
A List of Symbols

The following table contains a list of symbols that are frequently used in the main paper as well as
in the following supplementary material.

General Learning Setting
K number of classes
X instance space
Y label space with labels y1, . . . , yK
D training data

{(
x(n), y(n)

)}N

n=1
⊂ X × Y

P data generating probability
p(· |x) conditional distribution on Y , i.e., p(y |x) probability to observe y given x
P(Y) the set of probability distributions on Y
∆K the K-simplex, i.e., ∆K

..=
{
θ = (θ1, . . . , θK) ∈ [0, 1]K | ∥θ∥1 = 1

}
θ = (θ1, . . . , θK)⊤ probability vector with K atoms, i.e., an element of ∆K

θuni := (1/K, . . . , 1/K)⊤ uniform distribution on Y (an element of ∆K)
θ∗ = θ∗(x) (conditional) distribution on Y , i.e., the ground-truth

Level-1 Learning Setting
H (level-1) hypothesis space consisting of hypothesis h : X −→ ∆K

L1 loss function for level-1 hypothesis, i.e., L1 : ∆K × Y −→ R
Remp(·) empirical loss of a level-1 hypothesis (cf. (3))
R(·) risk or expected loss of a level-1 hypothesis (cf. (2))
ĥ empirical risk minimiser, i.e., ĥ = argminh∈H Remp(h)
h∗ true risk minimiser or Bayes predictor, i.e., h∗ = argminh∈H R(h)

Level-2 Learning Setting
∆

(2)
K the set of distributions on ∆K

H (level-2) hypothesis, i.e., a mapping h : X −→ ∆
(2)
K

Hϕ indexed (level-2) hypothesis, where ϕ is an indexing hypothesis
hϕ level-1 hypothesis induced by Hϕ (cf. (18))
Q probability distribution on ∆K , i.e., an element of ∆(2)

K

Quni uniform distribution on ∆K (an element of ∆(2)
K )

L2 loss function for level-2 hypothesis, i.e., L2 : ∆
(2)
K × Y −→ R+

LE expected level-1 loss (cf. (15))
λ regularisation parameter (cf. (14))
R

(2)
emp(·) empirical (level-2) loss of a level-2 hypothesis (appears only in the appendix)

R(2)(·) (level-2) risk or expected loss of a level-2 hypothesis (appears only in the appendix)
Q(N) empirical level-2 risk minimiser (for coin tossing problem), i.e.,

Q(N) = argmin
Q∈∆

(2)
K

R
(2)
emp(Q)

Distributions
B(θ) Bernoulli distribution with parameter θ ∈ [0, 1]
Cat(θ) Categorical distribution with parameter θ ∈ ∆K

Dir(α) Dirichlet distribution with parameter α ∈ RK
+

δθ Dirac measure at θ ∈ ∆K
P→ convergence in distribution

Entropy and Divergence
ENT(·) Shannon entropy (on ∆

(2)
K )

dKL (·, ·) Kullback-Leibler divergence (on ∆
(2)
K ×∆

(2)
K )

d(1)(·, ·) some metric on ∆K

U(·) an uncertainty measure (on ∆
(2)
K ), see Definition 1
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B The Dirichlet Distribution

A Dirichlet distribution Dir(α) is specified by means of K ≥ 2 positive real-valued parameters, i.e.,
a vector α = (α1, . . . , αK) ∈ RK

+ . The probability density function is defined on the K simplex

∆K =

{
θ = (θ1, . . . , θK)⊤ | θ1, . . . , θK ≥ 0,

K∑
k=1

θk = 1

}

and given as follows:

p(θ |α) = p(θ1, . . . , θK |α) =
1

B(α)

K∏
k=1

θαk−1
k ,

where the normalisation constant is the multivariate beta function:

B(α) =

∏K
k=1 Γ(αk)

Γ
(∑K

k=1 αk

) ,

with Γ denoting the gamma function. In Bayesian statistics, the Dirichlet distribution is commonly
used as the conjugate prior of the multinomial distribution. From a machine learning perspective,
this makes it quite attractive for the (multi-class) classification setting.

The parameters αk can be interpreted as evidence in favour of the kth category: the larger αk, the
larger the probability for a high θk, and hence the higher the probability to observe the kth category
as outcome. More specifically, the expected value of θk (and hence the natural estimate θ̂k) is given
by

E(θk) =
αk∑K
j=1 αj

.

Moreover, the larger the parameters αk and hence the sum α0 =
∑K

j=1 αj , the more “peaked” the
Dirichlet distribution becomes. For α1 = . . . = αK = 1, the uniform distribution on Θ is obtained,
i.e., the “least informed” distribution with highest entropy. For α1 = . . . = αK = c, with c the so-
called concentration parameter, the distribution on Θ remains symmetric. However, while it peaks
at θ = (1/K, . . . , 1/K) for larger c > 1, it becomes more dispersed and assigns higher probability
mass around the “corners” of the probability simplex (θk = 1 and θj = 0 for all j ̸= k) for c close
to 0.

As already said, the Dirichlet distribution is conjugate to the multinomial distribution. More spe-
cifically, Bayesian updating of a prior Dir(α1, . . . , αK) in light of observed frequencies c1, . . . , cK
of the K categories yields the posterior Dir(α1 + c1, . . . , αK + cK). In other words, Bayesian
inference comes down to simple counting, which makes it extremely simple. In this regard, the αk

are often interpreted as “pseudocounts” of the categories.

B.1 Quantifying Epistemic Uncertainty

Suppose that epistemic uncertainty of the learner is represented by means of a Dirichlet Dir(α).
Often, one is interested in quantifying this uncertainty in terms of a single number. What is sought,
therefore, is an uncertainty measure U mapping distributions to real numbers. In the literature,
various examples of such measures are known, with Shannon entropy the arguably most prominent
one. Like Shannon entropy, uncertainty measures are typically derived on an axiomatic basis, i.e., a
reasonable measure of uncertainty should obey certain properties [14].

The (differential) entropy of a Dir(α) distribution is given by

ENT(Dir(α)) = logB(α) + (α0 −K)φ(α0)−
K∑
j=1

(αj − 1)φ(αj) , (21)

where φ is the digamma function.
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C Proof of Theorem 1

Let R(2)
emp(Q) = 1

N

∑N
n=1 L2

(
Q, y(n)

)
be the empirical risk of a level-2 prediction Q ∈ ∆

(2)
K . As

we consider a level-2 loss as in (8), the empirical risk is given by

R(2)
emp(Q) =

1

N

N∑
n=1

Eθ∼QL1

(
θ, y(n)

)
.

By assumption on the level-1 loss L1, it holds that

R(2)
emp(Q) ≥ 1

N

N∑
n=1

L1

(
Eθ∼Q θ, y(n)

)
.

Let Q̃(N) be the minimiser over all Q ∈ ∆
(2)
K of the right-hand side, then θ̃

(N)
= Eθ∼Q̃(N) θ is an

element in ∆K . Define Q̂(N) = δ
θ̃
(N) and note that Eθ∼Q̂(N) θ = θ̃

(N)
. Then,

R(2)
emp(Q̂

(N)) =
1

N

N∑
n=1

Eθ∼Q̂(N)L1

(
θ, y(n)

)
=

1

N

N∑
n=1

L1

(
θ̃
(N)

, y(n)
)

=
1

N

N∑
n=1

L1

(
Eθ∼Q̃(N) θ, y

(n)
)
.

Thus, R(2)
emp(Q) ≥ R

(2)
emp(Q̂(N)) for all Q ∈ ∆

(2)
K . In particular, for any N the empirical loss

minimiser is Q(N) = Q̂(N) = δ
θ̃
(N) , so that Assumption A1 is violated.

D Proof of Theorem 2

Let R(2)(Q) = EY∼θ∗L2 (Q,Y ) be the true risk of a level-2 prediction Q ∈ ∆
(2)
K . As L2 is of the

form as in (14), the true risk is due to Fubini-Tonelli’s theorem given by

R(2)(Q) = EY∼θ∗Eθ∼QL1 (θ, Y )− λENT(Q)

= Eθ∼QEY∼θ∗L1 (θ, Y )− λENT(Q).

Thus, R(2)(δθ∗) = EY∼θ∗L1 (θ
∗, Y ) , since ENT(δθ) = 0 for any θ ∈ ∆K . Hence, for Q̃ ∈ ∆

(2)
K

such that
L Q̃(N(θ∗)) supθ∈N(θ∗) d

(1)(θ,θ∗)

ENT(Q̃)
< λ

holds,

R(2)(Q̃) = Eθ∼Q̃EY∼θ∗L1 (θ, Y )− EY∼θ∗L1 (θ
∗, Y )− λENT(Q̃) +R(2)(δθ∗)

< L Q̃(N(θ∗)) sup
θ∈N(θ∗)

d(1)(θ,θ∗)− λENT(Q̃) +R(2)(δθ∗)

< R(2)(δθ∗).

Consequently, the true risk minimiser differs from δθ∗ . Since L1 is a strictly proper loss, Theorem
5.7 by [24] lets us infer that the empirical risk minimiser Q(N) converges in probability to the
minimiser of the true risk, which violates Assumption A2.

E Proof of Theorem 3

In the following, we abbreviate L2

(
Q, y(n)

)
by L

(n)
2 (Q) and L1

(
θ, y(n)

)
by L

(n)
1 (θ) . For any N ,

let

Q̃(N) = argmin
Q∈∆̃

(2)
K

1

N

N∑
n=1

L
(n)
2 (Q)− λENT(Q)
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and θ̃
(N)

= Eθ∼Q̃(N) θ. Further, set Q̂(N) = δ
θ̃
(N) and note that

R(2)
emp(Q̂

(N)) =
1

N

N∑
n=1

L
(n)
2

(
Q̂(N)

)
=

1

N

N∑
n=1

L
(n)
1

(
θ̃
(N)

)
=

1

N

N∑
n=1

L
(n)
1

(
Eθ∼Q̃(N) θ

)
.

With this, we can infer for any Q ∈ ∆̃
(2)
K that

R(2)
emp(Q) =

1

N

N∑
n=1

L
(n)
2 (Q)− λENT(Q)

=
1

N

N∑
n=1

L
(n)
2 (Q)− L

(n)
1

(
Eθ∼Q̃(N) θ

)
− λENT(Q) +R(2)

emp(Q̂
(N))

≥ 1

N

N∑
n=1

L
(n)
2

(
Q̃(N)

)
− L

(n)
1

(
Eθ∼Q̃(N) θ

)
− λENT(Q̃(N)) +R(2)

emp(Q̂
(N))

≥ 1

N

N∑
n=1

εQ̃(N) − λENT(Q̃(N)) +R(2)
emp(Q̂

(N))

≥ R(2)
emp(Q̂

(N)),

where the first inequality is by choice of Q̃(N), the second last by the assumption on L1, and the last
inequality is by choice of λ. Thus, the empirical loss minimiser is a Dirac measure, regardless of N ,
so that Assumption A1 is violated.

F Further Discussion on Theorems 2 and 3

Note that the two ranges for λ in Theorems 2 and 3 do not necessarily represent a partition of the
positive real numbers, so it would be possible in principle that there exists a range of λ values “in
between” where Theorems 2 and 3 do not apply. However, one must still note that the respective
bounds for the ranges can potentially be brought closer together, as they are chosen rather to simplify
the proofs. For example, the choice of the bound for λ in Theorem 3 is extreme in the sense that
the empirical loss minimiser is always a Dirac measure. By slightly loosening this bound, one could
show that the empirical loss minimiser is “almost” a Dirac measure, which, however, would still
violate Assumption A1. Similarly the enumerator for λ in Theorem 2 is a rather rough estimate due
to the supremum and could be tightened by LEθ∼Q̃(d

(1)(θ,θ∗)). Finally, note that both the Brier
score and the log-loss are strictly convex and therefore satisfy the property of Theorem 3 due to
Jensen’s (strict) inequality.

G Further Experiments

In this section, we extend the simulation study from Section 5 regarding the behavior of the empirical
loss minimiser (ELM) (see Definition 1) over two-component mixtures of Dirichlet distributions to
the multi-class classification setting. Again, we shall resort to synthetic data and two representative
scenarios for the multi-class classification setting with three classes: the scenario with the highest
aleatoric uncertainty, where

p(·) = Cat (1/3, 1/3, 1/3)

and a low aleatoric uncertainty scenario, where

p(·) = Cat (7/8, 1/16, 1/16) .
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Note that the latter is representative of an imbalanced learning scenario. Following the same pro-
cedure as in Section 5, we obtain for the mean entropy (together with the standard deviations) of the
ELM’s averaged over 10 runs in dependence on the data set size N for different values of λ for both
scenarios:

p(y) = Cat (1/3, 1/3, 1/3) p(y) = Cat (7/8, 1/16, 1/16)
N = 10 N = 100 N = 1000 N = 10000 N = 100000 N = 10 N = 100 N = 1000 N = 10000 N = 100000

λ = 0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
λ = 10−5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
λ = 10 10.174 (0.014) 9.687 (0.013) 6.912 (0.002) 3.621 (0.001) 1.401 (0.002) 10.156 (0.139) 8.059 (0.112) 5.805 (0.092) 3.312 (0.021) 1.201 (0.001)

θ̂1 0.321 (0.117) 0.328 (0.046) 0.336 (0.017) 0.332 (0.007) 0.333 (0.002) 0.726 (0.088) 0.850 (0.022) 0.874 (0.011) 0.880 (0.004) 0.875 (0.003)

For comparison purposes, we report here again the (Shannon) entropies of the quantized version of
the level-2 distributions instead of their differential entropies (see Section 5). Since we use 1326
bins, the uniform distribution (on level-2) has an entropy of 10.3729. Thus, the results are consistent
with the empirical results for the binary classification setting in Section 5 and, more importantly,
with our theoretical results
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