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Abstract

In digital medicine, patient data typically record health events over time (eg, through electronic health records, wearables, or
other sensing technologies) and thus form unique patient trajectories. Patient trajectories are highly predictive of the future course
of diseases and therefore facilitate effective care. However, digital medicine often uses only limited patient data, consisting of
health events from only a single or small number of time points while ignoring additional information encoded in patient trajectories.
To analyze such rich longitudinal data, new artificial intelligence (AI) solutions are needed. In this paper, we provide an overview
of the recent efforts to develop trajectory-aware AI solutions and provide suggestions for future directions. Specifically, we
examine the implications for developing disease models from patient trajectories along the typical workflow in AI: problem
definition, data processing, modeling, evaluation, and interpretation. We conclude with a discussion of how such AI solutions
will allow the field to build robust models for personalized risk scoring, subtyping, and disease pathway discovery.
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Introduction

Digital medicine facilitates broad access to large volumes of
patient data, typically through recordings of health events over
time. For example, electronic health records store the history
of a patient’s diagnoses, medications, laboratory values, and
treatment plans [1-3]. Wearables collect granular sensor
measurements of various neurophysiological body functions
over time [4-6]. Intensive care units (ICUs) monitor disease
progression via continuous physiological measurements (eg,
electrocardiograms) [7-10]. As a result, patient data in digital
medicine are regularly of longitudinal form (ie, consisting of
health events from multiple time points) and thus form patient
trajectories.

Analyzing patient trajectories provides opportunities for more
effective care in digital medicine [2,7,11]. Patient trajectories
encode rich information on the history of health states that are
also predictive of the future course of a disease (eg,
individualized differences in disease progression or
responsiveness to medications) [9,10,12]. As such, it is possible
to construct patient trajectories that capture the entire disease
course and characterize the many possible disease progression
patterns, such as recurrent, stable, or rapidly deteriorating
disease states (Figure 1). Hence, modeling the patient trajectories
allows one to build robust models of diseases that capture
disease dynamics seen in patient trajectories. Here, we replace
disease models with data from only a single or a small number
of time points by disease models that account for the
longitudinal nature of patient trajectories, thus offering vast
potential for digital medicine.
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Figure 1. Analyzing patient trajectories with artificial intelligence in digital medicine.

Several studies have previously introduced artificial intelligence
(AI) in medicine for practitioners [13,14]. Some studies review
potential medical applications that could benefit from AI
[15,16], whereas others review specific methods (eg, deep
learning [17,18]) or specific data types (eg, electronic health
records [18] and medical images [19]). Some studies suggest
reporting guidelines [20,21] or discuss the integration of AI into
medical practice [22]. Our research contributes to the literature
by discussing AI-powered digital medicine based on patient
trajectories.

Patient trajectories refer to time-resolved representations of
patient health events across multiple time points (eg,
hospitalization or treatment events, sensor measurements from
wearables, and physiological measurements from ICUs).
AI-powered analysis of patient trajectories allows for an
assessment of the heterogeneity of patient disease courses. In
Figure 1, trajectory A predicts a sudden but sharp decline in a
health state, whereas trajectories B and C depict 2 types of
progressively declining disease states. Analyzing trajectory-like
representations of patient data can generate new insights for
better care in digital medicine.

To unlock the value of patient trajectories for digital medicine,
there is a need for new AI solutions that can deal with
time-resolved sequential data consisting of multiple health
events. Although many models from the area of AI have become
standard in digital medicine (eg, deep learning [18]), a naïve
application of such models might not be effective when
modeling the longitudinal nature of patient trajectories. Instead,
this requires customized approaches. For example, in a study
by Alaa et al [23], a direct application of deep learning has been
found to be outperformed in terms of both predictive accuracy
and interpretability when one instead uses a carefully engineered
sequential model (ie, referred to as Hawkes process) that treats
the time between medical events as informative for the course
of the disease. On the basis of this background, we discuss
challenges and solutions for AI that are unique to analyzing
patient trajectories. Specifically, we examine the implications
for developing disease models from the patient trajectories along

the typical workflow in AI: (1) problem definition, (2) data
processing, (3) modeling, (4) evaluation, and (5) interpretation,
as detailed in the following section.

Applying AI to Patient Trajectories

Problem Definition
Applying AI to patient trajectories is relevant for different
objectives in digital medicine (Table 1). One objective is risk
scoring [3,23,24], where patient trajectories are leveraged to
predict patient outcomes. Here, the rationale is that the
predictions based on health measurements from patient
trajectories with multiple time points have greater predictive
power than the predictions from those with a single or a few
time points. For instance, risk scoring in ICUs becomes more
accurate when traditional scores (eg, Acute Physiology and
Chronic Health Evaluation II and Simplified Acute Physiology
Score) are replaced with AI-based predictions incorporating
data from patient trajectories [9,10,25]. Similarly, for
cardiovascular diseases, existing risk scores (eg, the Framingham
risk score that predicts the 10-year risk of developing coronary
heart disease) become more accurate when replaced by AI
solutions that work with longitudinal patient data [12]. These
examples show that the underlying patient trajectory provides
rich, granular insights into the disease dynamics that can then
be captured by AI solutions for trajectory analysis. Therefore,
additional patient information, such as past medications,
comorbidities, or other risk factors, can be considered. For
instance, in the context of cardiovascular diseases, it might be
informative for risk scoring to analyze the patient’s past journey,
which comprises whether the patients have been prescribed
nicotine replacements and when (eg, only recently or several
years ago). Different patient outcomes including mortality,
hospital readmission, hospital length of stay, disease onset,
disease severity, or adverse drug reactions can be of interest in
risk scoring. The risk score can then inform treatment planning
(or in general, assess the patients’ needs). In addition, AI
solutions can further generate insights for defining (early)
disease states.
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Table 1. Overview of different objectives in artificial intelligence–based trajectory analysis.

Selected referencesExamplesDescriptionObjective

[3,17,23,26-32]The objective is to estimate the likelihood of future
health outcomes (eg, mortality, readmission, and
adverse drug reactions)

Risk scoring • Predict the 10-year risk of developing coronary
heart disease for patients as in the Framingham
risk score

• Predict the need for an intensive care unit in
an emergency ward through measurements
from wearables

[26]The objective is to cluster the patient cohort into
different disease dynamics (ie, subtyping) while
accounting for the longitudinal form of patient tra-
jectories

Subtyping • Cluster disease progressions into “recurrent
course” and “progressive decline”

[1,33,34]The objective is to detect clinically meaningful
subpatterns in patient trajectories

Pathway discovery • Identify frequent patterns in patient trajectories
that are indicative of disease onset

Here, we see several paths for risk scoring based on patient
trajectories. First, to ensure high accuracy, AI-based risk scores
must be tailored to each patient outcome while considering the
desired forecast horizon and the patient cohort. So far, there are
several studies that showcase the successful use of AI-based
risk scores [35,36]; however, there is a need to develop other
risk scores, especially for the settings in which AI-based risk
scores are scarce or not yet available (eg, predicting the
transition from prediabetes to diabetes or predicting specific
adverse reactions to medication). Second, the AI-based risk
scores will need to be integrated more extensively in clinical
practice. Third, the risk scores should be extensively combined
with approaches for explainability or interpretability, which
allow the derivation of clinically relevant insights from patient
trajectory data (eg, which information in a patient trajectory is
a risk factor). Finally, if one includes data on treatments in the
risk scoring model, one may infer the expected individualized
treatment effect and eventually guide the treatment selection
[37-42]. Here, we see further potential to transition from a purely
predictive approach (ie, what is the expected risk level) to a
prescriptive approach (ie, what treatment do we expect to reach
a desired patient outcome). However, many AI solutions for
estimating individualized treatment effects from patient
trajectories have recently emerged [37-42] without being tailored
to specific disease settings and patient cohorts. Therefore, further
research at the interface to digital medicine should be a priority
that will eventually yield effective and robust implementations
for clinical practice.

Another objective of AI in digital medicine is subtyping, where
AI can understand the heterogeneity observed in patient
trajectories and identify the corresponding digital markers. A
simple approach is to cluster the different patient trajectories
(ie, subtyping) to match patients with similar disease dynamics,
clinical pathways, or care patterns [26]. As a practical benefit,
subtyping can support clinical tasks related to cohort building
and, for instance, can provide patient stratification (eg, to define
a cluster of patient trajectories that serves as an inclusion
criterion for a clinical trial). However, subtyping requires a
suitable notion of patient similarity, which can be challenging
to define mathematically because of the longitudinal form of
patient trajectories. Thus, it is crucial not only to cluster risk
factors at baseline but also to find mathematical approaches that
account for the temporal nature of the trajectories (ie, time-series

clustering). This allows clinical practice to identify subgroups
or subtypes based on the underlying disease dynamics (eg, to
distinguish subgroups with a recurrent course vs a progressive
decline). We expect an added value from comparing different
subtyping approaches in terms of their relative strengths (eg,
generated insights) for future research. On this basis, digital
medicine could develop a principled procedure for defining
patient trajectory similarity in the context of subtyping.

A related objective is pathway discovery, where patterns in
patient trajectories should be detected [1,33]. For instance, 1
application analyzes time series with laboratory measurements
from patients with hepatitis B and C to discover frequent
patterns indicative of liver damage [34]. This application can
help to understand the underlying course of diseases and identify
short- and long-term patterns (ie, motifs) in patient trajectories.

Depending on the objective and explicit assumptions,
implications arise regarding the AI workflow and thus highlight
the importance of selecting an appropriate modeling strategy.
Additional details are provided in the following sections.

Data Processing
A fundamental question is concerned with data collection as
this defines how time is encoded in the data. The example of
nicotine replacement suggests that we should know whether
such a medical event was recent or several years ago. This
illustrates where we are now: when we have longitudinal data,
it is often a matter of whether a medical event happened recently
or a while back. Thus, the underlying time (or the underlying
time lag) must be carefully considered to capture the longitudinal
dimension of patient trajectories correctly. This is currently a
challenge when considering the survey designs (eg, for risk
scores). For example, one survey may ask a patient whether an
event occurred last month or earlier, whereas another survey
may ask to consider events that occurred within the last 12
months or earlier. As such, the meaning of recent may be
inconsistent across survey designs. As a way forward, it will
be necessary to develop a more consistent understanding, ideally
involving data collection that considers precise time stamps (eg,
by leveraging electronic health records).

The AI-based trajectory analysis often combines data from
patient trajectories and baseline variables that describe risk
factors at the patient level (eg, sociodemographic, genomic data,
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or multimodal data). To combine sequential and static baseline
data, tailored AI solutions will need to be developed [27]. Figure
2 shows an example of this approach. The literature shows larger
variability regarding the modeling approaches; hence, further
evaluations are needed to inform an effective approach.

Figure 2 shows an AI-based trajectory analysis in which a fusion
layer combines the static (eg, age or sex) and dynamic features
(eg, health measurements over time). The dynamic features
have a longitudinal form and are processed by a sequential
model (here, a recurrent neural network [RNN]).

Figure 2. Example of artificial intelligence–based trajectory analysis. RNN: recurrent neural network.

Data from patient trajectories are often complex and
high-dimensional, which presents difficulties to humans and
AI solutions for making accurate inferences. As a remedy, one
can apply approaches that map patient trajectories onto a
lower-dimensional representation that is eventually more
meaningful. A simple analogy from medical practice is when
one simplifies the age in years of a patient into a binary yes or
no flag indicating whether a patient is above a critical age
threshold. Here, we see a particular value for representation
learning (eg, embeddings [31]) tailored to the unique
characteristics of longitudinal health time series from clinical
practice. Such AI solutions must be effective in dealing with
the high-dimensional nature of medical data (clinical, genetic,
social data, etc), avoid overfitting, and overcome the curse of
dimensionality in the analysis. Mathematically, the idea of
learning lower-dimensional representations is linked to manifold
learning, for which embeddings are a special case [43].

Another challenge that further limits the use of AI-based
trajectory analysis in medicine is data access and sharing. The
current system is characterized by having data locked in silos
where each hospital or health care institution limits access to
their data and requires lots of bureaucratic work from
researchers before allowing them to study and analyze the data.
However, many initiatives are circumventing this status quo,
such as the Observational Health Data Sciences and Informatics
program, an international network of researchers aiming to
provide reusable, collaborative, and reliable open-source
solutions for large-scale health analytics [44]. Notably, there is
interest in compiling extensive observational studies combining
the electronic health record data from diverse health care
organizations using standards to (1) design meaningful
randomized controlled trials, (2) test clinical hypotheses on
observational data, and (3) gain a better understanding of
population characteristics, facilitated through framework efforts
such as the Observational Health Data Sciences and Informatics
program [44].

Furthermore, in the last couple of years, there has been an
increasing number of studies focused on federated learning
[45-47] that allows for AI algorithms to operate on decentralized
data sets/systems in a privacy-preserving manner. In federated
learning, the underlying algorithms (eg, FedAvg [48] and
FedProx [49]) use the data stored in silos at different local sites
for iteratively training a global/central model from a set of local
models trained separately at each local site to perform prediction
and classification tasks [48,50]. At the interface to health care,
more research is being conducted that uses federated learning
[45,51] for tasks such as clinical note phenotyping (ie, clinical
natural language processing [52]) or predicting patient mortality
in ICUs [53,54]. Here, we particularly point to the recent
attempts to develop such approaches for patient trajectories.
Examples include clustering patients through community-based
federated machine learning for in-hospital mortality and length
of stay prediction [55] or privacy-preserving patient similarity
learning [56]. Federated learning may be further supported by
secure hardware implementations, often with little computational
overhead (eg, referred to as trusted execution environments
[47]).

Moreover, there is more research on the privacy-preserving
aspect of the technology, such as the differential privacy
framework [57] (ie, applied to the model parameters),
homomorphic encryption [58], and data anonymization
techniques offering a defensive level of privacy as required by
the General Data Protection Regulation and the Health Insurance
Portability and Accountability Act [59]. Although these provide
valuable tools for developers, we foresee more research that
tailors them to the context of patient trajectories (eg, by offering
sequential models for longitudinal data). More importantly, the
availability of software packages [60,61] that allow both
simulation of federated learning scenarios and their deployment
in real clinical settings will accelerate the adoption of federated
or distributed learning approaches and open a wide array of
research exploration and experimentation possibilities. This
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will eventually yield longitudinal trajectory analyses that span
patient journeys across multiple hospitals or health care
institutions.

Modeling
Fundamentally, analyzing patient trajectories requires AI
solutions that can effectively handle sequential data structures
that can vary in length (ie, from a few time points to multiple
seconds, minutes, days, months, and year time windows). Hence,
AI-based trajectory analysis must carefully adapt to the
sequential structures by choosing appropriate modeling
approaches.

In risk scoring, predictions from patient trajectories are often
based on neural networks that are tailored to sequential data
structures. These include tailored RNNs [3,17,27-29] owing to
their strength in modeling long-term dependencies. One example
of RNNs is the long short-term memory networks that iteratively
process a time series with physiological measurements and aim
to learn a lower-dimensional representation of the complete
time series, regardless of its length, in their internal code layer.
We can then use this lower-dimensional representation to predict
patient outcomes from the patient’s trajectory. Gated recurrent
units proceed analogously but have a more parsimonious
structure that, in medical applications, may help in obtaining
robust predictions (eg, with a lower risk of overfitting for
small-sized data sets) [8,27,62]. Recently, digital medicine has
also processed the patient trajectories through transformer
networks [30]. Transformer networks involve attention layers
that learn to weigh different parts in a patient trajectory
differently while optimizing for the outcome prediction and
may therefore outperform other RNNs. In our view, a particular
benefit of transformer networks is that the developers from
digital medicine can train them in using semisupervised learning.
One can use a set of patient trajectories without observing the
patient outcomes to learn an abstract representation (ie, via
unsupervised pretraining). Subsequently, one can customize the
transformer network to predict a specific patient outcome (ie,
via supervised fine-tuning). Semisupervised learning often
facilitates more efficient learning when the number of available
observations with patient outcomes is comparatively low.

In risk scoring, other common prediction approaches are
probabilistic models (eg, Markov models, point processes, and
Gaussian processes) [23,32]. Here, we see several benefits for
patient trajectory analyses in clinical settings. Probabilistic
models often have a more parsimonious structure than the
out-of-the-box neural networks, which facilitates efficient
learning and reduces the risk of overfitting in data-scarce
settings. In addition, such a parsimonious structure can facilitate
interpretation by clinical practitioners. Probabilistic models can
be naturally extended by latent structures (eg, hidden Markov
models [63-67]), where latent states capture different trajectory

phases and further improve interpretability. For instance, in the
context of alcoholism treatment, patient trajectories have been
modeled to undergo phases of abstinence, moderate drinking,
and heavy drinking, each of which is captured by a separate
latent state. In our view, such a latent structure represents a
natural way to describe the different patterns in patient
trajectories (eg, acute vs stable phases) and, more importantly,
relates model characteristics to established clinical terminology.
In the future, we expect hybrid models that combine the benefits
of probabilistic modeling and neural learning (eg, deep Markov
models [25]). The former benefits from theory-informed,
interpretable structures that account for different disease states,
whereas the latter are particularly effective for long-term
dependencies.

Across these risk models, it is further essential to consider the
timing of the health measurement. Trajectories may consist of
health recordings in equally spaced time intervals (eg, uniformly
sampled every minute in ICUs or yearly intervals in patient
registries). Often, they contain irregular time intervals, reflecting
nonuniform and patient-specific interactions with the health
care system. As a result, the sampling might be informative of
the disease state (Figure 3). For instance, health professionals
record more health measurements during deterioration in the
patient’s health state. Therefore, AI solutions can use shorter
time intervals to predict future decline in the trajectory. If the
sampling is informative, we encourage researchers to develop
models that consider the time intervals between the health
measurements. For instance, 1 class of such models is point
processes (eg, Hawkes processes). Here, a shorter time interval
between health measurements makes further health
measurements more likely and influences the expected risk
score [23].

Figure 3 shows individual health recordings (eg, medical events,
hospital visits, and laboratory data) in the form of dots. Top: an
example patient trajectory where all medical events are equally
spaced and thus there is a uniform time interval between the
events. Here, the timing of the events is not informative of the
current disease state. Bottom: an example patient trajectory that
indicates a gradual decline in the disease state. Owing to this,
additional health recordings are collected with higher frequency,
which are thus informative about the disease state.

For objectives beyond risk scoring, we need other modeling
approaches. When using risk scoring for prescriptive purposes
(eg, treatment planning or dose finding), we encourage broader
adoption of modeling strategies designed for decision making
(eg, causal machine learning [37,68,69], Markov decision
processes [70,71], dynamic treatment regimens [72,73], and
policy learning [74]). There is a growing traction to extend
many of these modeling strategies to handle longitudinal data,
where health practitioners make treatment decisions over time.
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Figure 3. Difference between noninformative and informative sampling.

For subtyping, one typically draws upon time-series clustering
[26]. For this objective, the definition of a similarity metric is
key [75,76]. One option is to set explicit rules for establishing
patient trajectory similarities, for example, according to a
specific condition such as heart disease [77] or a combination
of clinical or phenotypic features [78]. Domain experts may be
familiar with such approaches, but their definition may not
perfectly integrate with AI algorithms and may thus require
customization. Hence, an alternative is to view patient trajectory
analysis from a methodological, data-driven angle. For example,
when modeling the underlying temporal dynamics for
performing data-driven clustering of longitudinal data, we can
loosely group the approaches into (1) model-free approaches
and (2) model-based approaches. In the model-free approaches,
a similarity metric on sequential data is defined and then serves
as input to conventional clustering algorithms. On the other
hand, in the model-based approaches [79], a representation of
the patient trajectory is learned, and the model parameters are
then used for clustering (eg, mixture hidden Markov models).
For future research, we find model-based approaches intriguing,
as they no longer focus on raw observations but cluster the
underlying disease dynamics (and, as such, can account for
different latent disease states).

For pathway discovery, several descriptive approaches have
emerged that allow for the discovery of subpatterns (ie, motifs)
and common patient trajectories [76]. For example, Beck et al
[33] analyzed disease pathways leading to septicemia in 110,000
patients. The study revealed prototypical pathways starting from
3 initial states (alcohol abuse, diabetes, and anemia) and
established the trajectory-specific probability of sepsis mortality.
This and similar studies reveal great potential to further our
understanding of disease etiology and the possible means of
changing disease trajectories [80,81]. Similarly, Oh et al [82]
constructed patient trajectories consisting of specific health
events (hyperlipidemia, hypertension, and impaired fasting
glucose) and evaluated the probabilities of such trajectories (and
their permutation) in increasing or decreasing the log odds of
developing type 2 diabetes mellitus. Zhang and Padman [83]
identified the most probable clinical trajectories from patients
with chronic kidney disease by first grouping the patients and
then fitting a first-order hidden Markov model to infer the most
probable clinical pathways given sequences of multiple
laboratory test observations and other patient characteristics.
Huang et al [84] proposed a probabilistic model (based on latent
Dirichlet allocation) to identify clinical pathway patterns from
the event logs for patients with unstable angina and cancer.
Dabek and Caban [85] offered another perspective by analyzing
trajectories using automata (ie, deterministic and

nondeterministic finite state automata) and using a grammar
induction algorithm to identify common trajectories in
neurology. Further approaches for pathway discovery are based
on association rule mining [86] and functional dependencies
mining [87].

Related to these objectives are models that adopt a structural
lens to examine the causal mechanisms [88]. This would allow
not only to understand how health measurements change over
time but also why. The underlying AI algorithms are still under
active research (eg, causal structure learning and neural causal
discovery [89]). Here, it will be a rewarding direction for the
future to develop more approaches that are tailored to
longitudinal data.

Evaluation
Evaluations through randomized controlled trials are needed to
confirm the effectiveness of AI-based analysis of patient
trajectories in clinical practice. Recently, there have been such
trials for traditional AI solutions that rely on snapshot data from
a single or few time points [90]. However, similar trials for
patient trajectory analysis are rare [90]. We expect significant
value in conducting such trials and foresee challenges owing
to the unique characteristics of patient trajectories. Foremost,
evaluations through rigorous randomized controlled trials are
a prerequisite to building trust in clinical practice, thereby
expediting further AI-based trajectory analysis. However,
evaluating such an AI solution might be a multiyear undertaking
depending on the time window of the patient’s trajectory. Thus,
it is also essential to recognize that the evaluations are likely to
involve a 2-step procedure. In the first step, trajectory data are
collected to train the AI solution. In the second step, the
previously trained AI solution is then deployed to analyze how
the AI solution generalizes to new patient trajectories. When
conducting such trials, it is crucial to acknowledge that the
patient trajectories capture data from multiple time points and
might thus be subject to an inherent domain shift (ie, where data
distributions change over time, that is, over the patient journey)
[91]. Such domain shifts might affect the performance of AI
solutions [92], especially when the patient trajectories span a
long time horizon. For example, AI-based predictions have been
recently applied to patients with COVID-19 to compare the
predicted health trajectory with the observed trajectory in a
prospective study, finding that the performance of some risk
scores decreased over time [93]. One reason was because of
temporal domain shifts over time [94] as medical professionals
learned about the emerging infectious disease and adapted their
clinical routines over time, thus yielding different and, in
particular, better outcomes than in the data used for training.
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Furthermore, there is a need to ensure reproducibility of the
AI-based analyses. Here, we consider 3 priorities. First, there
is a need to develop a framework. For instance, the existing AI
frameworks (such as scikit learn in Python) are designed for
modeling static data. Conversely, more effort is necessary to
define standardized building blocks for longitudinal data to
effectively model the patient trajectories. Moreover, such
frameworks should also involve tools for automation so that
the disease models can be trained in a semiautomated manner
(subsumed under the term automated machine learning
[AutoML]). Although AutoML has become widespread for static
data sets, only a few libraries are designed for time-series
AutoML [95]. Here, we see enormous potential for future
research at the interface to digital medicine. On the basis of our
own experience, we expect such frameworks to play a critical
role in achieving scalable and increased adoption of AI-based
patient trajectory analysis in clinical settings. Second, future
research should carefully assess and, if needed, revise the best
practice guidelines for AI in medicine [96], so that they consider
the longitudinal form of patient trajectories. For example, the
reporting guidelines should involve information on whether the
period between health measurements is informative (however,
such information is not part of existing reporting guidelines for
static patient data). Other examples could be the choice of the
model (eg, whether latent dynamics were considered and why
or which alternative architectures of recurrent neural networks
were tested and eventually discarded), how the timing of the
health care event was collected (eg, whether a time stamp was
retrieved from a medical health record or whether this was a
survey question referring to the last 12 months and the resulting
uncertainty about the correct time), or the rationale behind how
patient similarity was measured in subtyping. Finally, more data
sets with patient trajectories should be made publicly available
for benchmarking. Although data access is a common issue for
AI research in medicine in general, the challenges are
exacerbated in the context of patient journeys, where it is
common to merge the health measurements from different
sources (eg, from other health registries). So far, only a few
longitudinal data sets are public (as compared with static data
sets with patient data) [76]. Notable exceptions are large
initiatives, such as the Healthcare Cost and Utilization Project,
that offer longitudinal data sets for evaluating trajectory-based
AI approaches [97].

Interpretations
To generate insights for clinical practice, it is often necessary
that AI solutions overcome their black-box nature [98]. Here,
we see enormous potential for new AI solutions that adhere to
the needs of clinical practice with the objective of knowledge
discovery.

One approach is explainability, which aims to understand how
a model arrives at a particular outcome [10,99]. However, AI
explainability is typically developed in the context of static data
and therefore, meaningful time-varying patterns from the course
of a disease might not be revealed. For instance, SHAP values
[99] inform which health measurements are used by the AI
model and what values indicate risk. However, SHAP values

cannot directly interpret the dynamics in health measurements
(eg, whether there is an increase or decrease or large variability
in health measurements, which would be needed to characterize
changes in disease states over time). As a road map for research
in digital medicine, we require techniques that interpret the
temporal dynamics of disease progression, thereby being closely
aligned with the demands of clinical practice. Here, digital
medicine might find inspiration in other disciplines, for instance,
financial technical analysis [100], where a systematic set of
short-term movements of stock prices is used for interpretation.
Similar patterns in patient trajectories could be inferred by
researchers via short-term patterns (ie, trajectory markers) that
characterize a disease course or a combination of short- and
long-term motifs that help identify distinct disease states.

Another approach to generating insights is via interpretability,
which builds upon inferences where the underlying logic is
transparent. Interpretability often requires tailored modeling
approaches. For static data, this is usually achieved through
(penalized) linear regression or decision trees, whereas
interpretability for longitudinal data is typically achieved
through parsimonious models. Different strategies exist to obtain
parsimonious models. For neural networks, there are techniques
that tweak a neural network to provide a sparse one with similar
performance (eg, enforcing feature sparsity through architecture
design, modifying the objective function and the weight updating
scheme [101], post hoc via reservoir computing or pruning, or
a priori via cognitive networks [102]). Alternatively, one can
draw upon structural formalizations (eg, dynamic fuzzy
cognitive maps [78] to simulate patient trajectories) and
probabilistic models (eg, Markov models, hidden Markov
models, and Hawkes processes [23,25,63-67]).

Out of these modeling approaches, we expect hidden Markov
models to be beneficial for interpretability, especially for risk
scoring. The reason being hidden Markov models use latent
variables to capture different disease phases in patient
trajectories. These latent variables often have clinically relevant
meanings and can thus be mapped onto existing clinical
terminology (Figure 4). For instance, in diabetes mellitus, the
latent states are characterized as acute and stable disease states
[64] and thus are of clinical meaning. In addition, recent
evidence suggests that interpretable models might also improve
prediction performance [23]; however, more effort is needed to
explore this further. In the future, we expect to see other
modeling approaches that combine the strengths of hidden
Markov models (for interpretability) with neural learning (for
representation learning and capturing long-term dependencies
in patient trajectories).

The health measurements are observable and thus obtained via
standard data collection practices. In contrast, the latent states
cannot be observed directly and, instead, are recovered from
the health measurements. The latent states then describe different
disease states in a patient trajectory (eg, acute vs stable disease
states). During estimation, the latent states and health
measurements are mathematically linked via components for
both transition and emission probabilities.
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Figure 4. Example of a hidden Markov model. HbA1c: hemoglobin A1c.

Implications for Digital Medicine

Analyzing patient trajectories using AI has multiple benefits.
Dissecting the variability of disease pathways allows research
to better understand both the disease etiology and disease course,
facilitating a more extensive personalization of care. For
instance, it enables the identification of short-term patterns
predictive of future health states, which are then used during
risk scoring. Similarly, patient trajectories capture the
responsiveness of patients to treatments, and by leveraging this
information in patient trajectories, AI solutions can guide
treatment planning. In summary, AI-based trajectory analysis
promises to strengthen the existing computational approaches
to prevent, detect, diagnose, and treat diseases.

To address these challenges, we see particular importance in
community building and in the development of computational
patient trajectory tools that lower the barrier of entry.

Community building will help to set a clear agenda and define
an established terminology, bridging both practice and research
in digital medicine. Here, we point to several valuable directions:
(1) further effort will be needed to extend traditional clinical
terminology (eg, cohort building and patient similarity) to
AI-based trajectory analysis, thereby facilitating communication
between the experts in AI and medicine; (2) it is essential to
build communities by connecting different actors from
regulation, law, data science, and medicine, as this will
eventually be a prerequisite for deploying AI solutions in
medical practice; and (3) such communities may promote data
exchange, thus allowing for more extensive benchmarking of
AI solutions. Similarly, we also suggest hosting leaderboard
competitions as conducted in other fields (eg, the SemEval
benchmark competitions in natural language processing).
Leaderboard competitions will eventually help to identify robust
AI solutions and thus to condense best practices during
modeling.
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