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Context-Adaptive Visual Cues for Safe Navigation in Augmented Reality Using
Machine Learning

Arne Seeliger� , Raphael P. Weibel� , and Stefan Feuerriegel

ETH Zurich, Zurich, Switzerland

ABSTRACT
Augmented reality (AR) using head-mounted displays (HMDs) is a powerful tool for user naviga-
tion. Existing approaches usually display navigational cues that are constantly visible (always-on).
This limits real-world application, as visual cues can mask safety-critical objects. To address this
challenge, we develop a context-adaptive system for safe navigation in AR using machine learning.
Specifically, our system utilizes a neural network, trained to predict when to display visual cues
during AR-based navigation. For this, we conducted two user studies. In User Study 1, we
recorded training data from an AR HMD. In User Study 2, we compared our context-adaptive sys-
tem to an always-on system. We find that our context-adaptive system enables task completion
speeds on a par with the always-on system, promotes user autonomy, and facilitates safety
through reduced visual noise. Overall, participants expressed their preference for our context-
adaptive system in an industrial workplace setting.

1. Introduction

By combining the physical and the virtual world, augmented
reality (AR) technologies can facilitate effective user naviga-
tion. When using head-mounted displays (HMDs), naviga-
tion is often achieved by displaying visual cues that guide
users toward areas of interest (AOIs). In these cases, the
navigational guidance provided is usually identical for all
users (Wang et al., 2016). More specifically, visual cues are
typically always-on, meaning always visible in the user’s field
of view (FOV). This is problematic, as it has been shown
that AR-based navigation cues can overlap with real objects,
thereby leading to distractions and obscured obstacles
(Arntz et al., 2020; Krupenia & Sanderson, 2006; Liu et al.,
2009). For example, in industrial settings, users need to pay
close attention to potentially hazardous elements like heavy
machinery or dangerous materials. In these settings, Kim
et al. (2016) found that AR HMDs may increase distraction
and reduce situational awareness. Therefore, in many situa-
tions, an inherent trade-off between effective user navigation
and safety arises. This conflict of objectives poses a challenge
for the design of AR-based navigation systems.

For AR HMDs, one potential solution to the trade-off
between effective user navigation and safety is to give the
user control over when to show or hide visual cues. This
necessitates explicit user input in the form of hand gestures,
gaze, or voice commands. However, explicit input is not
only a possible burden to the user (Pfeuffer et al., 2021), but
it is, in many situations, difficult to acquire from the user.
For example, in healthcare and industrial applications, users

often cannot safely re-deploy eye gaze and also rely on the
hands-free capability of AR HMDs. Moreover, work envi-
ronments are frequently subject to noise, rendering voice
input unreliable (Arntz et al., 2020). Thus, in many real-
world situations, explicit user input is not a solution to the
conflict between effective user navigation and safety.

Another remedy regarding the trade-off between effective
user navigation and safety is to assess implicit user input
and the environment, thus accounting for the user context.
In this regard, the notion of context comprises of any infor-
mation which characterizes the situation of a user. AR appli-
cations are inherently context-based due to the spatial
registration of the AR content alone (Grubert et al., 2017).
Going beyond this aspect, user context has been proposed
for other challenges in AR. For instance, user context has
been used to adapt the content presentation of assistance
systems (Kati�c et al., 2015; Petersen & Stricker, 2015).
However, user context has not yet been utilized for balanc-
ing the user’s need for information with safety during AR-
based navigation. Existing research is limited to works that
use virtual reality (VR) environments. For example,
Alghofaili et al. (2019) adaptively displayed navigational cues
during a simulated driving task in VR using a machine
learning model based on eye gaze. Burova et al. (2020) also
utilized eye gaze to increase safety awareness in an industrial
maintenance setting. Their VR system can indicate known
areas of risk depending on the user’s gaze direction. It is,
however, not clear whether findings from VR settings can
be directly transferred to AR settings. Regarding AR,
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research on context-adaptive navigation is limited to recent
work by Truong-Alli�e et al. (2021), who present a system
that displays visual guidance based on the detected user
activity in multitasking situations. However, this work treats
wayfinding and guidance only as auxiliary tasks.

In this article, we develop a context-adaptive system for
safe navigation in AR based on machine learning.
Specifically, our system adaptively displays visual cues
depending on features relating to the current (1) task con-
text (e.g., task progress) and (2) user context (e.g., eye gaze
and head movements). To do so, we trained a state-of-the-
art neural network to predict when to hide or show visual
navigation cues in the user’s FOV.

To develop our system and test its effectiveness, we con-
ducted two separate user studies using a simulated industrial
task. In User Study 1, we collected data from 15 participants
to train a deep neural network. We show that the trained
neural network achieves good prediction performance on
unseen test data. In User Study 2, we used the trained neural
network as part of our context-adaptive system and compared
it to a conventional always-on system, which constantly dis-
plays visual cues for navigation. This comparison was based
on task-related metrics and self-reports from an additional 10
participants who had not participated in User Study 1 and a
modified experimental setup. We find that our context-adap-
tive navigation system based on machine learning allows
users to solve the task quickly while promoting user auton-
omy and benefiting safety through less visual noise. The
majority of participants expressed their preference for our
context-adaptive system in an industrial work setting.

2. Related work

Our work relates to existing research on (1) visual cues for
guidance, specifically navigation, and (2) context in AR.

2.1. Visual cues for guidance and navigation in
augmented reality

In AR, navigation toward objects of interest and guidance
more generally can be achieved in different ways. In this
section, we focus on guidance through visual cues that are
displayed by an AR HMD. Such visual cues have been found
to effectively guide users, thereby improving task perform-
ance metrics, such as completion times (B€uttner et al., 2016;
Jeffri & Rambli, 2020; Renner & Pfeiffer, 2017; Seeliger
et al., 2021).

A variety of visual cues for user guidance have been
developed. For instance, Biocca et al. (2006) introduced the
well-known omnidirectional attention funnel, which served
as inspiration for other representations, such as the aug-
mented tunnel (Hanson et al., 2017; Schwerdtfeger et al.,
2011). Moreover, different types of arrows have been studied
(Bolton et al., 2015; Gruenefeld, El Ali, et al., 2017; Murauer
et al., 2018; Renner & Pfeiffer, 2017, 2020; Schwerdtfeger
et al., 2011). For example, Flying ARrow was developed to
effectively point toward out-of-view objects given small
FOVs (Gruenefeld et al., 2018). Related to this are other

cues that focus on targets outside the FOV. Halo (Baudisch
& Rosenholtz, 2003) displays circles around off-screen tar-
gets, where the circles reach into the border region of the
display window. Similarly, Wedge (Gustafson et al., 2008)
uses isosceles triangles instead of circles. The spherical
wave-based guidance SWAVE (Renner & Pfeiffer, 2017)
employs waves propagating toward a target. Along the same
lines, EyeSee360 (Gruenefeld, Ennenga, et al., 2017) utilizes
radar-like visualizations to achieve guidance toward targets
outside the user’s FOV. Other cues include the swarm visu-
alization HiveFive (Lange et al., 2020) or flickering-based
cues (Renner & Pfeiffer, 2017). While some of the aforemen-
tioned cues were originally developed for two-dimensional
interfaces, such as screens, they have also been found suit-
able for HMDs (Gruenefeld, El Ali, et al., 2017).

Most of the above visual cues have been implemented for
finding objects at short distances and outside the user’s
FOV. For longer distances, other visual cues have been
investigated. Saha et al. (2017) used a path-based cue con-
sisting of large arrows to navigate participants through a
supermarket setting in VR. Renner and Pfeiffer (2020) com-
pared the use of a similar path-based cue with other naviga-
tional cues to find objects in a complex environment. Arntz
et al. (2020) also compared the use of a directional arrow
with a path-based navigation cue in an industry setting. The
authors found that the path-based cue provided better navi-
gational support but led to larger distances walked by the
user. Feedback from the users further showed that the path-
based cue proved to be distracting when the route displayed
overlapped with the real environment. Our work is directly
informed by the research described above. For instance, we
utilize a path-based visual cue together with a highlighting
box (see Section 3.1 for details).

2.2. Context in AR

Context has been defined as any feature that describes the
situation of a user and the environment (Abowd et al.,
1999). Schmidt et al. (1999) further distinguish context-
related features by splitting them into two different catego-
ries: Features concerning human factors, such as the user
and task, and features concerning the physical environment,
such as the location and surroundings.

Systems using a context to adapt their behavior, so-called
context-aware systems, have been applied in many different
fields and scenarios (Baldauf et al., 2007; Bettini et al., 2010;
Strang & Linnhoff-Popien, 2004). AR HMD devices are usu-
ally context-aware by design, as they collect localization
information from cameras to detect the position of the
device and visualize virtual elements in the real world (Flatt
et al., 2015; Grubert et al., 2017). Most of the systems men-
tioned in Section 2.1 can therefore be seen as context-aware.
However, their context does not include features concerning
the users and their tasks. In the following, we give an over-
view of context-aware AR applications for HMDs that
include the user’s context and use machine learning.
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2.2.1. Applications of context-aware AR systems
There are a few systems that combine the localization infor-
mation of an AR HMD with the context of the user. For
example, Lampen et al. (2019) combine the localization
information of an AR HMD with a camera-based model
detection system that allows to overlay virtual assembly
instructions on real manufacturing objects. Saha et al.
(2017) simulated an AR HMD with a VR HMD and com-
bined localization information with physiological data to
build a context that contains the affective state of the users,
which would allow applications to react to a user’s change
in affect. Kati�c et al. (2015) used an AR HMD instrument
tracking system to assist dental surgeons during implant
operations by checking the position and angle of the used
instruments and visualizing deviations from the ideal pos-
ition of the surgeon. Previous research has also incorporated
different data, most notably eye gaze. For example, Pfeuffer
et al. (2021) combined an AR HMD with an eye-tracker to
build a context-aware application, which decides the level of
information the user receives about, for example, a conver-
sation partner. Truong-Alli�e et al. (2021) developed an adap-
tive guidance system for AR HMDs that uses gaze data in
combination with head and hand position to detect a user’s
current activity. Similarly, albeit using VR to simulate a
scenario where AR would be applicable, Alghofaili et al.
(2019) used eye-tracking data to implement an adaptive
navigation help that showed participants the directions
through a virtual city. In this work, we develop a context-
adaptive system for navigation similar to Alghofaili et al.
(2019). In contrast to the previous work, we present con-
text-adaptive user navigation using actual AR. That is, we
perform training, testing, and evaluation in a real environ-
ment, instead of a simulated or virtual environment.

2.2.2. Machine learning for AR HMDs
There are many AR systems that use machine learning on
mobile devices, such as smartphones (Le et al., 2021; Su
et al., 2019). However, there is only a small body of research
employing machine learning on AR HMDs. Most of this
research focuses on object detection based on the camera
information (Knopp et al., 2019; Naritomi & Yanai, 2020).
For example, Subakti (2018) implemented a deep-learning
image detection module that allows to visualize information
on machines in a factory without additional knowledge of
the layout of a factory. Similarly, Atzigen et al. (2021) com-
puted the optimal screw placements in a surgical scenario.
There are few systems, which use machine learning for other
purposes than image detection. For example, David-John
et al. (2021) built a gaze-based system that predicts a user’s
object selection intent. Similarly, Alghofaili et al. (2019)
trained a machine learning model using eye-tracking data in
their adaptive navigation system. However, both of these
systems have been implemented for VR HMDs and use data
from one sensor (i.e., eye-tracker) as input for their models.
Our system differs from the aforementioned ones, as we
build a more general model using data from multiple sen-
sors of an AR HMD. From a technical perspective, our
approach is also related to the work of Truong-Alli�e et al.

(2021). Yet, our system detects changing levels of assistance
needed during user navigation, rather than detecting differ-
ent user activities and is based on a different task.

3. Context-adaptive navigation system using
machine learning

Our context-adaptive system assists users in navigating
indoor environments. Specifically, it visualizes the route
between different target objects (referred to as targets). It
comprises of: (1) A visual cue for navigation, (2) an AR
HMD for display, data collection, and computation, and (3)
a machine learning model coupled with (4) a decision logic
for deciding when to show visual cues.

3.1. Choice of visual cue and navigation
route generation

We utilized a directional path (see Figure 1) coupled with a
highlighting box (see Figure 2) to navigate users from one
target to another. Our choice was based on multiple design

Figure 1. Path to target box when a target is not within the FOV.

Figure 2. Highlighting box when a target is within the FOV.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 763



considerations that have been discussed in the literature as
reviewed in Section 2.1. First, we utilized a path-based visual
cue instead of, for example, floating arrows, as users pre-
ferred this type of navigational assistance in prior studies
(Arntz et al., 2020). While path-based visual navigation cues
have been criticized for covering up a large portion of the
user’s FOV (Arntz et al., 2020), this downside is mitigated
by the fact that our visual cue is only shown for short peri-
ods of time.

Second, Renner and Pfeiffer (2020) found that path-based
visual cues should be augmented with directional informa-
tion. Therefore, we opted to augment our path-based visual
cue by using directional elements (triangles) pointing in the
direction of the next target. To keep the cue inside the FOV
of the user while still allowing them to see what’s in front,
we placed the path 80 centimeters above the ground. Third,
when the actual target was in view, we highlighted it by
superimposing a semi-transparent box as shown in Figure 2.
This kind of visual cue has been shown to work effectively
for targets that are within the user’s FOV (Seeliger
et al., 2021).

Lastly, research indicates that participants prefer visual
cues that leave them some autonomy (Renner & Pfeiffer,
2020). Our task differs from the task used in the latter study
as we used a predefined order of targets (see Section 4.1).
However, we still allowed the user to deviate from the pro-
posed route by constantly recomputing the shortest path
from the current user position. We achieved this by employ-
ing a grid of (invisible) virtual waypoints throughout the
room. Specifically, the waypoints were placed at every inter-
section of the room. The shortest path was then computed
along those waypoints using Dijkstra’s algorithm (Dijkstra,
1959). Further implementation details of the visual cue are
given in Appendix A.

3.2. AR HMD device and context data

Our system is designed to run on Microsoft’s HoloLens 2 in
conjunction with Microsoft’s Mixed Reality Toolkit (MRTK)
and Unity. The device provides a FOV for augmented view-
ing of 43� horizontally and 29� vertically. Moreover,

previous research found that HoloLens 2 offers an eye track-
ing system with a maximum sampling frequency of 30Hz
and a range of �40� in both directions horizontally and a
vertical range of �20� in the upper direction and 40� in the
lower direction (Seeliger et al., 2021). The latter study fur-
ther found that the eye tracking system of HoloLens 2 meas-
ures accurately (0.51� at 1m distance) and precisely
(SD¼ 0.30 at 1m distance). The HMD also provides speech
as a user input option, which is used especially for data col-
lection (User Study 1).

3.2.1. Context data
From the AR HMD, we recorded different signals relating
to (1) the task context and (2) the user context (see Table
1). This data was dynamically computed by accessing mul-
tiple AR HMD sensors (i.e., visible light head-tracking cam-
eras, far-depth cameras, inertial measurement unit, and eye
gaze tracking cameras) for a given time step ti 2 T, result-
ing in time series. To extract context data related to spatial
aspects (e.g., distance to target), we created a virtual model
of the surroundings of the experiment using the spatial
mapping capabilities of HoloLens 2 and Unity. This virtual
model was aligned with the actual room using a printed QR
code, which users scanned upon starting the system.1 We
sampled all sensor signals with �60Hz, except for the eye
gaze data, which could only be sampled at a maximum of
30Hz. We, therefore, upsampled this data to 60Hz by using
each value twice.

Five AOIs have been defined. These are closely related to
the chosen experimental setup of our user studies as
described in Section 4.1. (1) Target represents the current
target object that a user wants to navigate to. In our experi-
mental setup, a target was one of many small boxes that
were placed across a room (see Figure 6). (2) Non-Targets
represent all boxes that are not the current target.
Additional AOIs were defined based on the room of our
experimental setup, which contained different isles. The
boxes placed within each isle shared certain characteristics
(i.e., similar content as described in Section 4.1). On the
entrance to an isle, a label attached to the isle wall depicted
this information similar to a street sign. Hence, we defined

Table 1. Context data is extracted at each time step.

Context type Context data Description

Task Task progress Percentage of target items retrieved.
Task duration Seconds since the start of the task.
Subtask duration Seconds since the retrieval of the last target item.

User Eye gaze angle Visual angle hi at time ti between head direction vector fi and gaze direction vector gi. This is calculated

through the dot product of two three-dimensional vectors fi and gi, i.e., hi ¼ arccos hfi , gii
hjfi j, jgi ji

� �
:

Eye gaze change Angular difference between gaze direction vectors gi and gi�1:
Head movement Head movement in three-dimensional space is expressed as a rotation matrix M 2 R3�3:
AOI fixated The AOI currently gazed at, is represented as a one-hot encoded vector A 2 R5: A description of the five

defined AOIs is given in the text below and details regarding how the AOIs relate to the user studies
are provided in Section 4.1.

Distance to target Number of meters from the user location to the current target location is measured along the path of the
visual cue.

Depth map A matrix D 2 R20�20 containing the distances in meters from the user’s head position to the next object
along the head direction vector. We utilize the spatial mapping capacity of the HMD to acquire a set of
points in three-dimensional space, which approximate the real-world surroundings.

Last cue Seconds since the visual navigation cue was last displayed.
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(3) Target Isle Label to describe the label of the isle that
contained the target. (4) Non-Target Isle Labels represent all
other isle labels (i.e., all labels of isles that do not contain
the current target). Lastly, (5) Cue describes the visual navi-
gation cue. To gather data on AOIs, we computed the inter-
section of each gaze ray at a time ti with the aligned virtual
model of the spatial surroundings.

Note that the position of the user within the environment
was not utilized as context data.2 This was done to enable
the machine learning model to learn from generalizable user
behavior rather than certain locations unique to a given
(training) environment.

3.2.2. User input data
We further recorded two types of user input data. First,
users issued the voice command next target whenever they
reached the current target. We used this signal to ensure
that the navigation cue would always lead to the user’s sub-
sequent target. Second, to train the machine learning model,
we recorded when users wanted to receive visual navigation.
Users could issue the voice command show cue, which
would show the visual cue for 2.5 s3 and store the time point
of the user input. All voice commands were acoustically
confirmed by the HMD via a short ringing sound.

3.3. Machine learning model

We aimed at predicting whether to hide or show the visual
navigation cue at a given time step ti. This outcome was
modeled as a binary variable yi 2 f0, 1g: We utilized features
Xi computed from the HMD context and user input data in
a predictive function f ðXi,Xi�1, :::,Xi�kÞ ¼ byi : Here, k
denotes the number of time lags that are included as part of
the feature vector, as described below.

3.3.1. Feature generation and labeling
We used a sliding window with a window size of k time steps
to generate feature vectors together with their associated label
from the context and user input data. This is depicted in
Figure 3. Here, the colored boxes represent feature vectors,
each with a length of k time steps. The respective labels of
each feature vector are shown in different colors. We encoded

yi¼ 1 for all feature vectors that end within one window size
before when a voice command show cue was issued. Similar
to Alghofaili et al. (2019), this was done because it can be
assumed that participants felt the need for navigational guid-
ance before issuing the voice command. Feature vectors dur-
ing which the visual cue was triggered were not used for
training. All other feature vectors were labeled with yi¼ 0.
The window size k was chosen as part of the hyper-parameter
tuning, which is described in Section 3.3.3.

3.3.2. Model architecture
To predict the binary outcome variable y, we utilized a deep
neural network consisting of multiple input branches as
depicted in Figure 4. Specifically, for the depth map input, we
employed a 2D-convolution layer followed by a 2D-pooling
layer. The resulting output was flattened and used as input
for a fully connected layer. Similarly, for the AOI input as
well as the eye gaze and head movement inputs, we used 1D-
convolutions and 1D-pooling, followed by a flattening layer
and a fully connected layer. The remaining input branches
were concatenated and the resulting output was fed into
another fully connected layer. All resulting outputs of the
respective input branches were subsequently concatenated and
used as input for a fully connected layer. We used ReLu acti-
vation functions for all the above layers. The last layer was a
fully connected layer with one unit and Sigmoid activation.

We utilized a neural network for two reasons. First, prior
research (Alghofaili et al., 2019; Truong-Alli�e et al., 2021) suc-
cessfully applied this model for related scenarios. Second,
neural networks allow for an easy combination of different
types of input data (i.e., numerical data and image data). We
also tested other neural network architectures. In particular, a
fully connected neural network resulted in inferior perform-
ance, which is why we used the above model architecture.

3.3.3. Training and hyper-parameter tuning
We trained the neural network by minimizing the binary
cross-entropy loss between true and predicted labels using
the NAdam optimizer (Dozat, 2016) and a batch size of 256.
To address imbalances in the distribution of class labels, we
computed balanced class weights as follows. The weight of
the minority class was set to n

2
P

i
yi
, where n represents the

Figure 3. Sliding window for feature generation and labeling.
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number of samples and yi the binary label (¼1 if cue was
displayed, 0 otherwise).

We split the gathered data into a training (�90%) and
testing set (�10%). From the training data, we used around
10% of the data samples as validation data, which was held
out during training to optimize different hyper-parameters.
These included the number of units in each but the last
layer of the neural network, as well as the number of convo-
lutional filters, the kernel sizes for 1D- and 2D-convolutions,
the pooling window size, and the learning rate. For hyper-
parameter tuning, we employed Hyperband (Li et al., 2018),
a bandit-based random search approach, which often out-
performs state-of-the-art Bayesian optimization methods.
Hyperband efficiently allocates a resource budget (e.g.,
number of training iterations) to different sets of hyper-
parameters by successively dropping sets that do not per-
form well. We allocated a budget of 25 training iterations
and chose as our performance measure the area under the
receiver operating characteristic curve (ROC) of the valid-
ation data (i.e., validation AUC). To avoid overfitting, we
made use of early stopping with a patience of three.
Appendix B lists the search grid used during hyper-param-
eter tuning and reports the best values found.

After determining the final model architecture, we re-
trained the model on the entire training data set for 50
epochs using a batch size of 256. The test data was held out,
and therefore not used during training. To account for over-
fitting, we utilized early stopping with a patience of eight
epochs. The training was performed on an NVIDIA Tesla
V100 GPU. Details regarding the data gathered and the
model performance on this data are given in Section 5.1.

Additionally, we trained the model with fewer inputs to
investigate its sensitivity to the input features (sensitivity
test), as shown in Appendix C. All three variations resulted
in lower accuracy and precision. Recall, on the other hand,
was slightly higher. We later discuss the implications of
using models with potentially fewer inputs in Section 6.

3.4. Displaying visual cues using machine learning
model predictions

Our system adaptively displayed visual cues for navigation
based on the trained neural network. Specifically, the

inference was run once every second and the system
displayed the visual cue presented above for 2.5 s if the

model output was greater than a threshold value of J ¼
True Positives

True Positivesþ False Negatives þ True Negatives
True Negativesþ False Positives � 1 �

0:45: This value is known as the Youden Index, and it is fre-
quently used to choose an optimal threshold for binary clas-
sifiers (Fluss et al., 2005). If the visual cue was shown, no
inference was run to save computational resources.

The system made use of a client-server architecture.
More specifically, the machine learning model was deployed
on a server, which received data through an HTTP POST
request from the AR HMD. The total time between data
transfer and return of the prediction to the AR HMD was
around 180–220ms.

4. User studies

To develop and test the effectiveness of the proposed con-
text-adaptive system for safe navigation in AR based on
machine learning, we conducted two user studies. In User
Study 1, we collected training data by computing features
from sensor signals of the AR HMD alongside the points in
time when users chose to show or hide visual navigation
cues. Subsequently, we trained the neural network to predict
when to display visual cues for navigation in the user’s
FOV. In User Study 2, we utilized the trained neural net-
work in our context-adaptive system and investigated its
effectiveness and usability. To investigate model generaliz-
ability, we recruited a different set of participants and modi-
fied the experimental setup, which is described in more
detail in Section 5.2.

4.1. Task design and setup

We conceived a task in which participants were asked to
navigate within a room to find and retrieve items from
boxes located at different tables. Figure 5 shows a 180� view
of the room (and its full layout is displayed in Appendix D).
Each table was surrounded by three partitioning walls, thus
forming isles of cubicles. We placed two boxes on each table
(see Figure 6). We chose this task and set up as it is repre-
sentative of many search-and-pick tasks, which are common

Figure 4. Model architecture which consists of multiple input branches.
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in the industry (e.g., order picking) (Guo et al., 2015).
Through our setup, we also follow recent calls to conduct
user studies in larger environments where occlusions have
to be accounted for (Renner & Pfeiffer, 2020).

The goal of the task was to repeatedly retrieve an item
from one of the boxes and bring it to another box. Each box
was uniquely identifiable through labels: Every isle of cubicles
was labeled with a symbol (similar to a street sign) and every
box was labeled with a symbol and number, which resulted
in one unique code per box. Within each isle of cubicles, the
numbers on the boxes were distributed randomly, so that
participants could not rely on an ordering or sorting scheme
among the isles. Next to each box, we placed a small card
containing the label of the next target box as depicted in
Figure 6. We used a separate table as the starting location,
where participants received a small card stating the label of
the first target box. When participants reached a target box,
they were instructed to place the card they were holding at
that time into the box and pick up the card laying next to
that box to determine the label of the subsequent target box.

During the entire task, each participant wore the AR
HMD on which our navigation system was running. In User
Study 1, participants could ask the system for navigational
guidance in the form of the visual cue, using the voice com-
mand show cue. This would show the cue for 2.5 s. In User
Study 2, the same visual cue was shown to a different set of
participants, this time, however, automatically without expli-
cit user input as described in Section 3.

The room layout also included zones marked as hazard-
ous. Participants were instructed to avoid these zones by not

stepping into them. We used orange tape to mark the zones,
as shown in Figure 5. The motivation behind this was to
encourage spatial attention of the participants, thereby pre-
venting an ongoing use (spamming) of the navigational cue.
In other words, spamming would lead to many occlusions
of the zones marked as hazardous and, therefore, make it
hard to avoid them. We further elaborate on this in the con-
text of User Study 1 and User Study 2 in Sections 5.1.1 and
5.2.1, respectively. This design also increased the level of
realism in the simulated industry setting.

For both User Study 1 and User Study 2, participants
were told that there was no time constraint to the task but
that they should finish as quickly as possible while trying
not to step into any of the zones marked as hazardous.

5. Evaluation

User Study 1 served as a means to collect data for training
the machine learning model. We describe this study and
report performance metrics of the trained machine learning
model (i.e., AUC score) in Section 5.1. In User Study 2, the
trained machine learning model was used to adaptively
show visual cues during user navigation. We provide details
on this study in Section 5.2 and report task-related measures
(e.g., task completion speeds) as well as user self-reports
(e.g., perceived workload and usability).

Before conducting both user studies, we obtained ethics
approval from the Ethics Committee of ETH Zurich (EK
2021-N-25). For each of the two studies, participants
received an information sheet summarizing the goals, meth-
ods, and compensation of the user study. Participants were
further informed that their participation was voluntary.
Participation was not permitted for participants with bin-
ocular vision disorder, such as strabismus (eye misalign-
ment, crossed, or wandering eye). After having time to ask
any remaining questions, participants signed a consent form
and filled out a demographics questionnaire. Participants
were compensated with the equivalent of USD 20.

5.1. User Study 1: Data collection for training the
machine learning model

In User Study 1, we collected data to train and evaluate the
performance of our neural network.

Figure 5. Experimental setup (180� view) with zones marked as hazardous (yellow).

Figure 6. Table with two labeled boxes surrounded by three partitioning walls.
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5.1.1. Procedure
Participants conducted the experimental task described in
Section 4.1 as follows. Each participant first completed a
training round involving eight targets, followed by two
blocks of 15 targets each, with a short break in between.
The order of the blocks was determined randomly. In the
training round, participants were familiarized with both
voice commands and the goal of the task. Also, participants
were immediately informed if they stepped into a zone
marked as hazardous during this time (but not after the
training round). In between the two blocks, one experi-
menter changed the location of three of the zones marked
as hazardous, while the respective participant waited in a
dedicated waiting room. Appendix D shows the specific
locations of these zones. This was done to prevent learning
effects for the participants, meaning a memorization of the
zones marked as hazardous, which would increase the likeli-
hood of constant use of the navigational cue (spamming, see
Section 4.1). Therefore, this helped in ensuring that the
neural network learned based on user behavior data, rather
than specific environment locations. A change of location of
hazardous zones is also likely in industrial settings, thereby
increasing the generalizability of the collected data.4

For User Study 1, we recruited 15 participants (9 male, 6
female) aged between 22 and 34 (M¼ 27.4; SD ¼ 3:16). No
participant suffered from color vision impairment or other
(vision) disorders. Further, 13 participants had normal
vision and two had corrected vision. None of the partici-
pants had experience working in industrial settings.

5.1.2. Collected data
We collected n ¼ 204 200 samples across all participants
and blocks. Each block had an average duration of 164 s
(SD¼ 41) and participants spent, on average, 11.8 s
(SD¼ 3.5) on each target (see Figure 7). Using the partici-
pants’ time per target and the shortest possible path between
two targets,5 we computed participants’ task completion
speed, which was 1.062m/s (SD¼ 0.3m/s) on average (see
Appendix F). Each participant issued the voice command
show cue on average 8.1 times (SD¼ 6.1) per block and, on
average, 0.57 times (SD¼ 0.65) per target. Furthermore, we
found that the participant’s use of the voice command had a
large spread with some participants using it up to 1.5 times
per target, whereas others did not use it for every target (see
Figure 8).

5.1.3. Performance of machine learning model
Here, we report the performance of the trained neural net-
work on the test data, which was held out during training.
The confusion matrix at a threshold of J � 0:45 is given in
Figure 9. The neural network achieved an accuracy of 0.71,
a recall of 0.85, and a precision of 0.37. Furthermore, to
provide a threshold-independent measure of performance,
Figure 10 depicts the ROC curve of the trained neural net-
work. The corresponding AUC amounts to 0.81.

5.2. User Study 2: Objective and subjective evaluation
of context-adaptive navigation in AR

The goal of User Study 2 was to compare our context-adap-
tive system based on machine learning with a common
always-on system. To investigate generalizability, we
recruited different participants as compared to User Study 1
and modified the experimental setup as described below.

5.2.1. Procedure
As before, participants conducted two experimental blocks
with 15 targets each. However, for one of the two blocks,
users were supported by our context-adaptive system. For
the other block, users were shown the same visual cue, but
in an always-on manner. Participants were randomly
assigned to start with either of the two blocks. The training
round was also slightly adapted. Instead of having one train-
ing round consisting of eight targets before the two

Figure 7. Mean time per target in seconds for each participant in User Study 1.
Whiskers show standard deviations.

Figure 8. Mean number of activations of the visual cue for each participant per
target in User Study 1. Whiskers show standard deviations.
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experimental blocks, participants could familiarize them-
selves with each experimental condition in one smaller
training round consisting of four targets right before the
start of the respective experimental block. This way, partici-
pants were exposed to the second experimental condition
only after completing the first. Moreover, we altered the
locations of the zones marked as hazardous (see Appendix
D) and the locations of the target boxes compared to User
Study 1. Although the machine learning model did not use
the location of the user or the zones marked as hazardous
as features, we applied these changes to ensure that training
and testing conditions differed, thereby assessing the gener-
alizability of the model. We also changed the location of the
zones marked as hazardous between the blocks of User
Study 2 with the same rationale as in User Study 1, to pre-
vent learning effects for the participants and to increase the
realism of the experimental task.

For User Study 2, we recruited 10 participants (three
male, seven female) aged between 24 and 41 (M¼ 28.22;
SD ¼ 4:50). None of them had taken part in User Study
1. Further, no participant suffered from color vision
impairment or other (vision) disorders. Eight participants

had normal vision and two participants had corrected
vision. No participant had experience working in indus-
trial settings.

5.2.2. Task-related metrics and self-reports
We collected both task-related metrics and participants’ self-
reports as part of User Study 2. Regarding task-related met-
rics, we recorded the completion time for each individual
target. We used this measure together with the shortest pos-
sible path between subsequent target boxes to calculate the
average speed of completing the task (as described in
Section 5.1.2). To investigate workload, we used the six sub-
scales of the NASA TLX (raw) questionnaire (Hart &
Staveland, 1988). To assess the usability of the system, we
employed the System Usability Scale (SUS) (Bangor et al.,
2008). Moreover, we were interested in whether the visual
cues were perceived as useful or disturbing. Hence, we add-
itionally asked participants to answer the following questions
regarding their user experience on a 5-point Likert scale:6

1. I felt distracted by the visual cue. (Distraction)
2. I had to search for the targets a lot. (Search for targets)
3. The visual cue was there when I needed it. (Visible

when needed)
4. The visual cue should have been visible more often.

(Show more)
5. The visual cue should not have been visible so often.

(Show less)
6. The visual cue was useful. (Useful)

We further asked the participant to choose which type of
visual cue they would prefer in a workplace environment,
such as a factory or warehouse. Finally, we asked the partici-
pants to answer the following open questions:

1. What did you like or dislike about the adaptive vis-
ual cue?

2. How did the adaptive visual cue help or disturb you?

We analyzed the qualitative data (i.e., the responses of
the participants to the open questions) with the goal to
identify patterns or themes. After reading the transcripts,
two researchers coded the responses iteratively to create a
list of codes. We then generated themes from the codes col-
laboratively using an inductive approach. We chose verbatim
quotations (see Section 5.2.3) to highlight the themes rele-
vant to our research objectives.

5.2.3. Results
The average task completion speed of our context-adaptive
system was on a par with that of the always-on system. The
mean task completion speed was 1.049m/s (SD¼ 0.21m/s)
for our context-adaptive system and 1.055m/s (SD¼ 0.22m/
s) for the always-on system. In the context-adaptive system,
the visual cue was shown to participants on average 2.4
times (SD¼ 1.4) per target (see Figure 11).

Figure 9. Confusion matrix at a threshold of 0.45 and values of accuracy, recall,
and precision.

Figure 10. ROC curve of trained neural network.
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Participants also rated the usability of the systems simi-
larly. Our context-adaptive system achieved a mean of 76
(SD¼ 14.4) on the SUS, and the always-on system a mean
of 78 (SD¼ 13.7). The results of the NASA TLX (raw)
show that both systems were rated low with respect to the
workload, as depicted in Figure 12, and with no statistic-
ally significant difference (see Appendix H). Conversely,
the overall performance for both systems was rated very
highly. As the number of times the visual cue was shown
could influence the results of the NASA TLX, we per-
formed a correlation analysis for each of the NASA TLX
dimensions. However, we did not find a significant correl-
ation (see Appendix I).

We found that participants perceived both systems as
highly useful based on the additional user experience ques-
tions asked (as shown in Figure 13). Overall, the user
experience was comparable between both systems. For

example, participants perceived the frequency of both visual
cues as neither too high nor too low. While both types of
visual cues received positive feedback, we observed a larger
spread within the answers for the context-adaptive cue.
Furthermore, the user experience questionnaire results indi-
cate that participants had to search for targets slightly more
using the context-adaptive system. In this context, the ana-
lysis of the open-ended questions revealed that three of the
10 participants were confused by the inner workings of the
context-adaptive system. For example, one participant stated:
“It was a bit confusing, I did not know if it was working or
not.” This confusion, however, was the only negative aspect
of the context-adaptive system that was mentioned by
participants.

Overall, eight of the ten participants preferred our con-
text-adaptive system over a cue always-on system in a work
environment, such as a factory or warehouse. In this con-
text, the open-ended questions yielded additional feedback.
We found that participants preferred the context-adaptive
system for two main reasons. First, it gave them more
autonomy (four participants), as expressed by one partici-
pant: “I actually had to think and check more, made me feel
more competent.” Second, the context-adaptive system
resulted in less visual noise (two participants). In this con-
text, it was stated by one participant that “when I got to
know the environment a bit more it was nice to relax the
eyes a bit.” Moreover, two participants specifically acknowl-
edged the assistance through the shown routes. For example,
one participant stated that “[the visual cue] lead me to the
right place if I did not know where to go.”

6. Discussion

In this work, we developed a context-adaptive system for
user navigation in AR based on machine learning. In the

Figure 11. Mean number of activations of the visual cue per participant in User
Study 2. Whiskers show standard deviations.

Figure 12. Mean responses to NASA TLX (raw). Whiskers show standard deviations.

Figure 13. Mean responses to additional user experience questions. Whiskers show standard deviations.
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following, we first discuss our work from a technical per-
spective, followed by a user-centered discussion.

6.1. Technical discussion

From a technical point of view, our context-adaptive system
relies on two main features: the visual cue and the machine
learning model. Regarding the chosen visual cue, the results
from User Study 1 and User Study 2 indicate that the path-
based visual cue worked well in the given experimental set-
ting. This corroborates existing research (Arntz et al., 2020)
highlighting the effectiveness of path-based visual cues.

Regarding the trained machine learning model, we
observed good performance on held-out training data (i.e.,
the accuracy of 0.71, recall of 0.85). However, the neural
network only achieved a precision of 0.37, which indicates
room for performance improvements. A direct comparison
of these results with prior work is challenging due to differ-
ences in used algorithms, tasks, and environments. For
instance, Truong-Alli�e et al. (2021) report an accuracy of
0.86 for their activity recognition model, in which guidance
is only an auxiliary task. Further, Alghofaili et al. (2019)
report accuracy, precision, and recall of over 0.90 for their
VR-based machine learning model given test data on a
known virtual environment and accuracy of around 0.80
given an unknown virtual environment. Their system, how-
ever, is not only based on VR but also geared toward eye
gaze input and a different neural network architecture.
Overall, the prediction performance of the machine learning
component in our AR system is thus of similar magnitude
as that of other works from the VR domain and AR systems
for other tasks (activity recognition as opposed
to navigation).

Some participants stated that they did not understand the
inner workings of the context-adaptive visual cue. Based on
this user feedback, we additionally performed an inquiry
into the importance of our model input features (see
Appendix E), which also addresses the call for assessing the
interpretability of machine learning models, especially when
considering safety-critical systems (Doshi-Velez & Kim,
2017). Fixated AOIs and the distance to the target had a
strong impact on the model prediction, while the time since
the visual cue was displayed last and features relating to eye
gaze had a low impact. By providing these additional model
insights, we hope to promote acceptance of our context-
adaptive system for potential future application in industrial
and safety-critical settings.

We expect our overall approach to context-adaptive user
navigation in AR to generalize to other indoor environments
as only the depth map feature is depending directly on the
used environment. For this, two considerations should be
taken into account. First, our system as a whole requires
spatial knowledge of the environment (e.g., virtual model of
the room) to compute data, such as the distance to a target.
Such data often exists for industrial workplaces or it can be
acquired with relatively low effort using the spatial mapping
feature of AR HMDs like HoloLens 2. Second, it is likely
that our system can be improved further through additional

re-training or fine-tuning. Our overall approach can also be
applied to other forms of AR-based user guidance, such as
guided assembly (Seeliger et al., 2022) as we trained our
machine learning model on features that have been com-
puted from standard sensor signals of a consumer-grade
HMD. In this context, it is also worth highlighting that it is
possible to reduce the computational cost of the system by
utilizing fewer input features as part of the machine learning
model, thereby sacrificing some level of predictive perform-
ance, depending on the feature. For example, omitting the
depth map might be a viable alternative for a resource-
scarce setting in which all computation is performed exclu-
sively on a wearable device.

6.2. User-centered discussion

When assessing the usability and user experience, our results
suggest that the context-adaptive visual cue provided naviga-
tional guidance that was similar in effectiveness to a trad-
itional always-on cue. Specifically, completion speeds were
almost identical between the two. Hence, our results indicate
that efficient navigation in AR does not exclusively rely on
visual cues that are always in the user’s FOV. Instead, effi-
cient navigation can also be achieved via context-adaptive
visual cues, which increase the safety of navigating real
workplaces. Our work, therefore, presents a meaningful step
toward resolving the conflict between effective user naviga-
tion and safety.

These findings extend previous work (Kim et al., 2019),
which found that job performance declined when AR-based
visual cues are shown only for a limited amount of time
after a request by the user, as compared to an always-on sys-
tem. We, therefore, show that using context-adaptive visual
cues, which increase worker safety, does not necessarily
come at the cost of job performance. Specifically, user feed-
back revealed that visual noise was reduced, thereby corrob-
orating existing research (Kim et al., 2019). This is an
important aspect in real-world applications of AR HMDs, as
prior studies emphasized that information presented in AR
HMDs must not reduce awareness of safety hazards (Kim
et al., 2016). However, AR applications can be prone to
excessively drawing attention to virtual content, an effect
known as attention tunneling (Syiem et al., 2021). Using a
context-adaptive system, such as the one presented in this
work, can provide the means for user navigation that is
both effective and safe, especially in workplaces, such as fac-
tories or warehouses. Users also indicated a greater level of
autonomy. This is in line with work by Renner and Pfeiffer
(2020), who found that users prefer guidance techniques
that leave some autonomy to them.

Overall, both the context-adaptive and the always-on
system received similar, positive workload and usability
assessments from the users. This, too, indicates that context-
adaptive systems can successfully bridge the gap between
user-friendly navigation and safety. Still, more work in this
field needs to be conducted to advance the user experience
of context-adaptive AR systems for navigation even further.
In our study, for example, users had to search for the targets
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slightly more often using the context-adaptive system as
compared to the always-on system. Multiple factors might
be the reason for this observation. On one hand, it is pos-
sible that the timing of the visual cues was not ideal, leading
to an increased mental effort and distraction for the user.
From the large spread of responses regarding the frequency
of the context-adaptive visual cue, we presume that context-
adaptive user navigation in AR also depends on individual
user preferences. This is further corroborated by the results
of User Study 1, which revealed that the participants’ need
for the visual cue also exhibited a large spread. Thus, for
real-world applications, users might benefit from having the
option to control the sensitivity or threshold of the machine
learning model, similar to Alghofaili et al. (2019). On the
other hand, the system was novel to the users and not every
user understood its inner workings sufficiently, which could
have led to distractions, too.

Eight out of 10 participants expressed their preference for
using the context-adaptive system in an industrial workplace
setting. Again, different factors might have contributed to
this result. Specifically, users might have valued the inherent
safety benefits of the context-adaptive system more than the
marginal differences in usability. The preference for the con-
text-adaptive system found in this study contrasts with
recent work by Truong-Alli�e et al. (2021), in which users
did not have a clear preference for either adaptive or
always-on visual cues. Yet other research on AR HMDs
found that users prefer visual cues that are always on (Kim
et al., 2019). The latter, however, did not account for poten-
tial safety hazards and used simple visual cues that were not
context-adaptive. In our study, some observations also favor
an always-on system. The always-on system resulted in less
mental effort, presumably because it requires less attention
shifting due to its constant visibility. Moreover, the predict-
ability and timing of the context-adaptive visual cue might
be optimized even more. The choice of user guidance sys-
tems thus strongly depends on the task and the user require-
ments. Overall, more research is needed to investigate the
question of user preference regarding adaptive and always-
on cues in industrial workplace settings.

The benefits of our context-adaptive system in a real
workplace setting also depend on its prediction performance.
As stated above, our system achieved a relatively low preci-
sion, which indicates a high number of false positive classifi-
cations. This means the visual cue appeared more often than
needed, thereby obstructing the user’s FOV. Since such mis-
classifications could theoretically happen at any moment in
time, the visual cue might appear in potentially dangerous
situations. Therefore, the implications for user safety in case
of misclassification (or system failure) are an important
aspect to consider. One potential remedy could be a manual
override, allowing users to hide or show the visual cue in
cases of misclassifications. This could also have a beneficial
effect on users as participants stated their preferences for
autonomy. Additionally, tracking the amount of manual
override would further allow to refine a model dur-
ing retraining.

6.3. Limitations and future research

This work is subject to several limitations that provide ave-
nues for additional research. First, although the number of
participants taking part in our user studies is in line with
previous research (Alghofaili et al., 2019; David-John et al.,
2021; Kati�c et al., 2015; Lampen et al., 2020; Saha et al.,
2017; Truong-Alli�e et al., 2021), the machine learning model
could benefit from additional training data. More partici-
pants could also contribute to making more generalizable
conclusions regarding the usability and user experience of
our system.

Second, both user studies were run in a laboratory, simu-
lating a real-world work environment. Given the novelty of
our system and for ensuring participant safety, we opted for
this controlled environment. However, this setup might not
have triggered the same level of caution as a real-world
work environment with actual safety hazards. Additionally,
even though the size of the laboratory was relatively large,
its dimensions and complexity lag behind a real factory or
warehouse environment. This might have allowed partici-
pants to learn the layout quickly and remove their need for
assistance. However, visual inspection of the progression of
the task completion speed over time (in User Study 1 and 2)
and the use of visual cues (in User Study 1) did not reveal a
pattern indicative of learning (see Appendix G). In this con-
text, it is also important to highlight that the participants
did not have industry experience and their behavior might
differ from professional workers who perform tasks like
order picking regularly. We, therefore, plan to apply our sys-
tem in the field, for example in a manufacturing setting.
Our system could also be transferred to other settings where
it is unfeasible to acquire direct user input, for instance,
retail stores (Cruz et al., 2019) and supermarkets (Saha
et al., 2017).

Finally, our results suggest that the context-adaptive sys-
tem can display visual cues more often than needed, which
has implications for user safety. Therefore, future work
should strive to apply safety verification techniques to con-
text-adaptive systems, which are based on machine learning.
We also plan to provide the option to manipulate the model
threshold so that users themselves can determine an accept-
able trade-off between false negative and false positive
classifications.

7. Conclusion

In this article, we developed a system for context-adaptive
user navigation in AR using machine learning. We collected
data from an HMD and trained a neural network to predict
when to hide or show navigational visual cues during a
picking task (User Study 1). We evaluated our context-adap-
tive system through a second user study (User Study 2). We
found that context-adaptive user navigation can be of great
benefit in industrial environments because it enables task
completion speeds on a par with always-on navigation while
promoting user autonomy and safety through reduced visual
noise. The work presented in this article, therefore, provides
a meaningful step toward safe, yet efficient, navigation in
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AR, which can also be transferred to other forms of AR-
based user guidance.

Notes

1. During the user studies (see Section 4), we verified the
precision of the alignment between virtual model and actual
room for each participant visually, by temporarily showing
transparent boxes overlaying the physical elements in the
room (e.g., boxes and isle labels). This was done by
observing the front-camera feed of HoloLens 2 on a
separate computer. The alignment error was estimated to be
between one and five centimeters.

2. Other signals extracted also do not allow to infer the user
position. For instance, the depth map signal describes the
proximity of the user to larger physical objects, which
means that different user locations can lead to similar
values for the depth map. Likewise, the fixated AOIs only
describe which areas of interest have been gazed at by a
user, which can happen from a variety of positions within
the environment.

3. This duration was selected based on preliminary tests with
three users.

4. Even though participants were not informed of these
changes, only one participant stepped into a zone marked
as hazardous.

5. That is, not necessarily the path that participant walked.
6. We used a 5-point Likert scale, to achieve comparability to

Alghofaili et al. (2019) and Renner and Pfeiffer (2020).
Question abbreviations as used in results paragraphs are
given in brackets.
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Appendix A. Implementation details for visual cue

The visual cue was visualized along the shortest path between the current location of the user and the target. The shortest path was computed
along a set of waypoints using Dijkstra’s algorithm (Dijkstra, 1959). The waypoints were placed at every intersection of the room (i.e., there were
waypoints in front of all cubicles and in the empty space between the cubicles). The cue consisted of green (RGBA: 0, 255, 20, 178) triangles lined
up on the shortest path pointing toward the next waypoint on the path or the target if the target was closer than any of the waypoints. Each tri-
angle was 22 cm long, 41 cm wide, and 1.5 cm high. The number of triangles on each segment (i.e., between waypoints, between the last waypoint
and the target, or between the user and the first waypoint) of the path was computed based on the length of a segment. Specifically, the distance
to the next waypoint was divided by the length of one triangle. When approaching a waypoint, the triangle closest to the user was removed once
the distance required a smaller number of triangles.

Appendix B. Search grid for hyper-parameters

Table B1. Search grid for hyper-parameter tuning and chosen values.

Hyper-parameter Search grid Chosen value

Sliding window size (k) [50, 100, 150] 100
Learning rate [0.0005, 0.0001, 0.00001] 0.0005
Number filters 2D convolution [20, 40] 40
Kernel size 2D convolution [(2,2), (4,4)] (4, 4)
Pooling window size 2D MaxPooling [(2,2), (4,4)] (4, 4)
Number of convolution and MaxPooling layers [1,2 ] 2
Number hidden units for depth branch [6, 20, 34] 20
Number filters 1D convolution [20, 40] 40
Kernel size 1D convolution [3, 18, 33] 3
Pooling window size 1D MaxPooling [2, 4] 2
Number hidden units for gaze/head branch [3, 13, 23] 13
Number hidden units for AOI branch [3, 13, 23] 23
Number hidden units for task/time branch [5, 20] 5
Number hidden units for combined branch [15, 30] 15
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Appendix C. Results of sensitivity tests

We conducted sensitivity tests by training the neural network with fewer predictors. Specifically, three configurations were tested, each leaving out
one of the three main logical branches of the model: (1) the depth map branch, (2) the head-and-eye movement and AOI branch, and (3) the task
and time branch.

The same hyper-parameter optimization as discussed in Section Section 3.3.3 was used, except for the sliding window, which was set to the
same size (100) as the final model. Figure C1 shows each of these architectures next to the predictive performance on the test data.

Figure C1. Model architectures and performance without depth map branch (a,b), without head-and gaze movement and AOI branch (c,d), and without task and
time branch (e,f).
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Appendix D. Experimental room layout

Figure D1. Room layout with zones marked as hazardous in orange and the
symbol assignment for each isle of cubicles for User Study 1 block 1.

Figure D2. Room layout with zones marked as hazardous in orange and the
symbol assignment for each isle of cubicles for User Study 1 block 2.

Figure D3. Room layout with zones marked as hazardous in orange and the
symbol assignment for each isle of cubicles for User Study 2 block 1.

Figure D4. Room layout with zones marked as hazardous in orange and the
symbol assignment for each isle of cubicles for User Study 2 block 2.
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Appendix E. Feature importance of machine learning model

To investigate model interpretability, we calculated SHAP values (Lundberg & Lee, 2017) for our trained neural network. We used 800 randomly
sampled data points from the validation set (out of which 142 had the label y¼ 1) as background data. We further sampled 1000 data points
from the validation data to calculate SHAP values over. Here, we extracted samples that had a different label than the 10 samples before it (pre-
diction switch points). Figure E1 displays the absolute values of the calculated SHAP values summed up for each feature we used as input for the
neural network. Fixated AOIs and the distance to the target box had a strong impact on the model prediction. The time since the visual cue was
displayed last and features relating to eye gaze had a low impact.

Figure E1. Absolute SHAP values for features of the trained neural network.
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Appendix F. Descriptive results of User Study 1

Figure F1 shows descriptive results of each participant in User Study 1.

Figure F1. Descriptive results of User Study 1: (a) walking distance in meters, (b) walking speed in meters per second, and (c) task completion speed in meters per
second for each participant per target. Whiskers show standard deviations.
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Appendix G. Exploration of results per target

Figure G1 shows the differences between the targets (i.e., over time) for both User Study 1 and User Study 2.

Figure G1. Exploration of changes over time for both User Study 1 and User Study 2: (a) mean number of activations of the visual cue, (b) mean task completion
speed in meters per second per target in User Study 1, and (c) mean task completion speed in meters per second per target of the context-adaptive system in
User Study 2. For (a,b) target 1–15 represent the first block of each participant, whereas 16–30 represent the second block (i.e., target 1 is the first target every par-
ticipant saw in User Study 1). Whiskers show standard deviations.
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Appendix H. Statistical analysis of the NASA TLX

Appendix I. Correlation analysis of the NASA TLX

Table H1. Wilcoxon signed-rank test results for all NASA TLX dimensions between always-on system and adaptive system in User Study 2.

NASA TLX V-statistic p-Value

Mental demand 34.0 0.19
Physical demand 15.0 0.93
Temporal demand 21.5 0.22
Overall performance 11.5 0.39
Effort 31.0 0.08
Frustration 19.5 0.39

Table I1. Pearson correlation coefficients and p-values for NASA TLX dimensions with the number of visual cues shown per participant in User Study 2.

NASA TLX Corr. Coef. p-Value

Mental demand �0.34 0.34
Physical demand �0.6 0.07
Temporal demand 0.032 0.93
Overall performance �0.22 0.55
Effort 0.08 0.83
Frustration �0.033 0.93
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