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Abstract
We consider a resource-aware variant of the classical multi-armed bandit problem: In 
each round, the learner selects an arm and determines a resource limit. It then observes 
a corresponding (random) reward, provided the (random) amount of consumed resources 
remains below the limit. Otherwise, the observation is censored, i.e., no reward is obtained. 
For this problem setting, we introduce a measure of regret, which incorporates both the 
actual amount of consumed resources of each learning round and the optimality of realiz-
able rewards as well as the risk of exceeding the allocated resource limit. Thus, to mini-
mize regret, the learner needs to set a resource limit and choose an arm in such a way that 
the chance to realize a high reward within the predefined resource limit is high, while the 
resource limit itself should be kept as low as possible. We propose a UCB-inspired online 
learning algorithm, which we analyze theoretically in terms of its regret upper bound. In a 
simulation study, we show that our learning algorithm outperforms straightforward exten-
sions of standard multi-armed bandit algorithms.

Keywords Algorithm selection · Bivariate feedback · Censored feedback · Exploration · 
Exploitation

1 Introduction

Multi-armed bandit (MAB) problems constitute an important branch of machine learning 
research. Their popularity largely stems from an appealing combination of theoretical trac-
tability and practical relevance. In fact, MABs cover a wide range of real-world sequential 
decision problems, where an agent takes actions (metaphorically considered as “pulling 
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arms”) in order to optimize a specific evaluation criterion, simultaneously exploring the set 
of actions available and exploiting the feedback resulting from the actions taken. The latter 
typically comes in the form of (numerical) rewards, generated by the pulled arm according 
to an underlying probability distribution.

In spite of its versatility, the complexity of real-world problems or the availability of 
additional side information may suggest further extensions of the basic MAB setting. 
Indeed, several variants of the basic setting have been developed in order to model spe-
cific real-world problem scenarios more appropriately, including X-armed (Bubeck et al. 
2011), linear (Auer 2002; Abe et al. 2003), dueling (Yue and Joachims 2009), combinato-
rial (Cesa-Bianchi and Lugosi 2012), or threshold bandits (Abernethy et al. 2016), just to 
name a few—for a more detailed overview we refer to Lattimore and Szepesvári (2020). In 
this paper, we introduce yet another extension of the basic MAB problem, again motivated 
by practical considerations. More specifically, we consider applications in which the execu-
tion of an action requires resources, and will not be successful unless enough resources are 
provided. Thus, instead of observing a (noisy) reward in every round, the reward is only 
generated if the resources consumed by the pulled arm remain below a resource limit spec-
ified by the learner. Consequently, the learner needs to make two choices in every round of 
the decision process: the arm to be pulled and the resources allocated to that arm. Since we 
assume that resources are costly, the value of an outcome produced as a result decreases 
with the resources consumed. Additionally, the learner might be penalized for allocating a 
resource limit such that no reward is generated.

Our setting is largely (though not exclusively) motivated by the problem of algorithm 
selection (Kerschke et al. 2019), which has gained increasing attention in the recent past. 
Here, the arms are algorithms that can be run on a specific problem instance, for example 
different solvers that can be applied to an optimization problem or different machine learn-
ing algorithms that can be run on a data set. Given a problem instance, the task of the 
learner is to choose an algorithm that appears most appropriate, and the reward depends 
on the quality of the result achieved, typically measured in terms of a performance metric 
(e.g., the generalization performance of a model trained on a data set). Even if this metric 
is of major concern, one should not overlook that different algorithms have different runt-
imes or different memory consumptions. For example, training a deep neural network is 
way more costly than training a decision tree. Depending on the application context, these 
resource requirements might be important, too. In automated machine learning, for exam-
ple, many algorithms—or even complete “machine learning pipelines”—are tried, one by 
one, before a final decision must be made after a certain cutoff time (Hutter et al. 2019). 
The more costly the algorithms are, the less can be tried.

In cases like those just discussed, the learner needs to find the right balance between 
two competing targets: an as high as possible reward and an as low as possible consump-
tion of resources. As a consequence, the learner might be willing to sacrifice reward if it 
helps to keep the overall consumption of resources low, or the other way around, be will-
ing to allocate more resources if this significantly increases the chance of realizing a high 
reward. In light of this, the underlying correlations between the reward distribution of an 
arm and the distribution of resource consumption need to be learned, in order to ascertain 
to which degree the target values conform to each other. Moreover, the learner needs to 
cope with possibly censored feedback, in case the chosen arm did not return any reward 
under the allocated resource limit.

In this paper, we model sequential decision problems of the above kind formally and 
introduce a reasonable measure of regret (or loss) capable of capturing the additional 
trade-off between realizable reward and consumption of resources as well as the risk of 
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overexciting the allocated resources (Sect. 2). In Sect. 3, we fist study this problem under 
the restriction that the possible resource limits can only be chosen within a fixed finite set 
and describe how the problem can be naïvely tackled by a standard MAB learner. Next, 
we define a suitable estimate for the target value in the considered problem, which extracts 
all available learning information from the possibly censored type of feedback. With this, 
we propose a UCB-inspired bandit learning algorithm, the Resource-censored Upper Con-
fidence Bound (�����) algorithm, for which we derive an upper bound on its cumulative 
regret. Our result reveals in particular why ����� is in general superior to straightforward 
modifications of well-established standard multi-armed bandit learning algorithms for the 
considered type of bandit problem. By modifying the ����� algorithm in a suitable way, 
leading to the � − ����� algorithm, we show in Sect. 4 how one can deal with the case 
where the possible resource limits can be chosen as any value within a left-open interval. 
Further, we experimentally confirm ����� ’s superiority to the straightforward standard 
bandit reduction approaches in an experimental study (Sect. 5). Finally, we discuss other 
bandit problems related to ours (Sect. 6), prior to concluding the paper (Sect. 7). For the 
sake of convenience, we provide a list of symbols used in the paper in the supplementary 
material, where we also provide all proofs of the theoretical results.

2  The bandit problem

In the following, we specify the bandit problem described in Sect. 1 in a formal way and 
motivate it using the example of algorithm selection, where the role of an arm is played 
by a concrete configuration of a learning algorithm, e.g., a neural network with a spe-
cific parametrization (network structure, weights, etc.). In particular, we provide a work-
ing example where we consider the scenario of a company which provides an on-the-fly 
machine learning service, where the customers can submit a learning task in form of a data 
set and some performance metric, for which a suitable machine learning model is returned. 
The payment agreement between the customer and the company provides for the customer 
to pay the company an amount of money depending on the performance of the returned 
machine learning model, while the company has a fast-track-promise and will pay the cli-
ent some amount of money if a suitable machine learning model cannot be provided within 
a certain time.

2.1  Learning process

The learning process proceeds over T many rounds, where T ∈ ℕ is not necessarily known 
beforehand. For each round t ∈ [T] ∶= {1, 2,… , T} , there is a maximal resource limit 
�max ∈ ℝ+, which is fixed and known beforehand. In (online) algorithm selection, for 
instance, each round corresponds to a time step, in which an incoming task specified by a 
data set comprising of a training and test data set and some performance metric needs to 
be solved. Each algorithm consumes resources for a given task, e.g., the energy consump-
tion or simply the time for the training phase. Due to external constraints, the consumed 
resources should not exceed some specific limit, e.g., a maximal energy consumption level 
or a time limit.
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2.2  Arms

We assume a finite number of n arms, where n ∈ ℕ . For sake of convenience, we identify 
the arms by the set [n] = {1,… , n}. Each arm i ∈ [n] is associated with two distributions: a 
reward distribution P(r)

i
 with support1 in [0, 1] and a consumption of resources distribution 

P
(c)

i
 with support in ℝ+ characterized by the cumulative distribution function F(c)

i
. The joint 

distribution of an arm’s reward and resource consumption is denoted by P(r,c)

i
 and is not 

necessarily the product of P(r)

i
 and P(c)

i
 , i.e., an arm’s reward and consumption of resources 

are not assumed to be independent. In particular, this allows for stochastic dependencies 
between rewards and resource consumptions.

For instance, running a specific configuration of a learning algorithm on an incom-
ing task generates a reward, e.g., the accuracy on the test data or a monetary conversion 
thereof, and consumes resources, e.g., the energy consumption or simply the time for the 
training phase. If the data set is generated by some unknown random mechanism (a ran-
dom training/test split) both the reward and the resource consumption are random as well. 
Moreover, both observations are likely to be correlated, because the more complex the con-
figuration of a learning algorithm is, e.g., a neural network with a large number of neurons 
and weights, the higher its accuracy (reward) in general, but also the higher its resource 
consumption due to its high complexity.

Example 1 Coming back to the working example, let us assume for sake of simplicity that 
the company has three possible machine learning models available each representing an 
arm, so that n = 3 . Suppose for simplicity reasons that the payoff for the returned model is 
1:1 to its performance, so that the reward distribution is equivalent to the general perfor-
mance distribution of a model on possible learning tasks. The only resources consumed is 
the wall-clock time for running the model. In Fig. 1 the reward, consumption of resources 
and their joint distribution of the three models are illustrated.

We see that the first model yields high rewards (general performance), but also has a 
high consumption of resources (running time), e.g. a very complex model such as a large 
deep neural network. The second model has mediocre rewards (general performance), 
while consuming fewer resources as the first one, e.g. a random forest. Finally, the third 
model has both low rewards and low resource use, e.g. a simple linear regression model. 
All three models show a positive correlation between rewards and resource consumption, 
which makes sense in this case due to the complexity of the models, because the higher the 
resource consumption, the higher the reward.

2.3  Learner

A learner (or bandit algorithm) in this setting is a possibly non-deterministic procedure, 
which, in each round t ∈ [T] , chooses an arm It ∈ [n] and a resource limit �t ∈ M depend-
ing on the history of previously chosen arms, resource limits, and observed feedback (spec-
ified below). Here, M is a subset of (0, �max] specifying the admissible resource range. In 
the usual algorithm selection setting, the learner is essentially a mechanism deciding on 

1 It is straightforward to extend our algorithmic solution to �-sub-Gaussian reward distributions.
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Fig. 1  Exemplary reward (left column), consumption of resource (middle column) and joint distribution 
for three arms ( ith arm corresponds to ith row for i = 1, 2, 3 ) representing the machine learning models in 
Example 1
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which algorithm to choose for the incoming task based on the history of observations seen 
so far. In our setting, on the other hand, the learner has a more challenging decision to 
make, as it needs to decide on the most suitable algorithm/resource-limit pair for the given 
task.

2.4  Feedback

The feedback observed by the learner in round t, if It is the chosen arm and �t the resource 
limit, is

where (RIt ,t
,CIt ,t

) ∼ P
(r,c)

It
. In words, if the (noisy) consumption of resources CIt ,t

 of the cho-
sen arm It is within the scheduled resource limit �t of the learner, the corresponding reward 
of the arm RIt ,t

 is observed (realized), and the corresponding consumption of resources CIt ,t
 

as well. Otherwise, neither the consumption of resources CIt ,t
 nor the corresponding arm 

reward RIt ,t
 is observed (or realized), which we represent by the left-open interval (�t,∞] 

resp. ∅.2 Here, it is worth noting that although the learner does not observe direct feedback 
in the latter case, it still observes a valuable information in the form of censored feedback, 
namely that the consumption of resources CIt ,t

 exceeded the resource limit �t, i.e., the latter 
is an element in (�t,∞].

In our scenario, we assume that the observed feedback XIt ,t
 in round t is independent of 

the past given It and �t. This assumption is reasonable from a practical point of view, as, 
for instance, the run of one specific configuration of a learning algorithm on a randomly 
split training set is independent of the run of the same learning algorithm configuration on 
another randomly split training set.

2.5  Profit and loss account

The task of the learner is to select, in each round t, an arm as well as a resource limit 
such that in expectation an as high as possible reward can be realized within the specified 
resource limit, while simultaneously keeping the expected consumption of resources of the 
round as small as possible. To this end, we assume that the learner is provided with two 
monotonic increasing functions, namely

• A cost function c ∶ ℝ+ → [0, 1], which specifies the cost generated by the consumed 
resources;

• A penalty function � ∶ M → ℝ+ which specifies the penalty for exceeding the allo-
cated resources.

The cost function is in the first place mapping the consumption of resources on the same 
scale as the rewards in order to make them comparable3 The penalty function maps the 

(1)XIt ,t
=

{
(RIt ,t

,CIt ,t
), if CIt ,t

≤ �t
(∅, (�t,∞]), else

,

2 Here, ∅ is interpreted as a symbol for a dummy variable indicating that no reward information was 
received.
3 In particular, the cost function is in fact a mapping c ∶ ℝ+ → supp(Pr) , where supp(Pr) is the common 
support of the reward distributions, which is assumed to be [0, 1] for sake of simplicity.
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allocated resources (in case of exceeding them) on the same scale as the rewards as well, 
but in addition gives the learner an incentive to choose resource limits smaller than the 
maximal possible resource limit. Leveraging the prevalent way of profit and loss account-
ing in economics, we define for each possible decision pair of a learner (i, �) ∈ [n] ×M its 
penalized expected gain �i,� via

where (X(r)

i
,X

(c)

i
)⊤ ∼ P

(r,c)

i
. In words, the quality of a decision pair (i, �) ∈ [n] ×M is meas-

ured by means of its expected gain (first term in (2)), which counts the expected profit 
against the expected loss, while taking an expected “fine” or penalty for possibly exceeding 
the allocated resources into account.

With this, the task of the learner is to select in each learning round an arm/resource-
limit pair having the maximal penalized expected gain, i.e.,

The “negative part” or the expected cost part in (2), i.e.,

allows one to recover common performance metrics considered for algorithm selection 
problems (Kerschke et  al. 2019), such as the so-called penalized average running times 
if the consumption of resources correspond to runtimes of algorithms. For instance, the 
expected value of the popular PAR10 score corresponds to the choice of c(x) = x and 
�(x) = 10x4

In general, one can note that depending on the concrete form of the functions, the 
learner can either be urged to focus on arms with a small consumption of resources, but 
possibly slightly smaller expected rewards (c and/or � grow quickly), or to almost exhaust 
the available resources in a single round in order to realize the presumably high rewards of 
arms with high consumption of resources (c and/or � grow slowly).

Example 2 Recall that in our working example, the company has a fast-track-promise and 
pays a compensation, say L,  to the customer if no suitable model can be provided within a 
specific amount of time 𝜏 . Suppose that the wall-clock time of running the model (consump-
tion of resources) only generates energy costs, which correspond to one tenth of the wall-
clock time, i.e., c(x) = x∕10. . Thus, the penalty function is 𝜆(x) = c(x)1{x≤𝜏} + Lx1{x>𝜏}, 
where the first term accounts for the (energy) costs of running the model. For the three 
available models with distributions as in Example 1 we illustrate in Fig. 2 the penalized 
expected gain for two cases, a strict fast-track-promise case with L = 10 and 𝜏 = 0.5, and a 
soft fast-track-promise case with L = 5 and 𝜏 = 0.99 .

We see that in the case of a strict fast-track-promise (left plot) the simple model 
is most lucrative for most choices of � and being overtaken by the medium-complex 
model only near the 𝜏 , while the complex model is completely unsuitable.5 For the soft 

(2)𝜈i,𝜏 ∶= �
P
(r,c)

i

((
X
(r)

i
− c(X

(c)

i
)
)
⋅ 1

{X
(c)

i
≤𝜏}

)
− �

P
(c)

i

(
𝜆(𝜏)1

{X
(c)

i
>𝜏}

)
,

(3)(i∗, �∗) ∈ argmax(i,�)∈[n]×M�i,� .

�
P
(c)

i

(
c(X

(c)

i
) ⋅ 1

{X
(c)

i
≤𝜏}

+ 𝜆(𝜏)1
{X

(c)

i
>𝜏}

)

4 Here, we assume for sake of simplicity that the resource consumption (runtime) is already on the proper 
scale for comparing it with the rewards.
5 We leave out the cases for which 𝜏 > 0.5 as �

i,� is negative in this case.
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fast-track-promise case (right plot), the most complex model attains the highest penalized 
expected gain, for which a larger choice of � is necessary due to its high chance of return-
ing a censored feedback by exceeding the allocated resources.

2.6  Quality of a learner

Having defined the quality of a decision pair, one can compare the decision made by a 
learner with the optimal decision to obtain a natural measure for the (sub-)optimality of 
the learner’s decision in each round by means of a notion of regret. Indeed, if the learner 
chooses the arm It and the resource limit �t in round t,  define the instantaneous (pseudo-) 
regret as the difference between the optimal penalized expected gain and the penalized 
expected gain of the chosen pair, i.e., rt ∶= �∗ − �It ,�t , where �∗ is the maximum value in 
(3). Hence, the cumulative (pseudo-) regret is given by

where (It, �t)Tt=1 are the actions chosen by the learner during the T rounds. Note that, in gen-
eral, it is possible to have multiple optimal pairs (i, �) ∈ [n] ×M , such that the instantane-
ous regret rt vanishes. However, without loss of generality, we subsequently assume that 
there is only one unique pair (i∗, �∗) such that �∗ = �i∗,�∗ holds, as having multiple optimal 
pairs only makes the learning problem easier.

(4)RT ∶=
∑T

t=1
rt = �∗ T −

∑T

t=1
� �It ,�t ,

Fig. 2  Penalized expected gain �
i,� for cost function c(x) = x∕10 and penalty function 

𝜆(x) = c(x)1{x≤𝜏} + Lx1{x>𝜏} for 𝜏 = 0.5,L = 10 (left) and 𝜏 = 0.99,L = 5 (right) for the three arms 
(machine learning models) of Example 1
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Remark 1 The considered bandit problem can recover the standard MAB problem by 
assuming that M = {0} and each arm’s consumption of resources distribution is the 
Dirac measure on M, while the cost and the penalty function are both the zero function. 
Moreover, it is also possible to consider problem scenarios in which there is only one fixed 
resource limit, say 𝜏, by setting M = {𝜏}.

3  Finite number of resource limits

In this section, we assume M to be a finite set of grid points within the admissible resource 
range of each round (0, �max] . In the following, we denote by It the chosen arm and by �t the 
resource limit set by a learner in round t ∈ [T], where the learner should be clear from the 
context.

3.1  Reduction to classical MAB problem

For any pair (i, �) ∈ [n] ×M , define the sub-optimality gap of this pair by means of

With this, it is straightforward to show that the cumulative (pseudo-) regret in (4) admits 
a regret decomposition similar to the pseudo-regret in the classical MAB problem (see 
Lemma 4.5 in Lattimore and Szepesvári (2020)):

where

is the number of times the pair (i, �) ∈ [n] ×M has been chosen till round t ∈ {1,… , T}. 
In light of this, one might be tempted to cast the considered bandit problem into a classical 
MAB problem by considering each pair (i, �) ∈ [n] ×M as an arm (“virtual arm”) which 
generates the “reward” sequence

each having expected value �i,� . Thus, the bandit problem at hand can be naïvely consid-
ered as an unstructured class of (classical) multi-armed bandits E = ×i∈[n],�∈MPi,� (see Sec-
tion 4.3 in Lattimore and Szepesvári 2020), where Pi,� is a set of bivariate probability dis-
tributions on [0, 1] ×ℝ+.

As indicated by the reduction, the considered bandit problem can in principle be tackled 
by any bandit algorithm for the classical MAB problem by means of interpreting each pair 
(i, �) ∈ [n] ×M as an (virtual) arm. However, as we shall see in the following section, 
exemplified on the basis of UCB (Auer et al. 2002), this straightforward reduction seems 
to be sub-optimal, as the available information of the possibly censored type of feedback is 
not incorporated in an appropriate way. This is in fact not surprising, because the problem 

(5)�i,� ∶= �∗ − �i,� .

(6)RT =
∑

(i,�)∈[n]×M
�i,� �(Ti,� (T + 1)),

Ti,� (t) =
∑t−1

s=1
1{Is=i∧ �s=�}

(7)
(
(Ri,t − c(Ci,t))1{Ci,t≤𝜏}

− 𝜆(𝜏)1{Ci,t>𝜏}

)
t=1,…,T

,
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at hand is actually not an unstructured bandit problem, as for each fixed arm i ∈ [n], there 
is a relationship between the probability distributions (Pi,� )�∈M due to the joint reward and 
resource consumption distribution P(r,c)

i
. This relationship is lost by the reduction.

3.2  Penalized expected gain estimates

Considering the desired value �∗ , which arises from (3), one certainly needs to estimate the 
penalized expected gain �i,� in (2) in a suitable way. Regarding their form, one needs for 
each pair (i, �) ∈ [n] ×M suitable estimates for both the expected gain

and the expected penalty term

For the expected gain we define for any round t ∈ [T] the estimate

where

The expected penalty term in round t ∈ [T] can be estimated via

which is simply the empirical survival function estimate. Thus, combining (8) and (9), our 
suggested penalized expected gain estimate for a pair (i, �) ∈ [n] ×M is

These estimates admit a simple update rule for the chosen arm It ∈ [n] in round t. Indeed, it 

holds that �̂�It ,𝜏
(t + 1) =

𝜆(𝜏)

Ni,0(t)+1

(
Ni,0(t) �̂�It ,𝜏

(t)

𝜆(𝜏)
+ 1{CIt ,t

>𝜏}

)
 and

• If 𝜏 > 𝜏t, then ĝIt ,𝜏 (t + 1) = ĝIt ,𝜏 (t),

• If � ≤ �t, then ĝIt ,𝜏 (t + 1) =

⎧
⎪⎨⎪⎩

NIt ,𝜏
(t)⋅ĝIt ,𝜏 (t)+(RIt ,t

−c(CIt ,t
))

NIt ,𝜏
(t)+1

, CIt ,t
≤ 𝜏,

NIt ,𝜏
(t)⋅ĝIt ,𝜏 (t)

NIt ,𝜏
(t)+1

, CIt ,t
> 𝜏,

  as well as NIt ,�
(t + 1) = NIt ,�

(t) + 1.

Note that this update has a complexity of O(|M|) . Moreover, ĝIt ,𝜏 is updated for all resource 
limits � below the currently chosen one (i.e., �t ), even though the feedback was possibly 

gi,� ∶= �
P
(r,c)

i

((
X
(r)

i
− c(X

(c)

i
)
)
⋅ 1

{X
(c)

i
≤�}

)

𝛬i,𝜏 ∶= �
P
(c)

i

(
𝜆(𝜏)1

{X
(c)

i
>𝜏}

)
= 𝜆(𝜏) (1 − P

(c)

i
(𝜏)).

(8)ĝi,𝜏 (t) =

∑t−1

s=1
(Ri,s − c(Ci,s)) ⋅ 1{Ci,s≤𝜏}

⋅ 1{Is=i∧ 𝜏s≥𝜏}

Ni,𝜏 (t)
,

Ni,� (t) =

t−1∑
s=1

1{Is=i∧ �s≥�}
.

(9)�̂�i,𝜏 (t) = 𝜆(𝜏)

∑t−1

s=1
1{Ci,s>𝜏}

⋅ 1{Is=i}

Ni,0(t)
,

(10)�̂�i,𝜏 (t) = ĝi,𝜏 (t) − �̂�i,𝜏 (t).
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censored, i.e., in the case where CIt ,t
> 𝜏 . This is in particular advantageous compared to a 

standard plug-in estimate (i.e., see (31) in the appendix), which does not adapt the estimate 
value for censored observations.

Besides their appealing property of extracting all available feedback information, these 
estimates also allow for deriving suitable confidence intervals by exploiting results from 
the theory of martingales and using a peeling argument. Indeed, for confidence lengths 
defined for each pair (i, �) ∈ [n] ×M in round t ∈ [T] by

we obtain the following result (cf. Section A for the proof).

Proposition 1 Let (i, �) ∈ [n] ×M and 𝛼 > 1. Then, for any round t ∈ [T] , it holds that 

ℙ
(
�̂�i,𝜏 (t) − 𝜈i,𝜏 > �i,𝜏 (t;𝛼)

)
≤ 2

(
1 +

log(t)

log(
𝛼+1

2
)

)
t
−

2𝛼

𝛼+1 , and the right-hand side is also an upper 

bound for ℙ
(
�̂�i,𝜏 (t) − 𝜈i,𝜏 < −�i,𝜏 (t;𝛼)

)
.

3.3  Resource‑censored upper confidence bound

Another appealing property of the estimates introduced in the previous section and espe-
cially the underlying counter variables Ni,� is the possibility to refine the regret decomposi-
tion in (6), which in turn will provide insights into the question why a learner revolving 
around �̂�i,𝜏 will in general improve upon a naïve reduction to the standard MAB problem. 
More specifically, for � ≠ �max let

and T+ = T + 1 . Then, we can write the cumulative regret RT as

where we used that Ti,� (T+) = Ni,� (T
+) − Ni,up(�)(T

+) for any (i, �) with � ≠ �max. Thus, to 
keep the number of sub-optimal arm pulls of a specific arm/resource-limit pair low (i.e., 
Ti,� ), one can play the same arm but with the next larger resource limit (i.e., increase 
Ni,up(�) ), which in turn will increase Ni,𝜏 for all 𝜏 ≤ 𝜏, but simultaneously improve the esti-
mation accuracy of (�̂�i,𝜏 )𝜏≤𝜏 . In some sense, this consideration suggests that a certain gener-
osity regarding the choice of the resource limit might be favorable.

Inspired by these insights, we define the Resource-censored Upper Confidence Bound 
( ����� ) algorithm: In the first n rounds, each arm is chosen once with the maximal avail-
able resource limit, i.e., (It, �t) = (t, �max) for t ∈ [n]. Then, in each subsequent round 
t ∈ {n + 1,… , T} , the arm and the resource limit are chosen as follows:

�i,𝜏 (t;𝛼) = �
(g)

i,𝜏
(t;𝛼) + �

(𝛬)

i,𝜏
(t;𝛼)

=
√

(2𝛼 log(t))∕Ni,𝜏 (t) + 𝜆(𝜏)
√

(2𝛼 log(t))∕Ni,0(t), 𝛼 > 1,

up(𝜏) = min𝜏∈M�{𝜏max}
{𝜏 > 𝜏}

(11)

RT =
∑

�∈M�{�max}

i∈[n]

�i,�

(
�(Ni,� (T

+)) − �(Ni,up(�)(T
+))

)

+
∑
i∈[n]

�i,�max
�(Ti,�max

(T+)),
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where ties are broken arbitrarily and 𝛼 > 0 is a fixed parameter of choice.
Note that unless the penalty function � increases too drastically from � to up(�) , the 

confidence length �i,� of any arm i ∈ [n] is likely to be smaller than �i,up(�) in cases where 
Ni,𝜏 > Ni,up(𝜏) holds.6 Thus, ����� ’s exploration behavior tends to be biased towards higher 
resource limits, which in turn is preferable regarding the discussion above.7

Note that the main novelty of ����� lies primarily in the composition of the underlying 
exploitation term �i,� , since it consists of two components that are already complex terms 
in themselves. Indeed, the first component, the expected gain estimate ĝi,𝜏 , is designed such 
that information from the potentially censored feedback is still extracted while ensuring 
the construction of valid confidence intervals. The second component, the estimator of the 
expected penalty term �̂�i,𝜏 , is an empirical survival function estimate and correspondingly 
more complex than a classical empirical mean.

We obtain the following upper bound on the cumulative regret of ����� (see Section B 
for the proof).

Theorem  1 Let 𝛼 > 1 in (12). Then, for any number of rounds T,   � ∈ (0, 1), and any 
� ∈ (0, 1∕2) such that (n|M| − 1)1−�T2� ≤ T  , it holds that

where

and Hi,� (�) ∶= max(j,��)∈[n]×M∶j≠i∨��≠�

(
8(1+�(��)2�)

�i,�−�j,��
+ 1

)2

(�i,� − �j,�� )
2.

Theorem  1 reveals why ����� is in general superior to the straightforward mapping 
to the standard MAB problem. The terms ui,� correspond (up to multiplicative constants) 
to the upper bounds on the expected sub-optimal arm pulls of the naïve UCB variant (cf. 
Corollary 1), from which li,up(�) is subtracted (with a probabilistic weight ℙ(A�) ). The term 
li,up(�) is a lower bound for the expected number of sub-optimal arm pulls of an (virtual) 
arm’s “higher resource neighbor”, i.e., the (virtual) arm corresponding to (i, up(�)).

(12)
(
It, 𝜏t

)
∈ argmax

(i,𝜏)∈[n]×M

(
�̂�i,𝜏 (t) + �i,𝜏 (t;𝛼)

)
,

R
�����

T
≤

∑
(i,�)∈[n]×M

�i,� ui,� (T , �) − ℙ(A�)
∑

(i,�)∈[n]×M�{�max}

�i,� li,up(�)(T , �),

ui,𝜏 (T , 𝛼) ∶=
8𝛼(1 + 𝜆(𝜏))2 log(T)

𝛥2
i,𝜏

+ 1 +
8

log
(

𝛼+1

2

)
(
𝛼 + 1

𝛼 − 1

)2

,

li,up(𝜏)(T , 𝛼) ∶=
𝛼 𝜀 𝛿 log(T)

Hi,up(𝜏)(𝛼)
,

A𝜀 ∶=
⋂

(i,𝜏)∈[n]×M, t∈[T]

Ai,𝜏,t,𝜀,

Ai,𝜏,t,𝜀 ∶= {�̂�i,𝜏 (t) + (1 − 𝜀) �i,𝜏 (t;𝛼) ≥ 𝜈i,𝜏 ≥ �̂�i,𝜏 (t) − �i,𝜏(t;𝛼)},

6 Recall that N
i,� ≥ N

i,up(�) always holds.
7 The exploration behavior of UCB-type algorithms is mainly driven by the confidence intervals.
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Remark 2 The term Hi,� occurring in the lower bound for the expected number of sub-
optimal arm pulls is essentially the largest difference between the sub-optimality gap of 
the corresponding arm/resource-limit pair and any other sub-optimality gap of an arm/
resource-limit pair. In particular, this term is small (such that li,up(�) is large) if the sub-
optimality gaps of the arm/resource-limit pairs are similar, i.e., the learning problem is 
difficult. The event A� is the anytime concentration (up to some � relaxation for the upper 
deviation) of the estimate’s confidence bounds around the ground-truth value. Using a 
union bound and Hoeffding’s inequality it is straightforward to show that A� has strictly 
positive mass.

Remark 3 Note that the terms � and � could be chosen appropriately such that the second 
term in the regret bound is as large as possible. Furthermore, it is worth mentioning that 
the term (1 + �(�)) occurring in the upper as well as lower bound terms is due to the crude 
estimate 1 ≤ Ni,0(T

+) used to bound (1 + �(�)∕Ni,0(T
+)). We conjecture that this bound can 

be refined to (1 + C̃ 𝜆(𝜏)∕ log(T)), for an appropriate constant C̃ > 0.

Regarding the update complexity of ����� , we can derive the following result, which is 
proven in Section D.

Proposition 2 ����� has a worst case update complexity of order O(n|M|).

Note that the update complexity for most of the state-of-art bandit algorithms combined 
with the reduction in Sect. 3.1 is of order O(n|M|) as well, since these are usually linear in 
the number of arms, which are n|M| many in light of the reduction.

4  Arbitrary resource limits

We now turn to the case in which M equals (0, �max] . Obviously, the challenge in this vari-
ant is to cope with the infinite size of the decision set [n] ×M. To this end, we will follow 
the ideas of the zooming algorithm (Kleinberg et al. 2008) or the StoOO algorithm (Munos 
2014) and maintain finite subsets of M, one for each arm, which will be refined succes-
sively in order to include resource limits �, where the penalized expected gain of an arm is 
believed to be large. The exploration-exploitation behavior will be up to an additional bias-
correction guided by the upper confidence term considered in RCUCB.

4.1  Zooming‑�����

A zooming algorithm seeks to find a good approximation of the optimum of an unknown 
stochastic function f ∶ X → ℝ over a (semi-)metric space X  with (semi-)metric d using 
a numerical budget T for the maximal number of function evaluations. For this purpose, 
a zooming algorithm constructs a hierarchical partitioning of X  into nested subsets in an 
online manner. Each subset is associated with a specific point, usually the center of the 
subset, at which the function f may be evaluated. For each subset the algorithm maintains 
an estimate of the function value at the center point as well as an confidence interval rep-
resenting the uncertainty in the estimation. Further, by assuming structural properties on 
the expected value of f such as Lipschitz continuity (w.r.t. d) the algorithm maintains a bias 
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correction term for the function value at the center point depending on the size of the asso-
ciated subset. In each time step the algorithm chooses to evaluate the function at the center 
point with the highest potential to be an optimal point by taking the confidence interval and 
the bias correction into account. Once the width of the confidence interval is smaller than 
the bias term of f at a center point, the corresponding subset is refined into smaller subsets. 
This adds new center points to the set of considered center points, at which the estimate 
of f, as well as the confidence width and potential bias is computed, while the center point 
responsible for the refinement is left out of the consideration (or is used as the center point 
for a smaller subset). The rationale behind this approach is to “zoom” successively into 
regions of X, where the optimum of f is located.

Following the idea of zooming algorithms, we maintain for any arm i ∈ [n] a time-
dependent grid set M(i)

t
, where M(i)

0
= {�max}. For any arm i ∈ [n] and l = 1,… , |M(i)

t
| 

denote by � (i)
l
(t) the grid points in M(i)

t
. Each point is representing the left-open interval 

(downi(�
(i)

l
(t)), �

(i)

l
(t)], where

is the next smallest grid point to � in M(i)
t

 , and we set downi(�) = 0 if the set is empty. 
We say that M(i)

t
 is extended at some point � (i)

l
∈ M

(i)
t

 if the grid points of the equidistant 
decomposition8 of [downi(�

(i)

l
(t)), �

(i)

l
(t)] with size m − 1 is added to M(i)

t
. For an illustra-

tion of the grid point sets consider Fig. 3, where the initial grid point set M(i)

0
 is illustrated 

in the top plot, while the middle plot shows the extension of M(i)

0
 at the point �max at some 

time step t1 for m = 4. Here, for instance, downi(�max) =
3�max

4
 and downi(

�max

4
) = 0, so that 

downi(𝜏) = max
𝜏∈M

(i)
t
{𝜏 ≤ 𝜏}

Fig. 3  Initial grid point set M(i)

0
 (top plot). Extension of M(i)

0
 at the point �max at some time step t1 for m = 4 

(middle plot). Multiple extension of M(i)
t1

 at the points �max∕4 and �max∕2 at some time step t2 > t1 for m = 4 
(bottom plot)

8 All grid points are in the interior of the interval.
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�max represents the left-open interval ( 3�max

4
, �max], while �max

4
 represents (0, �max

4
]. Note that 

the size m ≥ 2 is fixed and specified by the learner and the same holds true for the criterion 
leading to an extension of a grid set.

In light of this, we suggest the � − ����� (zooming-�����, Algorithm  1), which 
adapts the choice criterion (12) of RCUCB and additionally refines the finite grid points 
by “zooming” into subsets of M, where the penalized expected gain of an arm seems 
to be large. More precisely, for some � ∈ (0, 1) the arm/resource limit pair in time step 
t chosen by � − ����� is

The set of grid points M(It)

t  is extended at some point � ∈ M
(It)

t  if

holds. Roughly speaking, the extension criterion is used in the case where the discretiza-
tion bias (represented by the left-hand side in (14)) for the left-open interval (downIt (�), �] 
is larger than the uncertainty of its representing grid point � (represented by the confidence 
interval �It ,� ). Note that as all counter variables NIt ,𝜏

 such that 𝜏 ∈ M
(It)

t  and 𝜏 ≤ 𝜏t hold are 
incremented in round t,  it could be that more than one grid point in M(It)

t  is extended in 
one round t. Such a multiple extension is illustrated in the bottom plot of Fig. 3.

In comparison to (12), the choice criterion in (13) incorporates an additional term 
(� − downi(�)), which can be interpreted as a bias-correction due to the discretization 
of M by M(i)

t
. Moreover, the ( � root of the) confidence level is set to n T2∕� , which 

requires the knowledge of T. In case the number of learning rounds T is not known 
beforehand, one can use the well-known doubling trick  (Cesa-Bianchi and Lugosi 
2006) to obtain an algorithm that preserves the theoretical guarantees of an algo-
rithm that needs to know the number of learning rounds. Note that the parameters of 

(13)
(
It, 𝜏t

)
∈ argmax

(i,𝜏)∈[n]×M
(i)
t

(
�̂�i,𝜏 (t) + �i,𝜏(n T

2∕𝛿;𝛼) + (𝜏 − downi(𝜏))
)
.

(14)(� − downIt (�)) ≥ �It ,�
(n T2∕�;�)
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� − ����� are the exploration constant 𝛼 > 1, the confidence level � ∈ (0, 1), the grid 
refinement size m ≥ 2 and the total number of learning rounds T.

4.2  Theoretical guarantees

Similarly as for the infinite multi-armed bandit case or X -armed bandits (Bubeck et al. 
2011; Munos 2014), we will focus the theoretical analysis on the loss after T many 
rounds (simple regret) given by LT ∶= 𝜈∗ − 𝜈î(T),𝜏(T), where (î(T), 𝜏(T)) is the arm/
resource-limit pair with the finest grid level among (M(i)

T
)i∈[n]. For this purpose, we 

will make the following assumption on the local smoothness of the optimal penalized 
expected gain (interpreted as a function of �):

Such an assumption is common in X-armed bandits and one of the weakest assumptions in 
this regard (Grill et al. 2015).

Next, we need the notion of �-near-optimality dimension to capture the possible rate 
of convergence of the resulting estimates using the successive discretization process via 
the finite grid points above for the problem at hand.

Definition 1 The �-near-optimality dimension is the smallest d ≥ 0 such that there exists a 
constant C > 0 (the �-near-optimality constant) such that for all 𝜀 > 0, the maximal number 
of disjoint sets of the form

such that |bj − aj| ≤ �� and (j, bj) is an element of {(i, �) ∈ [n] ×M | �i,� ≥ �i∗ ,�∗ − �}, is 
less than C�−d.

Finally, we introduce for any l ≥ 1 the equidistant grid points with granularity m−l via

where sj = ⌊j∕m⌋ + 1 and

Here, we set �(l,0) = 0 and �(l,ml) = �max for any l. Note that for any l ≥ 0 and any 
j, k ∈ {0,… ,ml} such that |j − k| ≤ 1 it holds |�(l,j) − �(l,k)| ≤ m−l. With this, and assuming 
the local smoothness, we obtain the following result for the loss of � − �����.

Theorem  2 Let d be the 1/3-near-optimality of {(i, �) ∈ [n] ×M | �i,� ≥ �i∗ ,�∗ − �}, i.e., 
the set of all �-best arm/resource-limit pairs, with corresponding near optimality constant 
C > 0. Then, for any 𝛿 ∈ (0, 1), 𝛼 > 1 it holds with probability at least 1 − � that

where

�i∗,�∗ − �i∗,� ≤ |�∗ − �|, ∀� ∈ M.

{j} × (aj, bj], j ∈ [n], 0 ≤ aj < bj ≤ 𝜏max

�(l,j) =
oj

m
(�(l−1,sj) − �(l−1,sj−1)), j ∈ {1,… ,ml}

oj =

{
j mod m, if j mod m ≠ 0

m, else .

L�−�����
T

≤ C̃
(
log(T2∕𝛿)∕T

) 1

d+2 ,
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Moreover, setting � = 1∕T  yields �[L�−�����
T

] = O
(
(log(T)∕T)

1

d+2

)
.

Note that the speed of convergence is basically the same as the one obtained for the 
X-armed bandit setting. The difference is only regarding the constant C̃ , which leads to 
an improvement over a straightforward application of an X-armed bandit algorithms on 
X = [n] ×M. Indeed, using a straightforward application of some X-armed bandit algo-
rithm such as StoOO (Munos 2014) on X = [n] ×M, one can derive a theoretical guaran-
tee on the loss of StoOO as in Theorem 1 with

replacing HT . However, it obviously holds that H̃T ≥ HT and the gap between H̃T and HT 
can be large depending on the underlying penalty function �.

Regarding the update complexity of � − ����� , we can derive the following result, 
which is proven in Section D.

Proposition 3 � − ����� ’s update complexity is in O(|M(It)

t | + (m − 1)).

5  Experimental study

In this section, we present experimental results for our learning algorithm and compare it 
with variants of the Upper Confidence Bound algorithm ( ��� ) and Thompson Sampling 
( �� ), adapted to the considered type of bandit problem in the spirit of Sect. 3.1. For further 
details see Section E.

5.1  Synthetic data

We consider three different problem instances PosCorr, NegCorr, and Indep, each con-
sisting of n = 10 arms, where the correlation between the reward and resource consump-
tion distribution of the arms is positive, negative, and zero,9 respectively. The arm distri-
butions for PosCorr are similar as in Fig. 1 in the sense that the correlation level is the 
same for all arms and only the arm’s means are different, while for NegCorr the correla-
tion structure of PosCorr is simply reversed and for Indep no correlation structure is pre-
sent at all. The explicit choice of the distributions is detailed in Section E. For all problem 
instances we consider the admissible resource range (0, 1],  i.e., �max = 1 and an equidistant 

C̃ =

(
4𝛼 Cm2 (HT + (1 + 𝜆(𝜏max))

2)

3d(1 − m−(d+2))

)1∕(d+2)

,

HT = max
l≥0,1≤j≤ml−1

(
(1 + 𝜆(𝜏(l,j)))

2 −
1

m2

(
1 + 𝜆(𝜏(l−1,sj)) cT

)2
)
,

cT =

√√√√2𝛼 log(nT2∕𝛿)
(
1 + 𝜆(𝜏max)

)2
𝜏2
max

T
.

H̃T = max
l≥0,1≤j≤ml−1

(1 + 𝜆(𝜏(l,j)))
2

9 In fact, the distributions are even independent for Indep.
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grid point set M for the admissible resource range (0, 1] of size 10. We also consider vary-
ing grid point sizes as well as varying numbers of arms in Section F. In light of our running 
example in Sect. 2, we use for the cost function c(x) = x∕10 and for the penalty function 
𝜆(x) = c(x)1{x≤0.5} + 10x1{x>0.5}. All considered learning algorithms proceed over a total 
number of T = 100, 000 rounds.

Figure 4 illustrates the mean cumulative regret over 100 repetitions for these problem 
scenarios. It is clearly visible that ����� distinctly outperforms both ��� and �� on each 
problem instance. Regarding the impact of the correlation on the performance, we see that 
����� reveals a much better performance, if there is a correlation - either negative or posi-
tive - present between the reward and the consumption of resource distribution compared 
to the considered baselines. Indeed, in Fig. 4, we see that the relative gap between ����� 
and its competitors is larger for the correlated problem settings than for the uncorrelated 
one. Thus, the learning behavior of ����� seems to profit from available correlations of the 
two distributions.

Finally, the following table reports the (mean) proportion of censored rounds, i.e., 
where the resource limit was exceeded or equivalently no reward was observed, as well as 
the probability of observing a censored observation for the optimal arm/resource-limit pair 
(i∗, �∗) . 

����� �� ��� 1 − P
(c)

i
∗ (�

∗)

PosCorr 0.6399 0.7516 0.7993 0.6116
NegCorr 0.7700 0.8510 0.8894 0.7631
Indep 0.4462 0.5749 0.5455 0.4404

As expected, both ��� and �� seemingly fail to process the censored feedback in an 
appropriate way, as the proportion of rounds with censored rewards is much higher than 
the actual ground truth probability of obtaining censored rewards for the optimal arm/limit 
pair. Thus, ����� is again preferable over the two competing algorithms.

Fig. 4  Mean cumulative regret (solid lines) for UCB ( � = 1 ), TS and RCUCB ( � = 1 ) for the PosCorr, 
NegCorr, and Indep problem instances. The dashed lines depict the empirical confidence intervals, using 
the standard error
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5.2  Algorithm configuration

We consider the problem of configuring a Random Forest for regression over a vari-
ety of tuning parameters (arms) in an on-the-fly manner, within a reasonable time for 
the training (resource) on a specific data set. To this end, we consider the AmesHousing 
data set,10 which is randomly split into a 70:30 training/test set in each learning round, 
and each learner chooses a Random Forest parameter configuration as well as a time limit 
for the training. As reward for the learner, we use 1 minus the (normalized) root-mean-
squared error on the test data, provided the learner’s predefined limit for the training is not 
exceeded. Otherwise, the learner obtains a reward of zero, i.e., the feedback is censored.

The considered set of possible parameters of the Random Forest consists of

• The number of trees: {100, 200,… , 700},
• The number of variables to randomly sample as candidates at each split: 

{20, 22,… , 30},
• The minimal node size: {3, 5, 7, 9},
• The fraction of training samples for bagging: {0.55, 0.632, 0.75, 0.8}.

The remaining parameters of the Random Forest are set as the default parameters as 
specified in the R-package ‘ranger’.11 Each combination is treated as an arm, resulting in 
n = 672 arms in total.

For the admissible range of time limits for training, we have used an equidistant grid of 
size m = 10 of the interquartile range of the obtained training times if each possible con-
figuration is run once. Motivated by the PAR10 loss in algorithm configuration problems 
(Kerschke et al. 2019), we use c(x) = x for the cost function, while the penalty function is 
�(x) = 10x. The total number of rounds is set to T = 2 nm , and the number of repetitions 
to 10. All these experiments were conducted on a machine featuring Intel(R) Core(TM) 
i7-8550U@1.80 GHz CPUs with 4 cores and 16 GB of RAM.

The mean cumulative rewards over 10 repetitions of the algorithms is shown in Fig. 5, 
in which we see that the cumulative reward of ����� exceeds the cumulative rewards of 

Fig. 5  Mean cumulative rewards 
for the algorithm configuration 
task of Random Forest on the 
AmesHousing data set

10 https:// cran.r- proje ct. org/ packa ge= AmesH ousing
11 https:// cran.r- proje ct. org/ web/ packa ges/ ranger/ index. html

https://cran.r-project.org/package=AmesHousing
https://cran.r-project.org/web/packages/ranger/index.html
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��� and �� throughout. Note that both ��� and �� have almost the same mean cumulative 
rewards, so they are barely distinguishable in the plot. The proportion of rounds, where the 
time limit for the training was exceeded, is 0.0589 for ����� , 0.2843 for �� , and 0.2853 for 
���. Again the obtained results are in favor of �����.

6  Related work

Various authors have considered bandit problems in which each arm is equipped with a 
multivariate distribution, i.e., in which the learner receives potentially vectorial type 
of feedback. In the bandit problem with delayed feedback (Joulani et  al. 2013; Mandel 
et  al. 2015; Vernade et  al. 2017; Pike-Burke et  al. 2018), each arm possesses a reward 
and a reward-time generation distribution, and rewards of previously chosen arms can be 
observed in a later round. This is fundamentally different from our setting, where an arm’s 
reward is only observable in the round it is played. Moreover, the two distributions occur-
ring in the bandits problem with delayed feedback are usually assumed to be independ-
ent, while we do not make an independence assumption on the reward and consumption of 
resources distribution of the arms.

Multivariate feedback of a played arm is at the core of the multi-objective multi-armed 
bandit (MOMAB) problem. Due to the possibly competing objectives encoded in the vec-
torial payoffs, different approaches have been considered to specify an optimal decision 
in the MOMAB problem. Each objective is considered as a different multi-armed bandit 
problem by Gabillon et al. (2011), and the aim is to find the optimal arm for each objec-
tive separately. In the majority of works, the Pareto front with respect to the mean vector is 
used to determine the optimality of an arm (see Auer et al. 2016 or Drugan 2019) as well 
as references therein). Finally, by aggregating the vectorial payoff by means of the gener-
alized Gini index, a single objective to be optimized can again be obtained (Busa-Fekete 
et al. 2017).

In the bandits with knapsacks problem (Badanidiyuru et al. 2013; Slivkins 2019; Cayci 
et  al. 2020), each arm is associated with a reward and a (multivariate) resource con-
sumption distribution as well. Although the original problem does not involve censoring 
rewards, variations of this problem have recently been considered in which the learner also 
has the option of setting a round-by-round limit on an arm’s resource consumption that 
leads to censored rewards if exceeded (Cayci et  al. 2019; Sharoff et  al. 2020). Nonethe-
less, the learning process in both the original bandits with knapsacks problem as well as 
the censored variant is substantially different from the one considered in this work: There 
is a predefined overall resource budget, which once exhausted leads to a termination of the 
entire learning process. This in turn leads to a different notion of cumulative regret and 
consequently different approaches regarding its theoretical analysis.

Censored feedback due to thresholding has been considered by Abernethy et al. (2016), 
Jain and Jamieson (2018) and Verma et al. (2019) within a bandit learning setting as well, 
albeit without multivariate distributions of the arms. Also, the threshold values are either 
specified in each round by the environment or unknown but fixed among the arms, whereas 
in our setting, the learner chooses the threshold itself.

Resource allocation in a combinatorial bandit scenario has been the subject of research 
by Lattimore et  al. (2014) and Dagan and Koby (2018) as well as for a contextual vari-
ant by Lattimore et  al. (2015). However, in all these scenarios, the reward distributions 
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are Bernoulli with a specific shape of the success probability depending on the allocated 
resources.

Bidding in online auctions (Cesa-Bianchi et al. 2014) is also concerned with choosing 
a suitable resource limit (reserve price for auctions) and obtaining possibly censored feed-
back from bidders. This scenario is different from ours, as all available bidders are involved 
in a learning round (auction), while in our setting the learning algorithm has to pick one of 
the bidders in a metaphorical sense.

Ephemeral resource-constrained optimization problems (ERCOPs) are dealing with a 
dynamic constrained optimization problem, in which both the objective function and the 
set of feasible solutions is static and certain time-dependent constraints may exist such 
that certain solutions may be temporarily unavailable for evaluation (Allmendinger and 
Knowles 2010; Allmendinger and Knowles 2011; Allmendinger and Knowles 2013; All-
mendinger and Knowles 2015). These dynamic constraints are referred to as ephemeral 
resource constraints and account for a possible temporary unavailability of the resources 
needed to evaluate a solution. This results in an online learning problem similar to ours, 
where evaluations of solutions (an arm-resource pair in our terminology) may be incom-
plete (or fail). However, existing work on ERCOPs explicitly considers only scenarios 
where it can be checked a priori whether a solution will be incomplete (censored in our 
terminology) without actually trying it. This leads to entirely different learning/optimiza-
tion approaches than ours, as the evaluability of a solution is stochastic in our setting and 
consequently excludes such prechecks. Moreover, in our case, the focus is on a specific 
performance measure (regret) to evaluate an optimization strategy over time, which has 
significant implications for the design of appropriate strategies. For example, one optimiza-
tion strategy for ERCOPs is to wait until a certain solution is available (or evaluable) again; 
a strategy that seems to be questionable with regard to cumulative regret minimization.

Finally, as we take the online algorithm selection problem as a running example for 
our setting, it is worth mentioning that bandit-based approaches have been already consid-
ered for this problem (Gagliolo and Schmidhuber 2007; Gagliolo and Schmidhuber 2010; 
Degroote 2017; Degroote et al. 2018; Tornede et al. 2022). However, these focus on certain 
algorithmic problem classes, such as the boolean satisfiability problem (SAT) or the quan-
tified boolean formula problem (QBF). In particular, these works consider binary reward 
signals (the solver has solved/not solved the problem instance) and the runtimes of their 
respective solvers as the consumption of resources. Extending these approaches to more 
general frameworks like ours with continuous reward signals or other types of resource 
consumptions is far from a given.

7  Conclusion and future work

In this paper, we have introduced another variant of the classical multi-armed bandit prob-
lem, where attention is paid not only to the rewards themselves, but also to the resources 
consumed by an arm necessary to generate the rewards within each round of the sequen-
tial decision process. The learner (bandit policy) is equipped with the ability to determine 
the resource limit of one round and might be willing to sacrifice optimality regarding the 
obtained rewards in order to keep the overall consumption of resources low, as this gener-
ates costs diminishing the overall gain. As a consequence, the learner needs to find a good 
compromise between the two possibly conflicting targets, namely an as high as possible 
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realizable reward on the one side, and an as low as possible consumption of resources for 
the reward generation on the other side.

To this end, we proposed a regret measure, which, by virtue of a cost and a penalty 
function, takes these two targets into account and allows for a suitable assessment of the 
expected gain with respect to the allocated resources. By defining a suitable estimate of an 
arm’s expected gain and its probability to exceed the allocated resources, we proposed opti-
mistic bandit strategies for dealing with a finite or an infinite subset of available resource 
limits.

For future work, it would be interesting to extend the considered bandit problem to a 
combinatorial bandit setting, in which it is possible to choose a subset of arms in each 
round. Moreover, the very idea of incorporating resource constraints for the feedback gen-
eration process is not restricted to feedback of numerical nature, but could also be of inter-
est for related bandit scenarios with other types of feedback, such as the preference-based 
multi-armed bandit problem (Bengs et al. 2021). Last but not least, as the motivation of the 
considered type of bandit problem stems from practical applications, it would be of interest 
to investigate our algorithm for a variety of real-world problems, such as a more extensive 
simulation study on algorithm configuration (Schede et al. 2022).
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