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Abstract

In low- and middle-income countries, nationally representative household surveys
such as the Demographic and Health Surveys provide a wealth of primary data on health,
nutrition, and socio-economic outcomes. For epidemiological studies, the survey data is
often drawn upon to identify health risk factors, both at the individual and geographi-
cal levels. In practice, the functional form of the risk factors is not known beforehand.
For instance, an effect could be linear or non-linear, if included at all. Furthermore, the
increased availability of remotely sensed data provides a new data source that can be in-
tegrated into the analyses of health conditions but is not necessarily informative. The
increased dimensionality of such analyses demands methods of variable selection and
model choice, both to remain interpretable and generalise well to future observations.
In this thesis, I employ component-wise boosting to identify risk factors of two preva-
lent health conditions in sub-Saharan Africa. The approach is applied in two case studies,
where risk factors of individual-level outcomes of chronic childhood malnutrition and en-
vironmental correlates of the geographic prevalence of malaria are modelled. The flexible
estimation of linear, non-linear and spatial effects is found to be central in the under-
standing of both outcomes, even improving on other non-parametric models in terms of
predictive capacity. When estimating malaria risk, component-wise boosting allows for
response distributions that account for excess variability at the cluster level while being
superior in interpretability compared to competing approaches proposed in the literature
on predictive disease mapping.
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The idea is to go from numbers to information to understanding.
—Hans Rosling
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1 Introduction

The identification of health risk factors is central to the epidemiological understanding of dis-
ease burdens. Especially in developing countries, epidemiologists and public health researchers
rely on data collected through household surveys to study risk factors of common diseases.
Risk factors, or determinants, are variables that are associated with an increased risk, and
protective factors with a decreased risk of the disease. Ideally, the findings of such research
designs can inform public health policies and interventions aimed at reducing health risks in
vulnerable populations. When studying multiple risk factors that are potentially related to the
health condition studied, it is often not clear whether a variable shows a linear or non-linear
effect, or if it should be included at all in the statistical model. Intrinsic model selection ap-
proaches provide an integrated approach to his modelling issue, allowing for variable selection
and model choice of a set of possible factors.

Based on data from the DHS surveys, the objective is to identify background characteris-
tics that are potentially predictive of the risk of two of the most prevalent health impairments
of sub-Saharan Africa (SSA). In this manuscript, I showcase an approach from the intersection
of statistical and machine learning thinking. To identify risk factors, I use component-wise
boosting, which allows for intrinsic variable choice and model selection in complex additive
models. Specifically, for a set of possible covariate effects, the model can identify relevant lin-
ear, non-linear or spatial effects. Also, the framework is versatile in the modelling of many
statistical tasks, such as survival, quantile or cost-sensitive regression and can easily be ex-
tended to situations where joint outcomes are of interest.

Recent contributions to the literature have explored whether the nonparametric methods
from the machine learning field can be adapted to such tasks. These approaches have shown
great generalisation performance in a variety of applied settings. For instance, when mapping
indicators such as disease prevalence, predictive performance is often desired. Moreover, such
approaches tend to scale well in higher dimensional data settings. Yet, such approaches present
other drawbacks, most notably that the inner structure can be considered a ’black box’ and
inference on model parameters is difficult. In two applications, I show that the component-wise
boosting framework promises competitive performance compared to boosted trees, which are
often used as the default and that the inclusion of non-linear and spatial effects underscores the
necessity to consider a broader range of effect types. For malaria risk prediction, I contrast the
approach to previous literature in the outcome prediction and variable selection, showing that
the component-wise boosting approach proposed herein compares favourably to the modelling
decisions and statistical methods provided therein.

For both analyses, I draw from household survey data collected by the Demographic and
Health Survey Program (DHS). Nationally representative household surveys, such as the DHS
from ICF International and UNICEF’s Multiple Cluster Indicator Surveys (MICS) collect and
disseminate data on important population health and socio-demographic characteristics such
as nutrition, malaria, childhood mortality and family planning. The target population are gen-
erally women of reproductive age (15-49) with additional information collected for children
under five years. In many low- and middle-income countries (LMICs) such surveys often rep-
resent the only source of accurate and reliable data in otherwise data-scarce settings, providing
a wealth of primary data for research topics ranging from public health and epidemiology to
demography and economics.

Recent years have seen a renewed interest in the statistical modelling of socio-economic
and health indicators, in particular in developing countries, to monitor progress for the Sus-
tainable Development Goals (SDGs) and provide guidance on evidence-based public interven-
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tions.1 This has motivated a large body of literature, chiefly in the area of national and sub-
national estimation of health and development indicators. Since much information in LMICs
stems from household survey data, many of the analyses are based on the modelling of the
individual or aggregated survey responses.

For the remainder of the introduction, I provide a selective review of this literature and
highlight different strains of research. After a brief review of component-wise boosting I in-
troduce the two case studies that motivated the assessment of component-wise boosting in the
context of identifying health risk factors from household survey data.

Monitoring sustainable development

Data from household surveys underlay much of the current knowledge on maternal and child
mortality, fertility and nutrition in low- and middle-income countries and is therefore central to
the development of appropriate statistical tools. To understand and model changes and trends
in population health statistics, Bayesian hierarchical models are often the approach of choice.
In settings where data sparsity is common, and data points exhibit known measurement error
– such as in aggregate statistics from survey data – these models allow smooth and stable esti-
mates across space and time. On the national level, child and maternal mortality statistics are
arguably one of the most widely followed health indicators for developing countries. Alkema
and New (2014) propose a model for child mortality, Alexander and Alkema (2018) and Wang
et al. (2022) for the neonatal mortality and stillbirth rate, respectively. A model for educational
attainment by school completion rates is proposed in Dharamshi et al. (2022).

Household surveys include questionnaires on a wide array of individual topics, allowing
one to study life or health patterns jointly. For example, Wade et al. (2022) discuss a multivariate
regression approach to study life patterns jointly, for continuous, categorical and censored
variables. Hohberg et al. (2021) provide a study of multidimensional poverty in Indonesia
by modelling income and education with copulas. Furthermore, household surveys provide
one very common type of survey data, to collect data on specific population characteristics,
different types exist. For marked presence-only data of vulnerable populations in Malawi, Laga,
Niu, and Bao (2022) provide a model-based approach to estimate the total population size.

Subnational indicators and small area estimation (SAE)

For policy research and formulation, it is often desirable to obtain estimates at subnational
levels, as policies generally are implemented at administrative levels one or two below the
national level. For child mortality, Mercer et al. (2015) propose a model for the admin 1 level.
Subsequently extended to admin 2 (Wakefield et al. 2019) and to include census collected data
(Godwin and Wakefield 2021). Dong and Wakefield (2021b) introduce a model to disaggregate
immunisation coverage from routine services and supplementary vaccination campaigns to
inform the latter. The subnational coverage of Measles-containing-vaccine first-dose (MCV1)
immunisation off of household surveys is an extension of the space-time smoothing approach
proposed in Mercer et al. (2015).

1. In the 2030 Agenda for Sustainable Development, the General Assembly of the United Nations laid out the
17 Sustainable Development Goals (SDGs), a framework to globally mobilise efforts to eradicate poverty and foster
economic, social and environmental development. Specifically, the resolution calls for a systematic review of the
implementation, stating ”[t]hey will be rigorous and based on evidence, informed by country-led evaluations and
data which is high-quality, accessible, timely, reliable and disaggregated by income, sex, age, race, ethnicity, mi-
gration status, disability and geographic location and other characteristics relevant in national contexts” (United
Nations 2015, p. 32).
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Admin 1 is feasible as household survey data most often allow for design-based estimates
one level below the national level. For one administrative level below, admin 2, this is often not
attainable. Here, model-based geo-statistical approaches are widely used to obtain geographi-
cally fine-scaled predictions at the grid-cell level. See Giorgi and Diggle (2021) and Diggle and
Giorgi (2016) for a comprehensive introduction to the topic. This is in line with the push for
’precision public health’, the (geographic) targeting of small populations with specific health
interventions (Dowell, Blazes, and Desmond-Hellmann 2016; Desmond-Hellmann 2016). For
country mappings of metrics such as vaccine coverage, this has led to a sheer explosion of
research designs. But many statistical approaches did not appropriately account for the com-
plex survey design of the survey data. Dong and Wakefield (2021a) provide recommendations
and I further discuss those in light of the second case study in section 5. Briefly, geographic
mapping of health indicators can be categorised in either design-based or model-based ap-
proaches. The former provides estimates for sub-regions based on the survey design, while the
model-based approach informs estimates with additional covariates and often spatial effects to
borrow information from nearby observations. In general, design-based estimates of popula-
tion statistics should be preferred since those are compliant with the complex survey design.
But, DHS surveys are most often only designed to provide estimates at admin 1, the design-
based approach may not be applicable for admin 2 because of data sparsity. See Fuglstad, Li,
and Wakefield (2022) for an in-depth discussion of this topic and Paige et al. (2022), where
different approaches are evaluated on simulated surveys.

The aforementioned literature on (model-based) approaches to estimate local health con-
ditions requires a selection of explanatory variables that are included. Especially when a large
number of possible covariates are available, derived for example from survey answers or re-
motely sensed covariates for ecological correlates, one often aims for a sparse model which
includes only the most relevant variables. Furthermore, beyond variable selection, it might
be desirable to identify whether a continuous covariate has a linear or non-linear effect and
whether a varying coefficient term or spatially varying terms is appropriate. The framework
of component-wise boosting allows for intrinsic variable choice and model selection. Note,
however, that the framework is not intended to uncover causal relationships.

Component-wise boosting and competing approaches

Boosting originated in the machine learning literature as a method for classification tasks (Fre-
und and Schapire 1996), has since been extended to other contexts and widely adopted due to
its superior performance in many real-world applications (Chen and Guestrin 2016). Friedman,
Hastie, and Tibshirani (2000) and Friedman (2001) described boosting in terms of functional
gradient descent, connecting the method to the more conventional statistical framework of
maximum likelihood estimation. Briefly put, a weak learner – or base learner – is fitted iter-
atively to the negative gradient of a pre-specified loss function and the estimated learner is
added to the additive predictor. In practice, the weak learner is often chosen to be a shallow
tree. But the approach can also be model-based, with a (penalised) least squares regression
used as weak learner (Bühlmann and Yu 2003). If those are fit component-wise, only the best-
fitting learner is selected in each iteration. This, if some learners are never selected, yields an
intrinsic selection of included learners.

Thus, by carefully selecting the set of possible learners, complex models can be fitted for a
variety of response distributions with data-driven variable selection. Since a semi-parametric
model is obtained as a result, this approach can also be viewed through an interpretable ma-
chine learning lens. I discuss component-wise boosting in section 3.

Alternatively, intrinsic effect selection for generalised additive models can be accomplished
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Country Type Year Fieldwork

Madagascar Standard DHS 2021 March 2021 - July 2021
Mali Malaria Indicator Survey 2021 September 2021 - November 2021

Table 1: Selected surveys for the two case studies.

in a Bayesian framework with spike-and-slab priors, see Scheipl, Fahrmeir, and Kneib (2012)
and Klein et al. (2021) for more information. While providing the benefit of straightforward un-
certainty quantification, such approaches tend to not scale well in moderate to high-dimensional
settings.

Case studies

I present two case studies that resemble typical research designs. In both case studies, variable
selection and model choice is of particular interest. First, individual-level risk factors of chronic
malnutrition as indicated by low height-for-age for children under five years. I use data from
the Madagascar 2021 Standard DHS. Second, the identification of environmental and climatic
predictors of cluster-level malaria prevalence, as tested with Rapid Diagnostic Tests (RDTs) in
Mali. I use data from the Mali 2021 Malaria Indicator Survey (MIS). Table 1 shows the surveys
selected for the two case studies.

Both topics have been treated extensively in the literature, mapping risk most often with a
Bayesian model-based geo-statistical approach.2 In this manuscript, I employ the component-
wise boosting approach, which has been proven useful in similar studies (Fenske, Kneib, and
Hothorn 2011; Torres Munguı́a and Martı́nez-Zarzoso 2021). For mapping geographic malaria
risk, in particular, one is especially interested in the predictive accuracy of the model, as such
risk maps can be used to inform local public health interventions and elimination campaigns.
Malaria transmission risk is highly dependent on environmental and climatic factors, hence it
is convenient to use remotely sensed covariates to inform local estimates. To improve predic-
tion accuracy, Bhatt et al. (2017) propose a stacked ensemble approach with multiple common
statistical and machine learning approaches embedded in a geo-statistical regression. How-
ever, the authors rely on ad-hoc transformations to adopt the cluster-level count data to com-
mon statistical software packages. The component-wise boosting discussed herein, where the
model choice of smooth and spatial effects is intrinsic, I argue, achieves similar performance
while accommodating the binomial nature of the survey data.

The remainder of the manuscript is structured as follows. In section 2, I provide an overview
of survey data from the DHS and discuss the survey design commonly used in such surveys.
In section 3, I discuss component-wise boosting and different resampling strategies for hyper-
parameter selection. The two case studies introduced above are discussed in section 4 and
section 5. Finally, in section 6, I discuss the findings and offer thoughts on future research.

2 Demographic and Health Surveys

The Demographic and Health Surveys (DHS) are nationally representative household surveys
in developing countries. To date, more than 400 surveys in over 90 countries were conducted

2. See, for example, Aheto et al. (2017), Kinyoki et al. (2020), Egbon, Belachew, and Bogoni (2022), and Uwiringiy-
imana et al. (2022) for childhood malnutrition. Diggle et al. (2002) provides an early application of model-based
geo-statistics to malaria prevalence, see Weiss et al. (2019), Ejigu (2020), and Nzabakiriraho and Gayawan (2021)
for more recent discussions.
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with the assistance of the DHS program. For low- and middle-income countries surveys are
organised in 3 to 5-year intervals and data on a broad range of health and socio-economic
outcomes are surveyed. In particular, the surveys collect information on demographic char-
acteristics such as fertility and mortality, health outcomes such as reproductive health and
nutrition, and economic indicators. While some components of the survey vary depending on
the need of the particular country, the components themselves are standardised and allow for
comparisons across time and countries. This consistency is one of the key reasons data that
DHS data is ubiquitous in many research designs.3 See, for example, Corsi et al. (2012) for a
profile of DHS data in epidemiology. For research purposes, the micro-data from the surveys
is available upon request from the corresponding website.4

Though the following discussion is centred around the DHS, much of it applies to the Mul-
tiple Cluster Indicator Surveys (MICS) done by UNICEF, since those follow similar survey de-
signs (Khan and Hancioglu 2019). To achieve valid estimates of population-level indicators, the
DHS surveys usually employ a two-stage cluster sampling approach, which will be described
next.

2.1 Survey sample design

The target population of the survey are women aged 15-49 and children below the age of five in
residential households. Often men (or a random subsample of men) aged 15-59 are interviewed
too. To obtain a probability sample from the population, a DHS survey generally employs a
two-stage cluster sampling design. In the first stage, primary sampling units (PSUs), also called
clusters, are drawn from a pre-specified sampling frame. This is most often a recent popula-
tion census, where the census enumeration areas (EAs) are the units drawn with probability
proportional to size (PPS). If no recent population census is available, sampling frames can be
adapted from alternative sources such as remotely sensed night-time light intensity imagery.
To pre-select households in each chosen cluster, a complete enumeration of households is done.
In the second stage, a fixed number of households are drawn randomly from the enumerated
households and selected for the survey (ICF International 2012).

Additionally, DHS surveys are commonly stratified by design domains to improve the pre-
cision of the estimates for sub-populations. DHS surveys are generally stratified by adminis-
trative regions crossed with urbanicity, that is, urban or rural populations. Some strata may
account for a very low share of the population and, as a consequence, survey estimates are
not sufficiently precise. Therefore, in some DHS surveys, some strata are oversampled. In ev-
ery survey, each sampled individual is assigned a survey weight, which loosely quantifies the
relative number of individuals the observed individual represents. In the DHS surveys, this is
generally computed as the product of the inverse sampling probabilities at each stage, adjusted
for non-response patterns. Due to privacy concerns, only the weight is disclosed and not the
individual sampling probabilities.

2.2 Design-based estimates

To estimate population-level totals or means from survey data with a complex sampling de-
sign, it is imperative to use the provided survey weights to account for the complex sur-

3. Even if administrative data is available, household survey data may provide an unbiased assessment of pop-
ulation indicators. See, for example, Sandefur and Glassman (2015). The authors compare vaccination coverage
and school enrolment rates from administrative and DHS data. The authors find significant discrepancies in the
reported statistics and argue that this misrepresentation is not merely due to the lack of analytical capacity, but to
weak state capacity and incentive structures of donors in highly aid-dependent countries.

4. See https://dhsprogram.com.
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vey design. The estimate of the country-level prevalence of an indicator can be obtained
with the Horvitz–Thompson (HT) estimator (Horvitz and Thompson 1952). For instance, let
i = 1, . . . , N index the sampled children and wi designate the survey weight of children i.
Then,

p̂ =

∑N
i=1wiyi∑N
i=1wi

where yi is a 0/1 indicator for child i, indicating the absence or presence of the condition
under study. Furthermore, one can obtain design-based estimates of the variance for p̂. The
design-based estimates can be computed with the survey package (Lumley 2004).

3 Methodology

In this section, I discuss component-wise gradient boosting for (distributional) regression.
Boosting can be seen as a general framework with specialised extensions for different tasks.
Originally proposed in Friedman, Hastie, and Tibshirani (2000) and Bühlmann and Yu (2003),
functional gradient boosting can be understood as an optimisation method to fit Generalised
Additive Models (GAMs) (Hastie and Tibshirani 1986; Wood 2017). A comprehensive treatment
can be found in Bühlmann and Hothorn (2007).5

3.1 Component-wise boosting

Let (yi,xi), i = 1, . . . , N be observations where y is the response variable and x a vector of
explanatory covariates. In a structured additive regression framework, the mean outcome is
modelled through an additive predictor η(x) with an inverse link function h. Then,

E(y|x) = h(η(x))

η(x) = β0 +
J∑

j=1

fj(x).

In particular, the additive predictor can include components fj that account for linear and
smooth effects, varying coefficient terms or spatial effects. The components are derived from a
pre-selected set of base learners. These are commonly simple models such as linear regression
or penalized splines with a pre-specified low degree of freedom. I provide an overview below.
For a suitable loss function ρ, boosting seeks to estimate the function η through functional
gradient descent. The corresponding optimisation problem is defined as

argmin
η

= E(ρ(y, η)).

The loss function is frequently chosen to be (y− η)2 for (mean) regression or the negative
log-likelihood in more general cases. For example, we will use the negative binomial log-
likelihood for logistic regression in one of the case studies below. To implement the approach
in practice, the expectation is replaced by the empirical risk,

R = n−1
n∑

i=1

ρ(yi, η).

5. See also Coors et al. (2021) for component-wise boosting in an interpretable automated machine learning
framework.
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Algorithm 1: Component-wise boosting (Bühlmann and Hothorn 2007).
Data: (yi,xi), i = 1, . . . , N.
Setup: Let B = {b1 . . . , bL} be the pre-specified set of base learners.

Step 1: Set m = 1. Initialise η̂[0], a common option is to set

η̂[0] = argmin
c

N∑
i=1

ρ(yi, c).

Step 2: Compute the negative functional gradient

ui = − ∂

∂η
ρ(yi, η)

∣∣∣∣
η=η[m−1](xi)

, i = 1, . . . , N

and fit each of the base learner bl for l = 1, . . . , L to the current value.

Step 3: Select the best fitting base learner l∗, i.e., the base learner which minimises the residual
sum of squares:

l∗ = argmin
l

n∑
i=1

(
ui − b̂l(xi)

)2
.

Step 4: Update the estimate of the additive predictor by the selected base learner bl∗ ,

η̂[m] = η̂[m−1] + νb̂l∗ .

The step-length ν induces shrinkage and is commonly fixed at a small value, typically
ν = 0.1 or ν = 0.01. Increase m by 1.

Step 5: Repeat steps 2 - 4 until m > mstop.

After initialisation of the additive predictor η̂ and the pre-specification of the set of base
learners, boosting iteratively evaluates the negative gradient of the loss function at the pre-
dicted values of the previous iteration. Each base learner is then separately fitted to the nega-
tive gradient, hence the name component-wise. In each iteration, only the best-fitting learner
is multiplied with a shrinkage parameter and added to the additive predictor. This procedure
is reiterated until the number of maximum boosting iterations is reached. The details of the
algorithm are provided in algorithm 1.

If left to run until convergence, the algorithm will recover the maximum likelihood esti-
mates of each base learner. However, this may result in suboptimal generalisation performance.
The model is said to over-fit the data and the capacity of the model to predict unseen data is
reduced. Therefore, selecting an optimal value of boosting iterations mstop for the expected
generalisation performance is crucial. In practice, the algorithm is left to run a high number
of iterations T , then pruned to an earlier iteration mstop < T , where the resampled risk is
minimised. I discuss common resampling methods in subsection 3.3.

Note, by selecting exactly one base learner to be added to the model in each iteration (Step
3), the selection of components into the model is implicit. If one base learner is never selected,
the partial contribution is estimated to be zero and the component is effectively excluded from
the model. By specifying univariate components and decomposing non-linear effects into their
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linear and non-linear deviation, variable selection and model choice is intrinsic. I expand on
this further in subsection 3.2.

Given the regularised estimates of coefficients and the variable selection properties of the
algorithm, it is difficult to obtain inferences for model parameters similar to a conventional
regression framework. Hofner, Kneib, and Hothorn (2016) propose the construction of con-
fidence intervals by refitting the model to bootstrap samples of the original data set. Sub-
sampling replications achieve a similar objective. Alternatively, stability selection provides
finite sample control on the expected number of falsely selected variables. (Meinshausen and
Bühlmann 2010; Shah and Samworth 2013). See also Hofner, Boccuto, and Göker (2015) for a
discussion in the context of boosting. In practice, the approach tends to be very conservative,
as noted in the simulations in Hofner, Boccuto, and Göker (2015) and Thomas et al. (2017).

The boosting approach as formulated optimisation problem allows for a very flexible im-
plementation of many regression settings. Besides the general case described above, the setup
allows for quantile regression (Fenske, Kneib, and Hothorn 2011), survival analysis (Bühlmann
and Hothorn 2007), and cost-sensitive boosting (Kriegler and Berk 2010). Furthermore, com-
plex joint likelihoods can be modelled, see Strömer, Klein, et al. (2022) for multivariate distri-
butions, Hans et al. (2022) for copulas, and Griesbach, Groll, and Bergherr (2021) for boosting
longitudinal and survival data jointly. I describe one particular extension next, boosting dis-
tributional regression models.

Boosting distributional regression

In some settings, it may be more informative to model the response distribution of interest
beyond the mean. This is commonly referred to as distributional regression.6 The algorithm
described above can be extended to fit distributional models, as described next. In distributional
regression, each parameter of the response distribution can be modelled separately, thereby al-
lowing inference not only on the mean but also on other properties of the response distribution.
Let

fdens(y|µ, σ, ν, τ)

be the density of interest. The parameters µ, σ, ν, τ are commonly referred to as location,
scale, shape and kurtosis, respectively. For brevity, I denote the possible parameters of the
distribution in a vector θ = (θ1, θ2, θ3, θ4). For each, a structured additive predictor ηk and an
appropriate, fixed inverse link function hk is defined:

θk = hk(ηk
(x))

ηk(x) = β0k +

Jk∑
j=1

fjk(x), k = 1, . . . , 4.

Analogously to the non-distributional case before, the loss function ρ is set as the negative
log-likelihood and the optimisation problem can be defined as

argmin
η

E(ρ(y, η))

where η = (ηθ1 , ηθ2 , ηθ3 , ηθ4) is the vector of the additive predictors. Mayr et al. (2012) first

6. Rigby and Stasinopoulos (2005) and Klein et al. (2015) provide a frequentist and Bayesian treatment, respec-
tively. Distributional regression has also received ample interest from the machine learning field, as it can be used
to quantify prediction uncertainty. See Duan et al. (2020) for boosting score functions and Schlosser et al. (2019),
who propose distributional forests as an extension to random forests in a distributional setting.
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Algorithm 2: Non-cyclical component-wise boosting (Thomas et al. 2018).
Data: (yi,xi), i = 1, . . . , N.
Setup: Let Bk = {bk1 . . . , bkL} for k = 1, . . . , 4 be the pre-specified set of base

learners.
Step 1: Set m = 1. Initialise η̂

[0]
θk

, a common option is to set

η̂
[0]
θk

= argmin
c

N∑
i=1

ρ(yi, c).

Step 2: For each k = 1, . . . , 4, do:

1. Compute the negative functional gradient

uki =
1

∂ηθk
ρ(y, η)

∣∣∣∣
η=η̂[m−1](xi)

, i = 1, . . . , N.

and fit each of the base learner bkl, l = 1, . . . , L to the current value.
2. Select the best fitting base learner l∗ by the inner loss:

l∗ = argmin
l

N∑
i=1

(
uki − b̂kl(xi)

)2

3. Calculate the change in the outer loss

∆ρk =

N∑
i=1

ρ
(
yi, η̂

[m−1]
θk

(xi) + νĥkl∗(xi)
)

Step 3: Select the parameter that results in the lowest risk:

k∗ = argmin
k

(∆ρk).

Step 4: Update the additive predictor for the parameter where the largest loss reduction was
achieved with the best fitting learner for this parameter:

η̂
[m]
θk∗

= η̂
[m−1]
θk∗

+ ν ĥk∗l∗ .

The hyper-parameter ν induces shrinkage and is commonly fixed at a small value,
typically ν = 0.1 or ν = 0.01. Increase m by 1.

Step 5: Repeat steps 2 - 4 until m > mstop.

proposed a cyclical approach to estimation, where the parameters are updated consecutively,
each conditioning on the previous iterations up to the current state for each parameter. The
following non-cyclical approach was proposed in Thomas et al. (2018) and in each iteration,
both the base learner and the parameter of the distribution are selected jointly for an update
based on the largest risk reduction. The details of the algorithm are provided in algorithm 2.
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3.2 Base learner, variable selection and model choice

The set of base learner B determines the components that can be selected into the additive
predictor in each boosting iteration, and thus, the specification of the additive model to be
fitted. In practice, a variety of linear, non-linear, and spatial effects can be included. For the
case studies, I focus on the following effect types.

• Linear effects can be included by simple univariate linear regressions. Categorical effects
can be encoded in either treatment or ’dummy’ coding.

• Smooth effects to model non-linear associations of continuous covariates can be included
with P-Splines (Eilers and Marx 1996; Schmid and Hothorn 2008).

• Spatial effects can be included for continuous spatial data or areal data with a first-order
neighbourhood structure. In the former, bivariate P-splines can be used to model smooth
interaction surfaces, in the latter Markov random field effects (see Kneib, Hothorn, and
Tutz (2009) and Sobotka and Kneib (2012), respectively).

In each boosting iteration, exactly one base learner is which yields a selection of included
components, as some may never be selected.7 Note, that the selection into the model is de-
termined greedily by the relative contribution of the variable to the risk reduction, and not
by some concept of statistical significance. To achieve an unbiased selection of linear and
non-linear effects for continuous variables, Kneib, Hothorn, and Tutz (2009) introduce a de-
composition of the non-linear effect into a parametric and a non-linear deviation from the
parametric component:

fsmooth(x) = bparam(x) + bcentred(x) (1)

This decomposition allows the algorithm to select none, only the parametric or only the non-
linear component. See Kneib, Hothorn, and Tutz (2009) for details. In addition, the decom-
position allows for a pre-specification of a comparable complexity of base learners, which is
required for the unbiased selection (Hofner et al. 2011).

3.3 Early stopping and resampling methods

Two hyper-parameters control the amount of regularization applied in the estimation. First,
the step-length ν controls the contribution of the selected base learner in each iteration, there-
fore inducing shrinkage of the estimates. In practice, the value is of secondary importance,
so long it is chosen to be small enough (Schmid and Hothorn 2008). Of higher importance is
the number of boosting iterations mstop. Model selection, by choosing the amount of regu-
larization, is commonly achieved by resampling methods such as cross-validation, bootstrap

7. Especially in low-dimensional regression cases component-wise boosting is known to select too many vari-
ables. These additional variables are characterised by their small contribution to the prediction accuracy and small
coefficients. Strömer, Staerk, et al. (2022) propose a method to deselect base learners based on their contribution
to loss (risk) reduction. Since the share of reduced risk from the overall risk reduction can be interpreted as ’im-
portance’, the base learners with the least importance are excluded and the model refit. The authors show that this
heuristic successfully removes noise variables erroneously selected by the boosting procedure while maintaining
its predictive capacity. However, the reasonableness of the approach depends on the distribution of attributable
risk to the base learners and the assumption of sparsity. If the model is indeed composed of many covariates, of
which each is of low importance then the approach might deselect meaningful – albeit of low importance in terms
of risk attribution – covariates from the model.
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validation or subsampling. Specifically, such methods provide an estimate of the average pre-
diction error (risk) across unseen data sets (Bates, Hastie, and Tibshirani 2022; Hastie, Tib-
shirani, and Friedman 2009). The optimal boosting iteration mstop is selected as the iteration
where the minimum average risk over the holdout folds or data is attained. I provide a selective
overview, for a comprehensive treatment see Raschka (2020) and Bischl et al. (2012).

In cross-validation, the data is split into several folds K , typically 5 or 10. The model is
then refit repeatedly to the data each time leaving out a different fold. Formally, let κ be the
function assigning a fold to each data point,

κ : {1, . . . , N} → {1, . . . ,K},

and denote with m̂−k the fitted model trained with the kth fold of the data excluded. The
cross-validated estimate of the risk is

CV(m̂) =
1

N

N∑
i=1

ρ(yi, m̂
−κ(i)(xi)).

For bootstrap resampling, the subset generation is done by random sampling with replace-
ment from the original dataset and of the same size as the original dataset. For the estimate
of the predictive risk, one then only considers observations not selected into the bootstrap
sample.8 Denote the set of bootstrap samples where observation i is not contained in C−i,
then:

BTS(m̂) =
1

N

N∑
i=1

1

|C−1|
∑

b∈C−1

ρ(yi, m̂
b(xi)).

Here m̂b is the model fitted to the bootstrap sample b. A common number of bootstrap samples
employed are 25, 50 and 100. The bootstrap sample exhibits oversampling of some observa-
tions, which can induce a pessimistic bias on the estimate. One possible remedy was proposed
in Efron (1983) with the 0.632 bootstrap, where the estimate is a weighted average of the train-
ing error and hold-out error. In cases where a model strongly over-fits, for example achieves
perfect training error, this estimate is clearly problematic. For this case, Efron and Tibshirani
(1997) propose a variant where the weights are determined adaptively.

In subsampling, a random subset of size ⌊N/2⌋ is drawn from the data without replace-
ment. The model is fitted on the subset and evaluated on the data points not included. One
then averages the risk over the holdout sets of the repeated sub-samples. A common number
of subsampling samples employed are 25, 50 and 100.

Lastly, the holdout validation splits the data once, fits the model on the training data and es-
timates the generalisation performance on the validation set. Common proportions are 70/30
or 80/20. For performance estimation and model selection, the data can be split into train-
ing/validation/test sets (three-way holdout method). This approach, however, is often not rec-
ommended for smaller data sets, as fewer samples in the holdout set increase the variance of
the estimator (Raschka 2020).

If variable selection is of primary interest, ’probing’ provides a computationally cheap op-
tion to stop the algorithm (Thomas et al. 2017). In this method additional noise variables –
unrelated to the outcome – are included as explanatory variables, once one of the noise vari-
ables is selected into the model, the algorithm is stopped.

8. On average, about a third of the observations will not be selected into the bootstrap:
P (observation in bootstrap sample) = 1− (1− 1/N)N ≈ 1− exp−1 = 0.632.
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In general, there are few clear recommendations in the literature to model evaluation and
selection and the use of resampling methods should be assessed on a case-by-case basis. Ko-
havi (1995) provides a simulation study, recommending (stratified) 10-fold cross-validation as
default for many applications. For complex survey data, Wieczorek, Guerin, and McMahon
(2022) argue to account for the design in the fold structure of cross-validation. That is, in the
case of two-stage cluster sampling stratify folds by the survey strata and select in only com-
plete clusters of observations. In practice, many strata consist of only very few clusters, so the
second recommendation sets a restrictive limitation on the number of folds if not completely
prohibiting it.

4 Childhood malnutrition in Madagascar

In the first case study, the objective is to identify individual risk factors of malnutrition. Chronic
childhood malnutrition remains endemic in large parts of sub-Saharan Africa (Roser and Ritchie
2019) and the identification of relevant risk factors may guide interventions and policy. Similar
analyses are ubiquitous in the literature and this case study was motivated by the research done
in Fenske, Kneib, and Hothorn (2011) and Fenske et al. (2013) using data from the 2005/2006 In-
dia National Family Health Survey. Here, I use recent data from the Madagascar 2021 Standard
Demographic and Health Survey.

4.1 Introduction

Madagascar is an island country off the coast of East Africa. A former French colony, Madagas-
car today is counted towards the least-developed countries in the United Nations Classification.
From an estimated 28.5 million inhabitants, as of 2021, 61% are characterised as rural and 40%
below the age of 14 years (World Bank 2022). The country has one of the highest shares of un-
dernourished children, as per 2021 DHS a share of 39.8% classifies as stunted. More recently,
Madagascar became infamous for experiencing famine-like conditions of what experts have
called the first famine caused by Global Warming.9 With the primary economic activity be-
ing subsistence farming, food security is highly dependent on rainfall seasons, in particular in
rural regions.

Childhood malnutrition is commonly assessed by three measures: stunted, wasted and un-
derweight. A child classified as stunted has a height that is two standard deviations below
the median height-for-age as determined by the World Health Organization’s Child Growth
Standards. Wasting refers to the condition that a child is too thin for the respective height
and underweight to the condition of too low weight for age. Unlike the latter two, stunting is
largely considered to be irreversible after the first 1000 days of life and is therefore often taken
to be the primary indicator for chronic childhood malnutrition (Dewey and Begum 2011; Vic-
tora et al. 2021). As a health condition, impaired growth has been linked to reduced cognitive
development, educational and economic outcomes, long-term effects that have put the reduc-
tion of childhood malnutrition in the focus of development targets (Dewey and Begum 2011).
McGovern et al. (2017) provide a review of literature linking chronic malnutrition to economic
outcomes.

Correlates of childhood malnutrition are certainly not an understudied subject, publica-
tions that employ a variety of statistical approaches have been mentioned above. In the liter-
ature, two related trends can be identified. First, the shift to include remote sensed or satellite
data to inform local environmental conditions and proxy economic shocks (see, for example,

9. See https://time.com/6081919/famine-climate-change-madagascar/.

12

https://time.com/6081919/famine-climate-change-madagascar/


Figure 1: Childhood malnutrition in Madagascar: designated survey regions and cluster locations
of the Madagascar 2021 Standard DHS.

Grace et al. (2022), van der Merwe, Clance, and Yitbarek (2022), and Seiler et al. (2021)). Specif-
ically, as research attempts to assess the effects of anthropogenic climate change on socio-
economic and health outcomes, climatological variables present an important source of infor-
mation. See Phalkey et al. (2015) for a review of the research concerning malnutrition. Second,
the shift to employing predictive approaches that stem from the machine learning community.
This coincides with the need to include a larger number of explanatory variables facilitated
by the availability of remotely sensed covariates. For example, Browne et al. (2021) suggest
a multivariate random forest approach to predict wealth and malnutrition scores originating
from DHS data jointly. Kim et al. (2021) map malnutrition indicators at high spatial resolution
by first estimating cluster-level probabilities in a hierarchical regression and in a second step
employing a semi-supervised regression approach to assign clusters to villages.

The component-wise boosting approach discussed herein is favourably suited to include a
large number of (potentially uninformative) covariates to obtain effect selection for covariates
of interest.

Madagascar 2021 Standard DHS

The Madagascar 2021 Standard DHS was designed to provide estimates of population health
indicators at the national level, the 22 administrative regions plus the capital, and for urban
and rural populations. With the capital being urban only, this resulted in 45 strata. Based on
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Figure 2: Childhood malnutrition in Madagascar: design-based estimates of prevalence of mod-
erately or severely stunted children under 5 years. Error bars indicate 95% confidence intervals.
Data from the Madagascar 2021 Standard DHS.

the population census of 2018, a total of 657 clusters were drawn with probability proportional
to population size, in each stratum independently. In each cluster, 34 households were drawn
at random. This resulted in a sample size of 20’510 households, whereof 5’146 were urban
and 15’364 rural (Institut National de la Statistique (INSTAT) and ICF 2022). Figure 1 plots the
boundaries of the survey regions and the locations of the survey clusters.

The DHS surveys take anthropometric measurements from children under five years and
provide the z-score of the height-for-age of each child. The analysis includes all children under
five years and uses the binary indicator stunted for all classified as moderately or severely
stunted, that is, all children whose z-score is at least two standard deviations from the reference
value. Further details on the compilation of the statistics can be found in Croft, Marshall,
and Allen (2020). Figure 2 plots the design-based estimates of the regional and country-level
prevalence with the corresponding confidence intervals.

Explanatory variables

As potential risk factors (or, conversely, protective factors), I include variables that previous
research has considered in similar analyses. Specifically, the selection of explanatory variables
is guided by the selection as discussed in Fenske, Kneib, and Hothorn (2011) and Fenske et
al. (2013) and the references therein. Also, I further extend the selection of community-level
factors with modelled covariates. Those are access to cities (i.e., access to markets and economic
opportunities) and healthcare facilities. The covariates are provided at the grid-cell level and
matched to the cluster location of an individual as the nearest grid-cell average. The selection is
completed with a food security indicator provided by FEWS NET (2022) in the month preceding
the survey. Table 2 provides the description, type and corresponding source of all included
covariates.
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Covariate (Type) Source

Individual

Age of the child in months (continuous) Survey
Duration of breastfeeding in months (continuous) Survey
Gender of the child (categorical: male, female) Survey
Indicator for twin children (categorical: no, yes) Survey
Position of the child in the birth order (categorical: 1, …, 8+) Survey
Body mass index of the mother (continuous) Survey
Age of the mother in years (continuous) Survey
Years of education of the mother (continuous) Survey
Employment status of the mother (categorical: no, yes) Survey
Religion of the mother (categorical) Survey
Number of dead children (categorical: 0, 1, 2, 3+) Survey

Household

Number of household members (continuous) Survey
Source of drinking water (categorical: unimproved, improved, piped) Survey
Type of toilet facility (categorical: unimproved, improved) Survey
Wealth index (categorical: poorest, poorer, middle, richer, richest) Survey
Household has electricity supply (categorical: no, yes) Survey
Household has a radio (categorical: no, yes) Survey
Household has a television (categorical: no, yes) Survey
Household has a refrigerator (categorical: no, yes) Survey
Household has a bicycle (categorical: no, yes) Survey
Household has a motorcycle (categorical: no, yes) Survey
Household has a car (categorical: no, yes) Survey

Community

Administrative region (categorical: 23 with neighbourhood structure) Survey
Place of residence (categorical: rural, urban) Survey
Walking time to healthcare facilities (continuous) Weiss et al. (2020)
Travel-time to cities (continuous) Weiss et al. (2018)
Food security classification (categorical: 1-minimal, 2-stressed, 3-crisis) FEWS NET (2022)

Table 2: Childhood malnutrition in Madagascar: individual, household and community-level pre-
dictors for chronic childhood malnutrition.
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4.2 Modelling

Model specification

To estimate risk factors of stunting, I fit a logistic regression with the component-wise boosting
described in section 3. Let yi denote the classification status (0/1) of the child i and model the
outcome with a Bernoulli model

yi ∼ Bernoulli(µi), i = 1, . . . , N, (2)

where i = 1, . . . , N are the children observed in the survey that are included in the analysis.10

The relative probability of being stunted is estimated with a logistic additive predictor

logit(µi) = ηi

= β0 +

p∑
j=1

βjxji +

q∑
k=1

fsmooth(xki) + fspatial(xregion[i]), i = 1, . . . , N.
(3)

The loss function is specified as the negative binomial log-likelihood. Categorical covariates
are included as linear effects, and treatment coded. Smooth effects for continuous covariates
are cubic P-splines with second-order differences and 20 inner knots. To allow for effect se-
lection between linear and non-linear effects for continuous covariates, the smooth effects are
included in the parametric and centred decomposition described before. Lastly, to account
for the cumulative effect of unidentified covariates on a regional level, I include a spatial ef-
fect for the survey regions by adding a Markov random field effect induced by the first-order
neighbourhood structure.11

In the following, I also briefly consider several alternative specifications of the additive
predictor. First, as a sensible baseline, I consider a simple linear model. Second, to test a
successive increase in implemented model complexity, an augmented linear model where all
first-order interactions are added is considered. Third, I consider Equation 3 where each co-
variate additionally interacts with either (1) the gender of the child or (2) the urbanicity status.
As a non-parametric approach, I also test boosted regression trees with a maximum depth of
four, and with all other parameters left at their default values. The latter model should provide
insights of whether higher-order interactions are present in the data.

Model evaluation and selection

As discussed in section 3, early stopping is applied to the algorithm to prevent over-fitting
and obtain a model that generalises well on unseen data. For the following results, given the
larger number of samples, I use the 2 or 3-way holdout method to fit the model on a training
set, select the number of boosting iterations by where the minimum predictive risk is attained
on the validation set, and use test-set performance to select between models. For the model
evaluation part, I use approximately 70/20/10 splits and for the final results in the following

10. After the removal of data with missing characteristics a total of N = 5722 observations are included in the
following analyses.

11. As discussed in section 2, the individual survey responses are assigned a sampling weight. In the literature, the
use of survey weights in regression is debated. See for instance Winship and Radbill (1994) and Gelman (2007). The
parameter estimates estimated by boosting are regularised and therefore likely not consistent concerning the true
population value. Furthermore, it is not clear how to correct the weights when subsampling the survey data, since
the sampling weights are post-stratified to correct for non-response. Though it is possible to include observation
weights in this approach – all learners can be estimated by penalised weighted least squares – I omit those for the
following analyses.
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Figure 3: Childhood malnutrition in Madagascar: comparison of different model specifications.
Lower is better. Grey lines indicate the average test-set error (predictive risk). Empirical distribu-
tions over 50 replications.

part 80/20. All folds are stratified by the survey strata to acknowledge the survey design.
Throughout this section, I fix the hyper-parameter ν = 0.1.

Figure 3 plots the average test-set risk of 50 replications. Seemingly, compared to the base
model, the additional flexibility of the augmented models does not translate into improved
generalisation performance. The linear model does not yield the same performance as the base
specification, underscoring the necessity to capture non-linearities in associated risk factors.
That coincides with previous literature (Fenske, Kneib, and Hothorn 2011; Kandala et al. 2009).
But the differences are also not markedly different. Clearly, the linear model with all inter-
actions seems unstable, and the hold-out risk varies strongly. Interestingly, boosting trees do
not yield the same performance, but are more stable (lower variance) across replications. Alto-
gether this provides evidence against higher-order interactions in the data. For the remainder
of this analysis, I turn to the base specification as provided in Equation 3.

4.3 Results

For the following results, I show for each covariate the estimated partial effect from 50 replica-
tions of the train-validation split. This subsampling approach allows for an idea of the stability
of the estimated parameters (Meinshausen and Bühlmann 2010). The inclusion frequency over
the replications is provided in the supplementary material.

Beginning with the continuous covariates we find a negative partial effect of access to
cities, indicating that higher distance to cities is associated with an increased risk of stunting
(Figure 4). Access to healthcare is inversely U-shaped but often estimated to be zero. The linear
effect was included only in 36% of the replications and the non-linear deviation in 68%. The
effect estimates of the children’s age are very stable, with very young ages having a protective
factor, the partial effect increasing until the age of 20 months. The mother’s age is inversely U-
shaped with very young ages being a risk factor. For higher ages (>40 years) the estimation of
the effect is much more variable. The partial effect of stunting is decreasing with the mother’s
BMI and increases with the number of household members, both estimated (mostly) to be
linear, although the latter with much more variability in the slope. The mother’s education
shows an inversely U-shaped partial effect, with lower values accumulated around zero and a
protective risk factor for a higher number of years in education.

Figure 5 shows the mean and standard deviation of the estimated discrete spatial effect.
Eastern regions of the island show an excess risk towards stunting. Generally, the south (-
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Figure 4: Childhood malnutrition in Madagascar: partial effects of the continuous covariates. The
red line indicates the pointwise average and the grey lines indicate the estimated effects from 50
replications.

east) is considered the most afflicted area in terms of food security (FEWS NET 2022).
Lastly, a review of selected categorical effects. For most indicators associated with wealth,

those are a protective factor (car, radio, television, etc.). Similarly, being in the richest quantile
of the population (DHS wealth category). The children’s gender (female vs. male) has a neg-
ative partial effect, i.e., decreased risk of being stunted, which is in line with the observation
that the prevalence of stunting is higher among boys than girls (UNICEF 2013, p. 10). Higher
birth order is associated with a higher log-odds ratio of being stunted. Note, the effect of the
birth order can not be interpreted as a within-household effect because the anthropometric
measures in the DHS sample are age-censored.12

In the supplementary material, I present the empirical distributions of the ’importance’ of
each component of the additive predictor. The highest contribution to the reduced risk is the

12. See Spears, Coffey, and Behrman 2022 for further discussion on this topic.
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Figure 5: Childhood malnutrition in Madagascar: estimated discrete spatial effect. Panel A: mean
effect over 50 replications. Panel B: standard deviation of the estimated effects.

spatial effect indicating the need for an improved understanding of regional-level risk factors
of chronic childhood malnutrition. Other variables that contributed the most to the reduction
were the children’s age, the mother’s BMI, access to cities, and the children’s gender.

The component-wise boosting approach allows for important insights into the model, and,
in this setting, allows for inference about the functional form of an effect. For instance, the
child’s age as a risk factor is estimated non-linear across the range. Furthermore, stability
selection can be employed to obtain type-1 error controls for variable selection (Meinshausen
and Bühlmann 2010; Shah and Samworth 2013). Thus, the preliminary results for the interested
reader are presented in the enclosed code repository.

5 Geographic malaria risk in Mali

In the second case study, we turn to cluster-level estimates of malaria prevalence.13 Specifi-
cally, the objective of this case study is to identify environmental correlates of local malaria
prevalence for children below the age of five and predict the estimated risk at a high spatial res-
olution. A similar study was presented in Giardina, Sogoba, and Vounatsou (2016), where the
authors propose a Bayesian variable selection based on Dirichlet priors and a non-stationary
Gaussian spatial process to model residual spatial variation at the transition of ecological zones.
In this case study, I employ the component-wise boosting approach to obtain effect selection.

5.1 Introduction

Malaria is an infectious disease for humans, caused by the Plasmodium spp. when transmit-
ted by a bite of an infected female Anopheles mosquito. Most common are the Plasmodium
falciparum and Plasmodium vivax species, the two variants account for the majority of cases
(Phillips et al. 2017). Untreated, severe malaria can be fatal, with the highest burden among

13. Note, the term prevalence refers to the empirical proportion of the population experiencing the condition
while the term risk refers to the analogue of the hypothetical infinite population (Fuglstad, Li, and Wakefield 2022).
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Figure 6: Childhood malnutrition in Madagascar: estimated categorical coefficients. Grey lines
indicate the 50 replications, and the red point indicates the pointwise average of the estimated
coefficients.
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Figure 7: Geographic malaria risk in Mali: design-based estimates of malaria prevalence in chil-
dren 6-59 months. Error bars indicate 95% confidence intervals. Data from the Mali 2021 MIS.

young children below the age of five. Cases and deaths have declined since 2000, albeit slowly,
with a recent up-tick likely due to the COVID-19 pandemic. For 2020, the latest data at the
time of writing, the WHO estimates 241 million cases and 627’000 deaths (World Health Or-
ganization 2021). Globally, high-transmission countries in sub-Saharan Africa accounted for
a large share of malaria cases in the 85 countries where malaria is endemic: 29 countries ac-
counted for 96% of all the cases and deaths. Of all child deaths below the age of five, malaria
is estimated to account for 7.8%. The country in this analysis, Mali, whilst only with a popu-
lation of about 22 million, is estimated to represent 3% of the global caseload. Undoubtedly,
the health and economic burden on households and countries is substantive and long-lasting.
In country-level studies, micro-evidence from early eradication campaigns of malaria suggests
that exposure early in life does shape (long-term) economic outcomes (Bleakley 2010; Cutler
et al. 2010; Lucas 2010; Hong 2011).

Household surveys routinely collect information on malaria-related indicators, such as the
ownership and use of insecticide-treated mosquito nets. The Malaria Indicator Surveys (MIS)
from the DHS program are a format analogous to the standard DHS surveys but tailored to
collect malaria-related information. In selected countries, additional samples are taken from
populations at risk to establish the infection of the individual. In particular, those surveys are
conducted during the high malaria transmission season of the respective country. The follow-
ing study is based on the Mali 2021 Malaria Indicator Survey (MIS) where children between
6-59 months were tested for malaria with Rapid Diagnostic Tests (RDTs).14

Mali 2021 Malaria Indicator Survey

The Mali 2021 Malaria Indicator Survey (MIS) was designed to provide estimates of key malaria-
related indicators at the national level, for urban and rural populations, and each of the eight

14. Some household surveys use Polymerase Chain Reactions (PCR) tests identify malaria infection rather than
Rapid Diagnostic Tests (RDTs). PCR tests generally have a higher sensitivity than RDT tests at the expense of
higher costs. Therefore, prevalence estimates from both testing methods should not be compared directly. Florey
(2014) assess differences in estimates in DHS surveys where both test methods were used, concluding that RDTs
may be sufficient to identify populations with higher risk but should not be used to assess the effectiveness of
health interventions.
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Figure 8: Geographic malaria risk in Mali: number of children tested positive against cluster size.
Grey lines indicate a raw prevalence of 30% and 10%, upper and lower lines, respectively. A small
amount of noise was added to the values to enhance visualisation. Data from the Mali 2021 MIS.

administrative regions plus the capital Bamako. The latter is exclusively urban, yielding 17
strata (regions crossed with urbanicity). A total of 216 clusters were drawn from a sampling
frame based on the 2009 population census. If the number of enumerated households per
cluster surpassed 300, the area was partitioned and only one partition was selected for complete
enumeration. In each, 26 households were selected randomly and all women (15-49) usually
living in the selected households and present the night before the interview were eligible for the
questionnaire. Additionally, all children aged 6-59 months were eligible for a rapid diagnostic
test on malaria infection and anaemia (Institut National de la Statistique (INSTAT), Programme
National de Lutte contre le Paludisme (PNLP), and The DHS Program 2022).

Figure 9 shows the cluster locations of the Mali 2021 MIS. Northern Mali is characterised
by a sparse and highly rural population. The realised survey cluster locations are therefore
located predominantly in the south of the country. The design-based estimates and the cor-
responding confidence intervals of malaria prevalence in children 6-59 months are shown in
Figure 7. Strong subnational differences are discernible, both between regions as well as urban
and rural designated areas. The urban-rural divide is particularly evident in the raw cluster-
level prevalences. Figure 8 plots the count of children who tested positive against the number
of children in each cluster. Almost all urban clusters are below the 10% line, and the rural clus-
ters show much more variability in the raw estimates. Furthermore, even though the number
of households sampled in each cluster is the same (26), the effective number of children tested
per cluster varies greatly. In particular, any modelling strategy should account for different
realised sample sizes at each cluster location.

Environmental variables

To inform local risk of malaria, the analysis includes environmental and climatic predictors
that have been associated with malaria risk in previous work (see Weiss et al. 2015; Millar et
al. 2018; Weiss et al. 2019; Mohammed et al. 2022, and the references therein). Transmission risk
is dependent on the species distribution of the Anopheles mosquitoes, which are sensitive to cli-
matic factors. The environmental variables for this case study are precipitation (annual aggre-
gate) (Funk et al. 2015), elevation (static) (Jarvis et al. 2008), land surface temperature (annual

22



mean, day and night) (Didan, MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN Grid
V061). Additionally, I include two vegetation indices, the Enhanced Vegetation Index (EVI) and
Normalised Difference Vegetation Index (NDVI) (Wan, Hook, and Hulley, MODIS/Terra Land
Surface Temperature/Emissivity 8-Day L3 Global 1km SIN Grid V061).

As discussed in Dong and Wakefield (2021a) and Paige et al. (2022), model-based approaches
to small area estimation should include the stratification of the survey design, as omission
may produce biased estimates. Therefore, to distinguish between urban and rural at unseen
locations, I include an urban-rural indicator based on the degree of urbanisation from the
Global Human Settlement Layers (GHSL) project (Schiavina, Melchiorri, and Pesaresi, GHS-
SMOD R2022A - GHS Settlement Layers, Application of the Degree of Urbanisation Method-
ology (Stage I) to GHS-POP R2022A and GHS-BUILT-S R2022A, Multitemporal (1975-2030)).
This variable is constructed based on estimated population counts and remotely sensed built-
up grids.15 Lastly, I include population counts (Schiavina, Freire, and MacManus, GHS-POP
R2022A - GHS Population Grid Multitemporal (1975-2030)) and the climate classification by
Köppen-Geiger (Beck et al. 2018). Mali is covered by three distinct climate regions, see Fig-
ure 9.

Matching georeferenced data

For each cluster, the locations of the interviewed households are recorded and the centroid is
taken as cluster-level information. To ensure the privacy of the respondents, a randomisation
procedure is applied to the coordinates, where urban locations are randomly displaced up to
2km and rural up to 5km with an additional 1% of the observations up to 10km (Burgert et
al. 2013). This naturally introduces measurement error and mismatching when integrated with
other data sources based on the geographic location.16 Additional information on the data and
the matching procedure is given in the supplementary material.

5.2 Modelling

Model specification

From the survey micro-data, one obtains for each cluster c a count of children nc that were
tested, and a count yc that tested positive. A natural way to model such data is with a Bino-
mial likelihood in a generalised additive model framework. To estimate the model, I use the
component-wise boosting approach described herein. Thus, let

yc ∼ Binomial(nc, µc), c = 1, . . . , N.

15. An alternative approach was proposed in Dong and Wakefield (2021a) and Paige et al. (2022), where the au-
thors construct an urbanicity variable with information about the sampling frame published in the survey reports.
The surveys publish the percentage of urban population for each region and the country from the used primary
sampling frame, and with population density layers, a threshold to obtain an urban-rural indicator per grid cell can
be inferred. In the case of Mali, this resulted in very few urban locations. Ultimately, both approaches are likely
sensitive to the chosen population density layer, which has been shown to induce substantial differences in appli-
cations (see, for example, Hierink et al. 2022). For further discussion on the modelling of urban-rural fractions,
and a comparison of alternative approaches, see Wu and Wakefield (2022).

16. In and of itself, there is not much to be done to counter this induced error. Wu and Wakefield (2022) discuss
a Bayesian approach to account for the displacement of urban regions. Michler et al. (2022) assesses the impact of
different spatial anonymisation techniques for a similar series of household surveys from the World Bank. Compar-
ing estimates of measures of agricultural productivity for rural and agricultural households, the authors conclude
the anonymisation method introduces limited error, but care should be taken in the selection of remote sensing
products. In this case study, I take the cluster locations as provided.
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Figure 9: Geographic malaria risk in Mali: climate classification by Köppen Geiger and survey
cluster locations from the Mali 2021 MIS. Regions north of the 20◦ degree are omitted due to data
sparsity.

The relative probability of occurrence µc is estimated with a linear predictor

logit(µc) = ηc

= β0 +

p∑
j=1

βjxjc +

q∑
k=1

fsmooth(xkc) + fspatial(xlon,c, xlat,c), c = 1, . . . , n.
(4)

The loss function is taken to be the negative log-likelihood of the binomial distribution. In this
base model, I include linear effects for the categorical variable (urbanicity) and smooth effects
using cubic P-splines with second-order differences and 20 inner knots. To ensure unbiased
effect selection these are included in the parametric and centred decomposition discussed be-
fore. To account for spatial effects, I include a bivariate smooth with a similar decomposition.
For details see Kneib, Hothorn, and Tutz (2009).

As discussed in Dong and Wakefield (2021a), count data aggregated to cluster-level often
exhibit more variability than be accounted for in a binomial response distribution. The data is
said to be overdispersed. To accommodate possible within-cluster variation, the authors suggest
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Model Bias MAE RMSE 80% PI 90% PI 95% PI

Beta binomial -0.005 0.093 0.131 0.861 0.944 0.963
Binomial -0.007 0.091 0.131 0.597 0.708 0.759

Table 3: Geographic malaria risk in Mali: model validation based on 10-fold cross-validation
stratified by survey region. Values rounded rounded to the nearest hundredth.

a beta-binomial likelihood

yc ∼ BB(nc, µc, σc), c = 1, . . . , N.

The beta-binomial distribution can be thought of first drawing a probability from the beta
distribution pc ∼ Beta(µc, σc) and then the cluster-level count yc ∼ Binomial(nc, pc). Hence,
it accommodates greater variability in the data than the binomial distribution. For σ → 0
the limiting distribution is the binomial distribution, hence greater values of σc correspond
to a higher degree of overdispersion. Additional information on the response distributions is
included in the supplementary material.

The beta-binomial distribution can be modelled in a boosting framework by moving to the
distributional regression approach, which allows additive predictors for both the mean and the
degree of overdispersion (i.e., the location and shape of the distribution). Thus, let ηµ,c be the
predictor defined in Equation 4 and

log(σc) = ησ,c

= β0 + β1xurban, c = 1, . . . , N.
(5)

Although it would be simple to add additional terms to model the degree of overdispersion of
the conditional distribution, an intercept and urbanicity keeps model complexity low and are
motivated by the urban-rural divide.

Besides the comparison of the two different choices of the data model, I consider alternative
specifications of the additive predictor for the beta-binomial model. First, a simple linear model
as a baseline. Two versions of the linear model, one augmented with a bivariate spatial smooth,
and a second specification of the linear model augmented with the spatial effect and all linear
covariates interacted with the climate classification. I also consider a model with spatially-
varying coefficients, where each continuous covariate enters the additive predictor linearly, as
a modifier of a bivariate smooth. Finally, as an alternative to the pre-specified semi-parametric
effects, I also evaluate the performance of regression trees as base learners with a maximum
interaction depth of 4 and with all other parameters left at their default values.17

I employ a bootstrap approach to quantify variability in the estimated effects. To make ideal
use of the data I draw bootstrap samples from the individual-level data stratified by cluster. The
model is refitted and the estimates are compared to the ’main’ model, the model fitted on the
original data set.

Model evaluation and selection

Given the lower sample size (N = 216), the holdout method is not reasonable and I select
the number of boosting iterations based on where the minimum of the cross-validated risk is

17. It would be interesting to see if the fully nonparametric specification could be further improved by the use
of oblique coordinates (Møller et al. 2020).

25



Figure 10: Geographic malaria risk in Mali: comparison of different model specifications. Lower is
better. Grey lines indicate the average hold-out risk of 10-fold cross-validation stratified by survey
regions.

attained. Cross-validation estimates are based on K = 10 and folds are stratified by region, as
the number of clusters per strata does not allow for stratification by survey design strata. The
step-length ν is fixed at 0.1.

To compare the different model specifications proposed above, I employ nested cross-
validation. The outer loop consists of 10-fold cross-validation, and the inner loop for early
stopping is likewise based on 10-fold cross-validation both stratified by survey regions. First,
I validate the data model for the prevalence data. Table 3 displays three common regression
evaluation metrics for the point predictions, that is Bias, Mean Absolute Error (MAE), and
Root Mean Squared Error (RMSE). To assess the quality of the prediction intervals, I also in-
clude the average coverage of the 100(1−α)% prediction interval (PI) based on the conditional
distribution. The 100(1− α)% PI is defined as

PI1−α(x) =
[
Qα/2(x), Q1−α/2(x)

]
where Qα is the α-quantile of the conditional distribution. Bias, MAE and RMSE are calculated
with respect to the target of inference µ̂c and the raw prevalence at cluster-level yc/nc, and the
coverage of the PI is calculated at the observed counts. The presented results are the average
values over the outer hold-out folds.

Concerning the first three metrics, the three models show only minor differences. All tend
to slightly overestimate the observed rate (bias). Given that the comparison is only based
on 10-folds with a comparatively small sample size of 216 clusters, the differences should be
considered marginal. However, that is not the case for the coverage of the prediction inter-
vals. Here the binomial model does markedly worse than the model with the beta-binomial
likelihood. Where the 90% PIs only cover on average around 70 % of the observations, the
beta-binomial achieves a coverage above 90%. Clearly, the prevalence data show more vari-
ability than can be accommodated in the binomial distribution, indicating the beta-binomial
model has a superior fit. The following results, therefore, are based on the data models with
the beta-binomial model.

Next, Figure 10 provides the comparison of the hold-out risk of the alternative model spec-
ifications. Clearly, likely due to the data limitations, the variability in the generalisation per-
formance is high. Interestingly, the plain linear model does provide a tenable baseline, and the
addition of a spatial effect tends to improve holdout risk. Augmenting the model with inter-
actions by the climatological zone introduces instability. Interestingly, boosted trees fare the
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Figure 11: Geographic malaria risk in Mali: estimated coefficients of the intercept and urbanicity
covariate. The red points indicate the estimated effect of the main model and boxplots the empirical
distribution of the estimated coefficients over the 50 bootstrap samples.

worst in this comparison, but with less variability. Overall, the base specification as in Equa-
tion 4 provides the best generalisation performance. Based on this model, I will discuss the
estimated factors and grid-cell predictions below.

5.3 Results

Figure 11 shows the coefficients of the categorical covariates included in the model. Note that
there – as for all the following partial effect estimates – the estimates are provided on the scale
of the link function. Thus, for the conditional mean the partial effects are on the log-odds ratio
of µ, and for the conditional scale of the beta-binomial distribution on the log scale of σ.18

For µ, urbanicity is estimated to be zero in the main model, with a few deviations in the
bootstrap samples. For σ, the urbanicity coefficient is estimated to be negative, with the third
quartile below zero.

Figure 12 plots the partial effects of the continuous covariates. The main model is indi-
cated by the red line, and the models replicated on 50 bootstrap samples are shown in the
background. For elevation, the estimated effect is linear, higher altitudes correspond to a de-
creased malaria risk. The Enhanced Vegetation Index (EVI) is estimated clearly in a U-shaped
form, in particular, an increased risk towards the upper end of the scale. This is in line with
the interpretation of the index, where higher values indicate dense vegetation. Likewise, the
Normalised Vegetation Index (NDVI) shows an increased risk for higher values and can be in-
terpreted similarly. The effect of land surface temperature during the day is mostly estimated
to be zero, as in the main model, with only some bootstrap replicates showing different results.
For the temperature at night, the effect is estimated to be negatively associated with malaria
risk in the lower range, peaking between 20–22 degrees and declining for higher values. For
values toward 26◦, it shows an up-tick, but not indistinguishable from zero. The (log) popu-
lation counts are relatively flat for the first half of the support then drastically decrease, i.e.,
higher population counts are associated with a lower risk of malaria. Since a higher popula-
tion equate with urban areas, this is plausible. The annual aggregated precipitation shows an
increasing effect up until 600, then decrease. For values beyond 1200, the estimation is sup-
ported by few data points (as indicated by the rug plot), correspondingly, the estimates show

18. Note, the effects of ecological covariates should not be interpreted on an individual level, as one risks to
commit an ecological fallacy (Piantadosi, Byar, and Green 1988).
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Figure 12: Geographic malaria risk in Mali: partial effects of the continuous covariates. The red
line indicates the main model and the grey lines indicate the estimated effects from 50 bootstrap
samples.

much more variability. Again, the effect selection properties of the component-wise boosting
algorithm yield informative selections about the functional form of a given covariate.

The partial effect of the spatial smooth is plotted in Figure 13. For the country’s west and
north-eastern part a negative partial effect can be identified, in the mid-eastern part, towards
the border with Burkina Faso, a positive partial effect. The standard error of the spatial effects
is shown in Figure 14. The estimated effect is estimated stable in the southern part (where the
majority of cluster locations are located) and shows a higher standard error in the northern
parts. Given the lack of data north of the 18◦, only the grid-cells south of the 20◦ are plotted
(c.f. the observed cluster locations in Figure 9).

Based on the model, it is feasible to construct maps of the predicted risk of malaria through-
out the country on a fine-scaled grid. Figure 15 plots the predicted values µ̂. I provide additional
details on the construction of the grid in the supplementary material. The north, dominated
by desert or semi-desert lands is estimated at very low risk. The lower half shows higher mean
prevalences, particularly on the border towards Guinea (southwest). Furthermore, distinct ge-
ographical features such as the capital Bamako in the southwest and parts of the Niger river
in the east can be distinguished from the estimated near zero risk. The predicted risk for each
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Figure 13: Geographic malaria risk in Mali: estimated partial effect of the bivariate P-splines.

Figure 14: Geographic malaria risk in Mali: standard error of the estimated partial effect based
on 50 bootstrap samples.
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Figure 15: Geographic malaria risk in Mali: predicted risk of malaria for children below the age
of five.

location can be accessed in the enclosed code repository.
Maps of predicted risk at such high resolution may mask high uncertainty in the predic-

tions (Dong and Wakefield 2021a). Therefore, I include maps of the 10% and 90% quantile as
well as the standard error of the predictions over the bootstrap samples. The figures can be
found in the supplementary material.

Construction of subnational prevalence estimates

The predicted grid-level risk estimates can be aggregated to obtain an estimate for the sub-
national prevalence at the admin level 1 or 2. Assuming a fixed proportion of under five-
year-olds to the population throughout the country, the estimate is obtained by the average
risk, weighted by the population over the area of interest. To assess how well these estimates
compare to the design-based estimates, Figure 16 shows the design-based and model-based
estimates side-by-side. At the mean, the model-based estimates track closely the design-based
estimates for five of the nine regions and recover the design-based estimates. The confidence
intervals are the quantiles from the bootstrapped models. Certainly, the confidence intervals
of the model-based approach are over-confident and likely provide poor coverage of the true
prevalence.

The differences between the estimates for the regions Koulikoro, Mopti, Segoú and Sikasso,
nevertheless, demand further investigation. Two possible sources of error are the urban-rural
indicator (specifically, if the baseline prevalence in each is substantially different) and the grid-
ded population maps.19 For example, for Koulikoro, the share of the urban population provided

19. Rather than the GHSL gridded population map employed in this analysis one could have used WorldPop
(Bondarenko et al. 2020). However, a complete comparison is beyond the scope of this manuscript.
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Figure 16: Geographic malaria risk in Mali: comparison of design-based estimates and model-
based estimates for admin 1. Error bands are 95% confidence intervals, for the model-based ap-
proach based on bootstrap quantiles.

in the survey report is 5.5% while the estimate based on the gridded population maps is 41.7%.
Though the population census is from 2009, and it is not inconceivable that a fast urbanization
process leads to strong differences in urban-rural fractions, the hypothesis of underestimating
the rural population is consistent with the strong underestimation of the malaria prevalence
in those regions. The dependence of such approaches on gridded population maps warrants
further research. Therefore, the estimates for admin 2 should be interpreted with caution and
can be accessed in the enclosed code repository.

Comparison to alternative approaches

In a similar malaria mapping study, Bhatt et al. (2017) propose a stacked ensemble approach to
improve prediction accuracy. Briefly, the fitted values of different state-of-the-art algorithms
(gradient-boosted trees, random forests, etc.) are weighted and included in a geo-statistical
model which accommodates spatial variation unaccounted for in the first level. The authors
find the approach to be highly competitive in predictive tasks such as malaria prevalence esti-
mation. The specifics can be found in Bhatt et al. (2017).

The approach proposed herein can account for non-linear and spatial effects in a single
framework without the need for additional calibration of intermediate levels. Furthermore,
the data is binomial, provided per cluster c as the number of children yc that tested positive
out of a total number of tested children nc. The authors compute the cluster-level prevalences
p̂c = yc/nc and logit transform the estimates to obtain values with continuous support. This
allows the use of common software packages for gradient-boosting trees and random forests,
however, it does not respect the binomial nature of the data. In the proposed approach, the bi-
nomial distribution can be modelled directly as response distribution and allow inference about
underlying risk. In addition, we obtain a semi-parametric model that can uncover important
ecological correlations.

Similarly, Weiss et al. (2015) study environmental correlates of malaria. The authors com-
pile a set of more than 50 million (!) possible predictors by an array of transformations and
combinatorial interactions. The set of possible terms was successively reduced using infor-
mation criteria, to identify relevant risk predictors and the corresponding functional form.
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Though the authors use binomial GLMs, variable selection based on information criteria is
generally considered as unstable (see, for example, the discussion in Mayr et al. 2012, Section
2.2). Employing a component-wise boosting approach such as described herein avoids such
pitfalls and allows for competitive predictive performance and effect selection.

6 Discussion

In this manuscript, I demonstrated the framework of component-wise boosting to identify
risk factors of two common prevalent health conditions in sub-Saharan Africa. Boosting, a
method stemming originally from the machine learning literature for classification has been
continuously developed in the last decade to address a variety of common statistical tasks and
provide inference in moderate to high-dimensional regression settings. I have reviewed those
in section 3. In particular, boosting compares favourably with other approaches if the variable
selection is desired or necessary, either because of the dimensionality induced by covariates
or because the understanding of the functional form of effects is crucial.

In the case study on chronic childhood malnutrition, the analysis underscored the necessity
to consider the non-linear effects of potential risk factors, such as the child’s age. Studying the
environmental correlates of malaria reiterated this point, as the specification outperformed
alternative definitions and even boosted trees, a method often employed as the default. In
contrast to approaches presented in the literature on disease prediction, the component-wise
boosting approach yields an interpretable model and allows for response distributions appro-
priate for the prevalence data at hand. It would be an interesting task to extend the malaria risk
analysis to evaluate the predictive performance on cross-country data sets with multiple sur-
vey rounds and an extended set of explanatory variables with comparison to the distributional
random forests approach (Schlosser et al. 2019).

Recent research has studied the merits of including ’alternative’ data sources in the esti-
mation of poverty or other local development indicators.20 For instance, Steele et al. (2017)
explored embedding mobile operator call detail records (CDRs) for the small area estimation
of poverty. Those data are usually provided in a collection of statistics that can be derived from
call data and aggregated at the unit of interest. But it is not clear which statistics are infor-
mative for the task. In such situations, one obtains tasks that boosting tends to handle very
well. While the default approach in predictive modelling usually encompasses nonparametric
decision trees, simpler additive models may perform competitively. This has also been shown
elsewhere (Kapoor and Narayanan 2022). Besides, interpretable models are often desired if
policy decisions are based on them (Rahman and Keseru 2021).

Even so, by employing boosting, one trades off conventional statistical concepts such as
the quantification of uncertainty in the estimates by improved generalisation performance
and intrinsic effect selection. If this trade-off is useful, will depend on a case-by-case basis. In
these case studies, I used subsampling and bootstrap replications to assess variability in the
estimates. While these approaches are straightforward to implement, they are computation-
ally very intensive and do not necessarily guarantee coverage of the intervals derived, making
statistical inference difficult. If a proper uncertainty quantification of model parameters is re-
quired, Bayesian hierarchical models such as those commonly employed in the geo-statistical
framework are likely advantageous. Here, a clear conceptualisation of the objective of each re-
search design is imperative, also to maintain trust in decisions derived from complex statistical
approaches Broderick et al. (2021).

20. See, for example, Jean et al. (2016), Pape and Wollburg (2019), E. Aiken et al. (2022), Ziulu et al. (2022), and
E. L. Aiken et al. (2023).
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The literature on monitoring population health statistics has developed incredibly fast in
recent years, providing models for the most followed statistics. But there still seems to be a
wider gap in the treatment of data-sparse and conflict settings. The absence of official data
has motivated much work in the inclusion of remotely sensed data. Obviously, there is a clear
limit on what can be inferred from such data to understand population health statistics. Since
the association between predictors and outcomes is likely noisy, much more promising is the
merge of multiple data sources, such as household-, high-frequency phone surveys, and local
assessments. There, careful modelling of the bias is important to draw correct inferences,21

and provides many important avenues for research.
There is a broader case to be made for predictive modelling for development and epi-

demiological applications (e.g., Greenough and Nelson 2019). The component-wise boosting
approach discussed herein can make some important contributions in this direction by, for
example, employing appropriate response distributions, improving interpretability through
model-building, and estimating non-linear and spatial effects of interest, particularly where
generalisation performance is crucial. The appropriateness of statistical learning methods,
however, will depend on the inferential objective of the research design.
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V) 2021. Antananarivo, Madagascar et Rockville, Maryland, USA.

Institut National de la Statistique (INSTAT), Programme National de Lutte contre le Paludisme (PNLP), and The DHS
Program. 2022. Enquête sur les Indicateurs du Paludisme au Mali 2021. Bamako, Mali et Rockville, Maryland,
USA.

Jarvis, A., H.I. Reuter, A. Nelson, and E. Guevara. 2008. Hole-Filled SRTM for the Globe Version 4, Available from the
CGIAR-CSI SRTM 90m Database.

Jean, Neal, Marshall Burke, Michael Xie, W. Matthew Davis, David B. Lobell, and Stefano Ermon. 2016. “Combining
Satellite Imagery and Machine Learning to Predict Poverty.” Science 353 (6301): 790–794. https://doi.org/10.
1126/science.aaf7894.

Kandala, Ngianga-Bakwin, Ludwig Fahrmeir, Stephan Klasen, and Jan Priebe. 2009. “Geo-Additive Models of Child-
hood Undernutrition in Three Sub-Saharan African Countries: Childhood Undernutrition in Africa.” Popula-
tion, Space and Place 15 (5): 461–473. https://doi.org/10.1002/psp.524.

Kapoor, Sayash, and Arvind Narayanan. 2022. Leakage and the Reproducibility Crisis in ML-based Science, arXiv:
2207.07048. https://doi.org/10.48550/arXiv.2207.07048.

Khan, Shane, and Attila Hancioglu. 2019. “Multiple Indicator Cluster Surveys: Delivering Robust Data on Children
and Women across the Globe.” Studies in Family Planning 50 (3): 279–286. https://doi.org/10.1111/sifp.12103.

Kim, Rockli, Avleen S. Bijral, Yun Xu, Xiuyuan Zhang, Jeffrey C. Blossom, Akshay Swaminathan, Gary King, et
al. 2021. “Precision Mapping Child Undernutrition for Nearly 600,000 Inhabited Census Villages in India.”
Proceedings of the National Academy of Sciences 118 (18): e2025865118. https://doi.org/10.1073/pnas.2025865
118.

37

https://doi.org/10.1038/s43856-022-00179-4
https://doi.org/10.1186/s12859-015-0575-3
https://doi.org/10.1186/s12859-015-0575-3
https://doi.org/10.1198/jcgs.2011.09220
https://doi.org/10.1198/jcgs.2011.09220
https://doi.org/10.1007/s11222-014-9520-y
https://doi.org/10.1111/rssc.12517
https://doi.org/10.1017/S0022050711001872
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1080/01621459.1952.10483446
https://doi.org/10.1177/00491241221140144
https://doi.org/10.1126/science.aaf7894
https://doi.org/10.1126/science.aaf7894
https://doi.org/10.1002/psp.524
https://doi.org/10.48550/arXiv.2207.07048
https://doi.org/10.1111/sifp.12103
https://doi.org/10.1073/pnas.2025865118
https://doi.org/10.1073/pnas.2025865118


Kinyoki, Damaris K., Aaron E. Osgood-Zimmerman, Brandon V. Pickering, Lauren E. Schaeffer, Laurie B. Mar-
czak, Alice Lazzar-Atwood, Michael L. Collison, et al. 2020. “Mapping Child Growth Failure across Low- and
Middle-Income Countries.” Nature 577 (7789): 231–234. https://doi.org/10.1038/s41586-019-1878-8.

Klein, Nadja, Manuel Carlan, Thomas Kneib, Stefan Lang, and Helga Wagner. 2021. “Bayesian Effect Selection in
Structured Additive Distributional Regression Models.” Bayesian Analysis 16 (2): 545–573. https://doi.org/10.
1214/20-BA1214.

Klein, Nadja, Thomas Kneib, Stefan Lang, and Alexander Sohn. 2015. “Bayesian Structured Additive Distributional
Regression with an Application to Regional Income Inequality in Germany.” The Annals of Applied Statistics
9 (2): 1024–1052. https://doi.org/10.1214/15-AOAS823.

Kneib, Thomas, Torsten Hothorn, and Gerhard Tutz. 2009. “Variable Selection and Model Choice in Geoadditive
Regression Models.” Biometrics 65 (2): 626–634. https://doi.org/10.1111/j.1541-0420.2008.01112.x.

Kohavi, Ron. 1995. “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection.” In
Proceedings of the 14th International Joint Conference on Artificial Intelligence - Volume 2, 1137–1143. IJCAI’95,
Montreal, Quebec, Canada. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Kriegler, Brian, and Richard Berk. 2010. “Small Area Estimation of the Homeless in Los Angeles: An Application
of Cost-Sensitive Stochastic Gradient Boosting.” The Annals of Applied Statistics 4 (3): 1234–1255. https://doi.
org/10.1214/10-AOAS328.

Laga, Ian, Xiaoyue Niu, and Le Bao. 2022. “Modeling the Marked Presence-Only Data: A Case Study of Estimating
the Female Sex Worker Size in Malawi.” Journal of the American Statistical Association 117 (537): 27–37. https:
//doi.org/10.1080/01621459.2021.1944873.

Lucas, Adrienne M. 2010. “Malaria Eradication and Educational Attainment: Evidence from Paraguay and Sri
Lanka.” American Economic Journal: Applied Economics 2 (2): 46–71. https://doi.org/10.1257/app.2.2.46.

Lumley, Thomas. 2004. “Analysis of Complex Survey Samples.” Journal of Statistical Software 9 (8): 1–19. https :
//doi.org/10.18637/jss.v009.i08.

Mayr, Andreas, Nora Fenske, Benjamin Hofner, Thomas Kneib, and Matthias Schmid. 2012. “Generalized Additive
Models for Location, Scale and Shape for High Dimensional Data—a Flexible Approach Based on Boosting.”
Journal of the Royal Statistical Society: Series C (Applied Statistics) 61 (3): 403–427. https://doi.org/10.1111/j.
1467-9876.2011.01033.x.

McGovern, Mark E, Aditi Krishna, Victor M Aguayo, and Sv Subramanian. 2017. “A Review of the Evidence Linking
Child Stunting to Economic Outcomes.” International Journal of Epidemiology 46 (4): 1171–1191. https://doi.
org/10.1093/ije/dyx017.
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A Supplementary Material

A.1 Data sources, availability and additional details

Survey regions and country borders were retrieved from the Spatial Data Repository (ICF In-
ternational 2022) and the Database of Global Administrative Boundaries (GADM) (Global Ad-
ministrative Areas 2022). The remotely sensed covariates in section 5 are mean values over the
year preceding the start date of the survey fieldwork. All raster files are open-access and were
retrieved from the Google Earth Engine API (Gorelick et al. 2017) or the respective provider as
described in the respective publications at a spatial resolution of 1km x 1km.

To create a fine-scaled country grid I use the spatial unit indexing system H3: A Hexagonal
Hierarchical Geospatial Indexing System (Uber Technologies 2022). The grid level estimates are
produced for a grid of resolution 7, hexagons with an area of approximately 5km2. I extract for
each cluster location or hexagon centroid the value interpolated from the values of the four
nearest raster cells. One exception is the population data, where exact areal extraction is used
to obtain a consistent disaggregation of population totals.

A.2 Computational implementation

All analyses were conducted in R 4.2.2 (R Core Team 2022) and Python 3.9.13. The code files
and data requirements to fully replicate this work along with additional results are included
in the corresponding GitHub repository.22

The described models were fitted using the mboost and gamboostLSS packages (Hothorn
et al. 2022; Hofner, Mayr, and Schmid 2016), see also Hothorn et al. (2010) for an introduction.
The following R packages provided helpful functions for evaluation metrics, raster extraction
and survey data analysis: Hamner and Frasco (2018), Pfeffer et al. (2018), Watson, FitzJohn,
and Eaton (2019), Lumley (2020), Hijmans, Ghosh, and Mandel (2022), and Baston (2022).

A.3 Distributions

Binomial distribution

Y ∼ Binomial(n, µ)

For y = 0, 1, . . . , n and 0 < µ < 1, the probability density function of the binomial
distribution is

f(y|n, µ) = n!

y!(n− y)!
µy(1− µ)n−µ (6)

where the first and second moments are

E(Y ) = nµ,

V ar(Y ) = nµ(1− µ).

Beta-binomial distribution

Y ∼ BB(n, µ, σ)

22. See https://github.com/danielseussler/ssahealthriskfactors.
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For y = 0, 1, . . . , n, 0 < µ < 1, and σ > 0, the probability density function of the beta-
binomial distribution is

f(y|n, µ, σ) = Γ(n+ 1)

Γ(y + 1)Γ(n− y + 1)

Γ( 1σ )Γ(y +
µ
σ )Γ(n+ (1−µ)

σ − y)

Γ(n+ 1
σ )Γ(

µ
σ )Γ(

1−µ
σ )

. (7)

The corresponding first and second moments are

E(Y ) = nµ,

V ar(Y ) = nµ(1− µ)[1 + σ(n− 1)/(1 + σ)].

See also Rigby et al. (2019) for further information.

A.4 Additional Results

In this section, I present additional figures and tables for the two case studies.
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Base-learner Frequency

cage 1.00
csex 1.00
ctwin 1.00
cbord 1.00
mbmi 1.00
mage 0.74
medu 1.00
memployed 0.22
mreligion 0.98
nodead 0.86
hmembers 1.00
watersource 0.90
sanitation 0.44
wealth 1.00
electricity 0.30
radio 1.00
television 1.00
bicycle 0.28
motorcycle 0.82
car 0.70
urban 0.52
healthaccess 0.36
cityaccess 1.00
fews 0.86
f(cage) 1.00
f(mage) 0.90
f(mbmi) 0.40
f(medu) 1.00
f(hmembers) 0.48
f(healthaccess) 0.68
f(cityaccess) 0.98
f(dhsregion) 1.00

Table 4: Childhood malnutrition in Madagascar: selection frequencies of base learners over the
50 replications. The name indicates the linear effect only, f(·) is the non-linear deviation from the
linear effect.
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Figure 17: Childhood malnutrition in Madagascar: empirical distributions of the variable impor-
tance of each base-learner by attributed risk reduction over 50 replications. Note, (small) negative
risk reduction can be obtained as a fitting artefact if boosting iterations are extended beyond the
maximum likelihood estimates.
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Figure 18: Geographic malaria risk in Mali: lower, upper quantiles and standard error of the
predicted risk µ̂ based on 50 bootstrap samples.
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