test both 2d and 3d growth patterns. The relation

y
yr
¼

 
S
Sr

!d

with d ¼ 2; 3 ð1Þ

between cell number y and adenoma size S (measured in cm) does not assume a generic geo-

metrical shape. Reference cell number yr is related to reference size Sr = 1 cm. Goodness-of-fit

will decide on predominantly 2d vs. 3d growth.

Reference cell numbers yr have been assigned for different dimensions and shapes. For ses-

sile and flat adenoma yr is 800, 3200 in 2d, 3d respectively. For peduncular adenoma we

assume yr is 200 in 2d and 400 in 3d. The choices were informed by the observation that only

the ratio α/yr can be determined in model fits. Hence, we selected values for yr so that estimates

for cell division α remain in biologically plausible limits of about 5–50 yr−1 [22, 28, 29].

Fig 1. Three versions of the adenoma growth model. N normal stem cells of colonic crypts are susceptible to a series

of mutations with rates μ0 (K = 0), μ0, μ1 with intermediate stage S1 (K = 1) and μ0, μ1, μ2 with intermediate stages S1, S2

(K = 2) before they start adenoma growth by clonal expansion with rates α for symmetric division and β for

differentiation, γ = α − β is the net rate of clonal growth; dashes lines pertain to the full MSCE model of carcinogenesis

(not modeled in the present study), ν denotes the transforming mutation rate to cancer cells, which expand into

clinically relevant tumors with net rate γc = αc − βc.

https://doi.org/10.1371/journal.pcbi.1010831.g001
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Simple cancer risk model

The number of recorded cancer cases in Table C in S1 Text is far too low to support an exten-

sion of the adenoma growth model to a full MSCE model for cancer risk [16]. Hence, all three

additional parameters ν, αc and γc (see Fig 1) which describe the last steps of transformation

and tumor growth on the pathway to cancer have not been estimated. In our simplified cancer

risk model the transformation rate

nðtÞ ¼ n0 exp ½ðbn ðt � 65Þ=10�: ð2Þ

increases exponentially with age t. This behavior has been chosen because in the preferred ade-

noma growth models the number and size of adenoma does not increase strong enough to

allow for a constant rate ν0. Since tumor growth is not considered explicitly, in effect ν(t) rep-

resents all biological processes which turn benign adenoma into tumors. ν(t) is linked to the

adenoma growth model in Eq. (S46) and transforms the mean number of initiated cells per

person to an epidemiological hazard rate.

Regression analysis for adenoma growth models

Growth model selection. Model selection has been based on the three conceptual models

for K = 0, K = 1 and K = 2 as depicted in Fig 1. For each conceptual model independent fits

have been performed for the three shapes of adenoma combined and separately, for both sexes

and for growth in two or three dimensions.

To identify the preferred models a systematic selection protocol has been executed on three

levels. Level I started with estimation of three (K = 0: XP, α, γ) or four parameters (K = 1, 2:

XPI, α, γ, ρ) without trends in attained age (Table 1). The detection limit was fixed to 0.25 cm

for sessile and flat adenoma, and to 0.45 cm for peduncular adenoma. The specific choice for

peduncular adenoma was made to accommodate the small number of 135 female and 191

male patients with peduncular adenoma of size < 0.5 cm. In level II the two parameters for the

age trends of Eq (3) have been determined. Finally in level III the cell numbers which define

detection limits have been optimized by trying a few selected values. Analyses for the Results

section on comparison of measured and model-expected data and on straight model predic-

tions have been performed with the preferred models of level III.

In levels II and III parameter estimates for constant α0 (and ρ0 = μ1,2/α0 for K = 1, 2) have

been fixed to stabilize the fitting process. Table D in S1 Text summarizes the flow of control

for our regression analysis.

Since for analysis of ADR and adenoma per colonoscopy (APC) the shape covariable is of

lesser clinical importance the results are derived for the model fitted to all shapes combined.

The analysis of adenoma size and related cancer risk is presented separately for each shape. CIs

Table 1. Identifiable parameters for the growth models, models of level I apply parameters without trends in attained age, in models of levels II and III three addi-

tional parameters bx, bx2
and ba pertain to age trends in Poisson strength XP, cell division α, net growth γ and initiation ρ according to Eq (3).

model version parameter

Poisson strength/(pre-)initiation [yr−1] bcell division [yr−1] net growth [yr−1] initiation [-]

K = 0 XPI = XP α γ = α − β -

K = 1 XPI = XP α γ = α − β ρ = μ1/α
aK = 2 cXPI = XPμ1 α γ = α − β ρ = μ2/α

a approximation μ2/α� 1, Eq. (S34)
b α estimate depends on reference cell number yr at 1 cm
c unit yr−2

https://doi.org/10.1371/journal.pcbi.1010831.t001
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from parameter uncertainties in growth models have been omitted for all calculated quantities

because they came out generally small.

All analysis has been performed with packages of the R software suite [30]. For model fitting

the R package bbmle [31] was selected because it allows for flexible parameter handling and

for calculation of confidence intervals (CIs) from the likelihood profile.

Parameter identifiability and age trend. Not all biological parameters of the conceptual

models from Fig 1 are identifiable by fits to the data [32]. Table 1 lists the selected set of identi-

fiable parameters for the growth model. To include trends of attained age a the parameters XP
= Nμ0 for Poisson strength, cell division α, net growth γ and initiation ρ have been modified

according to

XPðaÞ ¼ XP0 exp ðbx1
acen þ bx2

a2
cenÞ

aðaÞ ¼ a0 exp ðbaacenÞ

gðaÞ ¼ g0 exp ðbaacenÞ

rðaÞ ¼ r0 exp ð� baacenÞ

with acen ¼ ða � 65Þ=10:

ð3Þ

For fixed attained age the model parameters remain still constant. Since attained age ranges

between 55–94 yr and data have been recorded in a short interval for calendar years 2006–09

the age dependences of Eq (3) also describe dependences on birth year in close approximation.

Individual likelihood and goodness-of-fit metrics. Dewanji et al. [11] developed likeli-

hood functions for discrete cell numbers as cited in Eqs. (S36), (S38). The link between cell

number and linear size is given by Eq (1). Because in the Bavarian data set categories for counts

and sizes are given, the likelihood functions have been adjusted accordingly. The patient-spe-

cific likelihood function in Eq. (S40) is formed by two probabilities of 1) finding n adenoma

with 2) sizes ranging between yh and yl cells. To allow for count categories Eq. (S40) has been

extended to the likelihood functions of Eq. (S41).

Model parameters are estimated simultaneously for the probability distributions of ade-

noma counts and size. Adenoma counts are Poisson-distributed with the APC as mean value.

Adenoma size depends on parameters α, γ (and ρ = μ1,2/α for K = 1, 2). Counts also depend on

these parameters and additionally on Poisson strength XP.

To speed up the likelihood calculation in categories with more than one adenoma count the

approximations of Eq. (S42) were applied. Individual records have been combined for each

year of attained age, and for categories of adenoma size and number. Depending on shape the

original sex-specific data sets of some 100,000 records shrunk to about 400–500 records with-

out any loss of information. Statistical significance of model parameters were stated based on

their p-values on the 95% level.

The deviance DI for the individual likelihood is defined in Eq. (S43). It consists of two sum-

mands depending on either adenoma counts or size. Goodness-of-fit was measured by the

Akaike Information Criterion AIC = DI + 2Npar for Npar model parameters.

Regression analysis for cancer risk models

To estimate the two parameters of the transformation rate ν(t) in Eq (2) the hazard of

Eq. (S46)

hðtÞ ¼ nðt; n0; bnÞ E½Cðt;XPI; a; g; rÞ� ð4Þ

was fitted to the crude rates of Table C in S1 Text by Poisson regression. Due to low case
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numbers only the parameters ν0 and bn were estimated, but parameters XPI, α, γ and ρ of the

growth model remained fixed.

Compared to CIs for quantities from the growth models, CIs for cancer hazards from the

simple cancer risk models are much larger and are shown where appropriate. For the crude

rates 95% CI have been derived by simulation based on the assumption of Poisson-distributed

count statistics.

Results

Preferred models

For all three shapes combined and separately models with K = 0 were consistently outper-

formed in terms of AIC by models with one (K = 1) or two (K = 2) pre-initiating mutations in

both levels I and II. In level I models with K = 1 with 2d growth showed the lowest AIC. In

level II, where modifications for attained age of Eq (3) are applied to parameters, models with

K = 2 took the lead. For flat adenoma 3d growth yields slightly better fits than 2d growth with

K = 2 models. Details for goodness-of-fit are given in Tables E and F in S1 Text.

Level III models have been further optimized by adjusting the cell number of the detection

limit. Goodness-of-fit and model parameters for the preferred level III models of 2d growth

are given in Tables G—J in S1 Text. Table K in S1 Text pertains to a model for flat adenoma

with 3d growth and K = 2. Given the small difference in goodness-of-fit with respect to growth

dimensionality for flat adenoma, results for the model of 3d growth are occasionally compared

to the preferred model of 2d growth.

Parameter age trends

Parameter age trends are defined in Eq (3) for the growth models and in Eq (2) for the trans-

formation rate of the cancer risk models. They are depicted in Figs C and D in S1 Text. Since

screening data have been recorded in a short interval for calendar years 2006–09 age depen-

dences cannot be disentangled from secular trends in birth cohort. Therefore, birth years for

an assumed calendar year 2007 are indicated in the top x-axis of Figs C and D in S1 Text. In

most cases the quadratic trend in Poisson strength XP was statistically significant except for flat

adenoma in women. For cell division rate α no significant quadratic trend was found (Tables

G—K in S1 Text). For the transformation rate ν significant linear trends were found for all pre-

ferred models except for models of flat adenoma with 3d growth (Table L in S1 Text).

Distribution of adenoma number

Results pertaining to APC, ADR and adenoma counts in categories have been derived from

the model with K = 2 for all shapes combined. The latter quantities are used to measure screen-

ing efficiency and here adenoma shape is of lesser clinical relevance.

Fig E in S1 Text compares categorical adenoma counts for all shapes combined in 5 yr age

groups with model expectations for women and men separately.

Fig 2 displays a comparison between measured and model-expected APC and ADR, respec-

tively. For Poisson-distributed adenoma counts APC constitutes an estimate of the Poisson

mean.

Distribution of adenoma size

Fig F in S1 Text compares measured patient shares with model expectations in size categories

for all shapes combined. Table A in S1 Text summarizes the calculation of expected patient
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shares that was used to produce the data for Fig F in S1 Text. Since only the size of the largest

adenoma is known, the share in the smallest size category depends on the ADR.

Fig 3 depicts the shape-specific age dependence of the median cell number per adenoma

(top panels) and median linear size (bottom panels).

Fig 2. Measured mean number of adenoma per colonoscopy (APC) (top panels) and adenoma detection rate (ADR) (bottom panels)

(open circles for 5 yr age groups with 95% CI) compared to the age dependence of APC and ADR (solid lines) expected by the preferred

models for women (left panels) and men (right panels), dashed lines for age< 55 yr are model predictions.

https://doi.org/10.1371/journal.pcbi.1010831.g002
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Detection limit. For sessile and flat adenoma 30 initiated cells were identified as the opti-

mal lower bound for the smallest size category of detectable adenoma. With Eq (1) this num-

ber corresponds to a detection limit of 0.19 cm for 2d growth or 0.21 cm in 3d. For peduncular

adenoma 40 cells were needed with a detection limit of 0.45 cm in 2d.

Extinction probability. The extinction of clones with y initiated cells may occur with

probability Pext(y, Δt) defined in Eq. (S45). Fig 4 shows the age dependence of the extinction

probability for 60 yr-old patients and a waiting time Δt up to 10 yr.

Fig 3. Median number of cells per adenoma (top panels) and median adenoma size in cm (bottom panels) for women (left

panels) and men (right panels), dashed lines for age< 55 yr are model predictions.

https://doi.org/10.1371/journal.pcbi.1010831.g003

PLOS COMPUTATIONAL BIOLOGY Shape-specific characterization of adenoma growth and cancer risk

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010831 January 23, 2023 10 / 22

https://doi.org/10.1371/journal.pcbi.1010831.g003
https://doi.org/10.1371/journal.pcbi.1010831


Cancer hazard

Parameter estimates and 95% CI for the transformation rate (2) of the simple cancer risk

model are given in Table L in S1 Text. The hazard functions of Eq (4) are visualized in Fig 5.

Fig 4. Shape-specific probability of extinction for clones of initiated cells present at age 60 yr for waiting time� 10yr, clones correspond

to adenoma with linear size 0.25, 0.5 and 1 cm for women (top panels) and men (bottom panels).

https://doi.org/10.1371/journal.pcbi.1010831.g004
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The hazard for all shapes combined is given by the sum of shape-specific hazards which for flat

adenoma included the hazard from the model with 3d growth.

Probability of transition to cancer

Eq. (S49) defines the transition probability of an adenoma to cancer under the simplified

assumption of an age-dependent transformation rate ν(t) (2). Estimates for this probability

Fig 5. Age dependence of the shape-specific hazard from the simple cancer risk model, hazard for all shapes as sum of shape-

specific functions (with shaded 95%CI) compared to crude rates for all shapes (point estimates with 95% CI) for women (top

panel) and men (bottom panel).

https://doi.org/10.1371/journal.pcbi.1010831.g005
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from Fig 6 do not take into account competing risks which are moderate between age 60 to 70

yr.

Hazard ratios for risk of interval cancers

Interval cancers are diagnosed during time interval Δt in patients after their colonoscopy at

age t. In S1 Text we have derived a simple formula in Eq. (S58) for the relation between the

Fig 6. Shape-specific probability of transition to cancer for adenoma present at age 60 yr with size 0.5, 1 and 2 cm and waiting

time up to 10 yr for women (top panels) and men (bottom panels).

https://doi.org/10.1371/journal.pcbi.1010831.g006
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hazard ratio HReff(t + Δt) of interval cancer and ADR which is repeated below as

HReff ’
reffN Ey0

N ðtÞ
E0
NðtÞ

� 1

 !
reffN Ey0

N ðtÞ
E0
NðtÞ

reffY Ey0
Y ðtÞ

E0
YðtÞ

� 1

 !

: ð5Þ

The expression is valid under the assumption of negligible cancer risk from adenoma cre-

ated de novo after a screening colonoscopy. In this case the risk for interval cancers is entirely

related to incompletely removed or undetected adenoma.

The product reffN Ey0
N ðtÞ � APCðtÞ defines APC with the effective removal factor 0 < reffN < 1

and the expected number of adenoma Ey0
N ðtÞ at age t above the detection limit of y0 cells. If we

assume that adenoma counts are Poisson distributed APC and ADR are monotonously related

via APC(t) = −ln(1 − ADR(t)). An analogous definition with an effective reduction factor 0 <

reffY < 1 applies for expected size Ey0
Y ðtÞ of detectable adenoma larger than y0.

Fig 7 compares model predictions for HReff from Eq (5) as a function of ADR from the pre-

ferred model for all shapes combined with estimates for the adjusted hazard ratio of Corley

et al. [12] (their Supplementary Table S2). For the effective size reduction factor two values

reffY ¼ 0:5; 1 were assumed.

Discussion

Birth cohort and age trends

Shape-specific division rates α for tissue stem cells with initial molecular changes decelerate by

about 20–40% between age 55–90 in Fig C in S1 Text. The effect was more pronounced for

peduncular adenoma. Tomasetti et al. [33] have measured similar trends of around 40% reduc-

tion with Ki67 staining of normal cells obtained from human colonic crypts of patients in their

20s or 80s (see their Fig 2). Using Lgr5 as a marker for colonic stem cells in combination with

Ki67 supported the trend but with much reduced counts of proliferating cells without statisti-

cal significance (see their Fig S5). Compared to the total number of evaluated cells the observed

share of proliferating stem cells was in the order of 10−5.

Tomasetti and coworkers relate the deceleration in cell division rates to decreasing cancer

incidence rates at old age. But they also point to the contribution of ‘weeding out of the suscep-

tible’. We would interpret this contribution as a frailty effect which is an intrinsic feature of

MSCE models [34]. However, the crude rates of preclinical cancer in the present study show

no age-related attenuation in Fig 5. Due to the entanglement of secular trends with age trends

in our screening cohort, comparison with age-dependent experimental data should be per-

formed with caution.

On the other hand, we would not assign the increase in the transformation rate ν to a secu-

lar trend. A biologically plausible reason could involve malignant mutations (e.g. in gene p53)

which accumulate with age and render a transition to cancer more likely.

Adenoma number

Estimates of age-dependent APC reproduce the measurements closely in the top panels of Fig

2 but in the bottom panels the recorded ADR is strongly overestimated by model expectations.

Fig E in S1 Text reveals a clear mismatch between model expectations and measurements in

the categorical adenoma counts for all shapes combined. Similar results for shape-specific

counts are not shown. Based on the assumption of a Poisson distribution the models expected

more patients with exactly one adenoma and less patients without adenoma. In the Bavarian

data set from 2006–2009 the ADRs are 20.4% for women and 30.5% for men almost equal to
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the ADRs reported by Brenner et al. [35] for whole Germany in 2013. In contrast the bottom

panels of Fig 2 reveal higher model expectations of 30.0% for women and 48.0% for men at

age 65 yr. For age 60 yr the models predict 26.4% for women and 40.7% for men. These values

are in line with the results of Rutter et al. [36] for North American patients. They applied mul-

tinomial Poisson regression to a data set which combines information from several autopsy

studies of adenoma prevalence and counts. The ADRs at age 60 yr in 1990 came out as 29.2%

(women) and 40.3% (men).

Fig 7. Comparison of hazard ratios HReff of Eq (5) for interval cancer depending on adenoma detection rate from the preferred

model for all shapes combined for age at examination 65 yr (lines) and effective size reduction factor reffY ¼ 1 and 0.5, and from

the study of Corley et al. [12] (point estimates with 95% CI) for women (top panel) and men (bottom panel).

https://doi.org/10.1371/journal.pcbi.1010831.g007
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Due to a compensation effect in the two lowest count categories APC estimates reflect the

recorded data well. Given the good agreement of the model-expected ADR with more reliable

autopsy studies [36] and the recorded ADR with other German data we attribute the ADR mis-

match to overlooked adenoma. Fig F in S1 Text suggests that missing adenoma may mostly

pertain to size < 0.5 cm. But categories for larger adenoma could also contribute. Therefore,

our estimates of APC and ADR support a Poisson distribution. But they might come out

slightly lower than biologically plausible estimates which are achievable for a given detection

limit.

Adenoma size

Size categories are reported only for the most advanced adenoma. Thus, a comparison of

observed and expected size for all adenoma independent from count classification is not possi-

ble (Table A in S1 Text). Fig F in S1 Text shows undercounting of adenoma in lower size cate-

gories but cannot clarify the ability of the model to describe the size distribution adequately. A

separate size analysis of the most advanced adenoma by multinomial Poisson regression could

directly test the agreement of model expectations with measured data. However, such addi-

tional analysis would overestimate the actual adenoma size which is of clinical relevance in the

present study.

Fig 3 reveals a strong shape-specific growth dynamics. Flat adenoma show a large positive

age gradient whereas peduncular adenoma in women may even regress at older age. It is

tempting to associate growth behavior with a shape-specific molecular profile but the pub-

lished literature does not provide clear indications. The consensus molecular adenoma subtype

classification does not consider shape as a relevant category [37]. Flat adenoma do not exhibit

MSI, whereas in a few peduncular adenoma MSI characteristics have been reported [38–40].

Hallmarks of the MSI pathway are most likely to be found among serrated sessile adenoma but

serration status was not available for our data set [41].

Number of precancerous cells per adenoma. By demanding biologically feasible division

rates α between 5–50 yr−1, estimates for the number of initiated tissue stem cells per adenoma

come out substantially lower compared to the range of 1–10% which has been reported previ-

ously [9, 26]. Based on a cell density of 108 cm−3 [10] we obtain shares in the order of 10−5—

10−6 initiated cells per adenoma. These small shares are based on absolute numbers at size 1

cm. Here we assume 800 cells for sessile adenoma with 2d growth, 200 cells for peduncular

adenoma with 2d growth and 3200 cells for flat adenoma with 3d growth. Median cell numbers

do not exceed 103 for all shapes (Fig 3). In line with these findings, Tomasetti et al. [33] have

measured a share of about 10−5 healthy stem cells which proliferate in the human colonic

crypt.

Since the load of precancerous cells in an adenoma influences the risk of transition to can-

cer a determination of this quantity is of direct clinical relevance. Measurements of low cell

numbers with distinct molecular signatures (see Komor et al. [37]) such as mutations in gene

APC (CIN) or hypermethylation of gene MLH1 (MSI) can be performed by maximal depth

sequencing, digital droplet PCR, and standard single cell RNA sequencing, which can detect

altered copies in frequencies as low as 10−5 to 10−6 [42–44].

Adenoma regression. The extinction probability is considerable for small adenoma of all

shapes, but with increasing size extinction becomes nearly impossible (Fig 4). Pickhardt et al.

[27] performed a prospective trial to investigate the natural history of small adenoma < 1 cm.

They measured in vivo growth rates with longitudinal CT colonography and report that 30%

of small adenoma regressed with a volume reduction of 30%, and 10% completely resolved.

They present tables with shares of adenoma which either progress, remain stable or regress. In
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principle, these tables can be used for model validation. However, for a comparison it must be

kept in mind, that the number of bulk glandular cells in an adenoma exceeds the number of

initiated stem cells with defined molecular changes by several orders of magnitude [33].

Hence, the extinction of an initiated clone does not necessarily imply the disappearance of the

whole adenoma. To explain adenoma regression one must assume that cells with initial molec-

ular changes take control over the fate of all cells in an adenoma. This assumption gains some

support by Sievers et al. [45], who correlated the number of pathogenic mutations in small

adenoma with their growth pattern. They show that small adenoma with just one pathogenic

mutation are more likely to regress than adenoma with 2–3 mutations.

Cancer risk

The shape-specific hierarchy in cancer hazard (Fig 5) is reflected in the cancer transition prob-

abilities (Fig 6) for both sexes. Adenoma size is considered an important risk factor for transi-

tion, but this risk is markedly modified by adenoma shape. Sessile adenoma are on average

smaller than flat and peduncular adenoma (Fig 3). Yet for the same size they exhibit a risk of

transition larger by a factor of two. The large uncertainties in shape-specific crude rates

strongly influence CIs for estimates of hazard functions. Transition probabilities (Fig 6) are

burdened with similar uncertainties although they are not shown.

Our models predict transition probabilities proportional to size Sd. For most adenoma this

means a quadratic increase with linear size, but for flat adenoma a cubic increase is equally

possible.

Quality indicator for screening efficiency

Kaminski et al. [46] proposed the relation between the hazard ratio HReff for interval cancer

and ADR as a quality indicator for screening efficiency. Corley et al. [12] have estimated that

hazard ratio by statistical association for a large screening data set. Follow-up studies have

emphasized the importance to increase ADRs for the reduction of colon cancer incidence and

death [13, 14]). Motivated by the high clinical relevance we derived an analytic expression for

HReff which is presented in Eq. (S58).

Age dependences of the ADR were very similar for outpatients from Bavaria and California

with colonoscopies in overlapping periods of calendar years 2006 to 2008 [47]. Hence, compar-

ison of hazard ratios for screening efficiency between Germany and the U.S. in Fig 7 allows us

to assess the biological plausibility of the formula for HReff in Eq. (S58). Without adjustment of

mean adenoma size (reffY ¼ 1) the preventive effect of screening is overestimated by our model.

Good agreement between recorded data and modeling results for men is obtained by reducing

mean adenoma size with reffY ¼ 0:5. This reduction might be associated with incomplete ade-

noma removal. For women borderline agreement is caused by the choice of the reference ADR

for HReff = 1. The slight initial increase of the female HReff with increasing ADR in the Califor-

nian data is unexpected.

Conclusion

We have presented a comprehensive characterization of adenoma growth and cancer transi-

tion risk with shape-specific analysis of screening colonoscopy data. Based on goodness-of-fit

MSCE models with modifications tailored to meet the data format for Bavarian outpatients

yielded important insights which are summarized below.

PLOS COMPUTATIONAL BIOLOGY Shape-specific characterization of adenoma growth and cancer risk

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010831 January 23, 2023 17 / 22

https://doi.org/10.1371/journal.pcbi.1010831


• Initiated cells in early adenoma of sessile and peduncular shape grow predominantly in 2d

areal structures such as crypts. For flat adenoma this issue could not be resolved by good-

ness-of-fit and growth in 3d structures is equally possible.

• In line with measurements from Ki67 staining experiments cell division rates decelerate by

about 20–40% for age 55–90 yr. Reduced proliferation might contribute to the attenuation of

cancer incidence at old age.

• The number of stem cells with initial molecular damage is small in an adenoma. For linear

size 1 cm we expect some 103 initiated cells representing a share in the order of 10−5 related

to all adenoma cells. These model expectations are supported by marker experiments and

can be further validated by molecular measurements.

• Early adenoma grow markedly slower than colorectal tumors. The net clonal growth rates in

2d remain < 0.08 yr−1 whereas typical growth rates from fits to cancer incidence data are

about twice as high.

• The risk for adenoma transiting to cancer shows a pronounced shape dependence. Com-

pared to flat and peduncular adenoma the transition probability for sessile adenoma is about

twice as high for the same linear size. For most adenoma transition probabilities increase

with squared size.

• The hazard ratio for interval cancer serves as a screening quality criterion and has been pre-

viously quantified by statistical association. We now provide a mathematical expression

based on a simple dependence on mean adenoma number and size which provides a mecha-

nistic explanation.

Biologically-based modeling of adenoma growth and transition to cancer establishes a

quantitative link between different levels of biological organization, which in this form cannot

be provided by mere statistical association. Macroscopic measurements of adenoma size and

number are explained by cell-based processes of molecular damage accumulation, cell division

and clonal expansion. Depending on adenoma shape these processes proceed differently.

Thus, we conclude that adenoma shape deserves closer consideration in screening strategies

and as risk factor for transition to cancer.

Supporting information

S1 Text. Mathematical implementation and supplementary figures and tables. Fig A:

Number of patients (A) and measured adenoma detection rate (B) in 5 yr age groups for all

adenoma shapes combined. Fig B: Number of patients (A) and measured adenoma detection

rate (B) in 5 yr age groups for shapes sessile, peduncular and flat; if more than one adenoma

was reported, the shape of the most advanced adenoma was counted. Fig C: Age dependence

of Poisson strength XP, cell division rate α and clonal growth rate γ defined in Eq (3), age

dependence of initiation parameter ρ(t) = μ2/α(t) is not shown, parameter estimates and 95%

CI are given in Tables G—K, parameter values are normalized to age 65, birth years on the

top x-axis pertain to 2007—age. Fig D: Age dependence of the transformation rate ν defined

in Eq (2), parameter estimates and 95% CI are given in Table L, birth years on the top x-axis

pertain to 2007—age. Fig E: Adenoma counts of all shapes combined for men and women in

5 yr age groups from screening (left bars) and from model expectations (right bars), ade-

noma detection rate (ADR) is given by 1—Share(count = 0), Npat denotes the number of

patients in each panel. Fig F: Adenoma size distribution of all shapes combined for men and

women in 5 yr age groups from screening (left bars) and from model expectations (right
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bars). If more than one adenoma is detected, the size category is derived from the size of the

most advanced adenoma according to Table A, Npat denotes the number of patients in each

panel. Table A: Probabilities P(size = sc, counts = cc) of finding a patient with most advanced

adenoma in size category sc and count category cc, for comparison with recorded adenoma

the probabilities P(size = sc) = ∑cc P(size = sc, counts = cc) in the last column have been used.

Table B: Number of female and male patients Npat and number of detected adenoma Nad in

5 yr age groups. Table C: Number of female and male patients Npat, number of detected colo-

rectal cancers Ncan and crude incidence rate cr for 104 persons per year in 5 yr age groups.

Table D: Flow of control in regression analysis. Table E: Overall goodness-of-fit measured

by AIC for all shapes combined, sex-specific models for K = 0, K = 1 and K = 2 with constant

parameters (level I) and age dependences (3) in parameters XPI, α and γ (level II), cell growth

was assumed in either 2d or 3d dimensions according to Eq (1). Table F: Overall goodness-

of-fit measured by AIC shapes sessile, peduncular and flat separately, sex-specific models for

K = 0, K = 1 and K = 2 with constant parameters (level I) and age dependences (3) in parame-

ters XPI, α and γ (level II), cell growth was assumed in either 2d or 3d dimensions according

to Eq (1). Table G Adenoma with all shapes combined: goodness-of-fit and parameter esti-

mates for the preferred model K = 2 (level III), 2d growth and detection limit 30 cells (0.19

cm), age dependences in parameters XPI, α and γ from Eq (3). Table H: Sessile adenoma:

goodness-of-fit and parameter estimates for the preferred model K = 2 (level III), 2d growth

and detection limit 30 cells (0.19 cm), age dependences in parameters XPI, α and γ from Eq

(3), p-values < 0.001. Table I: Peduncular adenoma: goodness-of-fit and parameter esti-

mates for the preferred model K = 2 (level III), 2d growth and detection limit 40 cells (0.45

cm), age dependences in parameters XPI, α and γ from Eq (3), p-values < 0.001 unless indi-

cated otherwise. Table J: Flat adenoma: goodness-of-fit and parameter estimates for the

model K = 2 (level III), 2d growth and detection limit 30 cells (0.19 cm), age dependences in

parameters XPI, α and γ from Eq (3), p-values < 0.001 unless indicated otherwise. Table K:

Flat adenoma: goodness-of-fit and parameter estimates for the preferred model K = 2 (level

III), 3d growth and detection limit 30 cells (0.21 cm), age dependences in parameters XPI, α
and γ from Eq (3), p-values < 0.001 unless indicated otherwise. Table L: Parameter estimates

for the transformation rate ν(t) = ν0 exp[(bn(t − 65)/10] in the simple cancer risk model, p-

values < 0.001 unless indicated otherwise.
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