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In response to the novel coronavirus disease (COVID-19), govern-
ments have introduced severe policy measures with substantial
effects on human behavior. Here, we perform a large-scale, spa-
tiotemporal analysis of human mobility during the COVID-19 epi-
demic. We derive human mobility from anonymized, aggregated
telecommunication data in a nationwide setting (Switzerland; 10
February to 26 April 2020), consisting of ∼1.5 billion trips. In com-
parison to the same time period from 2019, human movement in
Switzerland dropped by 49.1%. The strongest reduction is linked
to bans on gatherings of more than five people, which are esti-
mated to have decreased mobility by 24.9%, followed by venue
closures (stores, restaurants, and bars) and school closures. As
such, human mobility at a given day predicts reported cases 7 to
13 d ahead. A 1% reduction in human mobility predicts a 0.88 to
1.11% reduction in daily reported COVID-19 cases. When manag-
ing epidemics, monitoring human mobility via telecommunication
data can support public decision makers in two ways. First, it
helps in assessing policy impact; second, it provides a scalable
tool for near real-time epidemic surveillance, thereby enabling
evidence-based policies.

COVID-19 | epidemiology | human mobility | telecommunication data |
Bayesian modeling

The novel coronavirus disease (COVID-19) has evolved into
a global pandemic, which, as of 15 December 2020, has

been responsible for more than 70 million reported cases (1). In
response, governments around the world have put policy mea-
sures into effect with the aim of reducing transmission rates
(2–7). Examples of policy measures are border closures, school
closures, venue closures, and bans on gatherings.

Prior literature has suggested the use of human mobility data
to model the COVID-19 epidemic (8). Mobility patterns have
been inferred from point-of-interest (POI) check-ins (9–13) and
from location logs of smartphone apps (14–26). Other works
have used telecommunication data to model spreading patterns
(27, 28), for exploratory analysis of mobility patterns (29–31), for
network analysis of structural changes in mobility (32), and for
modeling the spatiotemporal distribution of COVID-19 (28), but
none have yet empirically explored the link between telecommu-
nication data and policy measures. Establishing such a link would
provide a scalable tool for near real-time disease surveillance
under policy measures and, in particular, enable evidence-based
policies. Previously, the value of telecommunication data for
disease surveillance has been studied in the context of malaria
(33, 34), influenza (35), and other infectious diseases (36–38),
where the objective was to make spatiotemporal forecasts. In
contrast, this paper demonstrates the utility of telecommunica-
tion data for near real-time assessments of COVID-19 policies.
In fact, nationwide data from mobile telecommunication net-
works have been used by governments during the first wave of
COVID-19 (39). However, to the best of our knowledge, empir-
ical evidence regarding the effectiveness of telecommunication
data for epidemic surveillance in the context of COVID-19 is
absent.

In this paper, we analyze human mobility during the COVID-
19 epidemic. Our analysis is based on large-scale, granular data

of human movements (anonymized and aggregated) consisting of
∼1.5 billion trips in Switzerland during the first COVID-19 wave
(10 February to 26 April 2020) derived from telecommunication
data. Using regression models, we estimate 1) the impact of pol-
icy measures on human mobility and 2) how mobility predicts the
growth in reported COVID-19 cases. By establishing that pol-
icy measures reduce mobility and that mobility predicts reported
cases, mobility insights can be used to inform when to imple-
ment policy measures. The findings are therefore of direct value
to public decision makers: Monitoring human mobility through
telecommunication data provides an effective and scalable tool
for near real-time epidemiology and, thus, management of the
COVID-19 epidemic.

To establish the ability of telecommunication data for near
real-time monitoring of the COVID-19 epidemic, we follow a
two-stage approach (Materials and Methods). We first study the
reduction in mobility due to five different policy measures (bans
on gatherings of more than 100 people, bans on gatherings of
more than 5 people, school closures, venue closures, and bor-
der closures). We then estimate the extent to which reduction
in mobility predicts decreases in reported case growth. Here,
we compare the predictive ability over a forecast window from
7 to 13 d. Taken together, the results confirm the effectiveness
of policy measures for reducing human mobility and, in turn,
human mobility as a predictor of reported cases by a lead time
of approximately (approx.) 7 to 13 d. The two-stage approach is
repeated for total trips, three different modes of mobility (train,
road, highway), and two different purposes for mobility (com-
muters vs. noncommuters). In an extended analysis, we further
perform a mediation analysis. Here, we decompose the reduc-
tion in new reported cases due to the policy measures into 1) the
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part that is explained only by reductions in mobility and 2) the
part that is explained by other behavioral adaptations.

Results
We analyze large-scale data on human mobility during 10 Febru-
ary to 26 April 2020 from Switzerland. For this, human move-
ments derived from telecommunication data were obtained from
a major telecommunications provider in Switzerland (Materials
and Methods). Telecommunication data provide more reliable
and extensive information on mobility compared to alterna-
tive data sources (check-ins or location logs from smartphone
apps) (8, 40, 41). In particular, our telecommunication data rep-
resent routine signal exchanges (“pings”) exchanged between
mobile devices and network antennas. These were recorded for
all mobile devices in Switzerland regardless of the mobile ser-
vice provider. Based on the telecommunication data, granular
locations (longitude, latitude) of individuals carrying a mobile
device were inferred. This yields data on microlevel movements
from all mobile devices in a nationwide setting. Altogether, the
nationwide mobility for a population of ∼8.6 million people was
estimated.

For the analysis, the telecommunication data were then pro-
cessed to count the number of trips between postcodes per day
and canton. All trips were further classified according to the
mode of mobility (train, highway, and other road movements)
and purpose (commuting vs noncommuting). For the time period
of this study (10 February to 26 April 2020), our data include a
total of ∼1.5 billion trips. Details are reported in Materials and
Methods.

We further collected data on the use of policy measures in
Switzerland. Switzerland comprises 26 member states at the sub-
national level (called “cantons”), each with a large degree of
sovereignty. As a result, the use of policy measures varies across
cantons with respect to their order and timing in a way that is
similar to the variation among other European countries. Some
cantons (e.g., Ticino at the border to Italy and Geneva at the
border to France) showed epidemiological dynamics with large
numbers of reported cases and responded with comparatively
stringent policy measures during the first wave of COVID-19.
Other cantons had lower case numbers and put policy mea-
sures into effect during a later phase of the epidemic. We
followed a systematic procedure (SI Appendix, section 1) based
on which we encoded policy measures according to five cate-
gories: bans on gatherings (>100 people), bans on gatherings
(>5 people), school closures, venue closures (stores, restau-
rants, bars), and border closures. The implementation dates of
the chosen policy measures varied greatly across cantons (but
then remained in effect for the complete study period, i.e.,
until 10 April).

The spatiotemporal patterns of human movements in our
data are as follows. Overall, ∼95 million trips were recorded
in the first week (24 February to 1 March 2020), during which
all five policy measures were in effect in all 26 cantons. In
comparison, the same time period in 2019 (as a reference
period) registered ∼186 million trips. This amounts to a reduc-
tion of 49.1%. The reduction occurred in all cantons (Fig. 1
A and B). The highest decline was observed in Ticino and
Geneva, which are located at the borders with Italy and France,
respectively. Both cantons also reported the highest number of
COVID-19 cases.

The largest mobility reduction compared to 2019 occurred on
Sunday, 22 March 2020 (Fig. 1C). In comparison to Sunday, 24
March 2019, the reduction in trip counts ranged between 49.3
and 77.0% across the 26 cantons (mean: 61.6% reduction per
canton). Overall, the reduction in mobility is of similar magni-
tude for both rural (e.g., canton of Valais) and urban regions
(e.g., cantons of Basel-City and Zurich). Furthermore, move-
ments declined for all modes of mobility (Fig. 1D) and for all

purposes (Fig. 1E). After the implementation of the policy mea-
sures, trips by train remained low for the rest of the study period,
while highway traffic was on an upward trend (Fig. 1D). Sim-
ilarly, trips by commuters remained at a low level after the
implementation of the policy measures, whereas trips not for
commuting (i.e., personal purposes) started increasing in early
April (Fig. 1E).

Estimating the Reduction in Human Mobility Due to Policy Mea-
sures. We estimate the reduction in mobility due to the policy
measures with a regression model. The estimates are identified
via a difference-in-difference analysis and may thus be given a
causal interpretation under certain assumptions (SI Appendix,
section 4A).

The most effective policies for reducing trip counts are as
follows (Fig. 2A). Based on our model, bans on gatherings of
more than five people reduced total trips by 24.9% (95% cred-
ible interval [CrI]: 22.1 to 27.6%), venue closures reduced total
trips by 22.3% (95% CrI: 15.6 to 29.0%), and school closures
reduced total trips by 21.6% (95% CrI: 17.9 to 25.0%). For
a precise ranking, the width of the credible intervals must be
considered. Here, the aforementioned policy measures appear
more effective at reducing total trips than the other two pol-
icy measures (i.e., bans on gatherings of more than 100 people
and border closures). In particular, bans on gatherings of more
than 100 people are linked to a comparatively smaller change
in total trips than bans on gatherings of more than 5 people
(i.e., the 95% CrIs of the estimates are disjoint). For border
closures, the credible interval includes zero. Overall, policy mea-
sures are important determinants of mobility reductions during
the COVID-19 epidemic.

The estimated mobility reduction depends on the underlying
mode (Fig. 2B). Across all policy measures, the mobility reduc-
tion is more pronounced for highways than for road movements.
This observation is to be expected. Highways are often used for
long-distance travel, which is more likely to be suspended during
an epidemic, while roads also include movements within close
proximity and are more likely to correspond to routine or essen-
tial activities (e. g., grocery shopping). For the ban on gatherings
and school closures, the largest reduction is seen in trips by train,
which can be explained by the widespread use of public trans-
portation in Switzerland. Finally, we observe a wide credible
interval for the estimated effect of venue closures on trips by
train. A potential reason for this is that the use of trains (e.g.,
for visiting stores) varies across cantons, as some cantons (e.g.,
Zurich) have a high population density with extensive shopping
infrastructure, while others (e.g., Appenzell Innerrhoden) have
only a few stores due to their low population density, resulting in
the need for travel to visit stores.

The estimated effect sizes are fairly similar for trips made
for commuting versus noncommuting (Fig. 2C). This is interest-
ing, considering that no policy measure in Switzerland directly
prohibited movement to and from work. The efficacy of border
closures is uncertain since the credible interval for its estimated
effect includes zero. In contrast, a negative effect is observed for
commuting. Here, one potential reason is that border closures
have reduced the number of cross-border commuters. A valida-
tion analysis supports this explanation (see SI Appendix, section
2B for details).

The findings are robust to alternative model specifications (see
the robustness checks in SI Appendix, section 6). Specifically,
changing the specification of time-related control variables still
gives parameter estimates for the policy measures that imply
decreases in mobility.

Estimating the Relationship between Mobility and COVID-19 Cases.
The epidemic dynamics during the first wave of COVID-19 in
Switzerland are as follows. The initial exponential growth rates
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Fig. 1. Nationwide human mobility in Switzerland during the first wave of the COVID-19 epidemic. Mobility is quantified by movements (“trips”) between
different postcode areas. (A) Total number of trips per canton for the first week after all policy measures were put in effect in all cantons (25 March to 1
April 2020). (B) Total number of trips for the same week in 2019 (i.e., as reference year). For this week, the total number of trips dropped from∼186 million
(in 2019) to ∼95 million (in 2020), i.e., a reduction of 49.1%. (C) Percentage change in total trips across 26 subnational levels (cantons) for 2020 vs. 2019
(when aligned for day-of-week patterns). The reason for the comparison to 2019 is to show the reduction in mobility relative to a reference year, while
accounting for seasonal changes in mobility. A higher reduction in mobility is observed for cantons that also reported a high number of COVID-19 cases
(i.e., Ticino and Geneva). (D) Reduction in trip count by mode of mobility. (E) Reduction in trip count by purpose of mobility. Annotations show nationwide
implementation dates of policy measures (implementation dates at cantonal level are reported in SI Appendix, section 1).
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Fig. 2. The estimated effects of policy measures on mobility. Shown are the estimated effects on (A) the total number of trips, (B) trips by mode, and (C)
trips by purpose. The dots in A–C show posterior means; the thick and thin bars represent the 80 and 95% credible intervals, respectively. Policy measures
are arranged from top to bottom in the order in which they were implemented (cf. SI Appendix, section 1).

exhibit considerable heterogeneity across cantons (Fig. 3A). The
strongest initial growth is observed for the cantons Ticino and
Geneva, resulting in the largest number of cases toward the
end of the sample. Moreover, the number of reported cases at
the dates that policy measures were implemented varies greatly
across cantons (Fig. 3B). This reflects different responses among
cantons to local infection dynamics.

We use regression models to estimate the extent to which
decreases in mobility predict future reductions in the reported
number of new cases (Fig. 3C). The predicted decrease is stud-
ied with a forecast window over 7 to 13 d. The forecast win-
dow is set analogous to previous research (26) and so that it
covers variations in incubation time combined with reporting
delay.
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Fig. 3. Decreases in human mobility predict reductions in reported cases of COVID-19 over a forecast window of 7 to 13 d. (A) COVID-19 case growth since
the first reported case for 26 Swiss cantons. (B) Number of COVID-19 cases when the policy measures were implemented for all 26 Swiss cantons. Shown are
abbreviated names from https://www.bfs.admin.ch/bfs/en/home/basics/symbols-abbreviations.html. The predicted change in reported new COVID-19 cases
at a given day based on mobility lagged by 7 to 13 d. (C–E) The predicted change is reported given a 1% decrease in (C) total trips, (D) mode, and (E)
purpose. Posterior means are shown as dots, while 80 and 95% credible intervals are shown as thick and thin bars, respectively.
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We find that decreases in mobility at a given day predict
decreases in reported new cases 7 to 13 d later. For a 7-d
ahead forecast, we find that a 1% decrease in the total num-
ber of trips predicts a 0.88% (95% CrI: 0.7 to 1.1%) reduction
in the reported number of new cases. For a 13-d ahead fore-
cast, a 1% decrease in the total number of trips predicts a 1.11%
(95% CrI: 0.9 to 1.6%) reduction in the reported number of
new cases. Overall, mobility predicts decreases in the reported
number of new cases over the whole forecast horizon. The pre-
dicted decrease is larger for longer forecasts. This result is to be
expected, as a longer time window accommodates the full distri-
bution of incubation periods (plus reporting delays). Altogether,
the regression analysis provides evidence that mobility predicts
epidemic dynamics.

Our analysis also shows that the predicted change in the
reported number of new cases varies across the mode and pur-
pose of trips. In terms of mode, decreases in trips by highway and
train predict reductions in the reported number of new cases of
similar magnitude (Fig. 3D). Their estimates have comparatively
narrow credible intervals, reflecting a higher degree of certainty.
Trips are also categorized according to their purpose, namely
commuting vs. noncommuting. The results show that decreases
in trips for commuting predict smaller reductions in the number
of reported new cases compared to decreases in noncommuting
trips (Fig. 3E). Predicted reductions are nonetheless found for
both modes of mobility (i.e., commuting vs. noncommuting), for
all categories of purpose (i.e., highway, road, and train), and for
the whole forecast window of 7 to 13 d. Again, a larger reduction
is predicted for longer forecasts.

The predictive ability of mobility for reported new cases holds
with alternative model specifications. For most of the 7- to 13-d
forecasts, changing how we control for time-related factors still
results in a predicted decrease in reported cases given decreases
in mobility. Moreover, changing the dependent variable to daily
hospitalizations or deaths attributed to COVID-19 leads to qual-
itatively the same results over a forecast horizon of 10 to 20 d.
Details on these robustness checks are provided in SI Appendix,
section 6.

Estimating the Mediating Role of Mobility. In an extended analysis,
we study how decreases in reported case growth are explained by
reductions in mobility due to policy measures versus other behav-
ioral changes due to policy measures. The estimates are obtained
from a mediation analysis that decomposes the total effects
of the policy measures on reported case growth into 1) their
direct effects not explained by changes in mobility and 2) their
indirect effects through mobility. The mediation analysis is per-
formed by combining our two regression models into a structural
equation model (see SI Appendix, section 9 for details). Results
from mediation analysis are reported for the total number of
trips.

The mediation analysis shows a large direct effect for bans
on gatherings of more than 5 people, bans on gatherings of
more than 100 people, and school closures (Fig. 4). Pronounced
indirect effects are found for all policy measures. In particular,
the indirect effect of venue closures makes up about one-third
of their total effect at several lags. Moreover, border closures
are estimated to have reduced the reported number of new
cases only indirectly through mobility. The results are discussed
in further detail in SI Appendix, section 9C. In summary, the
results show that mobility is an important mediator: The studied
policy measures operate—to a large degree—through mobility.
Thus, policy measures aimed at reducing mobility appear to be
effective for reducing COVID-19 case growth.

Discussion
This study shows the ability of telecommunication data for near
real-time monitoring of the COVID-19 epidemic. Our analy-

sis is based on nationwide telecommunication data during 10
February to 26 April 2020 from Switzerland, which were used
to infer nationwide mobility patterns. This supports monitoring
of the COVID-19 epidemic as follows: 1) We first studied the
link between policy measures and human mobility. In particu-
lar, we performed a difference-in-difference analysis quantifying
how mobility was reduced due to five different policy measures
(bans on gatherings, school closures, venue closures, and bor-
der closures). The largest reduction in total trips was linked
to bans on gatherings of more than five people, followed by
venue closures and school closures. Overall, the policy mea-
sures resulted in substantial reductions of human mobility. 2)
We then studied the link between human mobility and reported
COVID-19 cases. Reductions in mobility predicted decreases in
the number of reported new cases. Specifically, a reduction in
human movement by 1% predicted a 0.88 to 1.11% reduction
in the daily number of new cases of COVID-19 over a forecast
horizon of 7 to 13 d. Our modeling approach with telecom-
munication data therefore provides near real-time insights
for disease surveillance. Taken together, the findings enable
quantitative comparisons of the extent to which policy mea-
sures reduce mobility and, subsequently, reduce reported cases
of COVID-19.

The use of telecommunication data for nationwide monitor-
ing has several benefits (8, 42). First, telecommunication data
from mobile networks provide comprehensive coverage. Specif-
ically, such data capture all movements of individuals carrying
mobile devices without explicit user interaction, including those
from nonresidential and even foreign individuals. Mobile devices
routinely exchange information when searching for signals from
adjacent antennas; hence, metadata are retrieved regardless of
the underlying mobile service provider. Second, such metadata
can be collected in an anonymized manner that is compatible
with data privacy laws. Third, movements at a microlevel (e.g.,
trips to other households, school, and work) can be inferred.
Thus, compared to alternative sources of mobility informa-
tion such as check-ins or smartphone apps, telecommunication
data are considered to be more complete (8, 40, 41). Fourth,
unlike smartphone apps, telecommunication data are also avail-
able in low-income countries (43). Finally, telecommunication
data are measured with high frequency (e.g., daily), thereby
enabling regularly updated monitoring as needed by deci-
sion makers. Based on these benefits, telecommunication data
appear to be highly effective for policy monitoring during the
COVID-19 epidemic.

This work is subject to the typical limitations of observa-
tional studies. First, the findings depend on the accuracy of the
data on COVID-19 cases. Second, our models are informed
by recommendations for COVID-19 modeling (44) and, there-
fore, follow parsimonious specifications to isolate features of the
epidemic for policy-relevant insights. We cannot, however, rule
out the possibility that there exist external factors beyond those
that are captured by the spatially and temporally varying vari-
ables in the models. To address this, we use flexible models and
conduct extensive robustness checks (SI Appendix, section 6).
Third, the model linking policy measures to mobility estimates
effects, while the model linking mobility to cases is predictive.
The different objectives of the models address the needs of pub-
lic decision makers: The former serves policy assessments and
the latter epidemiological forecasting, respectively. Therefore,
the estimates from the former are identified with a difference-
in-difference analysis and may thus warrant causal interpreta-
tions under certain assumptions (SI Appendix, section 4A). On
the other hand, the estimates from the latter are conditional
associations since the model does not control for that policy
measures reduce both mobility and cases. Therefore, the latter
model predicts reductions in reported cases from reductions in
mobility when both reductions are driven by policy measures
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Fig. 4. Mobility mediates the effect of policy measures on the reported number of new cases. (A–C) Estimated (A) direct effect of policy measures, (B)
indirect effect of policy measures via total trips, and (C) total effect of policy measures on the 7th to the 13th d ahead. Posterior means are shown as dots,
while 80 and 95% credible intervals are shown as thick and thin bars, respectively. Policy measures are arranged from top to bottom in the order in which
they were implemented (cf. SI Appendix, section 1).

(see SI Appendix, section 4B for a discussion of this approach).
Fourth, our findings are limited to our study setting, that is, the
first wave in Switzerland. Future research may confirm the exter-
nal validity of our findings by analyzing other countries or time
periods.

Inferring mobility patterns from telecommunication data is
inherently coupled to the coverage of such data and our defini-
tion of trips. Only movements for individuals who carry a mobile
device with a SIM card are included. In particular, trips are not
included for individuals who do not carry SIM cards. Similarly,
trips may be counted several times if an individual carries several
SIM cards (e.g., when carrying both a phone and a SIM-based
tablet). It is also possible that trips by children, elderly, or other
groups of the population with less phone usage are underrep-
resented in the data. Furthermore, microlevel movements are
not observed but inferred via triangulation between antennas
through the use of a positioning algorithm achieving state-of-
the-art accuracy. Despite these limitations, telecommunication
data are considered to be scalable and, in particular, more com-
plete for inferring mobility patterns compared to alternative data
sources (8, 40, 41). Moreover, our objective is not to obtain accu-

rate estimates of mobility in itself, but to evaluate the predictive
ability of telecommunication data for reported case growth. Our
analysis confirms telecommunication data as such a monitoring
tool.

Our findings are of direct value for public decision-makers.
Nationwide mobility data from mobile telecommunication net-
works can be leveraged for the management of epidemics.
Thereby, we fill a previously noted void in the case of COVID-
19 (40, 41, 45). Specifically, monitoring mobility supports public
decision-makers when managing the COVID-19 epidemic in
two ways. First, it helps public decision-makers in assessing the
impact of policy measures targeted at mobility behavior. Sec-
ond, by predicting epidemic growth, it provides a scalable tool for
near real-time epidemic surveillance. Such tools are relevant for
evidence-based policymaking of public authorities in the current
COVID-19 epidemic.

Materials and Methods
The aim of this study is to make population inference of mobility from nation-
wide telecommunication data. In our study, mobility estimates derived from
telecommunications data were obtained from Swisscom Mobility Insights, a
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commercial data platform of a major telecommunications provider in Switzer-
land, and then further processed for analysis. Swisscom collects telecom-
munications data from routine signal exchanges (i.e., pings) with antennas,
regardless of the actual service provider. Based on the telecommunication
data, mobility estimates are inferred as follows (Fig. 5): 1) Telecommunica-
tion data are collected at the level of antenna. 2) Telecommunication data at
antenna level are used to infer microlevel movements of individuals via tri-
angulation. 3) Data on microlevel movements are used to count movements
between postal codes (named trips) over time. This procedure is performed to
capture mobility levels in the population. 4) The data are further aggregated
at the cantonal level per day to link them to policy measures and COVID-
19 case numbers. The following section explains Swisscom’s procedure for
obtaining nationwide mobility estimates from telecommunication data and
how we further processed the data for analysis.

Nationwide Telecommunication Data. Telecommunication data are routinely
collected from signal exchanges (i.e., pings) between mobile devices and
adjacent antennas. Such signal exchanges occur for all SIM-based mobile
devices (e.g., mobile phones, smartphones), regardless of the actual service
provider. In particular, our data also include movements of people with a
foreign SIM card and, hence, represent nationwide telecommunication. A
network event between a mobile device and mobile network compromises
metadata as follows: the international mobile subscriber identity (IMSI)
number of the SIM card, the date and time the SIM card connected to
the mobile network, and the ID of the mobile antenna to which the SIM
card was connected. The IMSI number is available for all SIM cards and thus
represents a unique identifier, independent of the actual service provider.
The events from mobile networks are extracted from the mobile commu-
nications systems every night, and thus the mobile data are available the
following day. In our analysis, we use telecommunication metadata col-
lected by Swisscom according to the above description (46). Swisscom also
ensured that IMSI numbers are stored in an anonymized format (see ref. 46
for details).

Telecommunication data hold advantages over alternative data sources
for the purpose of measuring human mobility. The advantages become
especially clear in comparison to location data from check-ins (9–13) or loca-
tion logs from smartphone apps (14–21, 47). First, compared to smartphone
applications, SIM-based devices are fairly ubiquitous. This holds for both
high-income countries (such as Switzerland) and low-income countries. Sec-
ond, the use of telecommunication data ensures coverage for large parts
of society. Specifically, it reduces the risk of an age bias (e.g., check-ins
are known to be more frequent among younger, technology-savvy people).
Third, telecommunication data avoid the need for user interaction with a
device. Hence, many microlevel movements are captured (e.g., school visits,
commuting to work, grocery shopping) that would otherwise not be subject
to monitoring.

The telecommunication infrastructure operated by Swisscom has wide cov-
erage (46). Specifically, it covers 99.9% of the geographic area in Switzerland.
The infrastructure records telecommunication metadata via almost 30,000
antennas across the country. Of these, approx. 7,000 are of the Global System
for Mobile Communications (GSM) type (2G), 11,000 of the Universal Mobile
Telecommunications System (UMTS) type (3G), and 12,000 of the Long-Term
Evolution (LTE) type (4G) (48–50). As Switzerland has a total of 3,196 postcode
areas, there are on average approx. nine antennas per postcode. Additional
details on antennas are provided in SI Appendix, section 3.

The frequency of pings is determined by how often a mobile device
connects to a new antenna or, if in between two antennas, every 5 min.

Hence, if a mobile device is stationary and does not connect to a new
antenna, the ping rate is once every 5 min. The rate will momentarily
increase if a stationary device connects to a new antenna or if a mobile
device connects to a new antenna during a trip. Importantly, the varia-
tion in ping rates across mobile devices has no influence in our analysis
as the lowest possible ping rate (every 5 min) produces data of consider-
ably higher temporal resolution than the daily aggregated data we use
for the analysis. An internal algorithm by Swisscom ensures that bounc-
ing (i.e., when a phone bounces between antennas) is correctly addressed
and attributed to a single antenna. The telecommunication metadata are
then used by Swisscom to infer actual locations over time via triangulation
(see next section).

Inferring Positions of SIM Cards via Triangulation. The locations of SIM cards
within antenna areas are determined via triangulation between antennas
through the use of a positioning algorithm (51). A high-level description of
the algorithm is as follows: Every signal from a SIM card in the telecommu-
nication data is associated with a probability distribution over locations that
represents the uncertainty of its actual location in a given antenna area at
the time. The location is estimated from two random variables: the radius
R, given by the distance of the signal from the origin of the antenna area,
and its angle Θ to the antenna azimuth. Here, R is Gaussian distributed with
empirical mean and variance estimated via maximum likelihood, and Θ fol-
lows a multinomial distribution depending only on the antenna azimuth
and its bandwidth. The inferred locations are subject to a delay between
signals between antennas and SIM cards. To address this, the location at a
given point in time is estimated by marginalizing the probability distribution
of the radius over the empirical distribution of signal delays estimated from
all observations. Details are available in ref. 51. In sum, by tracking the loca-
tion of SIM cards over time, we are able to capture microlevel movements
of individuals.

The accuracy of the positioning algorithm has been empirically validated
(51). The median positioning error is 132 m, making it highly accurate
compared to state-of-the art methods (52). The accuracy was determined
by comparing the algorithm’s predicted positions to self-reported actual
positions for more than 6,000 trips with over 12,000 endpoints (51).

Deriving Mobility Estimates from Telecommunication Data. Mobility has been
frequently found to be helpful for understanding urban phenomena (53,
54). In this study, we use mobility estimates derived from nationwide
telecommunication data.

Trips are computed as follows: A single trip is defined as the movement
of a SIM card between two different postcode areas after the location
has been static for 20 min (46). The trip is then counted for both post-
codes. Similarly, trips that cross midnight are counted for both days. Trips
from neighboring countries into Switzerland are counted for the arrival
postcode.

Swisscom defines trips as movements between postal code areas as
they represent the smallest spatial unit that is officially defined by the
federal government. Switzerland has 3,196 postcode areas with high spatial
granularity. The exact size varies between urban and rural regions, but, on
average, a postcode area in Switzerland covers merely 12.9 km2. Moreover,
71% of the Swiss working population commutes between different
postcodes for work and oftentimes even between cantons (https://www.
bfs.admin.ch/bfs/en/home/statistics/mobility-transport/passenger-transport/
commuting.html). The average (one-way) travel distance to work is 15.0 km
(see URL above), and the average daily travel distance for leisure activities

A

≤ 5 min

Ping

B

Triangu-
lation

Antenna level (input)
NA = 29,679 antennas

Position level
Micro-level movements

C

Postal code level
NZIP = 3,196 postal codes

Canton level (modeling)

D

N = 26 cantons

Position error: 132 m Trip count per cantonPostal 
code i

Postal 
code j

Trip

Fig. 5. Deriving mobility estimates from nationwide telecommunication data for monitoring the COVID-19 epidemic. (A) Telecommunication data are
collected at the level of antenna. (B) Telecommunication data at antenna level are used to infer microlevel movements of individuals via triangulation. (C)
Data on microlevel movements are used to count movements between postal codes (named trips) over time. (D) The data are aggregated at the cantonal
level per day to link them to policy measures and COVID-19 case numbers.
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is 36.8 km (https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-
transport/passenger-transport/travel-behavior.html). For both work and
leisure activities, travel routinely spans several postal code areas. Hence, the
use of nationwide telecommunication data combined with our definition
of trips provides comparatively large-scale estimates of aggregate mobility.

For the analysis, daily trips from Swisscom Mobility Insights were further
aggregated as follows: First, each trip between postcodes (including trips
with departure location in a neighboring country) was mapped onto can-
tons at the subnational level. Here, we used cantonal shape files from the
Swiss government and aggregated all daily trips within each canton. The
attribution of trips to both the departure and arrival postcodes enables us
to capture the number of trips between cantons as well as the number of
trips between border cantons and neighboring countries. The result of the
aggregation is a panel (longitudinal) dataset of trip counts in all cantons.

The reason for the aggregation to the cantonal level per day is twofold.
First, policy measures are implemented within cantons, and second, COVID-
19 case data are published per day only at the cantonal level. Therefore,
data on policy measures and case number are not available on a more
granular level.

Swisscom further labels trips according to both mode and purpose. The
mode of trips was differentiated based on estimating the location of SIM
cards with the positioning algorithm and the position of antennas along
train, highway, and road networks. If several modes of mobility were used
in the same trip, the mode with the longest leg was chosen. For compari-
son, public transport through train is an important mode of transportation
in Switzerland (https://www.bfs.admin.ch/bfs/en/home/statistics/mobility-
transport/passenger-transport/travel-behavior.html) that is relevant for
explaining the results. The purpose of mobility was classified based on trips
to/from work (called commuting) and all other trips (called noncommut-
ing). This differentiation was based on the home and work locations of
individuals (in terms of postal code area). These locations were derived
from the most frequent geographic location of individuals between 8 PM
and 8 AM for home locations and 8 AM to 5 PM for work locations.
Afterward, both home and work locations were matched against the depar-
ture and arrival (postal code area) of a trip to determine whether the
trip was to/from work and hence labeled commuting. The classification
of trips into mode of transport is highly accurate. Specifically, a valida-
tion against self-reported data showed that 90% of all trips were correctly
classified (51).

Merging of Data for Analysis. For analysis, the mobility data were merged
with data on 1) policy measures, 2) the reported number of cases and hos-
pitalizations and deaths attributed to COVID-19, 3) the number of tests
conducted and their share of positive results, and 4) population sizes. All
data were at the daily and cantonal level except the data on testing,
which, due to lack of availability, were at the daily and country level.
Data 1 to 4 are either publicly available online in the form used in the
analysis or constructed from other publicly available sources. SI Appendix,
section 1 describes how the data on policy measures were collected and val-
idated. See Data Availability for details on how the remaining data were
collected.

Modeling Overview. In this section, we present the regression models used
to estimate the relationship between 1) policy measures and mobility and
2) mobility and reported cases. Here, the first model estimates the reduc-
tion in mobility due to policy measures. The estimates are identified with a
difference-in-difference analysis and may therefore be given a causal inter-
pretation under certain assumptions (SI Appendix, section 4A). The second
model, in turn, estimates the extent to which reductions in mobility predict
decreases in the reported number of new cases as policy measures are being
implemented.

The models have parsimonious specifications recommended for isolating
policy-relevant insights (44) and are informed by epidemiology. In particular,
they are formalized as Bayesian hierarchical negative binomial regression
models. Rather than modeling the disease dynamics themselves (as with a
compartment model), our focus is on estimating the relative effect of other
determinants, namely policy measures and mobility. The use of negative
binomial distributions is common in epidemiological modeling, as it allows
for overdispersion in the dependent variable (i.e., the number of trips and
the reported number of new cases). Furthermore, each model uses a log-
link between the dependent and explanatory variables. For the model of
the reported number of new cases, it enables us to capture the exponential
growth in cases during the initial stages of an epidemic, also observed in
our data. For the model of mobility, it makes the estimates relative to the
observed levels of mobility. Both dependent variables were found to fol-

low negative binomial distributions (with overdispersion). See SI Appendix,
section 7 for an analysis of overdispersion.

The models include further controls for 1) population size per canton, 2)
unobserved heterogeneity between cantons, and 3) time effects as follows:
1) We control for differences in population size among cantons with an off-
set term. This is motivated by the fact that the magnitude of the estimated
effects depends on the population size. Hence, the model estimates are rela-
tive to the number of inhabitants per canton. 2) Unobserved heterogeneity
is estimated with a canton random effect. We thereby account for unob-
served factors that affect both policy measures and mobility (for the former
model) and mobility and cases (for the latter model). 3) Time effects are
modeled in two ways. On the one hand, we include weekday fixed effects
to control for variations in the implementation of policy measures, levels
of mobility, and reporting/testing across weekdays (e.g., mobility is higher
on weekdays, whereas testing is lower on weekends; thus, reported cases
are lower on weekends and tests conducted on weekends may be reported
on Mondays or Tuesdays). On the other hand, we incorporate a trend vari-
able that controls for changes in case dynamics or behavioral adaptations
toward social distancing that occur over time since a canton first reported a
case. This could for instance occur due to unobserved changes in adherence
to other policy measures (e.g., wearing masks and keeping physical distance
of at least 1.5 m) over time. Here, we model the variation in when cantons
reported their first case as potentially dependent on the unobserved canton
heterogeneity.

The results with additional controls (e.g., testing, spatial correlation
between cantons, and dependence between the different trip variables) and
alternative dependent variables (e.g., hospitalizations and deaths attributed
to COVID-19 instead of reported cases) are part of the robustness checks.

Model for Estimating the Reduction in Human Mobility Due to Policy Mea-
sures. A multiple time period, multiple group difference-in-difference (DiD)
analysis (55) is conducted to estimate the effect of each policy measure on
mobility. We restrict the analysis to the time period between 24 February
and 5 April 2020, that is, starting before the first reported COVID-19 case
in Switzerland and ending prior to Easter holidays. With this time period,
the initial observations act as a control group in which mobility is at the
baseline level (as individuals may not yet have voluntarily reduced their
mobility as a response to reported cases). Furthermore, by ending at 5
April, there can be no confounding of the effects of policy measures due
to Easter holidays. Such confounding would be caused by that during holi-
days, mobility generally changes from regular levels and, as a consequence,
policy measures are more or less likely to be implemented relative to
nonholidays.

Let Mitk denote the trip count on mobility variable k = 1, 2, . . . , K (i.e.,
total trips, road trips, train trips, etc.) in canton i = 1, 2, . . . , N on day
t = 1, 2, . . . , T . The variable Mitk is derived as explained in the previous sec-
tion and represents the dependent variable in regression model k for the
DiD analysis. The values of the model parameters depend on which mobil-
ity variable is the dependent variable of the regression; hence, we index all
model parameters with k.

We model Mitk to follow a negative binomial distribution with
conditional mean function

E[Mitk | η
(k)
it , Ei] =µ(Mitk) = Ei exp η(k)

it , [1]

where Ei denotes the population size of canton i. Then, exp η(k)
it =

(µ(Mitk))/Ei is the expected number of daily trips per inhabitant in canton i.
The estimates of this model are therefore adjusted according to the varia-
tion in canton population sizes. The term η(k)

it is the linear predictor, specified
in hierarchical form as

η
(k)
it =α

(k)
i + δ

(k)
w(t) + γ

(k) log zit +
L∑

l=1

β
(k)
l ditl, [2]

α
(k)
i =α

(k)
+ θ

(k)
i + γ

(k)
B log zi , [3]

whose variables and parameters are explained in the following.
The first term α(k)

i is a time-invariant effect specific to canton i. We model

α(k)
i as a function of several variables that vary across cantons; see Eq. 3.

Here, α(k) is the intercept among all cantons, which represents the overall
baseline relative mobility on Mondays before any policy measure was imple-
mented and any COVID-19 cases were reported. The term θ(k)

i is a random
effect that captures unobserved time-invariant factors for canton i (e. g.,
population density) that confound the effect of policy measures on mobility.
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The final variable ¯log zi is discussed in detail below. The subscript B on the
associated parameter denotes that it measures between-canton effects; that
is, the parameter measures only the effect of increases in the variable across
cantons.

The variable ditl is a dummy variable that takes a value of 1 if policy mea-
sure l∈{1, 2, . . . , L} is implemented by canton i at day t and 0 otherwise.
Hence, exp(β(k)

l ) measures the multiplicative effect of policy measure l on
the expected number of daily trips on mobility variable k per canton inhabi-
tant. Note that all policy measure variables are included in Eq. 2. Hence, the
effect of each policy measure is conditional on the other policy measures
being held fixed. Fig. 1C shows that the reduction in mobility is similar across
cantons; therefore, we do not estimate the heterogeneity in the effect of
the policy measures on mobility across cantons.

The term δ(k)
w(t) represents the fixed effect of weekday w on the relative

(log-transformed) mobility compared to the reference weekday (here, Mon-
day). The term controls for the confounding factor that aggregate mobility
and the probability of implementing a policy measure are likely higher on,
e.g., Mondays than Sundays.

The variable zit captures other sources of time-related confounding and
is derived as follows: Let qit be the number of days since the first reported
COVID-19 case in canton i. The variable is calculated as

qit =

{
t− t′i , if t> t′i ,

0, if t≤ t′i ,
[4]

where t′i is the date the first case was reported in canton i. Since the
logarithm of zero is undefined, we then set zit = qit + 1 and include the
logarithm of zit in the model. The associated parameter γ(k) is therefore
interpreted as the percentage increase in relative mobility given a 1%
increase in the number of days since a canton first reported a case. The ratio-
nale for including zit is that individuals may adapt their mobility behavior
over time irrespective of social distancing policies. Therefore, the variable
captures how mobility would trend over time even if the policy measures
were not implemented.

The variable ¯log zi = T−1∑T
t=1 log zit is the time average of log zit in

canton i (the bar over the expression denotes an average value). The vari-
able is included in the model to allow the canton-specific effect θ(k)

i to
be correlated with log zit over the cantons. Such correlation would, for
instance, arise if the date that the first COVID-19 case is reported in each
canton depends on the unobserved canton-specific factors. As an exam-
ple, the date the first case is reported in a canton could depend on the
(unobserved) adherence of inhabitants to social distancing recommenda-
tions. If such correlation exists but is ignored, it would instead enter the
error term of the model, leading to a violation of the exogeneity assump-
tion and incorrect parameter estimates. By including log zi , we essentially
make θ(k)

i a Mundlak-type correlated random effect (56). The benefit of
correlated random effects over fixed effects or standard random effects
is that they use only the within-unit variation to estimate parameters
(and, hence, give identical estimates to those of fixed-effects models) while
also having the random effects property of estimating the variation in
the unobserved heterogeneity via partial pooling. Note that time aver-
ages of the policy measure variables or weekday effects are not included
in the model since those are conditionally exogenously determined and,
therefore, uncorrelated with the model errors. We refer to ref. 57 for a
detailed discussion of the underlying benefits of this approach relative to
fixed effects.

By substituting the linear predictor Eq. 2 into the conditional mean
function Eq. 1 and expanding α(k)

i , the full model of mobility variable k
becomes

log E[Mitk | η
(k)
it , Ei]= log Ei +α

(k)
+ θ

(k)
i + δ

(k)
w(t)+

γ
(k) log zit + γ

(k)
B log zi +

L∑
l=1

β
(k)
l ditl. [5]

The conditional variance of Mitk is given by

V[Mitk | η
(k)
it , Ei , ζ

(k,M)
] =µ(Mitk)

(
1 +

µ(Mitk)

ζ(k,M)

)
, [6]

where ζ(k,M) is the overdispersion parameter (the superscript M distinguishes
the overdispersion parameter of the mobility model from the model of
reported cases).

We specify one regression equation in the form of Eq. 5 for each mobil-
ity variable and estimate them separately. Each regression has the same

explanatory variables but a different mobility variable as the dependent
variable (i.e., total trips or one of the mobility variables based on mode or
purpose).

Model for Estimating the Relationship between Mobility and COVID-19 Cases.
The model for estimating the relationship between mobility and reported
COVID-19 cases is similar in structure to the model used to link policy mea-
sures to mobility. To accommodate the forecast horizon, we lag the mobility
variables to estimate how a decrease in mobility at a given day predicts
reductions in the reported number of new cases at a later day. This enables
forecasting of future reported case growth by evaluating the model at daily
observed mobility levels.

Let Cit denote the cumulative number of reported cases in canton i =

1, 2, . . . , N until and including day t = 1, 2, . . . , Ti . Then, Yit = Cit − Ci,t−1

is the number of new cases that are reported in canton i on day t. Note
that the time period (i.e., total number of days Ti) varies across cantons
i = 1, . . . , N. The reason for this is that the dependent variable of this regres-
sion model is the reported number of new cases, and as such we restrict the
data to start at the date of each canton’s first reported case. Hence, the
data for this model start between 24 February and 16 March (depending
on the canton) and end at 5 April (for all cantons). Our modeling approach
accounts for the resulting unbalanced number of observations per canton.

We model Yit as following a negative binomial distribution with
conditional mean function

E[Yit | η(k,s)
it , Ei] =µ

(k,s)(Yit) = Ei exp η(k,s)
it , [7]

where

η
(k,s)
it =α

(k,s)
i + δ

(k,s)
w(t) + γ

(k,s) log zit + ξks log mi,t−s,k, [8]

α
(k,s)
i =α

(k,s)
+ θ

(k,s)
i + γ

(k,s)
B log zi + ξks,Blog mik [9]

is the hierarchical linear predictor. In this model, exp η(k,s)
it = (µ(k,s)(Yit))/Ei is

the expected number of reported positive cases in canton i on day t relative
to the canton population size (sometimes called the relative risk in spatial
epidemiology) (58, 59). The model for the daily growth in reported cases
can then be written as

log E[Yit | η(k,s)
it , Ei]= log Ei +α

(k,s)
+ θ

(k,s)
i + δ

(k,s)
w(t)+

γ
(k,s) log zit + γ

(k,s)
B log zi+

ξks log mi,t−s,k + ξks,Blog mik. [10]

The conditional variance of Yit given mobility variable k lagged by s days is
given by

V[Yit | η(k,s)
it , Ei , ζ

(k,s,Y)
] =µ

(k,s)(Yit)

(
1 +

µ(k,s)(Yit)

ζ(k,s,Y)

)
, [11]

where ζ(k,s,Y) is the overdispersion parameter.
For simplicity, we use the same notation for variables and parameters in

this model as in the model used for the effect of policy measures on mobility
(but the estimated parameters have, of course, a different interpretation
and values). The superscript (k, s) is attached to parameters to indicate that
their values depend on the choice of mobility variable k and its lag s.

The parameter of interest is ξks. It measures the expected percent-
age change in the reported number of new cases per canton inhabitant
s days after a 1% increase in mobility variable k. Hence, the parame-
ter shows how the relative growth rate in reported cases changes as
a function of lagged mobility, after adjusting for relevant factors but
where mobility varies according to which policy measures are imple-
mented. Note that we intentionally include only a single lag s (and then
refit the model for different lags) rather than including multiple lags
at the same time. We follow this approach to avoid issues related to
multicollinearity between the mobility variables and because one can-
not condition on mobility in future days when predicting future reported
cases from current mobility. SI Appendix, section 4B further explains our
rationale.

The intercept α(k,s) gives the baseline number of reported cases relative
to the canton population for Mondays.

The parameter δ(k,s)
w(t) is the effect of weekday w relative to the Monday

effect. By including weekday effects in the model, we control for con-
founding differences in the number of trips and the number of reported
COVID-19 cases between weekdays that would bias the parameter estimate

Persson et al.
Monitoring the COVID-19 epidemic with nationwide telecommunication data

PNAS | 9 of 12
https://doi.org/10.1073/pnas.2100664118

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

21
2.

11
4.

22
9.

26
 o

n 
M

ar
ch

 7
, 2

02
3 

fr
om

 IP
 a

dd
re

ss
 2

12
.1

14
.2

29
.2

6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2100664118/-/DCSupplemental
https://doi.org/10.1073/pnas.2100664118


on the lagged mobility variable. For instance, people travel to schools and
work primarily on weekdays and, similarly, there are fewer COVID-19 tests
on weekends and thus fewer reported cases on Monday/Tuesday (due to
reporting delays).

The variable log zit is also included in this model. It now controls for the
fact that mobility and the reported case growth both depend on when the
first case was reported in a canton.

The Mundlak-style random effects θ(k,s)
i estimate the impact of unob-

served canton-specific factors that may be correlated with both the variation
in mobility across cantons and the logarithm of the number of days since
the first case was reported in each canton. We achieve this by includ-
ing variables of the time averages of log zit and lagged mobility; that is,
log mik = T−1∑

t−s log mi,t−s,k. Then, any potential cross-canton correla-
tion between the random effect and log mi,t−s,k or log zit via the model’s
error term is controlled for.

The above regression model is fitted separately for each (k, s), that is,
each pair of mobility variable and lag. This allows us to investigate to
what extent different lags of each mobility variable predict the number of
reported cases.

Estimation Details. We estimate our models in a fully Bayesian framework.
We run four Markov chains for every model, each with 2,000 warm-up sam-
ples and another 2,000 samples from the posterior distributions. Since our
models are fitted with a log-link, we transform the posterior parameter
samples so that they give estimates for the original scale of the depen-
dent variable. For each parameter, we report in our plots the posterior
mean and the associated 80 and 95% CrIs of the transformed posterior
distribution.

The software used for estimation is the R package brms (60, 61) ver-
sion 2.11.1 built upon the statistical modeling platform Stan (62). Parameter
estimates are obtained by Markov chain Monte Carlo sampling in Stan ver-
sion 2.19.2, using the Hamiltonian Monte Carlo algorithm (63, 64) and the
No-U-Turn sampler (NUTS) (65).

Table 1 presents our choices of priors for the variables in the models.
We use weakly informative priors to stabilize the computations and provide
some regularization. Our prior on each βl reflects that we believe that each
policy measure reduces the logarithm of expected mobility by 25%, on aver-
age, but that effects between 0 and 50% are relatively probable. The prior
on each ξks implies that we expect that a 1% decrease in the lagged mobility
variable predicts a 1% decrease in reported cases for each of the considered
lags, with negative effect sizes or effect sizes exceeding 2% being unlikely.
The prior on γ implies that we expect the relative outcome to increase by
1% for each 1% increase in the number of days since the first reported case.
The intercept, overdispersion parameter, and standard deviation of the can-
ton random effects are given weakly informative priors. The prior on δw(t)

states that the effect of a given weekday that is not Monday should fall
within 50 to 150% of the Monday effect. The parameters for the variables
of between-canton averages are assigned vague priors since we have no a
priori belief of their effects.

Model Diagnostics. We followed common practice for model diagnostics
of Bayesian models (66). For each of the models, we inspected 1) poste-
rior predictive checks, 2) divergent transitions, 3) effective sample size and

convergence of the Markov chains, 4) overdispersion in the dependent vari-
ables, 5) influential observations, and 6) correlation between the policy
parameters. All model diagnostics indicate a good fit. Details are provided
in SI Appendix, section 7.

Robustness Checks. First, we checked the robustness of the model estimates
against alternative specifications of time effects: 1) A model is specified as
in the main text but where the logarithmic trend is replaced with corre-
sponding linear and quadratic trends (of the number of days since the first
reported case in each canton) to capture nonlinearities in both the reported
case dynamics and general behavior toward social distancing. 2) A model
is specified with additional week fixed effects (i.e., a weekday fixed effect,
a week fixed effect, and a trend variable in logarithmic form). This model
allows us to control for weekly exogenous shocks (e. g., media reports about
the shortage of critical care in Italy) but acknowledge that such fixed effects
would be unknown at the time of forecasting and, therefore, cannot be
used to predict reported case growth at a future date. All models yield
similar estimates and hence confirm the predictive ability of the mobility
variables (SI Appendix, section 6A).

Second, the number of reported cases could potentially depend on the
number of conducted tests per canton and day. When controlling for this,
we obtain similar estimates (SI Appendix, section 6B).

Third, we extend the models by including a spatial random effect, as
commonly used in the spatial epidemiology and disease mapping litera-
ture (67, 68). This approach allows us to account for the spatial depen-
dence in mobility between neighboring cantons. We find that the spa-
tial dependence is low and retrieve estimated effects of policy measures
that are practically identical to those of the main analysis (SI Appendix,
section 8A).

Fourth, we account for potential dependence between different mobility
variables by estimating their models jointly (that is, by modeling the covari-
ance of the canton random effects for the different mobility variables). This
model yields slightly narrower credible intervals but almost identical point
estimates for the effects of the policy measures (SI Appendix, section 8B).

Data Availability. Human mobility data presented in this work are
available from the Swisscom Mobility Insights platform (https://mip.
swisscom.ch). Cantonal geographic boundaries can be found as shape files
at the Federal Office of Topography, swisstopo (https://www.swisstopo.
admin.ch/en/geodata/landscape/boundaries3d.html). Data on reported
COVID-19 cases per canton and relative to the cantonal population size
(i.e., cases per 100,000 inhabitants) come from the Federal Office of Public
Health of the Swiss Confederation: BAG (https://www.covid19.admin.ch/
en/overview). We also use this source to obtain data on deaths and hospital-
izations attributed to COVID-19 per canton and data on testing conducted
in Switzerland. Additional information on the Swiss population comes
from the Swiss Federal Statistical Office: BFS (https://www.bfs.admin.ch/bfs/
en/home/statistics/catalogues-databases/data.assetdetail.14087625.html).
Data on antenna locations are obtained from a web tool (https://map.geo.
admin.ch/) at the Swiss federal geoportal, which is based on data
provided by the Federal Office of Topography, swisstopo (https://
www.swisstopo.admin.ch/en/home.html), and the Fed-
eral Office of Communications, OFCOM (direct links to

Table 1. Choice of priors

Parameter Description Prior Model

βl Effect of policy measure l N(−0.25, 0.25) Eq. 5
ξks Effect of log mobility variable k with a lag of s N(1, 1) Eq. 10
α Intercept Half-t(3, 1.8, 2.5) Eqs. 5 and 10
θi Canton random effect N(0,σθ) Eqs. 5 and 10
σθ Standard deviation for canton random effect Half-t(3, 0, 2.5) Eqs. 5 and 10
δw(t) Effect of weekday w (compared to Monday) N(0, 0.5) Eqs. 5 and 10
γ Effect of log no. of days since first reported case N(1, 1) Eqs. 5 and 10
γB Effect of between-canton average of log no. of

days since first reported case N(0, 5) Eqs. 5 and 10
ξks,B Effect of between-canton average of log

mobility with a lag of s N(0, 5) Eq. 10
ζ Overdispersion in dependent variable Gamma(0.01, 0.01) Eqs. 6 and 11

The superscripts (k) and (k, s) are omitted as the same priors are assigned to each model. The column
“Description” states what effect the associated parameter represents (except for the overdispersion parameter).

10 of 12 | PNAS
https://doi.org/10.1073/pnas.2100664118
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the maps: https://s.geo.admin.ch/8f7aa435b8, https://s.geo.
admin.ch/8f7aa5536b, and https://s.geo.admin.ch/8f7aa69498). Details
on data collection for policy measures are provided in SI Appendix,
section 1. When referring to cantons, we use abbreviations instead of
full canton names (https://www.admin.ch/ch/d/gg/pc/documents/1336/
Abkuerzungsverzeichnis.pdf).

Anonymized algorithms, code, and data for reproducing our results
are available at our GitHub page (https://github.com/jopersson/covid19-
mobility).
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67. J. Besag, J. York, A. Mollié, Bayesian image restoration, with two

applications in spatial statistics. Ann. Inst. Stat. Math. 43, 1–20
(1991).

68. J. C. Wakefield, N. G. Best, L. Waller, “Bayesian approaches to disease map-
ping” in Spatial Epidemiology: Methods and Applications, P. E. Elliott,
J. W. Wakefield, N. B. Best, D. B. Briggs, Eds. (Oxford University Press, 2000),
pp. 104–127.

12 of 12 | PNAS
https://doi.org/10.1073/pnas.2100664118

Persson et al.
Monitoring the COVID-19 epidemic with nationwide telecommunication data

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

21
2.

11
4.

22
9.

26
 o

n 
M

ar
ch

 7
, 2

02
3 

fr
om

 IP
 a

dd
re

ss
 2

12
.1

14
.2

29
.2

6.

https://www.nber.org/system/files/working_papers/w25018/w25018.pdf
https://doi.org/10.1073/pnas.2100664118

