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Abstract: Acute generalized exanthematous pustulosis (AGEP) is a rare skin adverse drug reaction.
The pathophysiology and causative drugs associated with AGEP are poorly understood, with the
majority of studies in AGEP focusing on a single-drug-outcome association. We therefore aimed
to explore and characterize frequently reported drug combinations associated with AGEP using
the WHO pharmacovigilance database VigiBase. In this explorative cross-sectional study of a
pharmacovigilance database using a data-driven approach, we assessed individual case safety reports
(ICSR) with two or more drugs reported to VigiBase. A total of 2649 ICSRs reported two or more
drugs. Cardiovascular drugs, including antithrombotics and beta-blockers, were frequently reported
in combination with other drugs, particularly antibiotics. The drug pair of amoxicillin and furosemide
was reported in 57 ICSRs (2.2%), with an O/E ratio of 1.3, and the combination of bisoprolol and
furosemide was recorded 44 times (1.7%), with an O/E ratio of 5.5. The network analysis identified
10 different communities of varying sizes. The largest cluster primarily consisted of cardiovascular
drugs. This data-driven and exploratory study provides the largest real-world assessment of drugs
associated with AGEP to date. The results identify a high frequency of cardiovascular drugs,
particularly used in combination with antibiotics.

Keywords: acute generalized exanthematous pustulosis; AGEP; drug combination; network analysis

1. Introduction

Acute generalized exanthematous pustulosis (AGEP) is a rare but severe skin adverse
drug reaction (ADR) [1]. This reaction is described as a neutrophilic hypersensitivity
reaction (type IVd) [2], and it is characterized by the sudden presence of several miniscule
nonfollicular pustules over an edematous erythema [1,3]. In addition to the skin reaction,
high fever and high neutrophil counts are frequent [4]. Fatal outcomes occur in <5% of
patients [5], which are frequently due to secondary infections and complications triggering
a fatal cascade of events [6,7].

While AGEP has occasionally been associated with the use of contrast agent dyes [8,9]
and viruses [10], more than 90% of the cases are associated with drugs [4], with symptoms
usually appearing within the first 24 h from intake [11]. To date, regulatory authorities have
included warnings and watchlists for multiple individual drugs. For example, the European
Medicines Agency (EMA) has included (or recommended) warnings for flucloxacillin [12],
acetazolamide [13], cefalexin [14], and most recently, ibuprofen [15]. In the US, the Food
and Drug Administration (FDA) added aripiprazole [16], vancomycin [17], hydroxyzine
pamoate, levocetirizine, cetirizine, and 13 different proton-pump inhibitors to a watchlist
for AGEP [18].
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Following diagnosis, patch tests can elucidate the responsible drug. However, they
do not assess the potential for drug-drug interactions or the additive effect of multiple
medications taken concomitantly [19]. To date, the majority of studies focus on a single
causative agent, and antibiotics are the most frequently identified cause of AGEP [11,20–22].
Moreover, common algorithms for signal detection in pharmacovigilance databases used
by regulatory agencies, such as the EMA and FDA, only screen for one drug at a time [23].

While the concomitant use of multiple drugs (i.e., polypharmacy) is a known risk
factor for ADRs, only a few studies have examined concomitant medication use and
AGEP [11,24–26]. Within signal detection, advanced statistical models, such as network
analysis, have previously been applied in pharmacovigilance databases to model drug-
drug-disease combinations [27], adverse drug reactions to the H1N1 influenza vaccine [28],
or for predicting adverse drug events [29]. These approaches have proven to be effective to
drive new hypotheses regarding drug-outcome associations by capturing complex patterns
and connections that would be difficult to detect and model otherwise. Thus, as the
underlying causative agents of AGEP remain unknown, we employed an exploratory
data-driven approach in order to identify frequently occurring drug combinations and
drug clusters among patients with AGEP.

2. Materials and Methods
2.1. Data Source and Patient Population

We extracted all individual case safety reports (ICSRs) with AGEP (search terms “acute
generalised exanthematous pustulosis”, “acute generalized exanthematous pustulosis”,
and “AGEP” as low-level terms) recorded as the suspected ADR according to the Medical
Dictionary for Regulatory Activities (MedDRA) Preferred Term version 22.1 from VigiBase
via VigiLyze (https://vigilyze.who-umc.org/ (accessed on 14 January 2021)). We included
data from database inception to 10 January 2021. VigiLyze is an online platform which
enables the retrieval and visualization of data from VigiBase, the World Health Organization
(WHO) global database of ICSRs [30]. VigiBase is managed by the Uppsala Monitoring
Centre (UMC) and contains ICSRs from >130 countries, representing over 90% of the
world’s population.

Among all ICSRs identified with AGEP recorded, we extracted all available infor-
mation, including patient characteristics, reporter location and type, reported drugs and
adverse events, seriousness, onset date, resolution, and death. Reported medications are
identified by the WHODrug dictionary [30], which classifies drugs based on the active
ingredient. All reported drugs are categorized as being either suspected, interacting, or
concomitant for the reported adverse event. To facilitate grouping of drugs by drug class
or therapeutic indication, we assigned the anatomical therapeutic chemical classification
(ATC) code to the drugs. We excluded reported medications if the drug name was un-
known or the medication could not be categorized by an ATC code. We further excluded
ICSRs that were deemed by the UMC as possible duplicates. Finally, in order to assess
combinations of medications, we restricted our analysis to those patients who took more
than one drug.

2.2. Analysis

We summarized ICSR characteristics overall and stratified by sex and age categories.
Means and standard deviations, or counts and proportions, were reported, and differences
between strata were tested using the chi-squared test and the t-test, as appropriate. The top
20 reported drugs, and the most frequent pairs of drugs and drug triads were summarized.
We further computed the observed to expected ratio (O/E ratio) for each drug pair or
triad [31]. The O/E ratio measures if a specific combination appears more times than
expected (Supplementary Text S1). O/E ratios larger than one imply that a specific pair or
triad was more prevalent than expected.

To further explore drug combinations, we conducted a network analysis, which is an
advanced statistical analysis that can characterize interconnected structures in data [32,33].

https://vigilyze.who-umc.org/
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Network analyses comprise nodes and edges, where nodes represent the drugs and the
edges between two nodes represent whether these two drugs were concomitantly taken by
an individual patient. The size of a node is proportional to the number of times the drug
was reported, and the width of an edge is proportional to the number of times that that
specific connection occurs, representing its weight. All edges are bidirectional resulting in
an undirected network. The node color corresponds to the anatomical main group (ATC-1)
of the drug according to the ATC system.

Once the weighted and undirected network was constructed, we applied the Louvain
algorithm, which is a multi-level modularity optimization algorithm, to find community
structure and identify clusters where the nodes are highly interconnected [34]. This al-
gorithm aims to maximize the modularity, which measures the density of connections
within clusters compared to the density of connections between clusters. This is done by
assigning each node its own cluster, then iteratively checking if adding the neighbors of a
node to the same cluster increases the modularity. The process is continued until a stable
solution is reached without an increase in modularity. Once the different clusters were
obtained, we summarized the top 20 drugs with higher prevalence overall and reported the
corresponding node degree (the number of connections it has to other nodes), the number
of ICSRs in which each drug was reported, and its equivalent prevalence.

As a secondary analysis, we stratified the network analysis by sex (female vs. male)
and age (<65 vs. >65 years old). As a robustness check, we applied a second clustering
technique to the network analysis to test the robustness of our results. This approach aims
to find densely connected subgroups by computing the leading non-negative eigenvector
of the modularity matrix [35]. It calculates the eigenvector of the modularity matrix for the
largest positive eigenvalue and then it separates its vertices into communities depending
on the sign of the corresponding eigenvector. Data cleaning, modelling, summary tables,
and O/E ratios were conducted in R [36], and network visualization in Gephi [37].

Data was accessed via the WHO VigiLyze signal detection and management system,
which is available to member countries of the WHO Programme and healthcare profes-
sionals [30]. The extracted anonymized ICSR are those that have been routinely collected
through the WHO Programme for International Drug Monitoring since 1968 as a public
health service and for research purposes. All procedures and analyses adhered to the
Uppsala Monitoring Centre (UMC) caveat agreement for reporting standards and in ac-
cordance with the Helsinki declaration for ethical principles in medical research. As the
data was anonymized, and all analyses were descriptive, an ethical review from the Zurich
Cantonal Ethics Board was not required. Additionally, because all data in VigiBase are
anonymized, patient informed consent was also not required. All methods were carried
out in accordance with the STROBE guidelines [38].

3. Results
Descriptive Analysis

We extracted 5983 ICSRs with AGEP reported to the WHO VigiBase. Following
exclusions (Figure 1), 2649 ICSRs with two or more reported drugs were identified, of
which 1571 (59.3%) were female, 1020 (38.5%) were male, and 58 (2.2%) had unknown
sex (Table 1). Overall, the average age of the patients was 57.3 years. Most of the reports
(59.8%) corresponded to cases in Europe. In 91.9% of the reports, AGEP diagnosis was
categorized as a serious adverse reaction and 2.5% of the patients had a fatal outcome.
When comparing females and males, we identified that females were generally older
(59.3 years vs. 54.3 years, respectively) and had a slightly higher proportion of serious
outcomes (92.2% vs. 91.2%, respectively). Conversely, the proportion with a fatal outcome
was slightly higher among males than females (2.6% vs. 2.1%, respectively). When stratified
by age (<65 vs. >65 years old), we observed that those aged over 65 years were more likely
to have a serious outcome (94.7% vs. 89.1%, p < 0.001) (Supplementary Table S1). The older
group presented 43 (65.2%) of the 66 fatal events.
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Table 1. Demographic characteristics of patients included in the network analysis, stratified by sex.

Overall Female Male
(n = 2649) (n = 1571) (n = 1020)

n % n % n % p-Value

Mean age (SD) 57.32 (21.80) 59.33 (21.34) 54.27 (22.14) <0.001

Age Groups <0.001

<16 114 (4.3) 41 (2.6) 72 (7.1)
16–44 542 (20.5) 327 (20.8) 213 (20.9)
45–64 723 (27.3) 405 (25.8) 317 (31.1)
65–84 853 (32.2) 538 (34.2) 308 (30.2)
85+ 190 (7.2) 144 (9.2) 46 (4.5)

Unknown 227 (8.6) 116 (7.4) 64 (6.3)

Region of Report <0.001

Europe 1585 (59.8) 1005 (64.0) 563 (55.2)
Asia 619 (23.4) 339 (21.6) 274 (26.9)

Africa 26 (1.0) 10 (0.6) 16 (1.6)
North America 374 (14.1) 190 (12.1) 151 (14.8)

Oceania 35 (1.3) 19 (1.2) 14 (1.4)
South America 10 (0.4) 8 (0.5) 2 (0.2)

Reporter Type 0.037

Physician 1739 (83.3) 1067 (85.4) 642 (81.3)
Other Health Professional 296 (14.2) 157 (12.6) 124 (15.7)

Nonhealth Professional 53 (2.5) 25 (2.0) 24 (3.0)
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Table 1. Cont.

Overall Female Male
(n = 2649) (n = 1571) (n = 1020)

n % n % n % p-Value

Seriousness (Yes) 2179 (91.9) 1315 (92.2) 813 (91.2) 0.452
Death 66 (2.5) 33 (2.1) 27 (2.6) 0.441

Number of reported Drugs

Mean (SD) 4.22 (3.24) 4.27 (3.20) 4.15 (3.32) 0.361
Median (IQR) 3.00 (2.00– 5.00) 3.00 (2.00– 5.00) 3.00 (2.00–5.00) 0.359

Abbreviations: SD, standard deviation; IQR, interquartile range. p-values correspond to comparison of female vs. male. Chi-Square was
used for categorical variables, while t-test for numerical variables. There were 58 ICSRs where sex was unknown, therefore the total number
of females and males does not sum to the overall.

Table 2 displays the reported drugs associated with AGEP among ICSRs with two or
more drugs recorded in the database. The most frequently reported drug was amoxicillin,
with an overall prevalence of 21.6%, followed by paracetamol (15.0%), ceftriaxone (8.8%),
vancomycin (8.3%), and furosemide (7.4%). Cardiovascular drugs were reported in 894
of the 2649 (33.7%) ICSRs. The most prevalent cardiovascular drugs were furosemide
(n = 197, 7.4%), acetylsalicylic acid (n = 189, 7.1%), amlodipine (n = 126, 4.8%), enoxaparin
(n = 118, 4.5%), and bisoprolol (n = 108, 4.1%).

When assessing pairs of drugs (Table 2), we found that paracetamol and amoxicillin
was the most commonly reported combination (n = 109, 4.1%) with an O/E ratio of 1.3,
followed by amoxicillin and furosemide (n = 57, 2.2%) with an O/E ratio of 1.3. The
highest O/E ratio from the top 20 drug-drug pairs was observed for the combination of
levetiracetam and valproic acid (O/E ratio 20.6), followed by atorvastatin and acetylsalicylic
acid (O/E ratio 6.5). Combinations of antibiotics and cardiovascular drugs had elevated
O/E ratios. For example, the bisoprolol and furosemide was reported 44 times (1.7%)
with an O/E ratio of 5.5. Similar combinations were observed when identifying drug
triads (Table 2). The most frequently reported triad was ibuprofen, amoxicillin, and
paracetamol (n = 17, 0.6%) with an O/E ratio of 5.1, followed by enoxaparin, amoxicillin,
and paracetamol (n = 16, 0.6%) with an O/E ratio of 4.2, and acid acetylsalicylic, furosemide,
and amoxicillin (n = 14, 0.6%) with an O/E ratio of 4.9.

A visual representation of the complete network analysis of drug combinations is
presented in Supplementary Figure S1, where ten different clusters with varying sizes
were identified. The main drugs of each cluster are shown in Supplementary Table S2.
The largest cluster included 283 different drugs, where the largest proportion of these,
77 (27.2%), corresponded to cardiovascular drugs. The second and third largest clusters,
with 212 and 97 drugs, primarily included nervous system drugs and antineoplastic and
immunomodulating drugs, respectively.

Figure 2 displays the network for the largest cluster, where the thickest edge was ob-
served between acetylsalicylic acid and atorvastatin with a weight of 46 (i.e., 46 individuals
took them both concomitantly), followed by furosemide and bisoprolol with a weight of
44. In the third largest cluster (Figure 3), composed of anti-infectives for systemic use, the
thickest edge was between amoxicillin and paracetamol with a weight of 109.

The secondary analyses, stratified by sex and age, revealed similar results to the
primary analysis (Supplementary Tables S3–S6). Additionally, the robustness check of
clustering the network based on the leading eigenvalue revealed four distinct clusters
as shown in Supplementary Table S7. These were similar to to those identified in the
primary analysis, with Cluster 1 dominated by antibiotics (e.g., ceftriaxone, vancomycin,
or clindamycin), while Cluster 3 had a high prevalence of cardiovascular drugs (e.g.,
furosemide, amlodipine, or bisoprolol).
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Table 2. Most frequent drugs for the 2649 ICSRs included in the network analysis.

Individual Drugs Drug-Drug Pairs Drug Triads

Drug 1 n Prevalence Drug 1 Drug 2 n Prevalence
Expected

Preva-
lence

O/E Ratio Drug 1 Drug 2 Drug 3 n Prevalence
Expected

Preva-
lence

O/E
Ratio

amoxicillin 573 21.63% paracetamol amoxicillin 109 4.11% 3.24% 1.27 ibuprofen amoxicillin paracetamol 17 0.64% 0.12% 5.14
paracetamol 397 14.99% amoxicillin furosemide 57 2.15% 1.61% 1.34 enoxaparin amoxicillin paracetamol 16 0.60% 0.14% 4.18
ceftriaxone 234 8.83% ceftriaxone metronidazole 53 2.00% 0.50% 4.00 ASA furosemide amoxicillin 15 0.57% 0.11% 4.93

vancomycin 219 8.27% paracetamol enoxaparin 47 1.77% 0.67% 2.66 furosemide bisoprolol amoxicillin 15 0.57% 0.07% 8.63
furosemide 197 7.44% atorvastatin ASA 46 1.74% 0.27% 6.51 ASA amoxicillin paracetamol 14 0.53% 0.23% 2.28

ASA 189 7.13% amoxicillin ASA 45 1.70% 1.54% 1.10 ASA metformin amlodipine 13 0.49% 0.01% 41.64
clindamycin 181 6.83% ceftriaxone amoxicillin 45 1.70% 1.91% 0.89 ASA clopidogrel atorvastatin 13 0.49% 0.00% 103.73
piperacillin 157 5.93% bisoprolol furosemide 44 1.66% 0.30% 5.48 ASA amlodipine atorvastatin 12 0.45% 0.01% 35.72

metronidazole 150 5.66% paracetamol omeprazole 42 1.59% 0.78% 2.05 ASA furosemide bisoprolol 11 0.42% 0.02% 19.20
omeprazole 137 5.17% paracetamol ibuprofen 41 1.55% 0.58% 2.68 metronidazole vancomycin ceftriaxone 11 0.42% 0.04% 10.04
amlodipine 126 4.76% paracetamol furosemide 41 1.55% 1.11% 1.39 warfarin furosemide bisoprolol 10 0.38% 0.00% 94.23

pristinamycin 124 4.68% piperacillin vancomycin 40 1.51% 0.49% 3.08 ASA furosemide atorvastatin 10 0.38% 0.02% 19.04
pantoprazole 121 4.57% furosemide ASA 39 1.47% 0.53% 2.77 ASA atorvastatin amoxicillin 10 0.38% 0.06% 6.55
prednisolone 120 4.53% levetiracetam valproic acid 37 1.40% 0.07% 20.60 warfarin furosemide amoxicillin 10 0.38% 0.02% 17.76
enoxaparin 118 4.45% ceftriaxone vancomycin 36 1.36% 0.73% 1.86 furosemide amoxicillin allopurinol 10 0.38% 0.06% 6.76

esomeprazole 116 4.38% amlodipine ASA 35 1.32% 0.34% 3.89 furosemide bisoprolol allopurinol 10 0.38% 0.01% 35.85
ciprofloxacin 116 4.38% clindamycin vancomycin 35 1.32% 0.56% 2.34 esomeprazole enoxaparin paracetamol 10 0.38% 0.03% 12.91

bisoprolol 108 4.08% amoxicillin ibuprofen 35 1.32% 0.83% 1.59 ASA furosemide paracetamol 10 0.38% 0.08% 4.75
sulfamethoxazole 106 4.00% paracetamol ASA 34 1.28% 1.07% 1.20 amoxicillin ceftriaxone paracetamol 10 0.38% 0.29% 1.32

ibuprofen 102 3.85% bisoprolol ASA 33 1.25% 0.29% 4.28 furosemide amoxicillin paracetamol 10 0.38% 0.24% 1.57

Abbreviations: O/E = observed to expected; ASA: acetylsalicylic acid.
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Figure 2. Cluster 2 (cardiovascular cluster) with cardiovascular drugs highlighted in blue, and most relevant edges
highlighted in red. Nodes represent medications, the sizes of the nodes are proportional to the prevalence of the drug, the
links indicate that the two connected drugs were taken concomitantly, the width of the link is proportional to the number of
times the pair of drugs was reported.
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Figure 3. Clusters 6 and 8 (antimicrobial clusters) with antibiotic drugs highlighted in orange, and
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4. Discussion

In this data-driven analysis of pharmacovigilance data among patients with AGEP
and two or more reported medications, we identified frequent reporting of antibiotic and
cardiovascular drugs. The reported use of both antibiotics and cardiovascular medications
occurred with above-expected frequency and were identified with strong connections in
both clustered network analyses. While we observed that females and older patients were
more likely to experience serious outcomes, we did not identify any sex or age differences
with drug combinations.

In line with the literature on AGEP-associated drug classes, we identified that an-
tibiotics, such as amoxicillin, ceftriaxone, and clindamycin, were the most commonly
reported, also in drug combinations. Overall, 62.1% of ICSRs included at least one an-
tibiotic. Amoxicillin was the most frequently reported drug, followed by paracetamol,
ceftriaxone, vancomycin, and clindamycin. A previous study by Barbaud and colleagues
assessing the safety and value of drug patch testing, identified that 58% (26 of 45) of AGEP
cases showed a positive result, of which 63% (16 of 26) were for pristinamycin or beta
lactams [19]. Similarly, in the largest study investigating risk factors for AGEP to date, the
EuroSCAR analysis, pristinamycin and ampicillin/amoxicillin were strongly associated
with AGEP [11].

Additionally, we found frequent reporting of cardiovascular drugs in combination
with other medications. Cardiovascular drugs such as antithrombotic agents (e.g., clopi-
dogrel, heparin), calcium channel blockers (e.g., amlodipine, lercanidipine, felodipine),
beta-blockers (e.g., bisoprolol, metoprolol), or lipid modifying agents (e.g., simvastatin,
atorvastatin, ezetimibe) were reported in one-third of all patients. We note that the Eu-
roSCAR analysis found that the single-agent use of beta-blockers, calcium channel blockers,
acetylsalicylic acid, and angiotensin converting enzymes (ACE) inhibitors were not as-
sociated with the development of AGEP [11]. However, in the study by Barbaud and
colleagues, the use of heparin (enoxaparin) was associated with a positive drug patch
test, suggesting the potential for antithrombotic drugs to induce AGEP [19]. However,
neither study considered the potential of these drugs, or drug classes, in combination with
other agents.

Thus, our results further expand on the existing literature by investigating reported
drug combinations in pharmacovigilance data. Our analysis identified 2649 ICSRs, pro-
viding the opportunity to assess a large number of potential drug combinations. To the
best of our knowledge, only four studies have investigated the potential for two or more
drugs to be associated with AGEP [11,24–26]. Of these, three were case reports [24–26]
where two specific drugs were identified, and the study by Barbaud and colleagues, which
found that 7 out of 45 cases had taken several drugs concomitantly [19]. In our analysis, we
identified increased O/E ratios among ICSRs reporting cardiovascular drugs, especially
when several cardiovascular drugs were reported. For example, furosemide, bisoprolol,
and amoxicillin (O/E ratio = 8.6), warfarin, furosemide, and bisoprolol (O/E ratio = 94.2),
or allopurinol, furosemide, and bisoprolol (O/E ratio = 35.9).

Additionally, the network analysis allowed us to have a comprehensive visualiza-
tion of all the concomitant medications. On this account, the goal of network analysis is
twofold: at a macro level, it is to find larger clusters of commonly reported medications
in AGEP onset, and at a micro level, it is to look at specific drug combinations. The two
clustering algorithms applied to the networks consistently found two main clusters across
age and gender, one with antibiotics and another cluster with cardiovascular drugs. The
former is in line with the literature, as antibiotics have commonly been associated with
AGEP onset [11,39]. The latter, the cardiovascular cluster, highlights the association of
these drugs with AGEP. Moreover, relevant combinations to treat certain pathologies were
clustered together and showed a high degree of connection. For instance, drug combi-
nations like ceftriaxone, metronidazole, and piperacillin, commonly used in pneumonia
or intra-abdominal infections, or furosemide, amlodipine, and bisoprolol, used in heart
failure patients, were consistently clustered together in the primary and secondary analyses
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as well as in the robustness check. The fact that the network and cluster analyses found
well-known drug combinations associated with AGEP onset highlights the robustness of
the approach used.

Conventional algorithms for signal detection in pharmacovigilance databases, such
as the reporting odds ratio (ROR), information component (IC), or the empirical bayes
geometric mean (EBGM), are limited due to the fact that only one drug and one ADR can
be analyzed at a time. This can lead to misleading conclusions due to confounding and the
inherent intertwined associations between drugs and adverse drug reactions that might be
overlooked [23].

Network analysis has been used in pharmacovigilance data, as it can capture complex
relationships between drugs and adverse drug reactions. For instance, Davazdahemami
and colleagues used network analysis in combination with machine learning to predict
adverse drug reactions [29]. Botsis and Ball used this approach to model vaccine adverse
drug reactions [28,40], and Kim et al. applied network analysis to analyze the relationship
between causative drugs and types of drug-related problems in patients with hematologic
malignancies [41]. The complex pathophysiology of AGEP, the poor understanding of
its etiology, and its low incidence, make network analysis a superior statistical approach
compared to traditional approaches, especially to those used by the regulatory agencies.
Moreover, by using a community detection algorithm, the Louvain algorithm, we managed
to find novel and relevant combinations associated with AGEP onset.

To date, the pathophysiological mechanisms of AGEP have only been partially in-
vestigated, but some studies point at genetic or immunologic components as potential
risk factors [42]. Immunologic cascades with cell-mediated inflammation, inflammatory
cytokines, and chemokines can be triggered by infections or associated with cardiovascu-
lar diseases. Inflammatory cell accumulation and inflammatory cytokine production is
interlinked with the initiation and progression of numerous cardiovascular diseases, such
as myocardial infarction, remodeling, hypertension, or heart failure [43,44]. On the other
hand, multimorbidity, such as cardiovascular diseases with hypertension, heart failure, or
dyslipidemia, is associated with polypharmacy. Thus, co-prescribed drugs might serve as
a covalently bound xenobiotic-cell protein adduct that acts as a hapten (i.e., independent of
their respective effects but in combination with the specific host immune system). For exam-
ple, a drug combination with a high prevalence in our study was furosemide, amlodipine,
and bisoprolol, which is a classic prescription pattern for cardiovascular patients. Hence,
it can be speculated that individuals with immune dysregulation or high polypharmacy
burden might be exposed to an increased risk of potentially serious adverse reactions, such
as AGEP.

The concept of drug interactions with AGEP is novel. However, there is growing
evidence suggesting the potential for drug interactions to play a role in reactions with
genetic and immunologic mechanisms, such AGEP, Stevens Johnson Syndrome (SJS), or
toxic epidermal necrolysis (TEN) [43]. Several major histocompatibility complex haplotypes
have been implicated in drug-specific susceptibilities for dermatological conditions, such
as SJS, and a recent TENA study in the Japanese Adverse Drug Event Reporting (JADER)
system identified drug combinations with antiepileptic drugs associated with SJS and
TEN [44]. Another longitudinal cohort, using national Taiwanese insurance data, identified
significant associations between the coadministration of drugs, such as allopurinol and
ampicillin, or allopurinol and sulfamethoxazole, prior to fatal events among patients with
SJS [45]. While these studies require further clinical validation, there is a growing interest in
the potential for large datasets to provide new insights into these difficult, and potentially
fatal, conditions.

Limitations

We presented a data-driven cross-sectional analysis of pharmacovigilance data and,
therefore, must be mindful of the intrinsic limitations when interpreting our results. Vi-
giBase data is limited by the heterogeneity in reporting methodologies from the different
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regional and national pharmacovigilance centers [30]. While steps are taken to identify
duplicates and improve data standardization, we are mindful that missing or incomplete
data is an important shortcoming. For instance, we acknowledge the fact that we cannot
assess how AGEP was diagnosed, e.g., patch testing or more drug-specific in vitro im-
munologic tests. In addition, given the nature of the database, we are unable to determine
if the diagnosis of other conditions with similar presentation, such as pustular psoriasis,
were ruled out prior to the diagnosis of AGEP. Indeed, in our study, 14 (5.3%) ICSRs had
both AGEP and pustular psoriasis listed as possible outcomes. Indeed, when reporting a
suspected ADR, only a single suspect drug is required. Thus, not all concomitantly used
medications need to be identified in a report if they are not deemed to be relevant to the
adverse event of interest. While our analysis restricted inclusion to reports where two
or more drugs were reported, we cannot confirm that all concomitantly used drugs are
accurately recorded, and we may have underestimated the true prevalence of drug combi-
nations. We also did not limit our analysis based on the categorization of the individual
medications (e.g., suspect, concomitant, or interacting). Future research with this type of
data could consider additional weights for those drugs identified as suspect. However, we
feel providing a broader analysis here enables further insights into potential interactions to
be explored further.

We further note that, while the dates of the reported events and the drug start and stop
can be reported, there was a high frequency of missingness in these fields. Consequently, we
were unable to assess if medications were taken simultaneously, nor could we a determine
temporal association between the medication and outcome. Thus, our results should be
viewed as hypothesis-generating, as we did not aim to, nor could we, establish causality.
Finally, while we stratified our analyses by age and sex, it is possible that our results
are confounded by the occurrence of comorbidities that could not be adjusted for in this
database. For example, an underlying cardiovascular disease could be associated with an
AGEP onset directly or indirectly by increasing the risk of susceptibility of AGEP. In this
case, the disease, rather than the concomitant drug, may be the underlying precipitating
factor. It should also be noted that we did not identify any known drug-drug interactions
based on pharmacokinetic or pharmacodynamics interactions in relation to AGEP. Thus, the
observed combinations may be due to underlying confounding, or a previously unknown
off-target drug binding effect. Therefore, we strongly encourage future work to expand on
our results to both investigate the mechanism of action and the risk of AGEP associated
with cardiovascular drugs, both alone and in combination with antibiotics.

5. Conclusions

In this analysis of global pharmacovigilance data among suspected cases of AGEP
with two or more reported drugs, we identified that cardiovascular drugs were frequently
reported in combination with other drugs, including antibiotics. Among the identified
drug combinations, we did not identify any known on-target drug-drug interactions based
on classical pharmacokinetic or pharmacodynamic processes. These results, therefore,
open new hypotheses regarding the potential for off-target drug-drug interactions, or
additive drug effects, in relation to the onset of AGEP. However, as this is the first study
to our knowledge applying advanced statistical methods to assess drug combinations
associated with AGEP onset in pharmacovigilance data, additional studies are needed
to control for potential confounding and selection bias in order to confirm the patterns
observed. We therefore encourage additional studies, using both pharmacovigilance and
large observational cohorts, to further elucidate the drug combinations observed in our
pharmacovigilance data.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/jcm10194486/s1, Supplementary Text S1: Observed to expected ratio calculation. Supplementary
Figure S1: network overview of 2649 ICSRs that reported >2 drugs after applying the Louvain
algorithm for cluster detection. In total, ten different clusters were identified. Nodes represent
medications, the size of the nodes are proportional to the prevalence of the drug, the links indicate
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that the two connected drugs were taken concomitantly, the width of the link is proportional to the
number of times the pair of drugs was reported. Only labels of nodes with a degree higher than 75 are
shown. Supplementary Table S1: Demographic characteristics of individual case safety reports with
AGEP, stratified by age. Supplementary Table S2: Summary of the top 20 drugs of each cluster found
with the Louvain algorithm in the network analysis (n = 2649). Supplementary Table S3: Summary of
the top 20 drugs of each cluster found with the Louvain algorithm in the network analysis among
male ICSRs (n = 1020). Supplementary Table S4: Summary of the top 20 drugs of each cluster found
with the Louvain algorithm in the network analysis among female ICSRs (n = 1571). Supplementary
Table S5: Summary of the top 20 drugs of each cluster found with the Louvain algorithm in the
network analysis among ICSRs aged < 65 years old (n = 1379). Supplementary Table S6: Summary of
the top 20 drugs of each cluster found with the Louvain algorithm in the network analysis among
ICSRs aged >65 years old (n = 1043). Supplementary Table S7: Summary of the top 20 drugs of each
cluster found by using the leading eigenvector clustering to the network analysis (n = 2649).
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