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Abstract

Background

Although gene-expression (GE) and protein levels are typically strongly genetically regu-

lated, their correlation is known to be low. Here we investigate this phenomenon by focusing

on the genetic background of this correlation in order to understand the similarities and dif-

ferences in the genetic regulation of these omics layers.

Methods and results

We performed locus-wide association studies of 92 protein levels measured in whole blood

for 2,014 samples of European ancestry and found that 66 are genetically regulated. Three

female- and one male-specific effects were detected. We estimated the genetically regu-

lated GE for all significant genes in 49 GTEx v8 tissues. A total of 7 proteins showed nega-

tive correlations with their respective GE across multiple tissues. Finally, we tested for

causal links of GE on protein expression via Mendelian Randomization, and confirmed a

negative causal effect of GE on protein level for five of these genes in a total of 63 gene-tis-

sue pairs: BLMH, CASP3, CXCL16, IL6R, and SFTPD. For IL6R, we replicated the negative

causal effect on coronary-artery disease (CAD), while its GE was positively linked to CAD.

Conclusion

While total GE and protein levels are only weakly correlated, we found high correlations

between their genetically regulated components across multiple tissues. Of note, strong

negative causal effects of tissue-specific GE on five protein levels were detected. Causal

network analyses revealed that GE effects on CAD risks was in general mediated by protein

levels.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0268815 May 23, 2022 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pott J, Garcia T, Hauck SM, Petrera A,

Wirkner K, Loeffler M, et al. (2022) Genetically

regulated gene expression and proteins revealed

discordant effects. PLoS ONE 17(5): e0268815.

https://doi.org/10.1371/journal.pone.0268815

Editor: Jie V Zhao, University of Hong Kong, HONG

KONG

Received: June 18, 2021

Accepted: May 10, 2022

Published: May 23, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0268815

Copyright: © 2022 Pott et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All summary

statistics are publicly available from Zenodo (DOI:

10.5281/zenodo.6045694). Scripts used in the

secondary analyses are included at https://github.

com/GenStatLeipzig/LWAS_Olink. Complete data

https://orcid.org/0000-0002-5983-5331
https://orcid.org/0000-0002-2038-1395
https://orcid.org/0000-0002-3126-7950
https://doi.org/10.1371/journal.pone.0268815
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0268815&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1371/journal.pone.0268815
https://doi.org/10.1371/journal.pone.0268815
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5281/zenodo.6045694
https://github.com/GenStatLeipzig/LWAS_Olink
https://github.com/GenStatLeipzig/LWAS_Olink


Introduction

Several large-scale genome-wide association studies (GWASs) identified more than 150

genetic risk loci of coronary artery disease (CAD) [1–6]. However, for the majority of loci, the

underlying molecular pathology remains to be elucidated. High-throughput proteomics could

contribute to our understanding of molecular patho-mechanisms by providing functional

causal links between genetic loci, proteome expressions and cardiovascular disease traits.

While there is typically a strong relationship between genetics and transcriptomics via cis

expression quantitative trait loci (eQTLs), some studies have shown only weak correlations

between the transcriptomic and the proteomic layer [7–10]. Possible reasons comprise differ-

ent half-lives of mRNA and respective protein, posttranscriptional modifications and tissue

and compartment specificity [11]. Nevertheless, genetic effects on expression and protein (pro-

teome quantitative trait loci—pQTL) levels are partly overlapping suggesting common genetic

drivers. For example, the Framingham Heart Study detected 26 pQTLs in cis that overlapped

with respective eQTLs in whole blood, liver and heart tissues [12]. He et al. [13] analyzed the

liver-specific proteome on genome-wide scale and found for about 40% of all tested genes an

overlap with known eQTLs in liver.

In this study, we aimed at identifying cis-pQTLs for a panel of 92 biomarkers of CAD mea-

sured by proximity extension assays in blood. To characterize these cis loci in more detail, we

compared the effects of cis-eQTLs and pQTLs at these loci in more detail. For this purpose, we

analyzed the overlap of eQTLs and pQTLs by co-localization analyses and tested for associa-

tion of genetically regulated gene expression (GE) across tissues and respective blood protein

expression (PE). Finally, the identified genetic associations were used to establish causal chains

of genetics, transcriptomics, proteomics and CAD via concatenated Mendelian Randomiza-

tion analyses.

Material and methods

Cohort description

All analyses were performed in participants of the LIFE-Adult study. In LIFE-Adult, 10,000

residents of the city of Leipzig, Germany were randomly recruited in an age- and sex-stratified

manner. All participants were deeply examined with respect to civilization diseases such as

obesity, diabetes, cardiovascular diseases, cognitive impairment and mental disorders as well

as contributing environmental and life-style factors. Details can be found in Loeffler et al. [14].

Blood samples were taken from all participants after an overnight fasting and were stored in

the Leipzig Medical Biobank for subsequent analyzes and measurements of genetic, transcrip-

tomic and proteomic data. Overlap of OMICs data is displayed in S1 Fig in S1 File.

LIFE-Adult meets the ethical standards of the Declaration of Helsinki and is approved by

the Ethics Committee of the Medical Faculty of the University Leipzig, Germany (Reg. No

263-2009-14122009). Written informed consent including agreement with genetic analyses

was obtained from all participants. A basic description of samples used in this study can be

found in Table 1.

Protein biomarker measurement

For proteomic profiling, we selected EDTA plasma probes of 2,024 elderly LIFE-Adult partici-

pants. Measurement of 92 CVD-related protein biomarkers was performed with the proximity

extension assay (PEA) [15] using the Olink CVD Panel III. Measurements were performed in

23 batches each including 88 samples and two identical controls each. For eight samples, Olink
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measurement failed, and additional two samples were excluded as outliers (Mahalanobis Dis-

tance >3 IQR), resulting in N = 2,014 samples available for further analyses.

Measurements of biomarkers are available for all of these samples except for three biomark-

ers. Two assays (BLMH, CTSD) failed at one plate, resulting in N = 1,926 for these traits. A sin-

gle missing value of metalloproteinase 4 was mean-imputed. Across all 92 assays in CVD III,

the mean intra-assay (within run) and inter-assay (between runs) variations expressed as coef-

ficients of variation are reported to be 8.1% and 11.5%, respectively. We used normalized pro-

tein expression units as semi-quantitative traits. Genetic data were available for all of the

samples. An overview of all biomarkers including their distribution and genetic regions is

given in S1 Table in S2 File.

Gene expression measurement

Isolated mRNA from whole blood of 3,527 samples was hybridized to Illumina HT-12 v4

Expression BeadChips (Illumina, San Diego, CA, USA) and gene expression (GE) was mea-

sured on the Illumina HiScan (47,231 raw GE probes). We then processed the data by log2--

transformation, quantile-normalization [16, 17] and correction for batch effects [18] using R/

Bioconductor.

Probes were excluded if they were (1) expressed in less than 5% of the samples, (2) still sig-

nificantly associated with batch effects, or (3) unable to map to a gene according to ingenuity

pathway analyses (IPA, QIAGEN Inc., accessed on 2019-04-04). In summary, 20,972 valid GE

probes remained, corresponding to 15,950 genes. We looked for transcripts corresponding to

the 92 proteome features of the PEA. There were 91 probes with sufficient QC, matching to 68

unique genes.

Samples were removed if (1) the number of detected GE probes deviated more than 3�IQR

from the median, (2) the Mahalanobis distance of several quality characteristics deviated more

than 3�IQRs from the median [19], or (3) the Euclidean distance of expression values deviated

more than 4�IQRs from the median [16]. Overall, of the assayed 3,527 samples, 110 had to be

Table 1. Basic sample description.

Variable Overall Female Male P-value

(n = 2,014) (n = 974) (n = 1,040)

Age (years) 62.5 (11.5) 62.0 (11.3) 62.9 (11.6) 2.47E-02

BMI (kg/m2) 27.7 (4.5) 27.2 (4.8) 28.1 (4.1) 1.02E-06

Current smoker 320 (16.7%) 147 (16.2%) 173 (17.3%) 5.49E-01

Hypertensiona 1166 (58.7%) 496 (51.9%) 670 (65.1%) 2.91E-09

Type 2 diabetesa 479 (23.8%) 214 (22.0%) 265 (25.5%) 7.25E-02

Statin therapyb 319 (15.9%) 124 (12.8%) 195 (18.8%) 2.99E-04

TC (mmol/l) 5.70 (1.06) 5.87 (1.06) 5.53 (1.04) 3.35E-13

LDL-C (mmol/l) 3.58 (0.95) 3.59 (0.96) 3.57 (0.95) 5.88E-01

HDL-C (mmol/l) 1.62 (0.46) 1.81 (0.46) 1.44 (0.39) 2.86E-73

For continuous parameters, the unit is given in parenthesis, and arithmetic mean and standard deviation values are shown. For binary variables, total number and

percentages are provided. Differences between sexes were tested with a chi-squared test for all binary parameters, and with Mann-Whitney U test for all continuous

parameters. Abbreviations: BMI, body mass index; TC, total cholesterol; LDL-C, low-density lipoprotein; HDL-C, high-density lipoprotein.
a anamnestic, medication or determined by HbA1c>6.5%;
b ATC-code beginning with C10.

https://doi.org/10.1371/journal.pone.0268815.t001
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removed for quality reasons. Of those remaining, 3,194 samples had also genetic data available

in high quality.

Genotyping & Imputation

A total of 7,838 participants of LIFE-Adult were genotyped on the genome-wide SNP array

Axiom CEU1 (Affymetrix). Genotype calling was performed using the software Affymetrix

Power Tools (version 1.20.06). We conducted calling and quality control according to Affyme-

trix’s best practice steps [20].

SNPs were excluded if (1) their call rate was less than 97%, (2) there was a significant viola-

tion of Hardy-Weinberg equilibrium (p<1x10-6 for autosomal SNPs, p<1x10-4 for X-chromo-

somal SNPs in women only), (3) significant plate association (p<1x10-7), or (4) cluster plot

specific parameters according to Affymetrix’s recommendation [20].

Samples were removed if (1) their signal contrast on the array was low (<0.82), (2) their

call rate was less than 97%, (3) the estimated sex differed from the sex retrieved from the data-

bank, (4) cryptic relatedness was observed (>0.6 [21]), or (5) the estimated genetic ethnicity

was out of range (>6�SD in any of the first 10 principal components). There were 33 ethnic

outliers, which were removed for all further analyses (see S2 Fig in S1 File). After filtering,

LIFE-Adult was genetically homogeneous and we therefore refrained from correcting for pop-

ulation stratification via PCs in the main analyses, but included the first ten PCs in a sensitivity

analysis of all lead SNPs per protein.

We imputed our SNP data on the reference 1000 Genome Phase 3 [22] using SHAPEIT

[23] v2r900 for prephasing and IMPUTE2 [24] v2.3.2 for genotype estimation. For this study,

all SNPs with minor allele frequency (MAF) <1% or imputation info score <0.8 were

excluded, resulting in 9,033,656 SNPs for further analyses.

Statistical analysis

An overview of our analysis plan is given in S3 Fig in S1 File.

Genetic association analyses for 92 protein biomarkers. For each of the 92 biomarkers

we performed genetic association analyses at the regions of the gene coding for the biomarker,

i.e. we searched for cis-pQTLs, only. The region between gene start -500 kb and gene stop

+500 kb was considered (see S1 Table in S2 File for the assumed starts and stops of genes). Pri-

mary genetic association analysis was done in all subjects (n = 2,014) with PE adjusted for age

and sex. In a secondary analyses, we ran sex-stratified analyses (n = 974 female, n = 1,040

male) adjusting PE for age. For the analyses, we used the additive frequentist model with

expected genotype counts as implemented in PLINK 2.0 [25]. We lifted our data from hg19 to

hg38 using the GWAS Summary Statistics harmonization tool [26].

We pooled all cis-regions of our primary analysis and performed a hierarchical FDR correc-

tion as suggested for eQTLs by Peterson et al. [27]. In more detail, we first applied Benjamini

& Hochberg (BH) [28] correction of all SNPs associations calculate for a specific PE and iden-

tified the SNP with the minimal corrected p-value (Simes p-value). Next, we applied BH on the

92 Simes p-values and tested with α1 = 0.05 to determine the k proteins showing significant

associations. We then used α2 = 0.05 x k/92 as significance threshold on the first level as pro-

posed by Benjamini & Bogomolov (BB) [29]. The SNP with lowest and significant p-value was

denoted as lead cis-pQTL of the respective protein. We then merged all significant associations

and pruned the variants to a subset of markers that are in approximate linkage equilibrium

with each other (r2<0.1). Linkage disequilibrium (LD) was calculated using all LIFE-Adult

participants. Finally, we annotated these independent variants with (1) other nearby genes

(Ensemble, +/- 250 kb of SNP position) [30], (2) known traits associations from the GWAS
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Catalog (LD r2>0.3) [31], (3) known cis-eQTLs (LD r2>0.3, αcis = 0.05) [32–35], and (4)

CADD scores as measure of deleteriousness [36]. We defined novel loci as regions whose lead

SNP was not in LD with a variant reported for blood protein biomarker levels in the GWAS

catalog (LD r2�0.3).

For all lead cis-pQTLs, we checked for sex-specific effects on PE and compared effect sizes

between females and males applying t-tests of beta estimates [37]. We also looked for sex-spe-

cific significant loci by applying the same hierarchical FDR correction as mentioned above.

Finally, we looked up the eQTL summary statistics of all GTEx v8 [38] tissues for all lead SNPs

and their associated genes and compared their effect direction with our pQTL findings. The

GTEx data used for the analyses described in this manuscript were obtained from the GTEx

Portal on 09.06.2020. We reported those for whole blood and the (second) best associated tis-

sue. In addition, per locus we retrieved the best cis-eQTLs (defined by lowest p-value per tissue

and gene) and calculated pairwise LD (r2) to the respective lead pQTLs. To validate our find-

ings, we performed whole blood cis-eQTL analysis in our LIFE data (using n = 3,194 samples

with gene expression in whole blood and genetic data).

Co-localization and association analyses between gene-expression and protein levels.

In order to investigate the link between gene expression and protein levels in more detail, we

performed three locus-wise analyses: First, we performed a pairwise co-localization test [39]

between our pQTLs and eQTLs obtained from GTEx v8. In more detail, this method tested if

two trait associations share the same causal variant, regardless of effect direction. Five hypothe-

ses were tested in parallel, of which H4 states that the traits share the causal SNP, while H3

assumes two independent signals. As threshold for co-localization and for independence, we

used a posterior probability for H4 and H3 of �0.75, respectively. The region of co-localization

was defined as the position of the lead pQTL +/- 500 kb. We used the R-package “coloc” for

this analysis [39].

In a second analysis, the summary statistics of all proteomic features with significant cis-

pQTLs were used to search for correlations with respective genetically estimated gene-expres-

sion (gGE) using the MetaXcan approach [40]. The expression prediction models were down-

loaded from the github repository [41] (see also PredictDB [42]; GTEx v8 models using elastic

net algorithm). PredictDB contains only models that passed stringent criteria (e.g., number of

SNPs used, posterior probability for being an eQTL). Hence, not all gene—tissue combinations

were available for this analysis. In total, we tested 2,242 tissue-specific gGE for protein associa-

tion. To adjust for multiple testing of several tissues per protein, we performed a hierarchical

FDR correction as mentioned above. The first level were the tissues per protein, the second

level were the analyzed proteins. We report findings in whole blood and the (second) best asso-

ciated tissue.

Finally, we validated the MetaXcan results obtained for blood tissue using our measured

gene-expression profiles. Raw gene-expression data were available for 45 of the 64 genes with

pQTLs and paired GE/proteome data were available for 1048 samples. We estimated both

Pearson’s correlation and Pearson´s partial correlation controlling for sex, age, percentage of

lymphocytes and percentage of monocytes on total white blood cells. We repeated this analysis

in the sex-stratified subsets.

Mendelian randomization analyses. To investigate whether observed associations

between GE and PE were causal, we performed Mendelian Randomization (MR) analyses. As

MR requires strong instruments, we used the best-associated cis-eQTLs per tissue with lowest

p-value and p<5x10-8 (n = 428 SNPs for a total of 58 genes). To adjust for multiple testing, we

performed a hierarchical FDR correction as mentioned above. The first level were the tissues,

the second level were the analyzed genes.
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Since the proteins on our array were supposed to be cardio-vascular biomarkers, we also

estimated the causal effects of protein levels on CAD. We considered only lead pQTLs reach-

ing p<5x10-8 as instruments (n = 48 proteins). P-values of MR were adjusted using Bonferroni

correction for 48 tests. For proteins with significant causal effect on CAD, we tested for causal

chains GE ! PE ! CAD [43].

In all analyses, we used the ratio method and estimated the standard error using the first

two terms of the delta method [44]. Summary statistics were obtained from our pQTL-analy-

ses, from GTEx v8 [38] and from van der Harst et al. [6].

Results

An overview of all 92 analyzed proteins, their abbreviations and full name is given in S1

Table in S2 File. In the following, only the gene name abbreviations are used, with the regular

written names referring to PE and italic written names to GE. In addition, all main results are

included in this table as TRUE/FALSE vectors, which summarize the genetic associations, the

GE correlations and the causal analyzes per protein (for the combined setting).

SNP level results

After applying hierarchical FDR, we detected for 64 biomarkers significant associations in or

nearby the corresponding gene (23,951 unique SNPs, see S2 Table in S2 File for an overview of

all Simes p-values). Priority pruning revealed 758 independent SNPs (see S3 Table in S2 File

for summary statistics and full annotation with nearby genes, GWAS catalog traits and

enriched pathways, and S4 Table in S2 File for lead pQTLs per protein). Several of these loci

were already described for association with blood protein levels (n = 27 loci) [45–49]. Of the

remaining 37 loci, 25 were previously reported for other traits (e.g. lipids, CAD related traits,

or blood fractions), while 12 loci were not reported for any trait associations so far. These 37

loci are considered novel for our protein traits. Fig 1 shows a circular plot of all cis regions and

-log10 transformed association p-values of our association study and those of the best GTEx tis-

sue per gene. Although we did not perform a classic GWAS, 16 of the 37 novel and 22 of the

other loci also reached the classic genome-wide significance threshold of p<5x10-8 (regarding

the Simes p-value).

In our sex-stratified approach, we detected 54 proteins significantly associated in men, and

48 in women (see S2 Table in S2 File). Five proteins were associated in males, but not in

females, and had lower Simes p-values compared to the combined setting, suggesting male-

specific loci (GDF15, MPO, PAI, OPN, and TFF3). Of note, PAI was only associated in the

male setting, not in the combined one. Similarly, NOTCH3 was only associated in the female

setting, but not in the combined or male setting. In the following, all 66 proteins with associa-

tion in at least one setting are analyzed. Regarding the 110 lead SNPs of all settings (both from

the combined and sex-stratified analyses, if other lead SNPs were detected here), we observed

for 18 of them a significant difference in effect size in men and women, but only five of them

survived multiple testing correction (S4 Fig in S1 File), including NOTCH3 and MPO. We

reported the sex-stratified results in S4 Table in S2 File. In our sensitivity analyses additionally

adjusting for the first ten principal components, we found no significant bias in our results, as

the effect estimates were the same, and their p-value increased only slightly. All associations

remained significant according to our FDR threshold (see S4 Table in S2 File).

Next, we searched the GTEx database for associations of our 110 lead pQTLs with GE of the

corresponding genes. We found 7,714 such associations across all 49 GTEx tissues. We

checked the direction consistency of the e- and pQTLs, and surprisingly, detected for 41 pro-

teins at least one discordant direction. For 13 of them, this discordant direction was observed
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in most of the associated tissues (more than 75% of tissues in which the eQTL was observed,

see Table 2 and Fig 2). Restricted to whole blood, there were ten QTLs with discordant effects.

To validate this finding in whole blood, we replicated the eQTL analysis in our LIFE data (GE

available for 45 genes). Here, four of the ten SNPs were associated with p<0.05 and showed

Fig 1. Circular plot of cis-associations. Log-transformed p-values for cis-pQTLs and eQTLs are shown in the green respectively blue circle. We obtained

the statistics for eQTLs from GTEx and present the results of the tissue with the strongest eQTL per gene (see S3 Table in S2 File). For plotting, the y-axis

was restricted to -log (p) = 20, i.e. all larger -log (p) values were set to 20. The red circles mark the classical genome-wide significance threshold (p = 5x10-8).

Gene names are added for loci not yet described for blood protein levels, and are colored with respect to the novelty level (blue: not described for any other

traits, black: reported for other traits except for blood protein levels).

https://doi.org/10.1371/journal.pone.0268815.g001
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discordant effect directions when compared to the corresponding pQTL (SFTPD, BLMH,

ACP5, and CXCL16). The other SNPs had the same effect direction or showed no significant

effect in our data.

Locus level results

Although all lead pQTLs were associated with GE in at least one tissue, only in 4% of the GE-

tissue combinations the best eQTL was also the best pQTL, and in 30% the two SNPs were in

some LD (r2>0.1). To determine whether these signals are inter-related, we performed co-

localization analyses and tested for an association of genetically regulated gene expression and

protein levels. A summary of these tissue-specific analyses is shown as Venn diagram (S5 Fig

in S1 File) and in S6 Table in S2 File.

We observed 50 proteins with at least one shared (PP4>75%) GE signal, and 42 with at

least one independent signal (PP3>75%) across tissues. A total of 34 proteins show both,

dependent and independent signals in different tissues. Posterior probabilities for all pairs can

Table 2. Comparison of effect direction of cis-pQTLs from our GWAS and cis-eQTLs from GTEx.

Locus Information pQTL eQTL GTEx whole blood and (sec.) best tissue

Protein (ratio) pQTL effect allele / EAF beta p-value beta p-value Tissue

IL6R rs4129267 0.421 2.96x10-323 -0.087 5.40x10-09 Artery Tib.

(17/18) T / 0.380 -0.194 8.41x10-17

CCL15 rs41436444 0.939 4.56x10-292 - - Lung

(20/21) CAGGGCAG / 0.080 -0.635 1.65x10-17

CCL16 rs10445391 -0.852 8.01x10-155 - - Thyroid

(3/4) G / 0.072 0.220 2.27x10-04

SFTPD rs721917 -0.475 1.37x10-95 0.113 3.39x10-03 Artery Tib.

(42/42) G / 0.406 0.661 1.90x10-43

BLMH rs7214248 0.193 4.29x10-61 -0.072 3.80x10-04 Artery Tib.

(24/26) A / 0.346 -0.221 1.02x10-17

ACP5 rs897811 -0.163 1.70x10-20 0.501 5.78x10-19 Thyroid

(35/37) C / 0.116 0.376 9.71x10-10

TIMP4 rs392394 0.140 4.54x10-17 -0.024 4.36x10-01 Artery Tib.

(16/17) A / 0.782 -0.239 7.95x10-10

TNFRSF11B rs11300005 0.073 2.70x10-11 - - Eso. Mus.

(2/2) C / 0.493 -0.133 1.32x10-02

AXL rs3786556 -0.446 9.39x10-16 -0.002 9.68x10-01 Artery Tib.

(28/28) T / 0.184 0.227 2.13x10-13

CPA1 rs35454128 0.197 3.79x10-08 0.117 8.18x10-02 Adipose Sub.

(7/9) C / 0.120 -0.237 1.95x10-03

CASP3 rs6845294 0.153 1.09x10-07 0.026 1.54x10-01 Cells fibro.

(14/15) A / 0.687 -0.248 5.35x10-17

CDH5 rs16956504 0.105 1.10x10-07 0.007 8.93x10-01 Pituitary

(3/3) C / 0.110 -0.161 2.14x10-02

CXCL16 rs145042193 -0.064 8.22x10-07 0.104 2.47x10-03 Cells fibro.

(25/25) T / 0.208 0.362 4.92x10-17

We show results of the 13 genes for which discordant effect directions between pQTL and most of the respective eQTLs (more than 75% of all significant eQTLs across

tissues) were observed. We also report eQTLs of whole blood and the best-associated tissue in GTEx. The effect allele and its frequency is given below of the respective

SNP ID. For four genes we could replicate the different effect direction in our LIFE data (marked in bold, see S2 Table in S2 File for more details).

https://doi.org/10.1371/journal.pone.0268815.t002

PLOS ONE LWAS of biomarker

PLOS ONE | https://doi.org/10.1371/journal.pone.0268815 May 23, 2022 8 / 18

https://doi.org/10.1371/journal.pone.0268815.t002
https://doi.org/10.1371/journal.pone.0268815


be found in S7 Table in S2 File and are displayed in S6 Fig in S1 File. We compared the gene-

tissue combinations of shared and independent signaling with those of high and low LD

between best eQTL and pQTL. Regarding the higher LD (r2>0.1) combinations, the distribu-

tion between shared and independent signals was almost the same (n = 212 with PP3>0.75,

n = 295 with PP4>0.75). This demonstrates that LD does not guarantee co-localization. In

contrast, for low LD pairs, there was a clear trend to independent signals (n = 189 with

PP3>0.75, n = 14 with PP4>0.75).

We estimated the genetically regulated gene expression in all GTEx v8 tissues using MetaX-

can. Here, several SNPs at each gene locus were selected and included into the GE prediction

model. The predicted GE was then tested for association with the respective protein. After

applying hierarchical FDR, we detected significant associations for 58 of the 64 considered bio-

markers in at least one tissue (n = 1,474 significant tests of a total of 2,242). Most genes showed

this association in about half of all tissues (median of 27 associated tissues). Counterexamples

are LBTR and IL17RA, showing GE-PE association across many tissues (49, respectively 42

tissues).

Fig 2. Scatter plot of effect estimates of the 63 lead pQTL-SNPs on gene expression and protein levels. As the focus was on the direction only, we did

not normalize the effect estimates. Only SNPs with a significant eQTL in at least one tissue are displayed (p< = 0.05 in GTEx). Results of the 13 genes

showing discordant pQTL and eQTL directions in more than 75% of eQTL tissues are labeled (see also Table 2 and S5 Table in S2 File).

https://doi.org/10.1371/journal.pone.0268815.g002
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We compare the MetaXcan results with our results obtained by co-localization analyses.

The intersection of significant associations and co-localization comprised n = 531 gene-tissue

pairs, of which n = 288 pairs showed co-localization and n = 243 indicated independent signal-

ing. This demonstrates that results of MetaXcan-based gene-expression association analysis

are only loosely related to those of co-localization. We summarized all MetaXcan results in S8

Table in S2 File.

We checked the direction of the correlation of tissue-specific GE and PE. A total of 42 pro-

teins showed opposite direction of effects in at least one tissue. Seven of them showed this neg-

ative association in most of the tissues (see Table 3), including six which were also found based

on the LD considerations performed in the previous paragraph (see Table 2).

Finally, we compared the MetaXcan-derived GE-protein associations with GE-protein asso-

ciations based on raw GE data of whole blood from our LIFE study. GE data were available for

45 genes. Among those, we detected 21 significant partial correlations controlling for age, sex

and white blood cell counts (S9 Table in S2 File). Comparing these results with the respective

MetaXcan results of whole blood, we found eight pairs that are significant in both analyses.

For all of them, the same effect direction was observed, with negative correlation of PE, and

both, total GE and genetically estimated GE in whole blood.

Causal network of gene expression, protein levels and CAD

We performed Mendelian Randomization analyses of the causal relationship between GE and

PE for all tissues for which a strong eQTL (p<5x10-8) was available. Accordingly, we tested 58

genes in up to 27 tissues (n = 670 tests in the combined setting). We detected causal links for

51 genes (501 genes-tissue pairs). There were predominantly positive effects (364 pairs with

positive causal effect of GE on PE). A summary of all instruments, tissues, and causal effects is

given in S10 Table in S2 File.

For 419 pairs of GE and protein, we found both, significant MetaXcan association and MR

effect. Among those, 398 showed concordant effect directions between GE and PE (92 pairs

with negative effect, 306 with positive effect), i.e. effect directions are in large agreement. The

92 pairs with negative effect comprise 20 unique genes. Twelve of them show this relation in

>75% of associated tissues, including five genes described in the previous sections (BLMH,

Table 3. Proteins showing predominantly negative correlation between tissue-specific GE and blood PE.

Protein #tissues (neg/tot) Effect P-value Tissue

IL6R 25/29 -2.177 7.11x10-303 Artery Tib.

-2.965 8.21x10-197 WB

SFTPD 33/40 -6.003 7.69x10-77 Colon Trans.

BLMH 12/15 -0.985 1.48x10-58 Artery Tib.

-1.052 8.11x10-15 WB

TIMP4 29/36 -0.371 8.00x10-17 Brain Ant. Cingulate Cortex

CASP3 25/29 0.865 1.51x10-7 Brain Putamen

-109.229 2.78x10-7 WB

CXCL16 41/41 -0.242 6.70x10-7 Kidney Cortex

-0.067 1.54x10-2 WB

TREML2 13/14 -40.610 5.85x10-6 Thyroid

-0.876 3.58x10-4 WB

MetaXcan results are shown for the best-associated tissue with negative effect estimate and whole blood (WB), if a prediction model was available. Neg = Number of

significant negative correlations across tissues. Tot = Total number of significant associations.

https://doi.org/10.1371/journal.pone.0268815.t003
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CASP3, CXCL16, IL6R, and SFTPD). Summaries of analysis results of these genes are shown

in Fig 3 and S7 Fig in S1 File, and Table 4.

Next, we tested the causal link between the biomarkers and coronary artery disease. We

restricted the analyses to lead pQTLs with p<5x10-8 and available CAD statistics from van der

Haarst et al. [6]. This left us with 47 biomarkers. Results are given in S11 Table in S2 File and a

scatter plot for all pairs is shown in S8 Fig in S1 File. Four protein showed a significant effect

in the combined setting: IL6R (βIV = -0.094, p = 4.90x10-14), PCSK9 (βIV = 0.540, p = 4.72x10-

10), TFPI (βIV = -0.116, p = 7.83x10-5), and AXL (βIV = 0.487, p = 6.09x10-5). IL6R had signifi-

cant causal estimates in the sex-stratified settings as well. The estimated causal TFPI effect was

also significant in females, but in males it reached only nominal significance that did not

Fig 3. Overlap of genes with negative correlation to protein levels according to different analysis strategies. We present the genes with negative protein

correlations for more than 75% of the significant tissues according to MetaXcan (MX), negative causal effect estimates according to Mendelian

Randomization (MR), and opposite effect direction of eQTLs and pQTLs (see also Tables 2–4).

https://doi.org/10.1371/journal.pone.0268815.g003
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survive multiple testing correction. PCSK9 was also causally linked in males, while in females

the PCSK9 instrument did not reach the significance threshold to be included for MR analysis.

For AXL, both sex-stratified instruments were above the MR significance threshold and hence

excluded.

Finally, we searched for causal chains from GE over PE to CAD for all four proteins with

significant causal link to CAD, which were also causally affected by gene expression (n = 50

tests). The total causal effect estimates of GE on CAD were significant in 26 gene-tissue pairs

and negative in four of them (TFPI in tibial artery and cultured fibroblast cells in all and

females). AXL was not causally linked to CAD in any tissue. The indirect effect was estimated

as product of the GE ! PE and PE ! CAD effects, which corresponds to the effect of GE on

CAD mediated by PE. These indirect effect estimates were significant for all 50 gene-tissue

pairs and for 45 of them no significant difference between the total and indirect GE-CAD

effect was observed, indicating complete mediation of GE via PE towards CAD. We summa-

rized the results in S12 Table in S2 File and displayed the causal chains in Fig 4.

Discussion

In this work, we performed a genetic cis-association analysis of 92 cardiovascular biomarkers

and found 66 regulations. We used these signals to unravel the relationship of cis-pQTLs and

cis-eQTLs by (1) testing for co-localization of signals, (2) analyzing the correlation of geneti-

cally regulated GE and PE, and (3) testing for causal effects of the GE/PE associations. Finally,

we established causal chains of GE, PE and CAD across tissues.

In our study, we focus on cis-effects rather than a whole-genome hypothesis-free approach.

Similar to eQTL analyses, cis-effects tend to be true positives, while trans-effects are often false

positives requiring much more stringent false positive control limiting power of this type of

analysis. We check the GWAS catalog for known associations, and detected that 37 of our

Table 4. Proteins with predominantly negative causal links of GE and PE.

Protein #tissues (neg/tot) Causal effect estimate P-value MR Association effect estimate P-value MetaXcan Tissue

IL6R 5/5 -0.713 5.57x10-27 0.126 4.63x10-06 Testis

-3.008 1.35x10-16 -2.965 8.21x10-197 WB

SFTPD 22/25 -0.347 2.64x10-17 -0.050 5.68x10-04 Heart AA

WB-0.749 6.43x10-06

BLMH 2/2 -0.873 3.07x10-15 -0.985 1.48x10-58 Artery Tib.

CCL15 15/16 -0.459 1.02x10-14 Nerve Tib.

PI3 1/1 -0.731 1.02x10-08 WB

AXL 6/6 -0.243 6.03x10-06 Artery Tib.

CCL16 15/15 -0.181 1.28x10-05 Liver

CASP3 5/6 -0.440 1.89x10-05 -0.173 1.57x10-06 Cells fibro.

0.914 1.83x10-05 0.865 1.51x10-07 WB

TFRC 1/1 -0.404 7.94x10-05 Lung

CXCL16 17/17 -0.225 1.69x10-04 -0.213 1.68x10-05 Thyroid

-0.097 2.97x10-03 -0.067 1.54x10-02 WB

CDH5 1/1 -0.148 1.92x10-02 Thyroid

CD163 1/1 -0.129 3.66x10-02 Testis

MR results are shown for the best tissue with negative effect estimate and whole blood, if available. We added respective MetaXcan results for comparison.

Neg = Number of significant negative causal estimate across tissue. Tot = Total number of significant MR tests.

https://doi.org/10.1371/journal.pone.0268815.t004
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associations are novel. Moreover, for 38 of the 66 associated proteins, our lead SNP achieved

genome-wide significance (p<5x10-8).

As example, PI3 was a genome-wide significant and novel loci, which was also associated in

the sex-stratified analyses. Here, it showed a significant sex-related effect, i.e. the effect estimate

in men was twice that of women. We tested our own GE and eQTL data for this interaction

but could not confirm this sex-dimorphism at the GE layer. Moreover, we detected a co-locali-

zation of eQTLs and pQTLs for men (whole blood), but not for women. In both MetaXcan

and MR, the estimates were significant in each sex, but with stronger effect in men (MR in

whole blood: βmen = -0.990, βwomen = -0.481, pIA = 0.002). PI3 codes for elafin, which has been

linked to the inflammatory response in atherosclerosis [50] and myocardial infarction [51].

Most atherosclerotic outcomes show sexual dimorphism as well, with higher risk for men.

This makes elafin an interesting target for further studies of sex-dimorphisms in cardiovascu-

lar research.

To unravel the relationship between GE and PE, we performed several analyses across dif-

ferent tissues since the origin of plasma PE is not necessarily whole blood. We found that the

lead pQTL was in most cases not the best-associated eQTL. We tested pairwise LD between

eQTLs and pQTLs and found most of them in low LD (r2<0.1) across tissues and proteins.

When comparing LD results with our co-localization results, we found as expected that

amongst the low LD pairs signals are often predicted as independent. More surprisingly, for

the high LD pairs, the ratio between independence and co-localization was balanced, i.e. LD

does not ensure co-localization of the signals. For example, both IL17RA and SFTPD have

high LD pairs in 34 and 39 tissues, respectively. IL17RA showed co-localization of these signals

in all these tissues. In contrast, for SFTPD, co-localization was refuted for all these signals.

In general, we observed a good agreement of MetaXcan and MR results although the

MetaXcan approach does not show causality per se and is also based on different gene-models

Fig 4. Graphical overview of causal networks form gene expression (GE) over protein expression (PE) on the outcome coronary artery disease (CAD).

Orange arrows indicate a negative causal effect of protein level on CAD (IL6R and TFPI) or of gene expression on protein levels, blue arrows denote

positive links. The settings are indicated by c (combined), m (males) and f (females). Tissues in which gene expression showed a significant indirect effect

on CAD are listed next to their gene. Bold tissues indicate also a significant direct effect.

https://doi.org/10.1371/journal.pone.0268815.g004
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compared to the instruments used for MR. In contrast, we observed only a moderate overlap

between co-localization results and MetaXcan / MR results. Signals with co-localization but no

significant causal estimate could be explained by pleiotropic effects while causality but lack of

co-localization could be explained by locus heterogeneity, i.e. different causal e- and pQTLs.

However, most of the detected associations were found in for high LD pairs of e- and pQTL

(Co-localization: 295 of 313 gene tissue pairs [94.2%]; MetaXcan: 659 of 1,474 [44.7%], MR:

357 of 501 [71.3%]).

Most interestingly, we detected five gene-protein pairs, which consistently showed opposite

effect directions of eQTLs and pQTLs, negative correlation of GE and PE (MetaXcan) and neg-

ative causal effects (Mendelian Randomization). Those were BLMH, CASP3, CXCL16, IL6R

and SFTPD. While BLMH was co-localized in 10 of 12 analyzed tissues, the other four had one

co-localizing tissue each, but all other tissues suggested independent signals. Only BLMH was

co-localized in most tissues. We discuss the functional relevance of this observation in more

detail by a GTEx v8 look-up of gene expression levels by tissue [38]. While the highest rate of

BLMH expression occurs in skin tissue, it is also expressed in artery tissues, for which we

observed negative association and in tibial artery tissue also negative causal effect. High expres-

sion levels in GTEx v8 [38] and negative links in our analyses were also found for CXCL16 in

tissues testis, whole blood, and skin, and for IL6R in tissues muscle skeletal, whole blood,

esophagus muscularis, and colon transverse. CASP3 had negative links between GE and PE in

several tissues, but also four positive links for brain (substantia nigra), liver, pancreas and

whole blood tissue. The negative links were detected in tissues with higher GE, e.g. cells cul-

tured fibroblasts. SFTPD is highly expressed in lung tissue, in which we found independent e-

and pQTL signals and a positive causal estimates. In other tissues with lower SFTPD expres-

sion, negative links were observed, e.g. thyroid. Thus, in the last case, the relationship of GE

and PE could be dominated by single tissues showing a positive correlation, while for the other

four the negative links happen in tissues with substantial gene expression. This suggests func-

tional relevance of BLMH, CASP3, CXCL16, and IL6R that needs further biological validation.

Consistent negative effects between GE and PE are of particular interest to further studies,

since the mechanism behind this is not clear. Explanations for this observation could be (1) tis-

sue-specific protein levels that differ from those measured in whole blood; (2) whole blood act-

ing only as transport compartment to a specific target tissue; (3) upregulation of pathways, in

which the protein is further metabolized; (4) post-translational modifications that influence

protein degradation; or (5) upregulation of genes in response to increased consumption / deg-

radation of protein.

Among our results, IL6R showed the most pronounced effects, with causal negative effects

in whole blood, testis, artery tibial and colon transverse tissues. We speculate that inflamma-

tory conditions consume IL6R resulting in low plasma levels but increased gene-expression to

counter the IL6R loss. The negative effect of IL6R on CAD was previously reported by Yuan

et al. [52] and could be explained by reduced inflammation. However, the GE effect on CAD

was positive, which is mainly mediated by IL6R PE.

In our MR mediation analyses, we found several indirect causal links of tissue-specific GE

over PE in whole blood on CAD. Only for TFPI, we found indirect effects from heart-specific

tissues (atrial appendage and left ventricle). Although these two tissues might be more specific

for CAD, cis-effects are usually shared across tissues, with exception of brain tissues [38].

Hence, other tissues such as muscle and whole blood with larger sample sizes might still detect

the true contribution of the gene expression. In addition, we do not know which tissue our

measured proteins come from. Therefore, it is also possible that increased GE in CAD-unre-

lated tissues lead to higher blood protein levels. The proteins can be transported to heart tis-

sues, where they increase the risk for an event. The detected direct effects of AXL in four
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tissues could be false positives, given the comparison to a non-significant total effect. The

direct effect of PCSK9 gene expression occurs in Adipose tissue (visceral omentum), where it

is only weakly expressed (TPM = 0.27). This needs further biological validation.

One limitation of this study was its relatively small sample size, and with it, reduced power.

We therefore refrained from analyzing trans-pQTLs and focused on cis-effects. Larger studies

of meta-analyses are required to resolve this limitation. The observed trans-associations could

then be used as independent instruments for a bivariate Mendelian Randomization analysis,

checking if high protein levels showed reverse causality on the gene expressions, an issue

which could not be addressed by our study.

In conclusion, we discovered several causal links of tissue-specific gene-expression and

blood protein levels of cardiovascular biomarkers. Observed negative causal relationships are

of interest for further studies to unravel the underlying post-transcriptional or pathway-associ-

ated regulatory processes. Finally, we established a causal patho-mechanistic network of GE

and PE of IL6R, PCSK9, TFPI, and AXL and coronary artery disease providing possible new

therapy targets.
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