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Abstract
Emotions are regarded as a dominant driver of human behavior, and yet their role in
online rumor diffusion is largely unexplored. In this study, we empirically study the
extent to which emotions explain the diffusion of online rumors. We analyze a
large-scale sample of 107,014 online rumors from Twitter, as well as their cascades. For
each rumor, the embedded emotions were measured based on eight so-called basic
emotions from Plutchik’s wheel of emotions (i.e., anticipation–surprise, anger–fear,
trust–disgust, joy–sadness). We then estimated using a generalized linear regression
model how emotions are associated with the spread of online rumors in terms of
(1) cascade size, (2) cascade lifetime, and (3) structural virality. Our results suggest that
rumors conveying anticipation, anger, and trust generate more reshares, spread over
longer time horizons, and become more viral. In contrast, a smaller size, lifetime, and
virality is found for surprise, fear, and disgust. We further study how the presence of 24
dyadic emotional interactions (i.e., feelings composed of two emotions) is associated
with diffusion dynamics. Here, we find that rumors cascades with high degrees of
aggressiveness are larger in size, longer-lived, and more viral. Altogether, emotions
embedded in online rumors are important determinants of the spreading dynamics.

Keywords: Online rumors; Information cascade; Online diffusion; Emotions;
Regression analysis

1 Introduction
Social media platforms such as Facebook, Sina Weibo, and Twitter allow users to dissem-
inate content through sharing (e.g., called retweeting in the case of Twitter). As a result,
content can go viral and reach a large audience despite that fact that it originated from
a single broadcast. To this end, understanding the diffusion of online content is relevant
for a number of reasons. Marketers are interested in identifying what makes content go
viral, so that marketing content can be designed accordingly [1–4]. Humanitarian orga-
nizations leverage the potential of online diffusion in social media to collect information
for effective responses to natural disasters and to inform the wider public [5–7]. Public
stakeholders are confronted with the diffusion of political content and, by understanding
the underlying mechanics, can help prevent the spread of rumors [8–11].

Previous research has identified several drivers of online diffusion (see Additional file 1
for an overview). These drivers are primarily located in the different characteristics of
senders. For instance, senders with a larger follower base (i.e., with more outgoing ties
in the network) also reach, on average, a larger audience [12]. Other characteristics of
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senders are the number of followees (i.e., how many incoming ties a user has [13–15]) or
their past engagement (i.e., the number of posts or reshares [11]). A different stream of
research has examined online diffusion around specific topics (e.g., a specific election [9]
or a specific disaster [5–7, 16–19]). In this work, we add by studying the role of emotions
in the diffusion of online rumors.

Emotions have been established as an important determinant of human behavior in of-
fline behavior [20–22]. Emotions typically arise as a response to environmental stimuli
that are of relevance to the needs, goals, or concerns of users and, as a consequence, also
guide user behavior in online settings [23]. Emotions influence what type of information
users seek, what they process, how they remember it, and ultimately what judgments and
decisions they derive from it. Emotions are themselves contagious and can spread among
people, both offline (i.e., in person) [24] and online (i.e., via social media) [25–29].

Following the above, an important driver of online behavior are emotions embedded in
online content. For instance, it was previously confirmed that emotions influence post-
ing and liking activities [30], users’ willingness-to-share [1], and actual sharing behavior
[2, 31–33]. As such, embedded emotions explain, to a large extent, the propensity to share
posts, as well as user response time. Here, emotional stimuli such as emotion-laden word-
ing trigger cognitive processing [34], which in turn results in the behavioral response of
information sharing [35–37]. In particular, emotions embedded in online content also ex-
plain the dynamics of online diffusion. For instance, emotions describe different properties
of diffusion cascades, such as their size, branching, or lifetime [38–41]. Especially misin-
formation relies upon emotions in order to attract attention [11, 38, 42–46]. Given the
importance of emotions in online behavior, we investigate how emotions are linked to the
spread of online rumors.

Hypothesis Emotions embedded in online rumors are associated with the size, lifetime,
and structural virality of the cascade.

In this study, we empirically analyze to what extent emotions explain the diffusion of on-
line rumors. For this, we infer the emotions embedded in replies to online rumors through
the use of affective computing (see Methods). For each rumor, the degree of emotion is
rated along so-called basic emotions. Basic emotions refer to a subset of emotions that are
universally recognized across cultures and through which other, more complex emotions
can be derived. In this work, we adopt Plutchik’s wheel of emotions [22], comprising 8 ba-
sic emotions (ANTICIPATION, SURPRISE, ANGER, FEAR, TRUST, DISGUST, JOY, SADNESS). Based on
these, we infer 24 dyadic emotional interactions, each representing a more complex emo-
tion composed of two basic emotions (e.g., AGGRESSIVENESS as a combination of ANGER and
ANTICIPATION). These emotions are then linked to the spread of online rumors using regres-
sion analysis. Thereby, we estimate to what extent emotions embedded in online rumors
explain: (1) cascade size, that is, how many reshares a rumor generates; (2) cascade life-
time, that is, how long a rumor is active; and (3) structural virality, that is, how effectively
it spreads. The latter, structural virality, provides a quantitative metric [47] aggregating
the depth-breadth variation in rumor diffusion.

One work [11] contains summary statistics reporting which emotions are present in
online rumors but not how emotions affect sharing. Hence, any statistical claims measur-
ing the emotion effect (= which emotions drive a faster and wider rumor spreading) are
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precluded. This presents the added value of our work. We measure how emotions are as-
sociated with the diffusion dynamics (e.g., TRUST as an emotion is present in only a small
portion of rumors but it has a large influence on virality). Because of this, our work is dif-
ferent in several ways: (i) we focus not only on basic emotions but also dyadic emotions,
(ii) we infer the emotion effect on diffusion dynamics, and, because of that, (iii) we use a
regression analysis as opposed to summary statistics. Therefore, this work is—to the best
of our knowledge—the first comprehensive study assessing the link between emotions and
the spread of online rumors.

We analyze a large-scale, representative sample of Twitter rumors and their correspond-
ing cascades [11]. Specifically, our data cover the complete time frame from the launch of
Twitter in 2006 until (and including) 2017. Altogether, this results in 2189 rumors as-
sociated with 107,014 cascades. The sample comprises approx. 3.7 million reshares that
originate from almost 3 million different users. Based on the cascades, various control
variables are constructed. Specifically, in our regression analysis, we capture time- and
rumor-effects through the use of random effects, based on which we control for the het-
erogeneity among rumors (see Materials and Methods).

2 Materials and methods
2.1 Dataset
A rumor is defined as a piece of content that is propagated between users but without con-
firmation of its veracity. This definition is rooted in social psychology literature [43, 48].
For this study, a large-scale dataset comprising of rumor cascades from Twitter [11] was
analyzed. The resulting sample comprises all rumors from Twitter between its founding in
the year 2006 until (and including) 2017. Ethics approval was obtained from ETH Zurich
(2020-N-44). Overall, our sample includes 2189 rumors with a total of N = 107,014 cas-
cades (i.e., some rumor contents were shared as part of multiple but different cascades).
The rumors had approx. 3.7 million reshares originating from 3 million users (see [11] for
details).

2.2 Characteristics of online rumor diffusion
The cascades were then processed as follows in order to generate additional variables.
These variables refer to different characteristics of online rumor diffusion and later rep-
resent the dependent variables in the regression analysis. For simplicity, we introduce the
following notation. We refer to the cascades via j = 1, . . . , N . These belong to i = 1, . . . , 2189
different rumors. Each cascade is a three-tuple Tj = (rj, tj0, Rj), where rj is the root post that
corresponds to the original broadcast and where tj0 is its timestamp and Rj the set of re-
shares. A reshare k has a parent pjk and a timestamp tjk , i.e., Rj = {(pjk , tjk)}k .

(1) Cascade size: The cascade size counts how many reshares a cascade generated.
Formally, it amounts to all reshares plus 1 (for the root), i.e., |Rj| + 1.

(2) Cascade lifetime: The cascade lifetime is the timespan during which a rumor
cascade was active, thus the elapsed time between the root broadcast and the last
reshare. It is calculated via maxk tjk – tj0.

(3) Structural virality: Structural virality [47] provides an aggregated metric combining
the depth and breadth of a cascade. A higher structural virality corresponds to a
cascade that is both of great depth and where each reshare generated a large relative
number of additional reshares (i.e., a high branching factor). As proposed in [47],
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structural virality is based on the idea of the Wiener index, i.e.,

v(Tj) =
1

|Rj| × (|Rj| + 1)

|Rj|∑

j1=0

|Rj|∑

j2=0

dj1,j2 , (1)

where dj1,j2 is the shortest path between nodes j1 and j2 in the tree Tj . Intuitively,
structural virality reflects the average distance between all reshares in the graph.

2.3 Model variables on heterogeneity between rumor cascades
Model variables xj, concerning the heterogeneity among rumor cascades, were computed
as in earlier research [11, 12, 31, 38]. These later act as controls. In our study, controls
are (1) account age; (2) a binary dummy representing whether the account is officially la-
beled as “verified” (= 1 if yes, i.e., Twitter displays a blue badge next to it); (3) the number of
followers (outgoing ties); (4) the number of followees (incoming ties); and (5) user engage-
ment, that is, the average number of posts, reshares, and likes relative to the account age
as in [11]. These variables reflect that the senders of rumors vary in their social influence.

Note that all of the above variables were computed at the level of cascades (which is later
our unit of analysis). Additional sources of heterogeneity among rumors are captured via
rumor-level random effects.

2.4 Computing emotions embedded in online rumors
For all cascades, we measured the emotions embedded in replies to rumor cascades. Here,
we distinguish basic emotions, bipolar emotion pairs, and dyadic emotional interactions
comprising primary, secondary, tertiary dyads. The computation of the emotions is de-
tailed below (see [22] for further details).

Basic emotions: Basic emotions refer to a subset of emotions that are universally recog-
nized across cultures and through which other, more complex emotions can be derived
[20, 21]. In our study, Plutchik’s wheel of emotions [22] is adopted as it is a common tool
in affective computing [49]. It defines 8 basic emotions (see Fig. 1, petals): ANTICIPATION,
SURPRISE, ANGER, FEAR, TRUST, DISGUST, JOY, and SADNESS.

Our computation follows a dictionary-based approach as in [11]. Dictionary-based ap-
proaches are widely used when large-scale analyses of emotions are performed with the
objective of explanatory modeling and thus reliable interpretations [38, 41]. In our work,
the NRC emotion lexicon was used [50], which classifies English words into the 8 basic
emotions. For all cascades j, the content of the replies was tokenized and the frequency of
dictionary terms per basic emotion was counted, resulting in an 8-dimensional emotion
score ej. Afterwards, the vector was normalized to sum to one across basic emotions (i.e.,
e′

j = 1
‖ej‖1

ej). We omit rumor cascades that do not contain any emotional words from the
NRC emotion lexicon (since, otherwise, the denominator is not defined). As a result, the
8 emotion dimensions in e′

j ∈ [0, 1]8 range from zero to one. Owing to this fact, replies to
rumors can embed a combination of multiple emotions (e.g., 40% ANGER and 60% FEAR).

Bipolar emotion pairs: In Plutchik’s wheel of emotions, the 8 basic emotions are orga-
nized according to 4 pairs of bipolar emotions (i.e., the opposite petals in Fig. 1). The 4
pairs of bipolar emotions are ANTICIPATION–SURPRISE, ANGER–FEAR, TRUST–DISGUST, JOY–
SADNESS. In each case, one dimension of the pair is considered to be positive and the other
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Figure 1 Plutchik’s wheel of emotions [22]

negative. We calculate a 4-dimensional score φ
pairs
j that measures the difference between

a specific positive emotion and its complement from the set of negative emotions. For
example, ANGER–FEAR refers to the difference between ANGER and FEAR.

Dyadic emotional interactions: Plutchik’s wheel of emotions further defines 24 dyadic
emotional interactions, which are more complex emotions composed of two basic emo-
tions (see Fig. 1, round lines). The dyadic emotional interactions comprise:

1 Primary dyads that are one petal apart from each other (e.g., AGGRESSIVENESS =
ANGER + ANTICIPATION). The 8 primary dyadic emotional interactions are OPTIMISM,
DISAPPROVAL, LOVE, REMORSE, SUBMISSION, CONTEMPT, AWE, and AGGRESSIVENESS.

2 Secondary dyads that are two petals apart from each other (e.g., HOPE =
ANTICIPATION + TRUST). The 8 secondary dyadic emotional interactions are HOPE,
UNBELIEF, GUILT, ENVY, CURIOSITY, CYNICISM, DESPAIR, and PRIDE.

3 Tertiary dyads that are three petals apart from each other (e.g., ANXIETY =
ANTICIPATION + FEAR). The 8 tertiary dyadic emotional interactions are ANXIETY,
OUTRAGE, DELIGHT, PESSIMISM, SENTIMENTALITY, MORBIDNESS, SHAME, and DOMINANCE.

Similar to the bipolar emotion pairs, the dyadic emotional interactions are arranged such
that each has an opposite emotion. For example, LOVE is the opposite of REMORSE. Hence,
for each pair, we again compute a score that is the difference between the opposing emo-
tions. This yields φ

primary
j ,φsecondary

j ,φtertiary
j ∈ [0, 1]4.

2.5 Regression analysis
To analyze the role of emotions in online rumor diffusion, we apply a generalized regres-
sion model. Regression models are generally regarded as an explanatory approach with the
ability to document statistical relationships and, in particular, estimate effect sizes [51].
Furthermore, regression models are widely used to estimate the marginal effect of con-
tent on diffusion characteristics [11, 31, 38, 41]. This allows us to later make inferences
that test our research hypothesis statistically.
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Let yj denote a characteristic of the cascade of interest, namely cascade size, cascade
lifetime, or structural virality. We then model yj of the cascade via a two-level generalized
hierarchical regression:

Level 1: yj = αi + βT φj + γ T xj + εj, (2)

Level 2: αi = γ0 + γi, (3)

where level 1 refers to the cascade level and level 2 to the rumor level. The other variables
are as follows. The coefficient β captures the marginal effect of emotions. This is later our
variable of interest as it measures the contribution of emotions to rumor diffusion. The
coefficient γ is used to control for other model variables at the rumor cascade level. Both
γ0 and γi are assumed to be independent and identically normally distributed with mean
zero. Then γ0 reflects the base diffusion in the sample, while γi controls for variation at
rumor level. Notably, this turns αi into a rumor-specific random effect. The error term εj

is assumed to be independent and identically normally distributed with mean zero.
The use of regression analysis is imperative for the scope of our study. The reasons are as

follows. (1) Our objective is different from predictive modeling [51], where the focus is on
accurate estimates of the outcome variable. Instead, we are concerned with the model logic
as it allows us to interpret the model coefficients. (2) Our objective is also different from
analyzing summary statistics as in [11]. Summary statistics deal with comparisons across
groups and thereby ignore other sources of heterogeneity in the sample. For instance, the
summary statistics on rumor emotions in [11] only report which emotions are common
but not how emotions are associated with sharing dynamics. This is especially relevant
for our research as we expect that some properties of rumor diffusion are also due to the
social influence of the sender. Hence, by combining emotions and further controls in a
joint regression model, we can isolate the marginal effect of emotions on the diffusion
dynamics, which would not be possible with summary statistics.

Later, a regression analysis based on basic emotions is precluded due to multicollinearity
(recall that the emotion scores ej sum to one across basic emotions). Instead, the regres-
sion analysis is performed using bipolar emotion pairs φ

pairs
j and the dyadic emotional

interactions φ
primary
j , φ

secondary
j , φ

tertiary
j . For the latter, we fit 12 separate models, i.e., one

for each pair among the emotional dyads, due to linear dependencies between the dyads.
In our implementation, the estimator depends on the distribution of yj as follows:
1 Cascade size is modeled via a negative binomial regression with log-transformation.

The reason is that cascade size denotes count data with overdispersion (i.e., variance
larger than the mean).

2 Cascade lifetime is first log-transformed and then modeled via a normal distribution.
This is consistent with previous research assuming a log-normal distribution for
response times [12].

3 Structural virality is modeled via a gamma regression with a log-link. This allows us to
account for a skewed distribution of continuous, non-negative variables.

All estimations are conducted based on the R package lme4. Before estimation, all model
variables are z-standardized. Owing to this, the regression coefficients quantify changes in
the dependent variable in standard deviations. This is beneficial as it allows us to compare
the estimated coefficients across emotions in a straightforward manner.



Pröllochs et al. EPJ Data Science           (2021) 10:51 Page 7 of 17

3 Results
3.1 Summary statistics
The diffusion dynamics in our data are as follows. Figure 2 compares cascade size, lifetime,
and structural virality via complementary cumulative distribution functions (CCDF). On
average, a rumor cascade reaches 31.95 users and has a lifetime of 123.18 hours. The mean
structural virality is 1.26.

Basic emotions: Fig. 3 plots the CCDFs for each of the eight basic emotions, while Fig. 4
reports the relative proportion of emotional intensity averaged over all rumors. We find
that a large proportion of rumors embed DISGUST and SURPRISE, whereas comparatively
few rumors embed JOY and SADNESS. Evidently, rumors embed more ANGER (relative share
of 12.34%) than FEAR (10.74%), more SURPRISE (16.44%) than ANTICIPATION (14.23%), more
DISGUST (23.58%) than TRUST (9.05%), and more JOY (7.39%) than SADNESS (6.23%). Overall,

Figure 2 Complementary cumulative distribution functions (CCDFs) for (a) cascade size, (b) cascade lifetime,
and (c) structural virality

Figure 3 Complementary cumulative distribution functions (CCDFs) for basic emotions
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Figure 4 Relative proportion of basic emotions in cascades

Figure 5 Relative proportion of dyadic emotional interactions in cascades

43.01% of the embedded emotions originate from the group of positive emotions, while
56.98% belong to the group of negative emotions. Hence, rumors comprise more negative
than positive emotions.

Dyadic Emotional Interactions: Fig. 5 shows the distribution of the dyadic emotional
interactions. For the primary emotion dyads, we find that a large proportion of rumors
embed CONTEMPT and REMORSE, whereas fewer rumors embed LOVE and SUBMISSION. For
the secondary and tertiary emotion dyads, we find that many rumor cascades embed UN-
BELIEF and SHAME. In contrast, only a relatively small proportion of rumors embed DESPAIR

and PESSIMISM.
Note that the above summary statistics only report the relative frequency of emotions

but do not allow one to draw conclusions regarding how users respond to emotions. This
is studied in the following regression analyses.

3.2 Regression results from bipolar emotion pairs
In the following, we report results for the bipolar emotion pairs φ

pairs
j .

We use regression analysis to explain different characteristics of cascades based on the
bipolar emotion pairs. The parameter estimates in Fig. 6 show that the 8 basic emo-
tions are important determinants of the spreading dynamics of rumors. Across all de-
pendent variables, we find coefficients that are positive and statistically significant for the
ANTICIPATION–SURPRISE, ANGER–FEAR, and TRUST–DISGUST dimensions. Hence, rumors are
estimated to diffuse more pronouncedly when embedding positive emotions. For instance,
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Figure 6 Standardized parameter estimates and 95% confidence intervals

Figure 7 Predicted marginal effect of bipolar emotions on (a) cascade size, (b) cascade lifetime, and
(c) structural virality. The 95% confidence intervals are highlighted in gray

the estimated effect sizes for the ANTICIPATION–SURPRISE pair are as follows: the coeffi-
cients amount to 0.193 for cascade size (p-value < 0.001), to 0.118 for cascade lifetime
(p-value < 0.001), and to 0.019 for structural virality (p-value < 0.001). Hence, a one stan-
dard deviation change in this bipolar emotion pair is linked to a 21.29% increase in the
cascade size, a 12.52% increase in the cascade lifetime, and a 1.92% increase in structural
virality.

The predicted marginal effects for the bipolar emotion pairs are shown in Fig. 7. Rumors
embedding ANTICIPATION, ANGER, and TRUST generate more reshares, spread over a longer
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time horizon, and become more viral. The coefficient for the JOY–SADNESS emotion pair
is not significant.

Our regression model controls for heterogeneity in users’ social influence. The corre-
sponding estimates are omitted for the sake of brevity (their findings have been discussed
elsewhere, e.g., in [31]). In short, rumor cascades initiated from accounts that are verified
and younger are linked to a larger, longer, and more viral spread. Similar relationships are
observed for users exhibiting a higher engagement level and a greater number of followers.
In contrast, a higher number of followees is negatively associated with the size, lifetime,
and structural virality of a cascade.

We calculated the pseudo-R2 for each model, resulting in relatively high values of 0.64 for
cascade size, 0.43 for cascade lifetime, and 0.31 for structural virality. Evidently, the model
variables explain the variation in the dependent variables to a large extent. Furthermore,
a visual inspection of the actual vs. fitted plot and goodness-of-fit tests indicate that the
models are well specified. This is also supported when considering the differences between
the AIC models for individual models estimated with/without emotion variables. For each
dependent variable, the difference is greater than the threshold [52] of 10 (difference in
cascade size: 226.16; lifetime: 52.22; structural virality: 121.03), indicating strong support
for the corresponding candidate models. Therefore, the inclusion of the emotion variables
in the regression model is to be preferred.

3.3 Regression results from dyadic emotional interactions
We now study how the presence of 24 dyadic emotional interactions is associated with the
diffusion dynamics of online rumors. For this purpose, we employ the previous regression
model, but this time include the emotion variables φ

primary
j , φsecondary

j , and φ
tertiary
j . Figure 8

shows the predicted marginal effects for the 8 primary, 8 secondary, and 8 tertiary dyadic
emotional interactions.

Primary dyadic emotional interactions: Rumor cascades with higher values of AGGRES-
SIVENESS, LOVE, OPTIMISM are larger in size, longer-lived, and more viral. We observe no
statistically significant effect for the SUBMISSION–CONTEMPT pair. Overall, the largest posi-
tive association is observed for AGGRESSIVENESS (i.e., the combination of ANTICIPATION and
ANGER). An increase of one standard deviation in this dimension is linked to a 19.18% in-
crease in the cascade size, an 8.33% increase in the cascade lifetime, and a 1.69% increase
in structural virality.

Secondary dyadic emotional interactions: Rumor cascades with higher values of HOPE vs.
UNBELIEF generate more reshares, spread over a longer time horizon, and become more vi-
ral. We further find that rumor cascades embedding GUILT, and DESPAIR are negatively asso-
ciated with the size, lifetime, and structural virality of a cascade. The CURIOSITY–CYNICISM

pair is not statistically significant at common statistical significance levels.

Tertiary dyadic emotional interactions: Rumor cascades with higher values of ANXIETY

are larger in size, longer-lived, and more viral. We also find a larger size, lifetime, and
virality for rumor cascades embedding high levels of DOMINANCE, PESSIMISM, and ANXIETY.
We find no statistically significant effect for the SENTIMENTALITY–MORBIDNESS pair.

The control variables tend in a similar direction as in the analysis of the basic emotions.
Again, the difference in AIC (comparing the model with and without emotions) is above
the common threshold of 10 [52]. Therefore, the models that include emotions are to be
preferred.
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Figure 8 Predicted marginal effect of dyadic emotional interactions on (a) cascade size, (b) cascade lifetime,
and (c) structural virality. The 95% confidence intervals are highlighted in gray

3.4 Sensitivity across rumor topics
Our empirical analysis is based on a large-scale dataset with Twitter rumors across varying
topics. We now study topic-specific variations. For this purpose, we employ the topic cat-
egorization from [11], which classifies Twitter rumors into topics. Here, we focus on the
topics Politics, Business, and Science given their high relevance for society. Note that
the topic Science is broadly defined and also comprises related topics such as health-
related rumors. For each of the three topics, we generate a subset of the data and re-
estimate our models. The results are visualized in Fig. 9. We find that emotions explain
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Figure 9 Standardized parameter estimates and 95% confidence intervals for different subsets of rumors
filtered by topic

differences in cascade size, cascade lifetime, and structural virality at a statistically signif-
icant level for the topics Politics and Business. In contrast, we find mixed results for
Science. These results are in line with existing literature. For example, [31] find a pro-
nounced role of political content in social media sharing. The authors argue that political
topics are more controversial and thus attract more attention, which itself influences shar-
ing behavior.

3.5 Robustness checks
3.5.1 Model checks
We conducted a series of additional model checks that contribute to the robustness of our
findings. First, we followed common practice in regression analysis and checked that vari-
ance inflation factors as an indicator of multicollinearity were below five [53]. This check
led to the desired outcome. Second, we controlled for year-level time effects (i.e., via clus-
tered standard errors and different study horizons) in addition to rumor-level random
effects that are already included in our regression model. We obtained conclusive find-
ings. Third, we controlled for non-linear relationships via quadratic terms. In all cases,
our findings were supported.

3.5.2 Validation of emotion scores
Our results rely on the validity of dictionaries to extract emotions from online rumors. To
check how perceived emotions in rumors align with the dictionary-based emotions, we
conducted a survey using the online survey platform Prolific (https://www.prolific.co/).
We asked n = 7 participants (English native speakers) to rate the presence of the eight basic
emotions on a Likert scale from –3 to 3 (here: –3 indicates no emotion present while 3
refers to a high degree of emotion present) for a set of 100 randomly sampled rumors. As

https://www.prolific.co/


Pröllochs et al. EPJ Data Science           (2021) 10:51 Page 13 of 17

Table 1 Kendal’sW coefficient for the interrater agreement between survey participants

ANGER ANTICIPATION DISGUST FEAR JOY SADNESS SURPRISE TRUST

0.474∗∗∗ 0.198∗∗∗ 0.427∗∗∗ 0.406∗∗∗ 0.364∗∗∗ 0.408∗∗∗ 0.227∗∗∗ 0.230∗∗∗

∗p < 0.1, ∗∗p < 0.05, ∗∗∗p < 0.01.

shown in Table 1, the participants exhibited a statistically significant interrater agreement
according to Kendall’s W for each of the 8 basic emotions (p < 0.01).

Overall, when aggregating across all 8 basic emotions, the correlation between the
dictionary-based emotion scores and human annotations is ρ = 0.17 (p < 0.01) and thus
statistically significant at common significance thresholds. This demonstrates that dictio-
naries are able to capture emotions in online rumors.

3.5.3 Negation handling
We performed negation scope detection [54, 55] to analyze the robustness to how nega-
tions (e.g., “not,” “no”) are handled by the dictionary approach. For example, phrases like
“I am surprised” and “I am not surprised” contain the same number of emotional words but
convey different emotions to the reader. We analyzed emotional words that are negated by
surrounding negation words as follows: (i) We searched for negations using a predefined
list of negation words. Here, we used the list of negations from the R package senti-
mentr. (ii) We recalculated the emotion scores by counting all emotional words in the
neighborhood of the negation word as belonging to the opposite emotional dimension
(e.g., Joy = Joy + Sadnessnegated). The neighborhood is set to 5 words before and 2 words
after the negation. We then compared the emotion scores with negation handling to the
values obtained without negation handling. As a result, we found that merely 5.58% of the
emotional words in rumors are affected by negations (i.e., lie within negation scopes). Fur-
thermore, the emotion scores with negation handling are highly correlated with the emo-
tion scores without negation handling (ρ > 0.9). Altogether, this implies that our analysis
and findings are robust to negations.

4 Discussion
In this work, we provided a large-scale study of emotions in online rumor diffusion. For
this purpose, 2189 rumors from Twitter with approx. 3.7 million reshares were analyzed
with regard to the embedded emotions. Overall, we found that negative emotions are fre-
quently embedded in rumors. Especially frequent are DISGUST (relative share of 23.58%)
and SURPRISE (16.44%). (2) The relationship between emotions and the structure of cas-
cade is statistically significant at common significance levels for almost all emotions un-
der study. (3) Rumors embedding ANTICIPATION, ANGER, and, TRUST are estimated to reach
a significantly larger number of individuals and diffuse significantly longer and more vi-
rally. Interestingly, while negative emotions are more often embedded in rumors, positive
emotions are particularly relevant for explaining the diffusion dynamics. (4) A particu-
larly large effect of emotions on the diffusion characteristics is found for AGGRESSIVENESS

(which is a derived emotion composed of ANTICIPATION and ANGER). A one standard de-
viation higher level of AGGRESSIVENESS is predicted to generate 19.18% more reshares, to
be active for 8.33% longer, and to spread 1.69% more virally. Overall, our study establishes
emotions as important determinants that describe the spread of online rumor.



Pröllochs et al. EPJ Data Science           (2021) 10:51 Page 14 of 17

Our results contribute to the understanding of online rumor diffusion. As shown by
our analysis, emotions are important determinants in explaining the structure of rumor
cascades, specifically how many users are involved, the active lifespan and, to a lesser ex-
tent, structural virality. The findings are consistent across basic emotions and also dyadic
emotion interaction (primary, secondary, tertiary). In addition, our results suggest con-
siderable heterogeneity in the role of emotions. Strong effects are found for most basic
emotions (ANTICIPATION, SURPRISE, ANGER, FEAR, TRUST, DISGUST), albeit with the exception
of JOY and SADNESS. Similar patterns are observed when studying more complex (derived)
emotions. Here, the largest estimated effect size is associated with AGGRESSIVENESS. A one
standard deviation higher level of AGGRESSIVENESS is predicted to generate 19.18% more
reshares, cascade that are 8.33% longer, and a 1.69% increase in structural virality. Thereby,
we reveal AGGRESSIVENESS as a dominant driver of rumor diffusion.

Our work also expands upon rumor theory from offline settings. Offline rumors have a
higher chance of dissemination when conveying anxiety [56] and, in particular, negative
emotions [42, 43]. However, the underlying evidence stems from offline rumors rather
than online rumors. Our work adds in two ways: First, we study the role of emotions in the
diffusion of online rumors. While rumor diffusion in offline settings is more pronounced
for negative emotions, we observe the opposite for online rumors, for which positive emo-
tions appear more influential. Second, we not only compare positive vs. negative emotions
but perform a granular study across primary, secondary, and tertiary emotional dyadic in-
teractions. This provides rich findings on the heterogeneity of emotion effects. As such, we
confirm that ANXIETY is an important driver for rumor diffusion not only in offline but also
in online settings. However, further emotions are also relevant: a particularly pronounced
role is found with regard to AGGRESSIVENESS. To the best of our knowledge, the importance
of AGGRESSIVENESS in rumor diffusion was previously overlooked.

In our study, inferences were made based on data from Twitter. Twitter has a wide pop-
ularity with more than 300 million active users. In addition, it plays an important part in
rumor diffusion due to its influential role in the political discourse [10]. This makes our
findings directly relevant to both social media platforms and, in particular, public stake-
holders. For the same reason, established procedures were followed when compiling the
data [11], as this ensures that findings are drawn from a realistic, large-scale dataset of
Twitter rumors. To the best of our knowledge, our work is the first statistical analysis link-
ing emotions to online rumor diffusion.

As with other studies, ours is subject to limitations that provide opportunities for future
research. First, this study is based on observational inferences, while we leave the extension
to (quasi-)experimental settings, and thus causal inferences, to future work. Nevertheless,
our study design ensures that many potential confounding factors can be ruled out. This
is because of the temporal order (i.e., the emotion-laden wording precedes the actual cas-
cade) and the fact that further sources of variability among rumors are captured through
rumor-level random effects. Second, our study employs statistical inferences that provide
explanatory insights. This allows us to quantify the marginal contribution of emotions to
online rumor diffusion. A different objective is to use emotions for predictive modeling,
which is discussed elsewhere [57–60].

Our work entails several implications. It emphasizes the necessity of considering emo-
tions when studying rumor diffusion. Emotions are also relevant in practice, particularly
for social media platforms. To counter the proliferation of online rumors, social media
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platforms should seek solutions, based on which emotions can be actively managed. Our
study also encourages a granular investigation of emotions for related research questions,
whereby not only basic emotions but also derived emotions are considered. Such granu-
lar analyses are comparatively more challenging in lab experiments; however, a remedy is
offered by computational social science based on which large-scale datasets from online
behavior can be mined.
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