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Interpretable modelling of retail demand and price
elasticity for passenger flights using booking data
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Abstract: We propose a model of retail demand for air travel and ticket price elasticity at the daily
booking and individual flight level. Daily bookings are modelled as a non-homogeneous Poisson
process with respect to the time to departure. The booking intensity is a function of booking and flight
level covariates, including non-linear effects modelled semi-parametrically using penalized splines.
Customer heterogeneity is incorporated using a finite mixture model, where the latent segments have
covariate-dependent probabilities. We fit the model to a unique dataset of over one million daily
counts of bookings for 9 602 scheduled flights on a short-haul route over two years. A control variate
approach with a strong instrument corrects for a substantial level of price endogeneity. A rich latent
segmentation is uncovered, along with strong covariate effects. The calibrated model can be used to
quantify demand and price elasticity for different flights booked on different days prior to departure
and is a step towards continuous pricing; something that is a major objective of airlines. As our model
is interpretable, forecasts can be created under different scenarios. For instance, while our model is
calibrated on data collected prior to COVID-19, many of the empirical insights are likely to remain
valid as air travel recovers in the post-COVID-19 period.
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1 Introduction and literature review

The International Air Transport Association (IATA) estimates that in 2019 there
were over 4.54 billion passengers on scheduled flights worldwide, generating rev-
enues of $838 billion dollars (IATA, a). However, profits in the airline industry were
notoriously low, even before the advent of COVID-19. For example, the industry
average net margin was only 3.1% in 2019 (IATA, a). This forces airlines to seek
ever greater competitiveness, including the development of improved revenue man-
agement methodologies (Talluri and van Ryzin, 2005). Increasing the accuracy of
short-term forecasts of passenger demand, along with estimates of its price elasticity,
is one such operational efficiency. In particular, the availability of complete booking

Address for correspondence: Göran Kauermann, Department of Statistics, Ludwigs-Maximilians-
Universität München Ludwigstr 33, 80539 Munich, Germany
E-mail: goeran.kauermann@stat.uni-muenchen.de

c© 2024 The Author(s) 10.1177/1471082X221083343

Statistical Modelling 2024; 24(1): 82–106

.

© 2022 The Author(s) 

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1471082X221083343&domain=pdf&date_stamp=2022-05-09


Interpretable modelling of retail demand 83

Statistical Modelling 2024; 24(1):  82–106

Interpretable modelling of retail demand 87

databases opens up the possibility of computing both demand forecasts and price
elasticities for each individual flight and cabin class in real time. Yet there is sur-
prisingly little work in the statistical or econometric literatures on the modelling of
passenger demand at such a disaggregate level—in part because the databases re-
quired are large, complex and proprietary. In this article, we do so using a novel
flexible statistical model, which we apply to a new and unique dataset of 1 333 712
daily counts of retail bookings for flights on a busy short-haul route. This approach
allows us to compute the price elasticity of demand for this route at a daily and flight
level resolution.

The data is sourced from the booking and flight databases of a large Western
airline and are a complete and accurate record of bookings. Therefore, our data are
free from the complex biases that can occur in booking datasets constructed using
web crawlers or surveys. The airline wishes to remain anonymous, so throughout
this article we refer to it as ‘AirABC’, and do not identify the origin and destination
cities of the route. Only AirABC services this route, with alternatives restricted to
other modes of transport or indirect flights, so that it is reasonable to consider
these bookings in isolation of those for other airlines. Thus, our data are similar
to those obtained from a controlled experiment. Tickets for different cabin classes
(i.e., economy or business) and route directions are effectively separate products, and
in our empirical work we consider bookings in one direction (so-called half-return
journey) for the main economy class cabin; although the model can be employed
directly for other cabin classes or return journeys.

We model the booking process for each flight as an non-homogeneous Poisson
process with respect to the (decreasing) number of days to departure. The booking
intensity has both a baseline component and a ticket price adjustment. The baseline
component is modelled as additive in covariates, including smooth unknown func-
tions of the flight departure time and day to departure. The price adjustments follow
a finite mixture modelled using a multinomial logistic regression (MNL) with prob-
abilities that are additive in covariates, including smooth unknown functions of the
flight departure time and day to departure. Such a model is similar to the ‘mixture-
of-experts’ models that are popular in the machine learning literature (Jordan and
Jacobs, 1994), where each mixture component is called an ‘expert’.

The unknown smooth functions in the baseline intensity and mixture probabilities
are modelled semi-parametrically with penalized splines (Wood, 2017, chap. 5). This
is important because prior research (Wen and Chen, 2017) and our empirical analysis
suggests the effects of the key covariates ‘flight departure time’ and ‘time to departure’
can be highly non-linear. A quadratic penalty is used to ensure smoothness of each
penalized spline, with the smoothing parameter selected by minimizing the BIC as
in Ruppert et al. (2003) and Kauermann et al. (2009). The inclusion of covariates
in this way means that each expert is a semi-parametric Poisson regression and the
MNL is also semi-parametric.

From a marketing perspective, the model provides a latent segmentation that ac-
counts for customer heterogeneity (Wedel and Kamakura, 2012) at the daily booking
count and flight level. Teichert et al. (2008) highlight the importance of identifying
different segments to account for customer heterogeneity in airline passenger demand.
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They found more than two latent segments, which is consistent with our empirical
work where we find up to seven segments. From a revenue management perspective,
because the probability of latent class membership varies at the booking day and
flight level, so does the ticket price elasticity. This is a key input into variable pricing
frameworks. From a regulatory perspective, segmentation at the daily booking and
flight level, as opposed to the customer level, avoids the need to collect individual
level data. This is an advantage because the collection of such information can either
be a concern to breach data privacy provisions, such as the EU General Data Pro-
tection Legislation, or is not available to practitioners. In particular data containing
socio-economic and trip characteristics of air travellers as revealed by a preference
survey (Wen and Chen, 2017; Teichert et al., 2008) is generally unavailable to the
airline, nor can it be used by today’s revenue management systems (Hetrakul and
Cirillo, 2014).

A central problem in the estimation of price elasticity using realized demand is
that price is likely to be endogenous (Petrin and Train, 2010; Li et al., 2014). We
address this using a control function approach similar to that suggested by Marra
and Radice (2011) for generalized linear models. We employ the ‘bid-price’ (Talluri
and van Ryzin, 2004, p. 31) as an instrumental variable, which is an airline industry
displacement measure that varies at both the flight and daily levels. We find strong
evidence of all aspects of our proposed model—non-linear covariate effects, customer
heterogeneity and price endogeneity—in our empirical analysis of passenger demand.
A detailed overview of prior studies of retail demand for passenger flights in the
revenue management literature that have features closest to ours is given in Section 1
of the Web Appendix.

Deep models from machine learning are also increasingly used to forecast com-
plex time series with non-linear serial dependencies (Diaconescu, 2008), including
in transportation; see Ke et al. (2017), Lin et al. (2018) and Xu et al. (2018) for
recent examples. Our proposed nonhomogenous Poisson model has the advantage
of being interpretable and provides insights into customers’ behaviour that can be
used in different scenarios. We mention this point explicitly since the airline industry
market is experiencing dramatic changes through the COVID-19 pandemic (see, e.g.,
Peterson and Thankom (2020) or IATA (b)). Even though the analysis in this article
uses data from prior to the pandemic, many of the empirical insights obtained in
the nature and form of the key drivers of demand and price elasticity, as well latent
segmentation, are likely to remain valid when air travel recovers post-COVID-19.
It also has the potential to provide forecasts under different scenarios. For example,
baseline intensity can be adjusted to account for new realities in future passenger
demand, while retaining the remaining aspects of the calibrated model, to produce
flight-level daily demand forecasts.

To account for any unexplained intraday dependence between bookings for dif-
ferent flights we fit a multivariate model using a Gaussian copula and marginals given
by the Poisson model. Dependence may exist between bookings for flights that depart
at different times on the same day, because some customers might consider them as
substitutes (i.e., when the time of flight is not a significant factor for a passenger). To
date, only very few articles analyse the substitution patterns between flights in detail.
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One study to do so is Escobari (2017) who analyses passenger choice behaviour using
a random coefficient logit model. However, this author found little evidence of signif-
icant cross-price elasticity at the departure time level, indicating limited substitution
patterns between flights. In line with these results, estimates of the Gaussian copula
model using our data suggest only low levels of dependence between bookings on
different flights departing on the same day. Full details on the copula model and its
application are given in Section 4 of the Web Appendix.

Last, we summarize here our main empirical findings. Correcting for price endo-
geneity in a mixture model framework has a substantial effect on the estimates of price
elasticity, which is underestimated if the price is incorrectly treated as exogenous.
Even though the consideration of price endogeneity is not novel to the literature, it
is novel in a mixture model framework for latent segmentation. We identify a rich
segmentation, with between five and seven latent classes for flights that depart on
weekdays, but only two for weekend flights; although there is always at least one
price-insensitive and one highly price-sensitive segment. The (a) day of the week on
which bookings are made, (b) number of days before departure and (c) time of the
day at which the flight departs are all strong non-linear predictors of both the mixture
component probabilities and baseline booking intensity. These three covariates all
vary by flight and booking day, so that both the demand and price elasticity estimates
from the model also vary by flight and booking day. Price-sensitive customers tend
to dominate up to 75 days before departure and are replaced by price-insensitive
customers closer to the departure date. Interestingly, price elasticities are higher for
customers who book on the weekend, compared to those who book their flights on
a weekday. Thus, the date of booking (both the day type and the number of days
before departure) reveals a great deal about the price elasticity of customers. Simi-
larly, the time of departure of the flight itself is highly revealing, with morning and
evening peak time flights having a higher proportion of price-insensitive customers;
presumably, because these flights are dominated by customers flying for business
purposes. As all of the covariates used in our model are observable, our approach
does not depend upon individual customer-level data which is difficult to retain under
data privacy provisions, such as the EU General Data Protection Regulation (GDPR).
Hence, our segmentation model allows for ready forecasting of elasticity and demand
for use in airlines’ revenue management systems and therefore aid AirABC in effective
variable pricing by flight and day of booking—an approach that it has adopted in
practice.

The rest of the article is organized as follows. Section 2 introduces the new dataset
we employ, while Section 3 outlines the flexible Poisson model. The latter includes
the mixture model, penalized spline smoothing, penalized maximum likelihood esti-
mation and the approach to endogeniety correction. Section 4 contains the empirical
analysis and Section 5 concludes our work. Extensive additional material is provided
in the Web Appendix which can be found under www.statmod.org/smij/archive.html.
This includes an in-depth literature review, additional empirical results, implementa-
tion details and specification of the multivariate Gaussian copula model to account
for additional dependence between bookings for different flights.
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2 Data

2.1 Setting
The data are extracted from the booking system of AirABC, which provides a com-
plete record of bookings. We analyse flight and matching retail booking data for a
busy short-haul route over the two-year period between 1 April 2012 and 31 March
2014. The route is direct between two Western cities, which we do not name to ensure
anonymity of AirABC, and for simplicity we only consider flights in one direction.
Analysis of demand for this route is of particular interest because during this period
only AirABC offered direct flights between these destinations, so that alternatives
were limited either to indirect flights and other transportation modes. Both economy
and business cabin classes were available, although our empirical analysis focuses on
the economy cabin, which is the much larger of the two.

2.2 Flight data
The route has up to 17 flights per day, and from these we exclude flights departing on
public or school holidays, or correspond to major fairs, exhibitions and conferences
at either the origin or destination cities. For these special day types, it is advisable
to build separate models for passenger demand, which differs greatly from that on
other departure days. If a flight is cancelled, then we retain all bookings over the days
prior to cancellation and do not consider any booking days afterwards. If a flight is
rescheduled, we retain the original data on bookings prior to the date of reschedule
and consider the initial flight cancelled afterwards. We then create a second flight with
the departure details of the rescheduled flight, but with bookings possible only on
days after the date of reschedule. With these exclusions and rules, our data includes
a total of 9 602 flights scheduled to depart on a total of 730 days.

Flights are scheduled to depart every day of the week. There are also 61 distinct
scheduled departure times recorded in our data, with the earliest departure at 06:00
and the latest at 21:55. The variable DDAY records the day of the week (Monday
through Sunday) on which the flight departs, and the variable DTIME records the
time of the day of the departure; both have a substantial impact on passenger demand.

2.3 Retail booking data
We only consider retail demand, based on bookings made within the published fare
structure. Bookings made outside this fare structure, which includes those based on
frequent flyer miles, corporate and private tariffs, or by airline staff, are omitted.
Moreover, we only consider bookings that were also ticketed. This includes online
transactions, where booking and ticketing are completed together. However, it ex-
cludes some bookings made by phone or via travel agents, where a booking can be
made but is not ultimately ticketed due to non-payment. In addition, as discussed
above, if a flight is rescheduled or cancelled by the airline, we retain the bookings
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in our data. We also retain a booking if the passenger cancels after ticketing, as this
usually involves some monetary cost to the passenger.

Both return and single tickets are sold for this route. Purchasing the return ticket
is always cheaper than two single tickets for the same two flights. Therefore, the
motivation for purchasing each ticket type is likely to be different, so that we separate
them. In our empirical work we only consider bookings made as part of a return
ticket, both when the flight is the inbound or outbound section of a return ticket. We
note that return tickets are more common than single ticket bookings for this route,
at 93.1% of total bookings.

We construct booking specific variables as follows. We record the day of the week
on which each booking was made (BDAY), along with the number of days prior
to departure of the flight (t) and also the price paid (PRICE). Over 96.4% of total
economy cabin class bookings were made within 120 days before the departure, and
we only consider these bookings in our analysis. Bookings made on the day of depar-
ture have a value of t = 0, so that 0 ≤ t ≤ 120. If all flights were open for booking
during the 121 day period, there would be a total of 121 × 9 602 = 1 161 842 pos-
sible booking days. However, with flight cancellations and rescheduling as discussed
above, the number of booking days in our data is slightly less at 1 109 559.

For historical reasons, airlines typically associate each ticket sold with a unique
‘booking class’, which should not be confused with the cabin class (i.e., economy
or business). In our data, there are 14 such booking classes which are ordered in
terms of increasing price. During the two-year period AirABC changed the fares
associated with each booking class only once, which corresponded to an overall
price increase. However, on any given day prior to departure, to change the price for
a flight the airline simply opens or closes booking classes. This creates substantial
variation in fares for each flight during the booking period. The majority of ticket
purchases (94%) are at the lowest cost open booking class. The remaining purchases
are made at higher cost open booking classes and are termed an ‘upsell’ by AirABC.
In our data upsell, bookings do not attract any meaningful additional customer
benefits and are likely due to complexities in the booking system. For simplicity,
we exclude the small number of upsell bookings from our data, but note that our
model can be readily applied to these bookings separately. Overall, there are 442 991
economy bookings recorded in our data for the 9 602 flights. To illustrate the level
of variation in ticket prices for a flight, Figure 1 plots the prices (PRICE) of bookings
for four typical flights over the 121-day booking period. Prices are quoted in US
dollars, although to help ensure anonymity of AirABC, we note that the tickets
may, or may not, have been sold in this currency. The four flights were neither
cancelled nor rescheduled during the 121-day booking period and all depart at 07:00,
which is during the daily peak period. The four price pathways reveal substantial
price variation over the booking period, and also across the three flights. This price
variation is created by the process of opening and closing booking classes, as discussed
above.

Figure 2 gives the total number of bookings in our data that were made in each
seven day interval (i.e., week) prior to flight departure. The bookings are further bro-
ken down according to flight departure time, with each panel corresponding to flights
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Figure 1 Prices of standard bookings (PRICE) for four flights against the time to departure (t), during the
120-day booking window. All three flights were open for booking throughout this window and were scheduled
to depart at 07:00

leaving during different hourly intervals. Bookings are most heavily concentrated for
flights departing between 06:00 and 08:00 and between 17:00 and 20:00. These are
morning and evening travel peaks, and are typical of return ticket bookings for a
short-haul flight. Regardless of the time of departure of a flight, booking intensity is
strongest in the weeks immediately prior to departure; a feature that is again consis-
tent with the short-haul nature of the flight. Last, we note that the day of the week
on which the booking was made (BDAY) follows a different distribution than the
day of the week on which flights depart (DDAY). To illustrate this, Table 1 provides
the relative frequencies of both variables, from which we make three observations.
First, bookings are almost exclusively made on weekdays for this route, with around
95% of bookings made between Monday and Friday. Second, while Monday and
Tuesday are the most popular days on which to make a booking, Wednesday and
Thursday are the most common departure days. Third, only 10% of bookings are
for flights that depart on the weekend.
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Figure 2 Total number of bookings in our data observed at each day prior to departure date. The bookings are
further broken down into hourly intervals of flight departure times, with one panel for each hourly interval. For
example, the top left-hand panel plots total bookings made up to 18 weeks prior to departure, only for flights
departing between 06:00 and 07:00 (inclusive)

Table 1 Relative frequency (in percentage) of bookings made on different days of
the week (BDAY), and also for the day of the week the flights depart (DDAY)

Variable Mon Tue Wed Thr Fri Sat Sun

BDAY 21.9 19.8 18.7 17.7 16.8 2.4 3.6
DDAY 14.5 16.8 19.9 21.1 17.3 4.9 5.5
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3 Model development

3.1 Semiparametric mixed poisson regression for bookings
Let Ni(t) denote the total number of bookings for flight i at t days to departure,
which is increasing for t decreasing, so that Yi (t) = Ni(t) − Ni(t + 1) is the number of
passengers who book flight i during day t. Flights departing on each day of the week
are considered separately as different products, and DDAY is not incorporated into
the notation to aid readability. Because we only consider bookings made up to 120
days prior to departure, we assume Ni(121) = 0, so that Ni (0) is the total number of
bookings for flight i made during the 121 day window. The booking process Ni (t)
is modelled as a (time-reversed) non-homogeneous Poisson process with intensity
λi (t) > 0, which is factorized as

λi (t) = λBL(t)

(
K∑

k=1

πk(t)δk

)
. (3.1)

Here, λBL(t) > 0 is a time-varying baseline intensity, while the terms δ1, . . . , δK are
positive adjustments. These adjustments follow a latent finite mixture model with
probabilities π1(t), . . . , πK (t), such that 0 ≤ πk(t) ≤ 1 and

∑K
k=1 πk(t) = 1.

Equation (3.1) specifies a non-homogeneous mixed Poisson model for booking
activity (Karlis and Xekalaki, 2005), where the intensity follows a discrete mixing
distribution with atoms at the points {λBL(t)δ1, . . . , λBL(t)δK}. The adoption of a mix-
ture model is motivated by previous research which finds latent customer segments
based on differing trip purposes and demographics of travellers; for example, see Te-
ichert et al. (2008) and Wen and Lai (2010). To identify these segments, we assume
the intensity adjustment δk does not vary directly with day to departure, but we allow
the probabilities π1(t), . . . , πK (t) to do so instead. However, the baseline intensity,
adjustment values and associated probabilities are all functions of further flight and
booking level covariates, as now discussed.

Table 1 illustrates that the booking intensity varies greatly with booking day
(BDAY), while Figure 2 shows that it also varies substantially with departure time
(DTIME) and day to departure (t). The logarithm of the baseline booking intensity
is therefore modelled as an additive function of these variables, with

log(λBL(t)) =
7∑

j=1

1(BDAY = j)β (λ)
j + s(λ)

0 (t) + s(λ)
1 (DTIME) . (3.2)

The term 1(A) is an indicator function equal to one if A is true, and zero otherwise,
so that β (λ) = (β (λ)

1 , . . . , β
(λ)
7 ) is a vector of booking day intensity effects. Here, the

superscript λ distinguishes these baseline booking intensity effects from those for
the segment probabilities πk(t) introduced later. The impact of t and DTIME are
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modelled as unknown smooth functions s(λ)
0 and s(λ)

1 as discussed further below. To
identify the level in Equation (3.2), we follow Hastie and Tibshirani (1990) and set
the integrals of these functions to zero over their domain.

Previous research (Hetrakul and Cirillo, 2014; Li et al., 2014; Vulcano et al., 2010)
indicates there is strong customer heterogeneity in the price elasticity for passenger
flights. Our objective in adopting the mixture model is to capture segment specific
price elasticities parsimoniously. These are log-linear within each segment, with

log(δk) = αkPRICE (3.3)

The overall price elasticity is therefore Eλ = ∑K
k=1 πk(t)αk which varies with t and

other covariates through the probabilities π1(t), . . . , πK (t). For modelling these seg-
ment probabilities a multinomial logistic regression MNL model is adopted. If seg-
ment K is taken as reference category, then the log-odds are

log
(

πk(t)
πK (t)

)
= β j,1 +

7∑
j=2

1(BDAY = j)β (π )
j,k + s(π )

0,k(t) + s(π )
1,k(DTIME) , (3.4)

for segments k = 1, . . . , K − 1. This is a semiparametric specification, because the
effect of t and DTIME are given by unknown smooth functions s(π )

0,k and s(π )
1,k. As with

the baseline intensity, the functions are constrained to integrate to zero to identify the
level in Equation (3.4). The coefficients β

(π )
k = (β (π )

1,k, . . . , β
(π )
7,k) capture the booking

day type level effect for segment k, relative to the reference category.

3.2 Penalized likelihood estimation and inference
The unknown functions s(λ)

0 , s(λ)
1 for the intensity, and {s(π )

0,k, s(π )
1,k; j = 1, . . . , K − 1}

for the MNL model, are modelled using penalized splines. This is a popular ap-
proach to smooth function estimation; see Wood (2017) and Ruppert et al. (2009)
for overviews and Smith and Kauermann (2011) for their use in transportation sci-
ence. The advantage of using splines instead of flexible functional forms based on
Fourier terms as in Wen and Chen (2017) and Lurkin et al. (2017), is that they allow
for data-driven levels of smoothing (i.e., regularization). A penalized spline approxi-
mates an unknown function by the inner product of a vector of basis terms w(.) with
a coefficient vector γ , so that each function is s(.) = w(.)�γ . Smoothness is achieved
by adopting a regularization penalty on γ . For univariate functions, Eilers and Marx
(1996) proposed for a B-spline basis an appropriate quadratic penalty ργ �Dγ , where
ρD is the precision matrix of a first order random walk in the elements of γ . In
this case, D is a constant band one matrix, and ρ is a scalar smoothing parame-
ter. We adopt this basis and penalty here for each unknown function in our model,
as discussed further in Section 5 of the Web Appendix. Using the same super- and

Statistical Modelling 2024; 24(1): 86–110



92 Jan Felix Meyer et al.

Statistical Modelling 2024; 24(1): 82–106 

96 Jan Felix Meyer et al.

subscripts for the penalized spline coefficients as the unknown functions, the param-
eters of the model are therefore

θ =
{
(β (π )

1 , γ
(π )
0,1 , γ

(π )
1,1 ), . . . , (β (π )

K−1, γ
(π )
0,K−1, γ

(π )
1,K−1),β (λ), γ

(λ)
0 , γ

(λ)
1 , α1, . . . , αK

}
.

If yi,t ∈ {0, 1, 2, . . .} is the number of bookings for flight i made on t days to
departure, and the corresponding observation of the three covariates is

xi,t = (DTIMEi , BDAYt, PRICEi,t) ,

then the (unpenalized) log-likelihood arising from Equation (3.1) is

�(θ ) =
n∑

i=1

topen
i∑

t=tclose
i

yi,t log(λ(xi,t, t; θ )) − λ(xi,t, t; θ ) . (3.5)

Here, the booking and flight specific intensity in Equation (3.1) is written as a function
of the covariates and model parameters as λ(xi,t, t; θ ). The outer summation is over
the number of flights n in the sample, as reported in Table 2, while topen

i and tclose

i are
the days to departure at the opening and closing of booking for flight i . For example,
if flight i is not cancelled or rescheduled during the 121-day booking window, then
these values are topen

i = 120 and tclose

i = 0. Whereas if flight i was cancelled 100 days
prior to departure, then tclose

i = 100.
In Equation (3.5), the covariates are observed on the same resolution as the

booking variable, which is the daily level for each flight, which is also the resolution
of the revenue management system used by AirABC. Both DTIME and BDAY are
observed at this resolution, but the price of a ticket for a given flight can vary between
multiple bookings made on the same day so that PRICE is not. In practice, the PRICE
variable changes during the day whenever AirABC opens or closes booking classes
for a flight mid-way through the day—for example, when a booking class quota is
exhausted—and there are 13 988 booking day/flight combinations in our data where
this occurs.

To manage intra-day price variation without losing information by averaging the
PRICE variable (which could be employed with the likelihood function at Equa-
tion (3.5)) and ensure that the predictions are created on a daily level for each flight,
we incorporate PRICE variation in the likelihood using differing aggregation levels.
For example, if three bookings are observed on a single day, we assume an aggrega-
tion level of 1

3 day. This leads to an offset mirroring the aggregation level as described,
for instance, in Tutz (2012, Sec. 7.2). To specify this here, let

xi,t,l = (DTIMEi , BDAYt, PRICEi,t,l) ,
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Table 2 Summary of data size, broken down by departure day type DDAY. The first three rows report the
number of flights, departure days and possible booking days for these flights. The next two rows report the
number of observed bookings and booking days for each flight where no bookings were made. The final row
gives the total of the number of bookings and non-bookings observed, which is the number of terms in the
likelihood at Equation (3.6)

DDAY

Number of ... Mon Tue Wed Thr Fri Sat Sun Total

Flights n 1,385 1,295 1,435 1,528 1,593 1,124 1,242 9,602
Departure days |D| 105 104 104 104 104 104 105 730
Booking days 157,932 147,518 164,323 173,406 179,898 131,000 137,482 1,091,559
Bookings 64,371 74,383 88,070 93,311 76,816 21,712 24,328 442,991
Non-bookings 128,342 117,611 129,408 134,715 141,746 117,294 121,605 890,721
Observations 192,713 191,994 217,478 228,026 218,562 139,006 145,933 1,333,712

be the covariate vector for the lth booking made t days to departure for flight i , where
l = 1, ..., max(1, yi,t). On days without any bookings for flight i (i.e., when yi,t = 0),
let xi,t,1 be the vector of covariate values, and set yi,t,1 = 0. Similarly, let yi,t,l = 1 for
l = 1, ..., max(1, yi,t) for days with observed bookings (that is, when yi,t ≥ 1). Then,
the (unpenalized) log-likelihood with an aggregation offset is as follows:

�(θ ) =
n∑

i=1

topen
i∑

t=tclose
i

max(1,yi,t)∑
l=1

yi,t,l log
(
λ(xi,t,l, t; θ )

)
− λ(xi,t,l, t; θ )

max(1, yi,t)
. (3.6)

The multiple summation in Equation (3.6) is over all observed bookings, plus the
booking days where no bookings were made for the ith flight (i.e., all instances where
yi,t = 0).

These summations are over all flights i that depart on each given day type. The
bottom row of Table 2 reports the number of terms in the summation, and there are
between 139 006 and 228 026 of these. Note that if there were no intraday variation
in price, then Equations (3.6) and (3.5) would be the same.

Equation (3.6) is augmented with an additive penalty to account for smoothness
in the functions. The first and second order derivatives are computed analytically (see
Section 5.1 of the Web Appendix) enabling fast direct maximization of the penalized
log-likelihood; even for the high sample sizes employed here. The optimal values
of these smoothing parameters are selected by minimizing the Bayesian Information
Criterion (BIC). The number of latent segments is also selected using BIC, where we
fit models with increasing number of segments K as long as this decreases the BIC
as in Allenby and Rossi (1998). Bootstrap confidence intervals for the parameters
and functions of a fitted model are computed using the ‘leave out one individual’
approach of Rice and Silverman (1991). The identification of the segment labels in
the mixture model is achieved by ordering the segment specific price coefficients αk
in a monotone sequence. We refer to Section 6 of the Web Appendix for details.
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We comment briefly on the suitability of selecting the number of latent segments
using BIC. Whittaker and Miller (2021) explores the accuracy of enumerating the
number of classes using different metrics in latent class analysis. They found strong
evidence to suggest that sample size adjusted BIC (NBIC) was more accurate than a
variety of alternatives, including cross-validation and BIC. However, the results also
show similar enumeration accuracy for BIC and NBIC with an increasing sample
size. Because our analysis is based on a large sample of size n = 1 109 559, BIC is an
accurate metric for latent class enumeration.

3.3 Semiparametric regression for price
Treating price as an exogenous variable in a consumer demand model can lead
to biased estimates of price elasticity; see discussions in Davidson and MacKinnon
(1999, 1993), Wooldridge (2002), Petrin and Train (2010) and references therein.
For example, Mumbower et al. (2014) show the importance of controlling for price
endogeneity in a linear model for flight bookings using a two-stage least squares
linear regression estimator, whereas Lurkin et al. (2017) do so for a choice model.
For generalized non-linear models, Marra and Radice (2011) suggest an extension
of such two-stage estimators, similar to the control function approach of Petrin and
Train (2010). We follow these authors and first build a non-linear model for price
based on an instrumental variable and then include the price residual as a covariate
in our model of passenger demand.

To do so, we model the logarithm of prices at the daily and flight level as

log(PRICE) = θ0 + θ1 log (IV) +
7∑

j=2

1(BDAY = j)θ j + f0(t) + f1(DTIME) + U

= η + U , (3.7)

where U ∼ N(0, σ 2). The effects of t and DTIME are captured by unknown smooth
functions f0 and f1 modelled by penalized splines, while IV is an instrumental vari-
able.

Mumbower et al. (2014) discusses possible choices for IV and suitable candidates.
Li et al. (2014) notes that many candidates are invalid because both the IV and book-
ing data need to be observed at the same level of aggregation to control effectively for
price endogeneity. Supply shifters—for example, airport fees, transportation taxes
and fuel costs—are constant over daily bookings. Hausman-style instruments at the
firm level do not match to a model on the market level. Stern-type instruments that
measure competition and market share do not vary on the booking level. Last, IVs
that have an impact on marginal costs remain a feasible option, which is why we
use (the logarithm of) a variable that is popular in the revenue management litera-
ture called the ‘bid-price’ (Talluri and van Ryzin, 2004, p. 31). The bid-price is a
measure of the (marginal) cost of offering a seat, taking into account that it cannot
be sold again. Crucially, it varies between bookings because the airline updates its
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Figure 3 Description of two airline-network scenarios. On the left-hand side, the airline controls for capacity
constraints only taking passenger demand from the origin (BBB) to the destination (AAA) into account.
Low-cost-carriers typically use this set-up. On the right-hand side, the airline controls for the capacity
constraint on the BBB to AAA route by taking all possible passenger demand streams coming from other
origins than BBB (arrows going into BBB) to different destinations than AAA (arrows going out of AAA) into
account. Network-carriers typically use this set-up

assessment frequently. The bid-price is available for all flights in the database and at
all time points, as well as for predictive purposes, that is for flights that are yet to
depart.

To ensure the validity of our choice the IV needs to fulfill the properties of
relevance and exogeneity (Guevara, 2018). Whereas (strong) relevance can easily
be demonstrated by the strong non-linear dependence between the IV and the en-
dogenous variable price, exogeneity needs to be addressed by a statistical (over-
identification) test. Unfortunately, this test requires the availability of at least two
instruments, so that exogeneity cannot be established definitively. From a qualitative
perspective, the bid-price is a measurement of displacement cost, ensuring that rev-
enue gain for the available airlines’ network capacity is maximized. As pointed out
by Li et al. (2014), the exogeneity (and hence the validity of the bid-price IV) means
that a demand shock for flight i at time to departure t (i.e., εi (t) = Yi (t) − λi (t)) is un-
correlated with the IV. Figure 3 describes two possible revenue management setups,
where an airline only controls for displacement cost on route-level (left-hand side)
or incorporates all possible demand-streams into the displacement cost calculation
(right-hand side). As AirABC is a network carrier, it considers every demand stream
when calculating the bid-price value. Therefore, the bid-price defines the distribution
of all network demand on the route. In our study, the share of transfer passengers,
that is passengers not travelling solely between BBB and AAA, is approximately 50%.
Thus, the bid-price value is largely determined by factors that are exogenous to the
route under study. Hence, we conclude that the demand shock εi(t) and the bid-price
are uncorrelated.

We fit the model at Equation (3.7) using maximum likelihood, and then use this
to estimate the error

ξ = PRICE − E (PRICE | IV,BDAY,t,DTIME) = PRICE − exp
(
η + σ 2/2

)
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Table 3 Parameter estimates for Model II (i.e., the with the inclusion of the residuals ξ̂i ) with K = 5 latent
class segments, fitted to bookings on flights departing on Thursday. Bootstrap standard errors are given in
parentheses

Segment BL k = 1 k = 2 k = 3 k = 4 k = 5

Component λBL(t) πk(t)

PRICE 0.0019 -0.0035 -0.0287 -0.0295 -0.0301
(0.0006) (0.0022) (0.0082) (0.0025) (0.0025)

ξ̂ -0.0030 -0.0036 -0.0126 -0.0133 -0.0135
(0.0003) (0.0004) (0.0039) (0.0017) (0.0019)

Baseline coefficients Log-odds coefficients
Intercept 1.4254 -3.3756 -0.5172 3.0461 0.6938 –

(0.3028) (0.5777) (1.0661) (1.5426) (1.3458) –
BDAY = Mon 0.3470 2.3653 0.1170 -1.6610 -2.0355 –

(0.3028) (0.4349) (0.5276) (0.7180) (0.4943) –
BDAY = Tue 0.2948 2.7756 0.4308 -1.3427 -1.2495 –

(0.1532) (0.4976) (0.4139) (0.5904) (0.5588) –
BDAY = Wed 0.3027 2.2079 -0.0261 -1.9197 -2.1133 –

(0.1718) (0.6987) (0.2931) (0.4627) (0.8671) –
BDAY = Thr 0.3088 3.4974 1.0745 -0.5302 0.5838 –

(0.1623) (0.6321) (0.5552) (0.8554) (0.9305) –
BDAY = Fri 0.2337 2.8789 0.2554 -1.2382 -0.4404 –

(0.1516) (0.5650) (0.3854) (0.6682) (1.8257) –
BDAY = Sat -0.4454 -0.3175 -0.0387 -0.1650 -0.2100 –

(0.0868) (0.3989) (0.4055) (0.4170) (0.5661) –

for each flight and booking day combination. The resulting residuals values are
observations on the covariate ξ̂ , which is included in the log-linear segment price
adjustments, so that we replace Equation (3.3) by

log(δk) = α1,kPRICE + α2,kξ̂ . (3.8)

We will subsequently refer to Model I if we ignore endogeneity and use Equa-
tion (3.3). Taking endogeneity into account and using Equation (3.8) is referred to as
Model II. A more detailed motivation for this two-stage procedure using the bid-price
as an instrumental variable is given in Section 7 of the Web Appendix.

4 Empirical analysis

We now discuss the estimates from our model. Because we fit it to bookings for flights
departing on different day types—that is, different values of DDAY—separately, we
give in detail the results arising from flights departing on Thursday. This is the
departure day with the highest demand.
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Figure 4 For K = 5 segments, the left-hand panels provide the function estimates for s(λ)
0 (t) and s(λ)

1 (DTIME) in
Equation (3.2) for bookings on flights that depart on Thursday. The right-hand side shows the estimates of
s(π )
0,k (t) and s(π )

1,k (DTIME), k = 1, . . . , 4 in Equation (3.4). The first-stage residuals ξ̂ are included (i.e. Model II). The
estimates are given by the solid line, while the dashed lines are 99% local confidence bands

We fit the demand models with K = 2, . . . , 7 segments, both including and ex-
cluding the price model residuals ξ̂ (the calculation of ξ̂ is discussed in Section 2 of
the Web Appendix). The inclusion of the residuals improves the fit of the demand
models substantially—as measured using either AIC or BIC—in every case. A detailed
discussion of the K = 2 segment model estimates, and the impact of controlling for
endogeneity, is given in Section 3 of the Web Appendix. For all seven departure days
(DDAY), Table 5 reports the BIC values for all fitted demand models that include
the residuals ξ̂ and different numbers of segments. For flights departing on Thursday
(DDAY = Thr), K = 5 segments are optimal with the minimum BIC value. Table 3
gives the estimates of the linear coefficients. Inclusion of the price residual has a
substantial effect on the parameter estimates so that we subsequently only discuss
the results with price endogeneity taken into account. The segment adjustment coef-
ficients shows that the PRICE coefficient for segment 2 is insignificant and close to
insignificant for segment 1. However, segments 3, 4, and 5 exhibit significant price
sensitivities between α̂3 = −0.0287 and α̂5 = −0.0301.
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Figure 4 shows the fitted smooth terms of model component at Equation (3.2) (left
panel) and Equation (3.4) (right panel). We see a general increase in demand closer to
the day of departure (i.e., for lower values of t). Moreover, the size of segments 1 and
4 increase, and segment 3 decreases, closer to the day of departure. Segment 2 shows
no significant time effect. DTIME has only a weak impact on demand, although this
is not the case for customer segmentation which we discuss next.

To measure the composition of customers as a function of time to departure, we
compute the ratio

qk(t) = πk(t)δk∑K
k�=1 πk�(t)δk�

, (4.1)

for k = 1, 2, . . . , K . This ratio measures the proportion of customers in segment k.
In our demand model, the component πk(t) is a function of both flight and booking
level covariates, so that we compute the mean q̄k(t) by averaging qk(t) over all flights
and bookings on a given day to departure t.

Figure 5 (top panel) plots q̄k(t) for the five segments against days to departure.
Only a very small proportion of bookings fall into the price-sensitive segments 4
and 5. For segment 5 passengers arrive anytime, whereas segment 4 corresponds to
a type of passenger that arrives shortly before departure. The vast bulk of bookings
by price-sensitive customers are in segment 3. This accounts for around 40%–50%
of all bookings made up to 75 days before departure, but gradually declines as the
flight departure approaches, falling to almost none in the week prior to departure.
Bookings made in this segment are also more likely to be made on the weekend (i.e.,
when BDAY is either Saturday or Sunday). The proportion of bookings that fall into
the two price inelastic segments have quite different patterns. The probability of a
booking in segment 1 is at most 20% until 75 days prior to departure, after which it
increases rapidly until the day of departure, during which just over 80% of bookings
arise from this segment. Bookings in segment 2 are common throughout the booking
window, varying between around 20% to 60% of the total. Interestingly, bookings
in this segment exhibit a strong booking day effect—with bookings much more likely
on the weekend than weekdays—a stark difference with bookings in segment 1 which
do not.

The probability πk of being in segment k is also a function of DTIME through the
MNL model at Equation (3.4). Thus, the diagnostic ratio can be also be computed as
a function of DTIME, which we write as q̄k(DTIME). The bottom panel in Figure 5
plots this ratio against DTIME for each of the five segments. Of the two price-
insensitive latent classes, segment 1 accounts for around 50% of all bookings on fights
departing during the morning peak, and a striking 70% of those during the evening
peak. In contrast, segment 2 bookings exhibit a preference for the late evening.
Bookings in the price-sensitive segment 3 are largely for flights departing during
off-peak periods, whereas segment 4 and 5 show no particular time preference.

Table 4 summarizes the main features of each latent segment, which we label
as ‘Rush Peak-time’ (segment 1), ‘Planned Evening Business’ (segment 2), ‘Planned
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Figure 5 Plot of the average segment proportion computed from the model fitted to booking on flights
departing on Thursday and K = 5 (solid line) with 99% local bootstrapped confidence bands (dashed lines).
Top row: within each panel, q̄k(t) is plotted against days to departure t. Bottom row: within each panel,
q̄k(DTIME) is plotted against DTIME
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Table 4 Summary of main booking features and flight preferences of bookings made in each of the four latent
segments of the demand model (with K = 5 and price residual inclusion) fit to bookings made for flights
departing on Thursday

Segment

1 2 3 4 5
Booking features Rush Planned Planned Bargain High
& preferences Peak time Evening Business Leisure Catcher Value seeker

Price sensitive? No No Yes Yes Yes
Relative size Large Medium Medium Small Tiny
Flight time preference Peak Evening Midday No preference No preference
Day of booking Weekday Any day Weekend Thr Baseline
Booking day Relative to Closer Throughout Earlier Last minute Anytime

flight Departure

Leisure’ (segment 3), ‘Bargain Catcher’ (segment 4) and ‘High Value Seeker’ (seg-
ment 5). We also compute the overall elasticity estimate Eλ that averages over the
latent segments. Figure 6 plots Eλ against the time to departure for select values of
DTIME and BDAY. All panels show that the price elasticity decreases as the day of
departure nears (t = 0). This effect is stronger for a weekday booking day, for ex-
ample Monday, compared to a weekend booking day such as Sunday. In the weeks
immediately prior to departure, tickets on morning and evening flights are much
more price inelastic than tickets for midday flights. Overall, the results indicate that
K = 5 passenger segments successfully identify customer heterogeneity in price elas-
ticity broken down by time to departure (t) and departure time (DTIME), allowing
for optimal variable pricing of tickets.

So far we have looked at Thursday departures only. We extend this now and
fit the demand model to bookings for flights on all departure days. The BIC values
for K = 1, . . . , 7 customer segments are shown in Table 5, while the corresponding
estimated coefficients of PRICE for the optimal model based on the BIC are reported
in Table 6. For weekday departures (except Monday) K = 5 is optimal throughout,
and the segment specific price sensitivities are similar across departure day.

For example, there are two price-insensitive segments, with the exception of Fri-
day flights where there is only one. For flights departing during the weekend the
optimal number of segments is K = 2, indicating less customer heterogeneity. For all
seven departure days, the individual segments exhibit significant differences in price
elasticity, which can be exploited for variable pricing purposes.

In Section 4 of the Web Appendix, we validate the assumption of conditional
independence of flight counts during a departure day. To do so, we extend the
univariate model to a multivariate Poisson model to analyse possible dependencies
between flights. No significant dependence between flights is found, and we conclude
that the proposed mixture-of-experts model is unbiased by unobserved heterogeneity
caused by additional dependence between demand for flights departing on the same
day.
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Table 5 BIC and log-likelihood values for each DDAY and No. of Segment combination. The distance value
reports the L2-Norm of a model with No. of Segments K > 1 to the model with K = 1. The numbers in bold
indicates the model with the greatest distance (dist.) to the model with K = 1

No. of segments
DDAY K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7

Mon
BIC 191939.0 188487.0 188374.2 188259.2 188306.1 188273.0 188274.9
log-lik -95503.1 -93520.3 -93285.5 -93342.5 -93310.0 -93201.7 -93182.5
dist. 0.0 3980.9 4198.3 4267.2 4243.5 4328.4 4337.1

Tue
BIC 190944.8 188571.7 188363.8 188181.1 188001.9 188086.4 188292.3
log-lik -95005.5 -93774.8 -93354.7 -93359.1 -93198.1 -93194.1 -93324.6
dist. 0.0 2673.2 3063.7 3216.9 3453.6 3384.0 3140.2

Wed
BIC 223292.3 220656.5 220037.9 220285.9 219981.6 220096.5 220071.4
log-lik -111173.9 -109818.4 -109284.7 -109188.8 -109098.5 -109170.9 -109177.1
dist. 0.0 2963.9 3763.0 3602.7 3907.5 3771.7 3789.7

Thr
BIC 251600.2 247740.6 246328.3 246035.5 245916.0 246052.4 246129.1
log-lik -125325.9 -123286.0 -122505.7 -122311.4 -122129.7 -122110.6 -122116.1
dist. 0.0 4365.5 5978.9 6328.8 6521.2 6412.2 6343.2

Fri
BIC 259010.7 251940.9 250399.2 250427.2 250215.5 250202.4 250356.3
log-lik -129033.3 -125341.8 -124400.1 -124288.3 -124130.0 -124182.0 -124242.5
dist. 0.0 7975.5 9778.7 9807.7 10069.6 10055.9 9891.9

Sat
BIC 117554.1 115858.9 116022.4 116088.2 116135.1 116156.7 116170.7
log-lik -58551.9 -57554.7 -57588.0 -57582.2 -57596.6 -57584.5 -57590.5
dist. 0.0 1966.8 1809.8 1757.6 1710.6 1699.6 1684.7

Sun
BIC 124814.0 122542.7 122788.6 122872.7 122946.6 122988.3 122987.1
log-lik -61990.1 -60968.8 -61029.7 -61016.3 -61014.4 -61024.5 -61023.4
dist. 0.0 2490.9 2241.5 2171.8 2106.9 2065.3 2066.9

Table 6 Segment-specific price-coefficients and boot-srapped standard errors for the optimal endogeneity
corrected model seperated by DDAY

No. of segments
DDAY k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

Mon
0.0011

(0.0006)
0.0003

(0.0014)
-0.0005
(0.0051)

-0.0039
(0.0088)

-0.0210
(0.0037)

-0.0277
(0.0021)

-0.0282
(0.0021)

Tue
-0.0011
(0.0005)

-0.0039
(0.0016)

-0.0214
(0.0012)

-0.0220
(0.0012)

-0.0227
(0.0012)

- -

Wed
-0.0008
(0.0004)

-0.0077
(0.0047)

-0.0214
(0.0021)

-0.0225
(0.0019)

-0.0232
(0.0019)

- -

Thr
0.0019

(0.0006)
-0.0035
(0.0022)

-0.0287
(0.0082)

-0.0295
(0.0025)

-0.0301
(0.0025)

- -

Fri
0.0007

(0.0003)
-0.0160
(0.0018)

-0.0206
(0.0021)

-0.0354
(0.0015)

-0.0361
(0.0015)

- -

Sat
-0.0037
(0.0007)

-0.0368
(0.0020)

- - - - -

Sun
-0.0027
(0.0007)

-0.0435
(0.0018)

- - - - -
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Figure 6 Estimated overall price elasticity Eλ (solid line) for a mixture of K = 5 customer segments, estimated
with endogeneity correction. Also plotted are 99% local bootstrapped confidence bands (dashed lines). Six
combinations of booking day (BDAY) and departure time (DTIME) are considered, and days to departure (t) is
on the horizontal axis

5 Conclusion

We propose a flexible non-homogeneous Poisson model of demand for passenger
flights and apply it to a large dataset constructed from the booking database of a
major airline. The dataset contains daily booking counts for all flights on a single
busy short-haul route, where the airline has no direct competition. In comparison
to most previous studies, our data do not suffer from the exclusions typical of
data constructed either using web crawlers or sourced from the Global Distribution
System. Our empirical study reveals four substantive findings with managerial and
marketing implications for airlines.

First, based on the BIC criteria (see, Table 5), our latent segmentation model
suggests that there are typically between two and five consumer segments, which
have very different levels of price elasticity. Using an MNL model, we show that
the probability of segment membership varies substantially over the flight departure
time, booking day type and number of days to departure at the time of booking
in a non-linear way, so that price elasticity does so also. Quantifying variable price
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elasticities, as a mixture of passenger segments, is essential for revenue management
practices where the airlines try to maximize their revenue by optimally changing
the price of a ticket. From a marketing perspective, the characterization of cus-
tomer segments in Table 4 allows AirABC to better tailor its product and promotion
activities.

Second, we consider a booking horizon of 120 days, which is longer than in most
previous studies. During this period, as seen by the varying segment proportions of
Figure 5, we find the determinants of demand (and elasticity) vary greatly, suggesting
that continuous tailoring of price and marketing over the entire booking horizon is
warranted.

Third, the covariates used in our model are all fully observable throughout the
airline scheduling horizon of 365 days before departure and allow for forecasting
of elasticity and demand for use in airlines’ revenue management systems. In con-
trast, capturing consumer heterogeneity using individual customer level data that
includes some customer characteristics would not allow for forecasting future de-
mand and price elasticity because this data is typically unknown to the airline
at the time of booking. Moreover, retention of individual-level customer data is
likely to be increasingly difficult under data privacy provisions, such as the EU
GDPR.

Last, we highlight the importance of accounting for endogeneity when estimating
price elasticity. While studies have shown this previously for aggregate data, we
do so at a disaggregate level within a flexible mixture-of-experts framework with
non-linear effects captured using regularized splines. A control variate approach is
used with the bid-price as an instrument, which is discussed in detail for two latent
passenger segments in Section 3 of the Web Appendix. The advantage of using the
bid-price is that it varies at the same resolution as our booking data—that is at the
flight and daily level—and proves to be a strong instrument.

Our study uses data from customers purchasing published fares for the economy
class cabin on a single route without any competition from other airlines. The ad-
vantage of focusing on this specific situation is that it can be seen as a controlled
experiment. Nevertheless, the model developed is applicable more generally. It has
been applied by AirABC to bookings on other routes with competitors and a vary-
ing share of passengers who buy published fares. To model and forecast demand in
those scenarios, additional variables are simply added to describe the behaviour of
competitors and passenger segments.

The extension of the model to a multivariate Poisson model using a Gaussian
copula, as outlined in Section 4 of the Web Appendix, has strong potential. While
we found little evidence of additional dependence between bookings on flights that
depart on the same day, it can also be used to capture dependence between other
bookings. For example, between bookings for (a) the same flight on adjacent days
(which would be a type of longitudinal model) and (b) different flights departing
during the same hourly period but in adjacent days. Such analyses would enable a
better understanding of how price variation at the flight and daily level affect demand
for substitute flights and provide a step towards improved continuous pricing by
airlines.
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Our research was undertaken before the 2020 COVID-19 pandemic, which at
the time of writing, has greatly affected flights around the world. However, as air
travel resumes the insights listed above are likely to remain valid. This is because
our statistical model has interpretable components, whereas black-box models (e.g.,
deep neural networks) are often difficult to extrapolate in the presence of a structural
shock. We conclude by noting that prior to March 2020, insights from these results
were incorporated into practice by AirABC. Tickets on the considered route, as well
as on comparable connections, were priced based on the proposed model. As air
travel recovers post-COVID-19, AirABC will likely continue to price tickets using
this model, while incorporating adjustments to key components (notably the baseline
intensity) to reflect new demand realities as they emerge.
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