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Abstract: We consider functional outlier detection from a geometric perspective, specifically: for
functional datasets drawn from a functional manifold, which is defined by the data’s modes of
variation in shape, translation, and phase. Based on this manifold, we developed a conceptualization
of functional outlier detection that is more widely applicable and realistic than previously proposed
taxonomies. Our theoretical and experimental analyses demonstrated several important advantages
of this perspective: it considerably improves theoretical understanding and allows describing and
analyzing complex functional outlier scenarios consistently and in full generality, by differentiating
between structurally anomalous outlier data that are off-manifold and distributionally outlying data
that are on-manifold, but at its margins. This improves the practical feasibility of functional outlier
detection: we show that simple manifold-learning methods can be used to reliably infer and visualize
the geometric structure of functional datasets. We also show that standard outlier-detection methods
requiring tabular data inputs can be applied to functional data very successfully by simply using their
vector-valued representations learned from manifold learning methods as the input features. Our
experiments on synthetic and real datasets demonstrated that this approach leads to outlier detection
performances at least on par with existing functional-data-specific methods in a large variety of
settings, without the highly specialized, complex methodology and narrow domain of application
these methods often entail.

Keywords: functional data analysis; outlier detection; manifold learning; dimension reduction;
multidimensional scaling; local outlier factors

1. Introduction
1.1. Problem Setting and Proposal

Outlier detection for functional data is a challenging problem due to the complex
and information-rich units of observations, which can be “outlying” or unusual in many
different ways. Functional outliers are often categorized into magnitude and shape out-
liers [1,2], whereas Hubert et al. [3] differentiated between isolated and persistent outliers,
the latter were further subdivided into shift, amplitude, and shape outliers. However,
neither of these taxonomies yield precise, explicit, fully general definitions, which makes
it difficult to theoretically describe, analyze, and compare functional outliers. Magnitude
outliers, for example, have been defined as functional observations “outlying in some part
or across the whole design domain” [1] (p. 1), or as “curves lying outside the range of
the vast majority of the data” [2] (p. 2), whereas Hubert et al. [3] (p. 3) defined isolated
outliers as observations that “exhibit outlying behavior during a very short time interval”,
in contrast to persistent outliers, which “are outlying on a large part of the domain”.

To cut through the confusion, we propose a geometric perspective on functional
outlier detection based on the well-known “manifold hypothesis” [4,5]. This refers to
the assumption that ostensibly complex, high-dimensional data lie on a much simpler,
lower-dimensional manifold embedded in the observation space and that this manifold’s
structure can be learned and then represented in a low-dimensional space, often simply
called embedding space. We argue that such a perspective both clarifies and generalizes the
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concept of functional outliers, without the need for any strong assumptions or prior knowl-
edge about the underlying data-generating process or its outliers. In terms of theoretical
development, the approach allows us to consistently formalize and systematically analyze
functional outlier detection in full generality. We also demonstrate that procedures based
on this perspective simplify and improve functional outlier detection in practice: this sug-
gests a principled, yet flexible approach for applying well-established, highly performant
standard outlier-detection methods such as local outlier factors (LOF) [6] to functional data,
based on embedding coordinates obtained via manifold learning or dimension-reduction
methods. Our experiments show that doing so performs at least on par with existing
functional-data-specific outlier-detection methods, without the methodological complexity
and limited applicability that methods specific to functional data often entail. Moreover,
such lower-dimensional representations serve as an easily accessible visualization and
exploration tool that helps uncover complex and subtle data structures that cannot be
sufficiently reflected by one-dimensional outlier scores or labels, nor captured by many of
the previously proposed 2D diagnostic visualizations for functional outliers.

1.2. Background and Related Work

Functional data analysis (FDA) [7] focuses on data where the units of observation are
realizations of stochastic processes over compact domains. In many cases, the intrinsic
dimensionality of functional data (FD) is much lower than the observed. First, while
FD are infinite-dimensional in theory, they are high-dimensional in practice: functional
observations are usually recorded on fine and dense grids of argument values. Second, the
dominant drivers of the differences among functional observations are often comparatively
low-dimensional, so that just a few modes of variation capture most of the structured
variability in the data.

However, FD usually contain shape and translation, as well as phase variation, i.e.,
both “vertical” and “horizontal” variability. These different kinds of variability contribute
to the difficulty of precisely defining and differentiating the various forms of functional
outliers and developing methods that can “catch them all”, making outlier detection a
highly investigated research topic in FDA. For example, Arribas-Gil and Romo [2] argued
that the proposed outlier taxonomy of Hubert et al. [3] can be made more precise in terms
of expectation functions f (t) and g(t), with f (t) a “common” process; see Figure 1.

Figure 1. Functional outlier taxonomies. Bottom: standard taxonomy. Top: the taxonomy as
introduced by Hubert et al. Reprinted by permission from Springer Nature: Springer, Statistical
Methods & Applications, Discussion of “Multivariate functional outlier detection”, Arribas-Gil Ana,
Romo Juan, Copyright 2015.

Despite these attempts, some fundamental issues remain unsolved. The proposed
taxonomies do not provide precise definitions, and some of the definitions are contradictory
to some extent. Finally, many outlier scenarios for realistic data-generating processes are
not covered by the described taxonomies at all. As Arribas-Gil and Romo [2] themselves
pointed out that settings with phase-varying data (i.e., “horizontal” variability through
elastic deformations of the functions’ domains) are not sufficiently reflected, as functions
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deviating in terms of phase may be considered as shape outliers in cases where there are
only a few such functions, but not in settings where all functions display such variation.

In addition, the taxonomy in Figure 1 provides a reasonable conceptual framework
only if the nonoutlying data from the “common” data-generating process is characterized
adequately just by its global mean function. This cannot be assumed for many real datasets,
which often contain highly variable sets of functions, which display several modes of phase,
shape, and/or amplitude variation simultaneously and/or come from multiple classes
with class-specific means and higher moments (see Figure 5).

Published research focuses mostly on the development of outlier detection methods
specifically for functional data, and a multitude of methods based on a variety of different
concepts such as functional data depths [8,9], functional PCA [10], functional isolation
forests [11], robust functional archetypoids [12], or functional outlier metrics such as
directional outlyingness [13,14], often narrowly focused on detecting specific kinds of
functional outliers, have been put forth. Dai et al. [1] proposed a transformation-based
approach to functional outlier detection and claimed that sequentially transforming shape
outliers, which “are much more challenging to handle”, into magnitude outliers makes
them easier to detect with established methods [1] (p. 2). The approach allows defining
functional outliers more precisely in terms of the transformations being used, such as
normalizing or centering functions or taking their derivatives, but practitioners still need
to be able to come up with appropriate transformations for the data at hand first.

Recently, Xie et al. [15] introduced a decomposition of functional observations into
amplitude, phase, and shift components, based on which specific types of outliers can
be identified in a more general geometric framework without necessarily requiring func-
tional data to be of comparatively low rank. Similar in spirit to our proposal, Hyndman
and Shang [16] used kernel density estimation and half-space depth contours of two-
dimensional robustified FPCA scores to construct functional boxplot equivalents and
detect outliers, and Ali et al. [17] used data representations in two dimensions obtained
from manifold methods for outlier detection and clustering, but the focus of both was on
practicalities without considering the theoretical implications and general applicability of
embedding-based approaches, nor did they consider the necessity of higher-dimensional
representations. While Hyndman and Shang’s HDR boxplots were based on a similar
combination of methods as our approach, they did not consider their geometrical founda-
tions and, thus, did not make use of their full potential, firstly by considering only the two
largest PCs and secondly by dichotomizing observations into outliers and inliers instead
of providing continuous scores of outlyingness. Yu et al. [18] developed a test statistic
for outlier detection based on the observed maxima of scaled PC score vectors, i.e., outly-
ingness defined in terms of a single mode of variation. However, this NHST framework
for outlier detection needs to assume both that the common data have a single consistent
mean function and that all deviations from this mean function are i.i.d. realizations of a
mean-zero Gaussian process. Both of these assumptions seem highly restrictive to us and
are likely to be untenable in many real-world applications.

The remainder of the paper is structured as follows: We provide a theoretical formal-
ization and discussion of our geometric approach in Section 2. Based on these theoretical
considerations, Section 3 presents extensive experiments. Section 3.1 covers a detailed
qualitative analysis of real-world data, while Section 3.2 provides quantitative experiments
and systematic comparisons to previously proposed methods on complex synthetic outlier
scenarios. We conclude with a discussion in Section 4.

2. Functional Outlier Detection as a Manifold-Learning Problem

In this section, we first define two forms of functional outliers from a geometric view
point: off- and on-manifold outliers. We then illustrate how this perspective contains and
extends existing outlier taxonomies and how it can be used to formalize a large variety of
additional scenarios for functional data with outliers.
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2.1. The Two Notions of Functional Outliers: Off- and On-Manifold

Our approach to functional outlier detection rests on the manifold assumption, i.e.,
the assumption that observed high-dimensional data are intrinsically low-dimensional.
Specifically, we put forth that observed functional data x(t) ∈ F , where F is a function
space, arise as the result of a mapping φ : Θ → F from a (low-dimensional) parameter
space Θ ⊂ Rd2 to F , i.e., x(t) = φ(θ). Conceptually, a d2-dimensional parameter vector
θ ∈ Θ represents a specific combination of values for the modes of variation in the observed
functional data, such as level or phase shifts, amplitude variability, class labels, and
so on. These parameter vectors are drawn from a probability distribution P over Rd2 :
θi ∼ P ∀ θi ∈ Θ, with Θ = {θ : fP(θ) > 0} and fP the density to P. Mapping this
parameter space to the function space creates a functional manifoldMΘ,φ defined by φ
and Θ: MΘ,φ = {x(t) : x(t) = φ(θ) ∈ F , θ ∈ Θ} ⊂ F , and an example is depicted in
Figure 2. For F = L2 with data from a single functional manifold that is isomorphic to
some Euclidean subspace, Chen and Müller [19] developed the notions of a manifold mean
and modes of variation. Similarly, Dimelgio et al. [20] developed a robust algorithm for
template curve estimation for connected smooth submanifolds of Rd.

Figure 2. Functional data from a manifold-learning perspective. Image source: Herrmann and
Scheipl [21]; use permitted under the Creative Commons Attribution License CC BY-SA 4.0.

Unlike these single-manifold settings, our conceptualization of outlier detection is
based on two functional manifolds. That is, we assume a dataset X = {x1(t), . . . , xn(t)}
with n functional observations coming from two separate functional manifolds
Mc = MΘc ,φc and Ma = MΘa ,φa , with Mj ⊂ F , j ∈ {c, a} and X ⊂ {Mc ∪Ma},
withMc representing the “common” data-generating process andMa containing anoma-
lous data. Moreover, for the purpose of outlier detection and in contrast to the settings
with a single manifold described in the referenced literature, we are less concerned with
precisely approximating the intrinsic geometry of each manifold. Instead, it is crucial
to consider the manifoldsMc andMa as submanifolds of F , since we require not just
a notion of distance between objects on a single manifold, but also a notion of distance
between objects on different manifolds using the metric in F . Note that function spaces
such as C or L2, which are commonly assumed in FDA [22], are naturally endowed with
such a metric structure. Both C(D) and all Lp(D) spaces over compact domain D are
Banach spaces for p ≥ 1 and, thus, also metric spaces [23].

Finally, we assume that we can learn from the data an embedding function e : F → Y
that maps observed functions to a d1-dimensional vector representation y ∈ Y ⊂ Rd1 with
e(x(t)) = y, which preserves at least the topological structure of F , i.e., ifMc andMa are
unconnected components of F , their images under e are also unconnected in Y and ideally
yield a close approximation of the ambient geometry of F .

Definition 1. Off- and on-manifold outliers in functional data.

Without loss of generality, let r = |{xi(t):xi(t)∈Ma}|
|{xi(t):xi(t)∈Mc}| ≪ 1 be the outlier ratio, i.e.,

most observations are assumed to stem from Mc. Furthermore, let Θc and Θa follow
the distributions Pc and Pa, respectively. Let Ω∗α,P be an α-minimum volume set of P
for some α ∈ (0, 1), where Ω∗α,P is defined as a set minimizing the quantile function
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V(α) = infC∈C{Leb(C) : P(C) ≥ α}, 0 < α < 1} for i.i.d. random variables in Rd with
distribution P, C a class of measurable subsets in Rd, and Lebesgue measure Leb [24], i.e.,
Ω∗α,P is the smallest region containing a probability mass of at least α.

A functional observation xi(t) ∈ X is then:

• An off-manifold outlier if xi(t) ∈ Ma and xi(t) /∈ Mc;
• An on-manifold outlier if xi(t) ∈ Mc and θi /∈ Ω∗α,Pc

.

To paraphrase, we assume that there is a single “common” process generating the
bulk of observations onMc and an “anomalous” process defining structurally different
observations onMa. We follow the standard notion of outlier detection in this, which
assumes that there are two data-generating processes [1,25,26]. Note that this does not
necessarily imply that off-manifold outliers are similar to each other in any way: Pa could
be very widely dispersed and/orMa could consist of multiple unconnected components
representing different kinds of anomalous data. The essential assumption here is that the
process from which most of the observations are generated yields structurally relatively
similar data. This is reflected by the notion of the two manifoldsMc andMa and the
ratio r. We consider settings with r ∈ [0, 0.1] as suitable for outlier detection. By definition,
the number of on-manifold outliers, i.e., distributional outliers onMc as opposed to the
structural outliers onMa, only depends on the α-level for Ω∗α,Pc

.
Note that outlyingness in functional data is often defined only in terms of shape

or magnitude, but the concept ought to be conceived much more generally. The most
important aspect from a practical perspective is that any kind of structural difference will
be reliably reflected in low-dimensional representations that can be learned via manifold
methods, as we show in Section 3. These methods yield embedding coordinates y ∈ Y that
capture the structure of data and their outliers.

2.2. Methods

To illustrate some of the implications of our general perspective on functional out-
lier detection and showcase its practical utility, we mostly use metric multidimensional
scaling (MDS) [27] for dimension reduction and local outlier factors (LOF) [6] for outlier
scoring in the following. Note, however, that the proposed approach is not at all limited
to these specific methods, and many other combinations of outlier detection methods
applied to lower-dimensional embeddings from manifold-learning methods are possible.
However, MDS and LOF have some important favorable properties: First of all, both
methods are well understood and widely used and tend to work reliably without extensive
tuning since they do not have many hyperparameters. Specifically, LOF only requires a
single parameter minPts, which specifies the number of nearest neighbors used to define
the local neighborhoods of the observations, and MDS only requires specification of the
embedding dimension.

More importantly, our geometric approach rests on the assumption that functional
outlier detection can be based on some notion of distance or dissimilarity between func-
tional observations, i.e., that abnormal or outlying observations are separated from the
bulk of the data in some ambient (function) space. As MDS optimizes for an embedding,
which preserves all pairwise distances as closely as possible (i.e., tries to project the data
isometrically), it also retains a notion of the distance between unconnected manifolds in
the ambient space. This property of the embedding coordinates retaining the ambient
space geometry as much as possible is crucial for outlier detection. This also suggests that
manifold-learning methods such as ISOMAP [28], t-SNE [29], or UMAP [30], which do
not optimize for the preservation of ambient space geometry via isometric embeddings
by default, may require much more careful tuning in order to be used in this way. Our
experiments support this theoretical consideration, as can be see in Figure 11. For LOF,
this implies that larger values for minPts are to be preferred here, since such LOF scores
take into account more of the global ambient space geometry of the data instead of only
the local neighborhood structure. In Section 3, we show that minPts = 0.75n, with n the
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number of functional observations in a dataset, seems to be a reliable and useful default for
the range of datasets we consider.

Two additional aspects need to be pointed out here. First, throughout this paper,
we compute most distances using the L2 metric. This yields MDS coordinates that are
equivalent to standard functional PCA scores (up to rotation). The proposed approach,
however, is not restricted to L2 distances. Combining MDS with distances other than
L2 yields embedding solutions that are no longer equivalent to PCA scores, and suitable
alternative distance measures may yield better results in particular settings. We illustrate
this aspect using the L10 metric and two phase-specific distance measures in Section 3.3,
which we apply to simulated data with isolated outliers and a real dataset of outlines of
neolithic arrowheads, respectively. Similarly, using alternative manifold-learning meth-
ods could be beneficial in specific settings, as long as they are able to represent not just
the local neighborhood structure or on-manifold geometry, but also the global ambient
space geometry.

Second, even though the LOF could also be applied directly to the dissimilarity matrix
of a functional dataset without an intermediate embedding step, most anomaly-scoring
methods cannot be applied directly to such distance matrices and require tabular data
inputs. By using embeddings that accurately reflect the (outlier) structure of a functional
dataset, any anomaly-scoring method requiring tabular data inputs can be applied to
functional data as well. In this work, we apply LOF on MDS coordinates to evaluate
whether functional data embeddings can faithfully retain the outlier structure. Further-
more, embedding the data before running outlier-detection methods often provides large
additional value in terms of visualization and exploration, as the ECG data analysis in
Section 3.1 shows.

2.3. Examples of Functional Outlier Scenarios

We can now give precise formalizations of different functional outlier scenarios and
investigate the corresponding low-dimensional representations. In this section, we first
show that the geometrical approach is able to describe existing taxonomies (see Figure 1)
more consistently and precisely. We then illustrate its ability to formalize a much broader
general class of outlier detection scenarios and discuss the choice of the distance metric
and the dimensionality of the embedding.

2.3.1. Outlier Scenarios Based on Existing Taxonomies

Structure induced by shape: In the taxonomy depicted in Figure 1, top, the common
data-generating process is defined by the expectation function f (t). This can be formalized
in our geometrical terms as follows: the set of functions defined by the “common process”
f (t) defines a functional manifold (in terms of shape), i.e., the structural component is
represented by the expectation function of the common process. That means we can define
Mc = {x(t) : x(t) = θ f (t) = φ(θ, t)} orMc = {x(t) : x(t) = f (t) + θ = φ(θ, t), θ ∈ R}.
More generally, we can also model this jointly withMc = {x(t) : θ1 f (t) + θ2 = φ(θ, t),
θ = (θ1, θ2)

′ ∈ R2}. In each case, magnitude and (vertical) shift outliers as defined in the
taxonomy correspond to on-manifold outliers in the geometrical approach, as such observa-
tions are elements ofMc. Isolated and shape outliers, on the other hand, are by definition
off-manifold outliers, as long as “g is not related to f ” is specified as g 6= θ f ∀ θ ∈ R. For
example, if we defineMa = {x(t) : x(t) = θg(t)}, it follows thatMc ∩Ma = ∅. The
same applies to isolated outliers, because g(t) = f (t) + IU(t)h(t) 6= θ1 f (t) + θ2.

Figure 3 shows an example of such an outlier scenario taken from [8]. Following
their notation, the two manifolds can be defined as Mc = {x(t)|x(t) = b + 0.05t +
cos(20πt), b ∈ R} and Ma = {x(t)|x(t) = a + 0.05t + sin(πt2), a ∈ R} with t ∈ [0, 1]
and a ∼ N(µ = 5, σ = 4), b ∼ N(µ = 5, σ = 3). Note that the off-manifold outliers
lie within the mass of data in the visual representation of the curves, whereas in the
low-dimensional embedding, they are clearly separable.
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However, we argue that the way shape outliers are defined in Figure 1 is too restrictive,
as many isolated outliers clearly differ in shape from the main data, but are not captured
by the given definition if the shape is considered in terms of “g not related to f ”. In
contrast, the geometrical perspective with its concepts of off- and on-manifold outliers
reflects that consistently. Another issue with the considered taxonomy concerns horizontal
shift outliers f (t + α) or f (h(t)). Aribas-Gil and Romo [2] specifically tackled that aspect
in their discussion. They distinguished between situations where “all the curves present
horizontal variation” (Case I), which is the no-outlier scenario for them, and situations
where only a few phase-varying observations are present (Case II), which constitutes an
outlier scenario. Again, the geometric perspective allows reflecting that consistently. In
Appendix A, we make these two notions explicit by defining manifolds accordingly.
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Figure 3. Functional outlier scenario (n = 54, r = 0.09) with shape variation inducing structural
differences. Off-manifold outliers colored in blue; two on-manifold outliers colored in red.

2.3.2. General Functional Outlier Scenarios

As already noted, the concept of structural difference we propose is much more
general. It is straightforward to conceptualize other outlier scenarios with an induced
structure beyond shape. Consider the following theoretical example: take a parameter
manifold Θ ⊂ [0, ∞]× [0, ∞]× [0, ∞]× [0, ∞] and an induced functional manifoldM =
{ f (t); t ∈ [0, 1] : f (t) = θ1 + θ2tθ3 + I(t ∈ [θ4 ± 0.1])}. Each dimension of the parameter
space controls a different characteristic of the functional manifold: θ1 the level, θ2 the
magnitude, θ3 the shape, and θ4 the presence of an isolated peak around t = θ4. One can
now define a “common” data-generating process, i.e., a manifoldMc, by holding some
of the dimensions of Θ fixed and only varying the rest, either independently or not. On
the other hand, one can define an “anomalous” data-generating process, i.e., a structurally
different manifoldMa, by letting those fixed inMc vary, or simply setting them to values
unequal to those used forMc, or by using different dependencies between parameters
than forMc, e.g., if θ1 = θ2 forMc, let θ1 = −θ2 forMa. This implies that one can define
data-generating processes so that any functional characteristic (level, magnitude, shape,
“peaks”, and their combinations) can be on-manifold or off-manifold outliers, depending
on how the “common” data manifoldMc is defined.

Figure 4 shows a setting in whichMc is defined purely in terms of complex shape
variation, whileMa contains vertically shifted versions of elements inMc: LetMc be the
functional manifold of Beta densities fB(t; θ1, θ2) with shape parameters θ1, θ2 ∈ [1, 2], and
letMa be the functional manifold of Beta densities with shape parameters θ1, θ2 ∈ [1, 2]
shifted vertically by some scalar quantity θ3 ∈ [0, 0.5], that isMc = { f (t); t ∈ [0, 1] : f (t) =
fB(t; θ1, θ2)} with Θc = [1, 2]2 andMa = { f (t); t ∈ [0, 1] : f (t) = fB(t; θ1, θ2) + θ3} with
Θa = Θc × [0, 0.5].

As can be seen in Figure 4, both manifolds contain substantial shape variation that is
identically structured, but those fromMa are also shifted upwards by small amounts. Note



Stats 2021, 4 978

that many shifted observations lie within the main bulk of the data on large parts of the
domain. In the 2D embeddings based on unnormalized L1-Wasserstein distances [31] (also
know as the “Earth mover’s distance”, top right) and 3D embeddings based on standard
L2 distances (bottom right), we see that this structure is captured with high accuracy, even
though it is hardly visible in the functional data, with most anomalous observations clearly
separated from the common manifold data, whose embeddings are concentrated on a
narrow subregion of the embedding space. An observation onMa that is very close toMc,
lying well within the main bulk of functional observations, also appears very close toMc
in both embeddings. This example shows that the two functional manifolds do not need to
be completely disjoint, nor yield visually distinct observations for our approach to yield
useful results. It also shows that the choice of an appropriate dissimilarity metric for the
data can make a difference: a 2D embedding is sufficient for the more suitable Wasserstein
distance, which is designed for (unnormalized) densities (top right panel), while a 3D
embedding is necessary for representing the relevant aspects of the data geometry if the
embedding is based on the standard L2 metric (lower right panels). For a comparison
with currently available outlier visualization methods for this example, see Figure A4 in
Appendix D.
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In summary, we propose that the manifold perspective allows defining and represent-
ing a very broad range of functional outlier scenarios and data-generating processes. We
argue that these properties make the geometrical approach very compelling for functional
data, because it is flexible, conceptualizes outliers on a much more general level (for ex-
ample, structural differences not in terms of shape) than before, and allows theoretically
assessing a given setting.

Beyond its theoretical utility of providing a general notion of functional outliers, it
has crucial practical implications: outlier characteristics of functional data, in particular
structural differences, can be represented and analyzed using low-dimensional representa-
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tions provided by manifold-learning methods, regardless of which functional properties
define the “common” data manifold and which properties are expressed in structurally
different observations. From a practical perspective, on-manifold outliers will appear
“connected”, whereas off-manifold outliers will appear “separated” in the embedding, and
the clearer these structural differences are, the clearer the separation in the embedding
will be. Note that this implies that shape outliers, which pose particular challenges to
many previously proposed methods, will often be particularly easily detectable. Moreover,
all methods for outlier detection that have been developed for tabular data inputs can
be (indirectly) applied to functional data as well based on this framework, simply by
using the embedding coordinates as feature inputs: The embedding space Y is typically a
low-dimensional Euclidean space in which conventional outlier detection works well and
the essential geometrical structure encoded in the pairwise functional distance matrix is
conserved in these lower-dimensional embeddings. In the next section, we illustrate this
practical utility in detail by extensive quantitative and qualitative analyses.

3. Experiments

To illustrate the practical relevance of the outlined geometrical approach, we first
qualitatively investigate real datasets. In the second part of this section, we quantitatively
investigate the anomaly detection performance of several detection methods based on
synthetic data.

3.1. Qualitative Analysis of Real Data

We start with an in-depth analysis of the ECG200 data [32,33], a functional dataset with
a complex structure: it seems to contain subgroups with phase and amplitude variation and
different mean functions. As a result, the dataset appears visually complex (Figure 5, left).
Without the color coding, it would be challenging to identify the three subgroups (as in the
lower left plot in Figure 6). Moreover, there are five left-shifted observations (apparent at
t ∈ [10, 25]) and a single (partly) vertically shifted outlier (apparent at t ∈ [50, 75]), clearly
detectable by the naked eye.
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Figure 5. ECG curves and first two embedding dimensions (of five). Colors highlight subgroups
apparent in the embeddings. Potential outliers with 5D-embedding LOF scores (
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V(α) = infC∈C{Leb(C) : P(C) ≥ α}, 0 < α < 1} for i.i.d. random variables in Rd with
distribution P, C a class of measurable subsets in Rd, and Lebesgue measure Leb [24], i.e.,
Ω∗α,P is the smallest region containing a probability mass of at least α.

A functional observation xi(t) ∈ X is then:

• An off-manifold outlier if xi(t) ∈ Ma and xi(t) /∈ Mc;
• An on-manifold outlier if xi(t) ∈ Mc and θi /∈ Ω∗α,Pc

.

To paraphrase, we assume that there is a single “common” process generating the
bulk of observations onMc and an “anomalous” process defining structurally different
observations onMa. We follow the standard notion of outlier detection in this, which
assumes that there are two data-generating processes [1,25,26]. Note that this does not
necessarily imply that off-manifold outliers are similar to each other in any way: Pa could
be very widely dispersed and/orMa could consist of multiple unconnected components
representing different kinds of anomalous data. The essential assumption here is that the
process from which most of the observations are generated yields structurally relatively
similar data. This is reflected by the notion of the two manifoldsMc andMa and the
ratio r. We consider settings with r ∈ [0, 0.1] as suitable for outlier detection. By definition,
the number of on-manifold outliers, i.e., distributional outliers onMc as opposed to the
structural outliers onMa, only depends on the α-level for Ω∗α,Pc

.
Note that outlyingness in functional data is often defined only in terms of shape

or magnitude, but the concept ought to be conceived much more generally. The most
important aspect from a practical perspective is that any kind of structural difference will
be reliably reflected in low-dimensional representations that can be learned via manifold
methods, as we show in Section 3. These methods yield embedding coordinates y ∈ Y that
capture the structure of data and their outliers.

2.2. Methods

To illustrate some of the implications of our general perspective on functional out-
lier detection and showcase its practical utility, we mostly use metric multidimensional
scaling (MDS) [27] for dimension reduction and local outlier factors (LOF) [6] for outlier
scoring in the following. Note, however, that the proposed approach is not at all limited
to these specific methods, and many other combinations of outlier detection methods
applied to lower-dimensional embeddings from manifold-learning methods are possible.
However, MDS and LOF have some important favorable properties: First of all, both
methods are well understood and widely used and tend to work reliably without extensive
tuning since they do not have many hyperparameters. Specifically, LOF only requires a
single parameter minPts, which specifies the number of nearest neighbors used to define
the local neighborhoods of the observations, and MDS only requires specification of the
embedding dimension.

More importantly, our geometric approach rests on the assumption that functional
outlier detection can be based on some notion of distance or dissimilarity between func-
tional observations, i.e., that abnormal or outlying observations are separated from the
bulk of the data in some ambient (function) space. As MDS optimizes for an embedding,
which preserves all pairwise distances as closely as possible (i.e., tries to project the data
isometrically), it also retains a notion of the distance between unconnected manifolds in
the ambient space. This property of the embedding coordinates retaining the ambient
space geometry as much as possible is crucial for outlier detection. This also suggests that
manifold-learning methods such as ISOMAP [28], t-SNE [29], or UMAP [30], which do
not optimize for the preservation of ambient space geometry via isometric embeddings
by default, may require much more careful tuning in order to be used in this way. Our
experiments support this theoretical consideration, as can be see in Figure 11. For LOF,
this implies that larger values for minPts are to be preferred here, since such LOF scores
take into account more of the global ambient space geometry of the data instead of only
the local neighborhood structure. In Section 3, we show that minPts = 0.75n, with n the) in

the top decile shown in black.

Much of the general structure (and the anomaly structure in particular) becomes
evident in a 5D MDS embedding. To begin with, in the first two embedding dimensions,
depicted on the right-hand side of Figure 5, three subgroups are easily recognizable.
The color coding in Figure 5 is based on this visualization. It makes apparent that the
substructures correspond to two smaller, horizontally shifted subgroups of curves (orange:
left-shifted, purple: right-shifted) and a central subgroup encompassing the majority of
the observations (green). In addition, we computed LOF scores on the 5D embedding
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coordinates. The observations with LOF scores in the top decile are shown in black in
Figure 5. This set contains all the clearly outlying observations.

More importantly, note that these observations are clearly separated from the rest
in the 5D embedding shown in Figure 6: the five clearly left-shifted observations in the
fourth embedding dimension and the single vertically shifted observation in the subspace
spanned by the first and third embedding dimension. The figure shows a scatterplot
matrix of all five embedding dimensions with observations color-coded according to the
5D-embedding LOF scores. The clearly left-shifted outliers obtain the highest LOF scores
due their isolation in the subspaces including the fourth embedding dimension. Note,
moreover, that other observations with higher LOF scores appear in peripheral regions
of the different subspaces, but they are not as clearly separable as the six observations
described before. Regarding Figure 7A, which shows the 20 most outlying curves according
to LOF scores, this can be explained by the fact that these other observations stem from
one of the two shifted subgroups and can thus be seen as on-manifold outliers, whereas
the six other, visually clearly outlying observation, are clearly off-manifold outliers.
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Figure 6. ECG data: scatterplot matrix of all 5 MDS embedding dimensions and curves; lighter colors
for the higher LOF scores of 5D embeddings.

We contrast these findings with the results of directional outlyingness [14,34], which
performs very well (see Section 3.2) on simple synthetic datasets. Figure 7 shows the ECG
curves color-coded by the variation of directional outlyingness (B), the 20 most outlying
curves by the variation of directional outlyingness (C), and the observations labeled as
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outliers by directional outlyingness respectively by the MS-plot (D). First of all, it can
be seen that many observations yield a high variation of directional outlyingness, and
observations in the right-shifted subgroup obtain most of the highest values. In fact, among
the twenty observations with the highest variation of directional outlyingness, only one
is from the left-shifted group, and thirteen are from the right-shifted group. Moreover,
applying directional outlyingness to this dataset results in 72 observations being labeled as
outliers, which is about 36% of all observations. We would argue that it is questionable
whether 36% of all observations should be labeled as outliers.
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Figure 7. ECG data: LOF on MDS embeddings in contrast to directional outlyingness.

In this regard, the ECG data serve as an example that illustrates the advantages of
the geometric approach. First of all, it yields readily available visualizations, which reveal
much more of the inherent structure of a dataset than just its anomaly structure. This is
specifically important for data with a complex structure (i.e., subgroups or multiple modes
and large variability). Moreover, it allows applying well-established and powerful outlier
scoring methods such as LOF to functional data. This exemplifies that the approach not
only improves theoretical understanding and consideration as outlined in the previous
section, it also has large practical utility in complex real data settings in which previously
proposed methods may not provide useful answers.
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In the ECG example, we saw that a 5D embedding yielded reasonable results and
sufficiently reflected many aspects of the data. In particular, the extremely left-shifted
observations became clearly separable in the fourth embedding dimension. In Appendix E,
we analyze a synthetic dataset in the same way as the ECG data, which yields similar
findings. Moreover, note that the Spearman rank correlation between LOF scores computed
on the 5D embedding and LOF scores computed directly on the ECG data distances is 0.99.
This shows that the outlier structure retained in the 5D embedding is highly consistent
with the outlier structure in the high-dimensional observation space, an important aspect
with respect to anomaly-scoring methods requiring (low-dimensional) tabular inputs.

Finally, note that even fewer than five embedding dimensions may suffice to reflect
much of the inherent structure. Consider the examples depicted in Figure 8, which shows
the functional observations and the first two embedding dimensions of a corresponding
5D MDS embedding of another four real datasets. The Octane data consist of spectra from
60 gasoline samples [35,36], the Spanish weather data of annual temperature curves of
73 weather stations [37], the Tecator data of spectrometric curves of meat samples [37,38],
and the Wine data of spectrometric curves of wine samples [32,39]. As before, the obser-
vations are colored according to LOF scores based on the 5D embedding. In addition, the
12 observations with highest LOF scores are depicted as triangles. These datasets are much
simpler than the ECG data, and the first two embedding dimensions already reflect the
(outlier) structure fairly accurately: observations with high LOF scores appear separated in
the first two embedding dimensions, and more general substructures are revealed as well.
The substructure of the weather data is rather obvious already regarding the functional
observations, for example, the observations with less variability in terms of temperature,
all of which obtained high LOF scores. The substructure of the wine data—for example,
the small cluster in the lower part of the embedding—is much harder to detect based on
visualizations of the curves alone.

Appendix B summarizes a more detailed analysis of the sensitivity of the approach
to the choice of the dimensionality of the embedding. We conclude that sensitivity seems
to be fairly low. For all five real datasets we considered, the rank order of LOF scores is
very similar or even identical whether based on two-, five-, or even twenty-dimensional
embeddings (cf. Table A1).

Following Mead [40], we quantified the goodness of fit (GOF) for a d1-dimensional

MDS embedding as: GOF(d1) =
∑

d1
i=1 max(0,λi)

∑n
j=1 max(0,λj)

, where λk are the eigenvalues (sorted in

decreasing order) of the kth eigenvectors of the centered distance matrix. For all of the
considered real datasets, a 5D embedding achieved a goodness of fit over 0.8, the four
less-complex examples even over 0.95 (see Figure A2). As a rule of thumb, the embedding
dimension does not seem crucial as long as the goodness of fit (GOF) of the embedding
is over 0.8 for L2 distances. This rule of thumb also yielded compelling quantitative
performance results, as shown in Section 3.2.

Figures 6 and 8 show visualizations that combine MDS embeddings with LOF outlier
scores. To put them into context, we compare them to existing visualization techniques in
this section. For the sake of clarity, only the results are summarized here. The figures for
the various alternative methods can be found in Appendix D. Figure A5 shows the results
for the MBD-MEI “Outliergram” by Aribas-Gil and Romo [41] (implementation: [42]) for
shape outlier detection and the magnitude–shape plot method of Dai and Genton [34].
Figures A6 and A7 show the results for the translation–phase–amplitude boxplots by
Xie et al. [15] and the elastic depth boxplot for shape outlier detection by Harris et al. [9].
Finally, Figures A8–A13 show the corresponding functional and bivariate HDR boxplots by
Hyndman and Shang [16] (implementation: [43]). Considering the MBD-MEI outliergram
and the magnitude–shape plots, both of these visualization methods mostly fail to identify
shift outliers (by design, in the case of the outliergram). The outliergram tends to mislabel
very central observations as outliers in datasets with little shape variability (e.g., the
supposed “shape outliers” detected by MBD-MEI in the central region of the Tecator data)
and fails to detect even egregious shape outliers in datasets with high variability (e.g., not
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a single MBD-MEI outlier in ECG 200), as well as shape outliers that are also outlying in
their level (e.g., the three shape outliers identified by msplot in the upper region of the
Tecator data). Note that some central functions of the Spanish weather data, which are
labeled as outliers by the magnitude–shape plot (and partly by the outliergram) are also
reflected in the 2D embedding in Figure 8.

−0.1

0.0

0.1

900 1100 1300 1500 1700
t (Wavelength in nm)

x(
t)

Octane data (mean centered)

−0.2

−0.1

0.0

0.1

−0.8 −0.4 0.0 0.4
MDS Embedding 1

M
D

S 
Em

be
dd

in
g 

2

Octane Embedding

0

10

20

30

0 100 200 300
t (Day of year)

x(
t)

Spanish weather data

−50

−25

0

25

−100 0 100
MDS Embedding 1

M
D

S 
Em

be
dd

in
g 

2

Spanish weather Embedding

−1

0

1

2

850 900 950 1000 1050
t (Wavelength in nm)

x(
t)

Tecator data (mean centered)

−1

0

1

2

−10 0
MDS Embedding 1

M
D

S 
Em

be
dd

in
g 

2

Tecator Embedding

−0.2

0.0

0.2

0.4

899 1079 1260 1440 1621

t (Spectral range in cm−1)

x(
t)

Wine data (mean centered)

−0.3

−0.2

−0.1

0.0

0.1

0.2

−0.5 0.0 0.5 1.0
MDS Embedding 1

M
D

S 
Em

be
dd

in
g 

2

Wine Embedding

Figure 8. Further examples of real functional data colored by LOF score. The 12 most outlying
observations depicted as triangles in the embedding.
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They are fairly numerous relative to the overall sample size and are very similar to
each other. As such, they form a clearly defined separate cluster within the data, which can
be seen in the middle bottom part of the embedding. The translation–phase–amplitude
boxplots mostly fail to detect outliers in data with high variability: no outliers at all are
detected for the Spanish weather data despite their visually apparent anomalies, and only a
single translation outlier is detected for the ECG data. Moreover, the implementation of the
approach seems to break down for data with very little variation, and it was not possible to
compute the phase boxplot for the Wine data, a dataset with almost no variability in terms
of phase.

The results of the elastic depth boxplots do not seem to be consistent over all consid-
ered datasets. The results appear reasonable for the Octane, the Wine, and, in part, for the
ECG data, where both amplitude and phase outliers are detected. However, in the ECG
data, mostly observations from the left-shifted subgroup are detected as phase outliers and
only two from the right-shifted subgroup. The results for the Spanish weather and the
Tecator data are even less convincing. Among the Tecator data, the method labels 41 curves,
i.e., 19% of all observations, as outliers, while it does not discover a single outlier in the
Spanish weather data. Note, however, that the elastic depth boxplots are more robust than
the translation–phase–amplitude boxplots. While the latter method only detected a single
translation outlier and was not able to compute the phase boxplot for the Wine data at
all, the elastic depth boxplots detect several amplitude outliers and simply do not yield
phase outliers.

Finally, HDR boxplots based on PC projections of the data yield mostly similar results
as the L2-distance-based MDS embeddings. However, we would argue that dichotomizing
the observations into inliers and outliers by a fixed outlier threshold makes the visualiza-
tions much less suited as an exploratory tool. Consider, for example, the Spanish weather
data. The small cluster of observations with rather constant temperature (∼17–25◦) does
not fall into the outlier region according to the dichotomization threshold, and so, they are
also not shown individually in the functional HDR boxplots. Whether they are considered
to be outliers or rather a subgroup surely depends on the observer, but we would argue
that an outlier visualization method should emphasize and not hide such structures. Our
approach of colors according to continuous scores does that very well, reflecting at the same
time both the general and the outlier structure. More importantly, the outlier structure of
the ECG dataset is not captured in the embedding used by the HDR boxplots. As outlined,
more than two embedding dimensions are necessary to fully reflect the outlier structure
of this dataset, and the density estimators underlying the HDR boxplot will break down
fairly rapidly as the number of embedding dimensions increases. As such, the available im-
plementation is limited to only using the first two PC scores for the embedding, regardless
of the actual rank of the underlying data.

3.2. Quantitative Analysis of Synthetic Data

In this section, we investigate the outlier detection performance quantitatively, based
on synthetic datasets for which the true (outlier) structure is known.

3.2.1. Methods

In addition to applying LOF to 5D embeddings and directly to the functional data,
we investigate the performance of four “functional data”-specific outlier-detection meth-
ods: directional outlyingness (DO) [14,34], total variational depth (TV) [44], elastic depth
(ED_amp, ED_pha) [9], and the approach based on translation, phase, and amplitude
boxplots (AP_BOX) presented by Xie et al. [15]. For the first two methods, we use imple-
mentations provided by the package fdaoutlier [45] and use the variation of directional
outlyingness as returned by the function dir_out as outlier scores for DO and the total
variation depths as returned by the function total_variation_depth for TV. For the latter
two methods, we use implementations provided by Harris et al. [9]. Outlier scores for
these methods are based on elastic depths as computed by the function depth.R1 from
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the package elasticdepth [9] and time-warped functions as computed by the function
time_warping from the package fdasrvf [46]. Note that the elastic depth approach does
not produce a single outlier score per observation, but scores amplitude and phase outliers
separately. Both amplitude (ED_amp) and phase (ED_pha) scores are shown in Figure 9.

3.2.2. Data-Generating Processes

The methods are applied to data from four different data-generating processes (DGPs),
the first two of which are based on the simulation models introduced by Ojo et al. [25]
and provided in the corresponding R package fdaoutlier [45]. We also provide the
results of additional experiments based on the original DGPs from the package fdaoutlier
in Appendix C. However, we consider most of these DGPs as too simple for a realistic
assessment, as most methods achieve almost perfect performance on them, and we use
more complex DGPs here. In both DGPs 1 and 2, the inliers from simulation_model1
from the package fdaoutlier serve as Mc, i.e., the common data-generating process.
This results in simple functional observations with a positive linear trend. In addition,
simulation_model1 generates simple shift outliers. Additionally, our DGP 1 also includes
shape outliers stemming from simulation_model8, which serves asMa. In contrast, DGP
2 contains shape outliers from all of the other DGPs in fdaoutlier, which means Ma
contains observations from several different data-generating processes.

For DGPs 3 and 4, we defineMc by generating a random, wiggly template function
over [0, 1] for each dataset, generated from a B-spline basis with 15 or 25 basis functions,
respectively, with i.i.d. N (0, 1) spline coefficients. Functions in Mc are generated as
elastically deformed versions of this template, with random warping functions drawn from
the ECDFs of Beta(a, b) distributions with a, b ∼ U[4, 6] (DGP 3) or a, b ∼ U[3, 8] (DGP
4). Functions inMa are also generated as elastically deformed versions of this template,
with Beta ECDF random warping functions with a, b ∼ U[3, 4] for DGP 3 and with 50:50
Beta mixture ECDF random warping functions with a, b ∼ 0.5U[3, 8] : 0.5U[0.1, 3] (DGP
4). Finally, white noise with σ = 0.1, 0.15, respectively, for DGPs 3 and 4 is added to all
resulting functions. Appendix F shows visualizations of example datasets drawn from
these DGPs.

3.2.3. Performance Assessment

From these four DGPs, we sampled data B = 500 times with three different outlier
ratios r ∈ {0.1, 0.05, 0.01}. Based on the outlier scores, we computed the area under
the ROC curve (AUC) and Mathew’s correlation coefficient (MCC) as the performance
measures and report the results over all 500 replications. Note that, for r ∈ {0.1, 0.05}, the
number of sampled observations was n = 100, whereas for r = 0.01, we sampled n = 1000
observations. Since computing the elastic depths and time-warped functions requires more
than an hour for a single dataset with 1000 observations, we only included them for the
settings with 100 observations.

3.2.4. Results

We note that LOF applied directly to functional data distances yielded very similar
results as LOF applied to their 5D embeddings. This agrees with our findings in the
qualitative analyses. In the following, we simply refer to the geometrical approach and do
not distinguish between the LOF based on MDS embeddings and the LOF applied directly
to the functional distance matrix. Figure 9 shows that the proposed geometrical approach
is highly competitive with existing functional-data-specific outlier-detection methods. It
yields better results than TV for all of the four DGPs and performs at least on par with DO.
In comparison to DO, it performs better on DGP 1 and DGP 3, on par on DGP 4, and worse
on DGP 2. Note that DO struggles to detect simple shift outliers: among these methods,
it performs worst on the first DGP. Similar conclusions can be reported for other settings,
where it performs even worse if there are only shift outliers (cf. Figures A3 and A15).
Moreover, while the approaches based on elastic depth proposed by Harris et al. (ED_amp
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and ED_pha) and the approach proposed by Xie et al. (AP_BOX) perform well on DGP 2,
they are outperformed by DO in this setting, and on DGPs 1, 3, and 4, they clearly perform
the worst. Thus, these two methods yield the worst performances overall.
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processes (DGPs), outlier-detection methods, and outlier ratios r.



Stats 2021, 4 987

Note that the insights we gain on synthetic data are confirmed by all of the real data
applications we investigate in Section 3.1. In addition to the experiments conducted here,
we applied the considered methods and their accompanying visualization approaches to
these five real datasets. The results of the previously proposed visualizations are presented
in detail in Appendix D, Figures A5–A7. In contrast to the proposed geometrical approach,
none of them yields satisfactory results consistently for all of the considered datasets.
For example, the outliergram, as well as the approach based on translation, phase and
amplitude boxplots and the elastic depth approach fail to identify any outliers in some of
these datasets, while the magnitude–shape plot, for example, labels an entire third of all
observations in the ECG data as outliers (as already outlined in Section 3.1).

In summary, based on the conducted experiments, the proposed geometrical approach
yields very compelling results: On synthetic data, it leads to outlier scoring performances
at least on par with specialized functional-outlier-detection methods even in its simplest
version (MDS with L2 distances and LOF). Moreover, in contrast to the other methods, it
yields consistently useful and sensible results on all of the considered real datasets, while
providing more intuitive and more easily interpretable visualizations. Going further, our
approach can be adapted to specific settings simply by choosing metrics other than L2. As
the next section shows, this can improve the outlier-detection performance considerably.

3.3. General Dissimilarity Measures and Manifold Methods

So far, we have computed MDS embeddings mostly based on L2 distances. In the
following, we show that the approach is more general. The geometric structure of a
dataset is captured in the matrix of pairwise distances among observations. Different
metrics emphasize different aspects of differences in the data and can thus lead to different
geometries. MDS based on L2 distances yielded compelling results in many of the examples
considered above, but other distances are likely to lead to better performance in certain
settings. To illustrate the effect, we consider two additional settings—one simulated and
one on real data—in the following. The results are displayed in Figure 10.

The simulated setting is based on isolated outliers, i.e., observations that deviated
from functions inMc only on small parts of their domain. In such settings, higher-order Lp
metrics lead to better results, since such metrics amplify the contribution of small segments
with large differences to the total distance. We use as an example data generated from
simulation_model2 from the package fdaoutlier. Figure 10A shows the AUC values
of LOF scores on MDS embeddings based on L2 and L10 distances. Again, 500 datasets
were generated form the model over different outlier ratios. In contrast to L2-based MDS,
using L10 distances yielded almost perfect detection. In embeddings based on L10, isolated
outliers are clearly separable in the first two or three embedding dimensions.

As a second example, we consider the ArrowHead dataset [47,48], which contains
outlines of three different types of neolithic arrowheads (see Appendix G for visualizations
of the dataset). Using the 78 structurally similar observations from class “Avonlea” as our
data onMc and sampling outliers from the 126 structurally similar observations from the
other two classes, we can compute AUC values based on the given class labels. We generate
500 datasets for each outlier ratio r ∈ {0.05, 0.1}. Since there are only 78 observations in
the class “Avonlea”, we do not use r = 0.01 for this example. Embeddings are computed
using three different dissimilarity measures: the standard L2 metric, the unnormalized
L1-Wasserstein metric [31], and the dynamic time warping (DTW) distance [49]. Note that
the DTW distance does not define a proper metric [50].

Figure 10B shows that small performance improvements can be achieved in this case
if one uses dissimilarity measures that are more appropriate for the comparison of shapes,
but not as much as in the isolated outlier example. Note that even though the DTW distance
is not a proper metric, it improves the outlier-scoring performance in this example. This
indicates that, from a practical perspective, general dissimilarity measures can be sufficient
for our approach to work. This opens up further possibilities, as there are many general
dissimilarity measures for functional data, for example the semimetrics introduced by
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Fuchs et al. [51]. Overall, these examples illustrate the generality of the approach: using
suitable dissimilarity measures can make the respective structural differences more easily
distinguishable.
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Figure 10. Comparing the effects of different distance measures. Depicted are the distributions of the
AUC over 500 replications for the LOF based on MDS embeddings computed with the respective
distance measures for different outlier ratios r. (A) Comparing the L10 and L2 metrics on a dataset
with isolated outliers generated via Simulation Model 2 from the package fdaoutlier. (B) Comparing
the DTW, L2, and unnormalized L1-Wasserstein distance measures on the real dataset ArrowHead.
Note: the DTW distance is not a metric.

More complex embedding methods, on the other hand, do not necessarily lead to
better or even comparable results as MDS. Figure 11 shows the distribution of the AUC for
embedding methods ISOMAP and UMAP. Both methods require a parameter that controls
the neighborhood size used to construct a nearest neighbor graph from which the manifold
structure of the data is inferred. The larger this value, the more of the global structure is
retained. For both methods, embeddings were computed for very small and very large
neighborhood sizes of five and ninety.

The results show that neither method performs better than MDS; UMAP even performs
considerably worse. Note that ISOMAP is equivalent to MDS based on the geodesic
distances derived from the nearest neighbor graph, and the larger the neighborhood size
the more similar to direct pairwise distances these geodesic distances become. This is also
reflected in the results, as ISOMAP-90 performs better than ISOMAP-5 on average. For
DGP-2, ISOMAP-90 slightly outperforms MDS, indicating that more complex manifold
methods could improve the results somewhat in specific settings.

In general, however, these findings confirm the theoretical considerations sketched in
Section 2.2. Embedding methods that preserve the geometry of the space F of whichMc
andMa are submanifolds, i.e., the ambient space geometry, are more suited for outlier de-
tection than methods that focus on approximating the intrinsic geometry of the manifold(s).
Thus, more sophisticated embedding methods, which often focus on approximating the
intrinsic geometry, should not be applied lightly and certainly require careful parameter
selection in order to be applicable for outlier detection. Since hyperparameter tuning for
unsupervised methods remains an unsolved problem, this is unlikely to be achieved in
real-world applications. In particular, consider that both UMAP and t-SNE [29] have been
found to be—in general—oblivious to local density, which means that clusters of different
density in the observation space tend to become clusters of more equal density in the
embedding space [52]. Although there may exist a parameter setting where this effect is
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reduced (note that there are now density-preserving versions of t-SNE and and UMAP [52]),
we are skeptical that outliers can be faithfully represented in such an embedding given the
difficulties of hyperparameter tuning in unsupervised settings. Moreover, these methods
are not designed to preserve important aspects of the outlier structure. For example, UMAP
is subject to a local connectivity constraint, which ensures that every observation is at least
connected to its nearest neighbor (in more technical terms: that a vertex in the fuzzy graph
approximating the manifold is connected by at least one edge with an edge weight equal
to one [30]), which makes it unlikely that UMAP can be tuned so that it is able to sensibly
embed off-manifold outliers, which should, by definition, not be connected to the common
data manifold. The poor performance of UMAP embeddings in our experiments confirms
these concerns.
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Figure 11. Comparing UMAP and ISOMAP to MDS. UMAP and ISOMAP embeddings were com-
puted for two different locality parameter values: 5 and 90. The distribution of the AUC over
500 replications of the four DGPs for different outlier ratios r. The AUC computed on LOF scores
based on 5D embeddings.

4. Discussion

Based on a geometrical perspective of functional outlier detection, we defined two
general types of functional outliers: off- and on-manifold outliers. Our investigation
showed that this perspective clarifies the theoretical concepts and improves practical
results. From a theoretical perspective, it allows formalizing functional outlier scenarios
in precise and consistent terms, beyond differences in terms of either shape, level, or
magnitude. This simplifies reasoning about specific outlier settings and provides a fully
general theoretical conceptualization of the problem.

From an applied perspective, we formulated two important consequences. First of
all, as was demonstrated with a comprehensive analysis of a complex, real dataset of
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ECG curves, the geometrical approach allows for easily accessible and highly informative
visualizations. These are obtained by means of low-dimensional embeddings reflecting the
inherent structure of a functional dataset in much detail. Such visualizations provide more
accurate and complete pictures of the (outlier) structure of functional data. In particular,
off-manifold outliers reliably appear as clearly separated (groups of) points in the low-
dimensional embeddings.

Second, the proposed approach makes it possible to apply highly developed and
performant standard outlier-detection methods to functional data, since the geometric
structure of the data is captured and reflected in their pairwise distance matrices. Outlier
detection and scoring methods that can be applied to distance matrices can therefore
directly be used for functional data as well. Furthermore, detection methods requiring
tabular inputs can also be applied simply by using the embedding coordinates obtained
with embedding methods as proxy data for the original functions. Our experiments
using LOF scores showed that the two approaches yielded very similar results. This
simultaneously simplifies and improves functional outlier detection: It simplifies since
functional data analysis becomes more accessible to a broader audience with general
outlier-detection methods that are widely used in other areas and that do not require an
understanding of complex methodological details of functional data methods. It improves
the state-of-the-art since many functional outlier methods can only detect specific kinds of
functional outliers by design or fail in more complex realistic data that are widely dispersed
or that contain multiple nonoutlying subgroups, such as the ECG data. Moreover, note
that our proposal is not limited to univariate functional data. Extending it to multivariate
functions is completely straightforward, as long as a suitable dissimilarity measure is
available to compute pairwise distances.

In this paper, most embeddings were obtained using MDS based on L2 distances.
This implies a close similarity to functional bagplots and highest-density region (HDR)
boxplots [16], which are based on the first two robust principal component scores. However,
this similarity only applies if our geometrical approach is implemented with 2D MDS
embeddings based on L2 distances. As outlined, our proposal is neither limited to the L2
metric as a distance measure nor to MDS as an embedding method or just two embedding
dimensions. Other metrics and (higher-dimensional) embedding methods can be used as
well, and our results indicate that an alternative distance measure can further improve the
performance in specific settings, sometimes considerably. In particular, even nonmetric
dissimilarity measures may be applicable as our results based on DTW distances indicate.
On the other hand, the results also show that more sophisticated embedding methods
such as ISOMAP and UMAP cannot be used as straightforwardly as MDS. Such methods,
which do not take into account the ambient space geometry by default, at least require very
careful parameter selection.

In terms of practical applicability, the O(n3) time complexity and O(n2) storage com-
plexity of standard MDS may prove problematic for large data, but generalizations such as
Landmark MDS [53], Pivot MDS [54], or multilevel MDS exploiting GPU performance [55]
scale much better with the number of available observations.

Finally, we would argue that existing functional outlier detection approaches mostly
lack the principled geometrical underpinning and conceptualization presented here. As
outlined, we argue that such a conceptualization is necessary to make functional outlier
detection tractable in full generality. Specifically, consider that existing methods typically
limit themselves to creating a 1D or 2D representation of each curve (e.g., MBD-MEI,
MO-VO, functional bagplots, HDR plots), often based on preconceived notions of the
characteristics of functional outliers. Our investigations and experiments suggested that
this is often not sufficient for real-world functional outlier detection: there is no valid reason
to limit our representations to two dimensions with modern outlier-detection methods,
and the geometrical perspective often strongly suggests otherwise in the case of complex
functional data. Even more importantly, it is much more flexible to learn maximally
informative low-dimensional representations directly from data instead of starting with
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rigid notions of which characteristics to look at and to ignore the rest. The latter is likely
to lead to results not capturing the entire (outlier) structure of a given dataset, which is
essential in real-world unsupervised settings and exploratory analyses.

Based on the theoretical considerations and the empirical results outlined above, we
conclude that the proposed approach is well suited for both the theoretical conceptual-
ization and the practical implementation of functional outlier detection. In particular, the
choice of embedding method should consider whether it is able to preserve the extrinsic
geometry of the function space, and simple MDS embeddings based on functional dis-
tances provide a very strong baseline for that. On the basis of this work, we intend to
further investigate the implications of the geometrical perspective, such as the effects other
dissimilarity measures, embedding, and outlier-detection methods, in future research. We
are also investigating the use of mass volume curves [56] for hyperparameter tuning in
functional outlier detection. Such a criterion will permit analysts to optimize the combi-
nation of the functional distance metric, embedding dimensionality, and outlier-scoring
method parameters. In the absence of quantitative criteria for optimizing these settings,
our recommendations are to (1) use the standard L2 metric as the default, which proved to
be a very strong baseline in our experiments for a wide variety of data settings and outlier
types, (2) make use of substantive knowledge about the data at hand, either from an initial
exploratory data analysis or expertise about the data-generating process, in order to choose
metrics that are sensitive to the relevant kinds of structural deviations, and (3) supplement
and verify the results with results based on alternative metrics, since our proposal has a
low computational cost for typical functional dataset sizes.
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The following abbreviations are used in this manuscript:

LOF Local outlier factor
FD(A) Functional data (analysis)
(F)PCA (Functional) principle component analysis
HDR High-density region
NHST Null hypothesis significance testing
ECG Electrocardiogram
MDS Multidimensional scaling
DTW Dynamic time warping
MS-plot Magnitude–shape plot
GOF Goodness of fit
DO Directional outlyingness
TV Total variational depth
ED Elastic depth
DGP Data-generating process
ECDF Empirical cumulative distribution function
AUC Area under the ROC curve
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MBD Modified band depth
MEI Modified epigraph index
MO Mean directional outlyingness
VO Variability of directional outlyingness

Appendix A. Formalizing Phase Variation Scenarios

Appendix A.1. Phase Variation: Case I

The manifold M = {x(t) : x(t) = θ1 ϕ(t − θ2), θ = (θ1, θ2)
′ ∈ Θ}, with ϕ(.) the

standard Gaussian pdf and Θ = [0.1, 2]× [−2, 2], defines a functional data setting with
independent amplitude and phase variation. Since there is a single manifold only, there are
no structural novelties. Figure A1, top, depicts the functional observations on the left and a
2D embedding obtained with MDS on the right. Note that all of the curves are subject to
amplitude and phase variation to a varying extent; however, there are no clearly “outlying”
or “outstanding” observations in terms of either amplitude or phase. This is reflected in
the corresponding embedding, which does not show any clearly separated observations in
the embedding space, indicating that there are no structurally different observations. The
situation in the second case of phase-varying data, however, is different.
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Figure A1. Functional data with phase variation and different levels of structural difference. Top:
scenario with no off-manifold outliers. Middle: scenario with clear off-manifold outliers. Bottom:
intermediate scenario.
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Appendix A.2. Phase Variation: Case II

The two manifoldsMc = {x(t) : x(t) = θϕ(t + 1), θ ∈ Θ} andMa = {x(t) : x(t) =
θϕ(t), θ ∈ Θ}, with Θ = [0.1, 2] describe a similar scenario as before; however, there are
two structurally different manifolds induced by the shift in the argument of ϕ. In contrast
to the first case, there are on-manifold and off-manifold outliers. Figure A1, middle, depicts
the functional observations and the corresponding embedding. Clearly, in this example, a
few (blue) curves, the ones fromMa, show a horizontal shift compared to the normal data,
and consequently, those few curves appear horizontally “outlying”. Within the main data
manifold, only on-manifold outliers in terms of amplitude exist. These aspects are reflected
in the corresponding embedding: the low-dimensional representations of the blue curves
are clearly separated from those of the main data in grey.

Of course, such clear settings—in particular, phase-varying functional data with
fixed and distinct phase parameters—will seldom be observed in practice. A more
realistic example is given by Mc = {x(t) : x(t) = θ1 ϕ(t − θ2), (θ1, θ2)

′ ∈ Θc} and
Ma = {x(t) : x(t) = θ1 ϕ(t − θ2), (θ1, θ2)

′ ∈ Θa}, with Θc = [0.1, 2] × [−1.3,−0.7] and
Θa = [0.1, 2]× [−0.5, 0.1]. Here, we have again two structurally different manifolds. This
is more realistic, since the “phase parameters” θ2 are not fixed, but are subject to random
fluctuations. In addition, the structural difference induced by the phase parameters is
much smaller. Considering Figure A1, bottom, again, this is reflected in the embedding:
there are two separable structures; however, the differences are not as clear as in the second
example above.

The three examples together show that the less similar the processes are and/or the
less variability there is within the phase parameters defining the manifolds, the clearer
structural differences induced by horizontal variation become visible in the embeddings.

Appendix B. Sensitivity Analysis

The differences in complexity among the ECG and the other four real datasets become
apparent in Figure A2 as well, which shows how the goodness of fit (GOF) of the embed-
dings is affected by their dimensionality. For the L2 metric, a goodness of fit over 0.9 is
achieved with two to three embedding dimensions for the less complex datasets. Moreover,
all of them reach a saturation point at five dimensions. This is in contrast to the ECG data,
where the first five embedding dimensions lead to a goodness of fit of 0.8. Moreover, the
ranking induced by LOF scores is very robust to the number of embedding dimensions. As
Table A1 shows, the rank correlations between LOF scores based on five and LOF scores
based on twenty embedding dimensions are very high for all datasets.

Table A1. Spearman correlation between LOF scores based on embeddings of different dimensionality
for the 5 considered real datasets and metrics L0.5, L1, ..., L10, and unnormalized L1-Wasserstein.
MDS embeddings with 5 dimensions are compared to embeddings with 2 (2 vs. 5) and 20 (5 vs.
20) dimensions.

L0.5 L1 L2 L3 L4 L5

2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20

ECG 0.96 0.97 0.98 0.97 0.97 0.99 0.94 0.99 0.94 0.98 0.90 0.97
Octane 0.94 0.99 0.96 0.98 0.97 0.99 0.98 0.99 0.98 0.99 0.96 0.98
Weather 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Tecator 0.97 0.99 0.96 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00
Wine 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00

L6 L7 L8 L9 L10 Wasserstein

2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20 2 vs. 5 5 vs. 20

ECG 0.89 0.96 0.87 0.96 0.86 0.95 0.86 0.95 0.85 0.94 0.98 0.97
Octane 0.96 0.98 0.95 0.99 0.96 0.98 0.94 0.97 0.94 0.97 0.95 0.96
Weather 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00
Tecator 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.96 0.99
Wine 0.99 1.00 0.98 1.00 0.98 1.00 0.98 0.99 0.98 0.99 0.99 1.00
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Figure A2. Goodness of fit (GOF) of different embedding dimensions for the five considered real
datasets and L0.5, L1, ..., L10, and unnormalized L1-Wasserstein metrics.

Appendix C. Quantitative Results on the fdaoutlier Package DGPs

The simulation models presented by Ojo et al. [25] cover different outlier scenarios:
vertical shifts (Model 1), isolated outliers (Model 2), partial magnitude outliers (Model 3),
phase outliers (Model 4), various kinds of shape outliers (Models 5–8), and amplitude
outliers (Model 9). A detailed description can be found in the vignette (https://cran.r-
project.org/web/packages/fdaoutlier/vignettes/simulation_models.html, accessed on 15
November 2021) accompanying their R package. In the following, the proposed geometrical
approach is compared to directional outlyingness (DO) and total variational depth (TV)
using the AUC as a performance measure.

As Figure A3 shows, (almost) perfect performance is achieved by at least two methods
for Models 1, 3, 4, 8, and 9; DO shows almost perfect performance for all models except
Model 1. For Models 2, 5, 6, and 7, the methods based on the geometric approaches do not
perform equally well (as does TV). However, as outlined in Section 3.3, perfect performance
can be achieved for Model 2 by using L10 distances instead of L2 distances.

Furthermore, for Models 5, 6, and 7, it has to be taken into account that the AUC
values only reflect the detection of “true outliers”, which can now—given the geometric
perspective—be specified more precisely as off-manifold outliers (observations fromMa).
However, this does not take into account possible on-manifold outliers. Due to their
distributional nature, by chance, some on-manifold outliers (observations onMa) can be
“more outlying” than some of the off-manifold outliers and thus correctly obtain higher
LOF scores. However, such cases are not correctly reflected in the performance assessment
approach, as—in contrast to off-manifold outliers—such on-manifold outliers are not
labeled as “true outliers”. The observed lower performance in terms of the AUC thus
can simply mean that there are on-manifold outliers obtaining relatively high LOF scores.
In particular, this also does not imply that off-manifold outliers fail to be separated in a
subspace of the embedding, as will be outlined in Appendix E in more detail, nor that
perfect AUC performance cannot be obtained via the geometric approaches for these
settings. If the geometric approach is applied to the derivatives instead (depicted in

https://cran.r-project.org/web/packages/fdaoutlier/vignettes/simulation_models.html
https://cran.r-project.org/web/packages/fdaoutlier/vignettes/simulation_models.html
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Figure A3 as “deriv”), almost perfect performances can be achieved. Obviously, functions
of the same shape (i.e., all observations fromMc) are very similar on the level of derivatives
regardless of how strongly dispersed they are in terms of vertical shift.
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Figure A3. Distribution of the AUC over the 500 replications for the different outlier-detection
methods, simulation models (Mod) from the package fdaoutier, and outlier ratios r.

Appendix D. Visualization Methods: roahd::outliergram, fdaoutlier::msplot,
Translation–Phase–Amplitude Boxplots, Elastic Depth Boxplots, and HDR Boxplots

Figure A4 shows the results for the synthetic data example of Figure 4 with ten true
outliers, where the MS plot yields six false positives and only three true positives, while
the Outliergram fails to detect even a single outlier. The elastic depth boxplots labels
twenty-six observations as outliers, only two of which are among the shifted observations.
Moreover, note that observations labeled phase outliers are also labeled amplitude outliers
at the same time. In contrast, the translation–phase–amplitude boxplots correctly detect
the 10 shifted observations as translation outliers; however, 15 other observations are also
labeled outliers. Note that some observations obtain multiple labels, for example, all phase
outliers are also labeled as amplitude outliers. The HDR boxplots yield six false positives
and no true positive (see Figure A13). In summary, neither of the methods are capable
of correctly capturing the outlier structure of this dataset, in contrast to the proposed
geometrical approach.

Figure A5 shows results for the MBD-MEI “Outliergram” by Aribas-Gil and Romo [41]
(implementation: [42]) for shape outlier detection, and the magnitude–shape plot method of
Dai and Genton [34] for the example datasets shown in Figures 5 and 8. Figures A6 and A7
show the results for the translation–phase–amplitude boxplots by Xie et al. [15] and the
elastic depth boxplot for shape outlier detection by Harris et al. [9] for these datasets.
Finally, Figures A8–A13 show the results of the HDR boxplots by Hyndman and Shang [16]
(implementation: [43]). For a detailed discussion, see Section 3.1.
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Figure A4. First column of first two rows: data with true outliers in blue; subsequent columns: data
with detected outliers in color. First row: magnitude–shape plot of mean directional outlyingness
(MO) versus variability of directional outlyingness (VO) and outliergram of the modified epigraph
index (MEI) versus modified band depth (MBD) with the inlier region in grey. Second row: Elastic
depth boxplots. Third row: translation–phase–amplitude boxplots. For the results of the HDR
boxplots on the data, see Figure A8.
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Figure A5. Left column: data; middle column: magnitude–shape plots of mean directional out-
lyingness (MO) versus variability of directional outlyingness (VO); right column: outliergram of
the modified epigraph index (MEI) versus modified band depth (MBD) with the inlier region in
grey. Curves and points are colored according to outlier status as diagnosed by fdaoutlier::msplot
and/or roahd::outliergram.
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Figure A6. First column: data; second column: translation boxplots of average curve heights;
third and fourth column: amplitude, respectively phase boxplots with the maximum and minimum
extreme curves (Max, Min), the first and third quartile curves (Q1 and Q3), and the 0.05- and
0.95-quantile curves (Q1a, Q3a). Curves in the first column colored according to the outlier status
by translational outlyingness, amplitude outlyingness, and phase outlyingness (the latter two as
diagnosed by fdasrvf::AmplitudeBoxplot and fdasrvf::AmplitudeBoxplot). Note, for the Wine
data, it was not possible to compute the phase boxplot.
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Figure A7. Left column: data; right column: elastic depth boxplots for amplitude and phase
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umn: bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability
of 0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.



Stats 2021, 4 1001

−2

0

2

4

t

x(
t) Inlier

Outlier

ECG

0 20 40 60 80

−2
0

2
4

t

x(
t)

Functional HDR boxplot

−8 −6 −4 −2 0 2 4 6

−5
0

5

PC score 1

PC
 s

co
re

 2
Bivariate HDR boxplot

Figure A9. Upper row: ECG data. Lower row, left column: functional HDR boxplot; right column:
bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability of
0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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Figure A10. Upper row: Octane data. Lower row, left column: functional HDR boxplot; right column:
bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability of
0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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Figure A11. Upper row: Spanish weather data. Lower row, left column: functional HDR box-
plot; right column: bivariate HDR boxplot. Colored curves/points are outliers according to
a coverage probability of 0.05 for the functional HDR boxplot. HDR boxplots computed with
rainbow::fboxplot.
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Figure A12. Upper row: Tecator data. Lower row, left column: functional HDR boxplot; right column:
bivariate HDR boxplot. Colored curves/points are outliers according to a coverage probability of
0.05 for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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Figure A13. Upper row: Wine data. Lower row, left column: functional HDR boxplot; right column:
bivariate HDR boxplot. Colored curves/points are outliers according a coverage probability of 0.05
for the functional HDR boxplot. HDR boxplots computed with rainbow::fboxplot.
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Appendix E. In-Depth Analysis of Simulation Model 7

The analysis of the ECG data in Section 3.1 showed that embeddings can reveal
much more (outlier) structure than can be represented by scores and labels. To illustrate
the effects described in Appendix C, we conducted a similar qualitative analysis for an
example dataset with observations sampled from Simulation Model 7; see Figure A14.
The dataset consisted of 100 observations with 10 off-manifold or—in more informal
terms: “true”—outliers. The functions were evaluated on 50 grid points. The analysis
showed that a quantitative performance assessment alone may yield misleading results and
again emphasizes the practical value of the geometric perspective and low-dimensional
embeddings.
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Figure A14. Model 7 data: scatterplot matrix of all 5 MDS embedding dimensions and curves; lighter
colors for higher LOF score of 5D embeddings. True outliers depicted as triangles. Note that the true
outliers are clearly separated from the rest of the data in embedding subspace 3 vs. 4.

First of all, note that the AUC computed for this specific dataset was 0.9, thus close to
the median AUC value for LOF applied to MDS embeddings of Model 7 data, as depicted in
Figure A3. Nevertheless, the “true outliers” are clearly separable in a 5D MDS embedding.
As Figure A14 shows, they are clearly separable in the subspace spanned by the third and
fourth embedding dimension. Note, moreover, that there is an outlying observation with
an extreme shift, which also obtains a high LOF score. This observation is not labeled as
a “true outlier”, as it stems fromMc. This example shows that evaluation approaches
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for outlier detection methods that are based on “true outliers” may not always reflect the
outlier structure adequately and may result in misleading conclusions. However, those
approaches are frequently used to compare and assess different outlier-detection methods.
Again, this illustrates the additional value low-dimensional embeddings have for outlier
detection as such aspects become accessible.

Finally, note that the DO/MS-plots are not sensitive to vertical shift outliers as the
extreme shift outlier is neither scored high based on DO nor labeled as an outlier based on
the MS-plot; see Figure A15.
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Figure A15. Model 7 data: the LOF on MDS embeddings in contrast to directional outlyingness.



Stats 2021, 4 1008

Appendix F. Examples of the DGPs Used for the Quantitative Evaluation

Depicted in Figure A16 are two example datasets for each of the data-generating
processes (DGPs) used in Section 3.2 for the comparison of the different outlier-detection methods.
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Figure A16. Example datasets for the DGPs used in the simulation study (2 each). Inliers in black;
outliers in red. Outlier ratio 0.1; n = 100.
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Appendix G. ArrowHead Data

Depicted in Figure A17 are the ArrowHead data used in Section 3.3.
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Figure A17. ArrowHead data. Top: the complete dataset. Middle and bottom: two example outlier
datasets. Inliers from class “Avonlea” in black; outliers sampled from classes "Clovis” and “Mix” in
red. Outlier ratio 0.1.
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