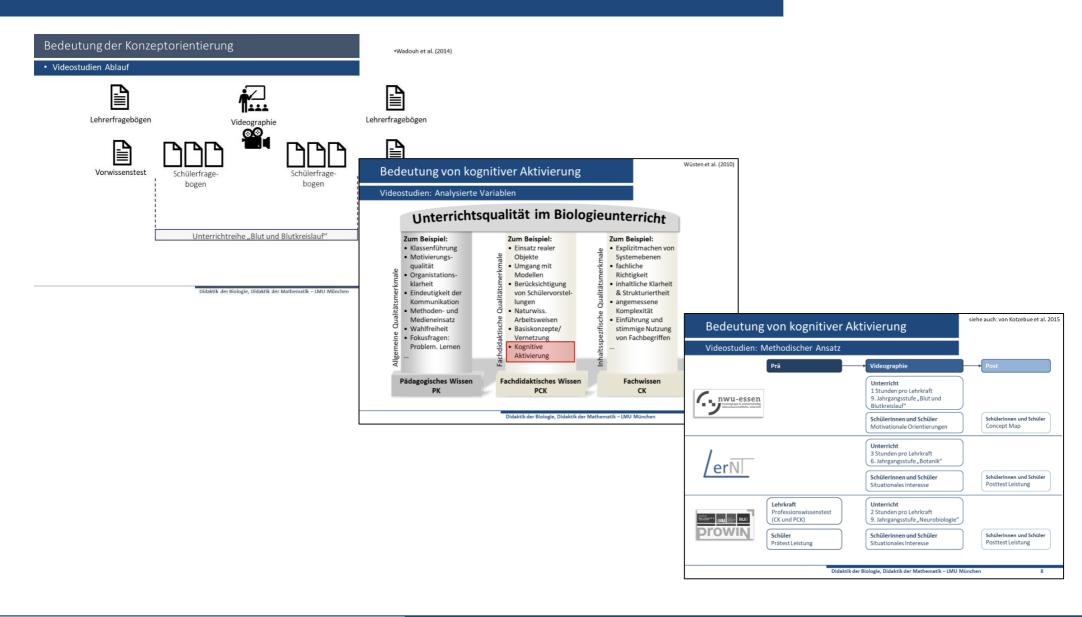
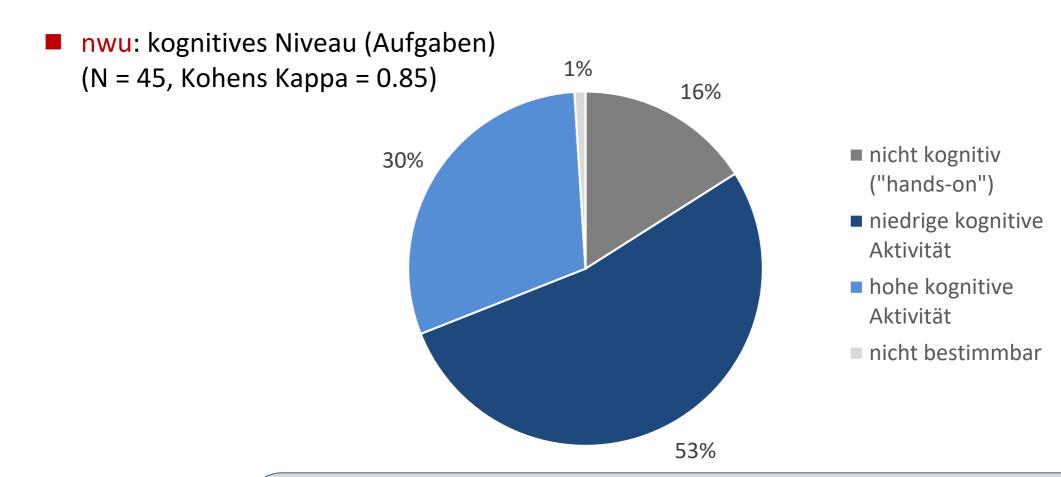


empirische Belege

Studie	Fächer	Erkenntnisse
TIMS video study 1995 (Stigler & Hiebert, 1997)	Mathematik	Länderspezifische "lesson scripts" JP: kognitiv aktivierend
TIMS video study 1999 (Hiebert et al., 2003)	Mathematik	Komplexität von Aufgaben: JP: 40% hohe Komplexität
TIMS video study 1999 (NCES, 2006)	Naturwissenschaften	Leistungsstarke Länder: hohe inhaltliche Standards CZ: viele herausfordernde Inhalte JP, AUS: Verknüpfen von Inhalten
IPN Videostudie (Seidel et al., 2003)	Physik	Hohe Engführung des Unterrichtsgesprächs wirkt negativ auf Fachinteresse und Motivation der Schüler
Pythagoras (Lipowsky et al., 2009)	Mathematik	Kognitiv aktivierender Unterricht fördert Schülerleistung
COACTIV (Kunter et al., 2013)	Mathematik	Zusammenhang zwischen PCK und kognitiver Aktivierung Zusammenhang zwischen kognitiver Aktivierung und Schülerleistung
QUiP (Ergönenc et al., 2014)	Physik	Zusammenhang zwischen PCK und kognitiver Aktivierung Zusammenhang zwischen PCK und Schülerleistung
Vogelsang & Reinold, 2013	Physik	Zusammenhang zwischen PK und kognitiver Aktivierung

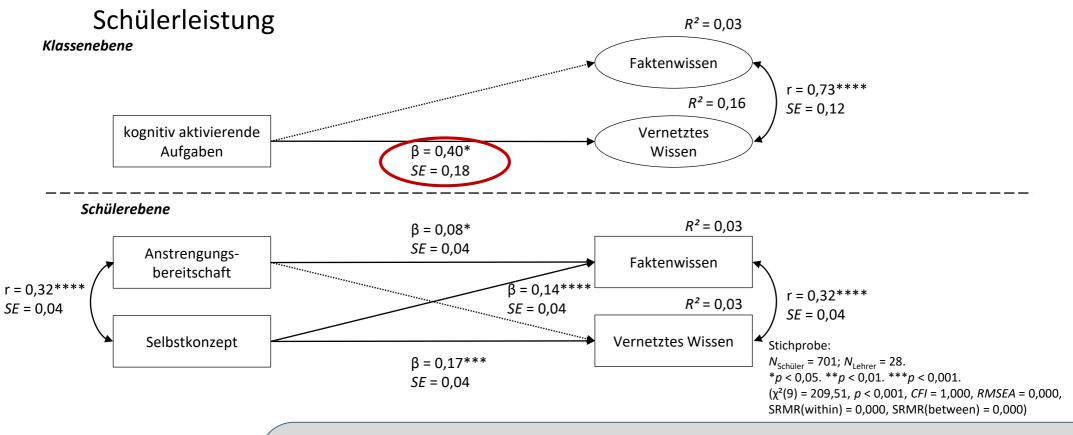

Allgemeine Einführung: Kognitive Aktivierung

Wirksamkeitsstudien


Studientyp		Längsschnittstudie				
Studie	nwu <i>Biologie</i>	LerNT <i>Biologie</i>	ProwiN <i>Biologie</i>	Pythagoras <i>Mathematik</i>	COACTIV Mathematik	
Thema	Blut- und Blutkreislauf	Botanik	Neurobiologie	Satz von Pythagoras	Mathematik	
Jahrgangs- stufe	9	6	9	9	9	
Schulform	Gym	Gym	Gym	Gym	Gym, RS	
Bundesland	NRW	Bayern	Bayern	Deutschland & Schweiz	Deutschland	
Lehrkräfte	49	28	39	38	181	
Unterricht	1 Stunde/ Lehrkraft (49 Stunden)	3 Stunden/ Lehrkraft (81 Stunden)	2 Stunden/ Lehrkraft (78 Stunden)	3 Stunden/ Lehrkraft (114 Stunden)	1 Schuljahr (ca. 9500 Aufgaben)	
Schüler	1271	640	827	755	4353	
Erhebungs- zeitraum	2005	2012	2013 – 2015	2002-2003	2000-2001	

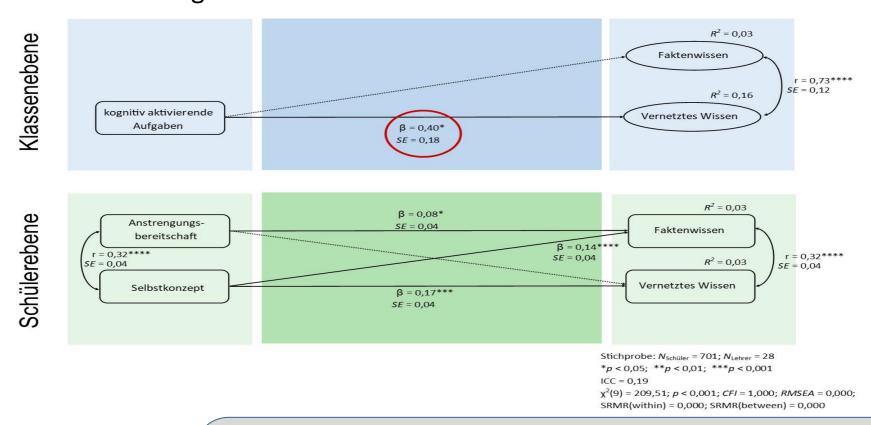
Baumert et al. (2010); Förtsch et al. (2016, 2017); Jatzwauk et al. (2008)

Videostudien aus der Biologie


Videostudien: Ergebnisse

Nur ca. 1/3 der Aufgaben zielen auf eine hohe kognitive Aktivität ab.

Videostudien: Ergebnisse


LerNT: Einfluss von Aufgaben zu hoher kognitiver Aktivität auf

In Klassen, in denen im Unterricht viele kognitiv aktivierende Aufgaben gestellt werden, schneiden die Schülerinnen und Schüler bei vernetztem Wissen besser ab.

Videostudien: Ergebnisse

LerNT: Einfluss von Aufgaben zu hoher kognitiver Aktivität auf Schülerleistung

In Klassen, in denen im Unterricht viele kognitiv aktivierende Aufgaben gestellt werden, schneiden die Schülerinnen und Schüler bei vernetztem Wissen besser ab.

Videostudien: Ergebnisse

 LerNT: Zusammenhang zwischen kognitiver Aktivierung im Unterricht und Leistung der Schülerinnen und Schüler

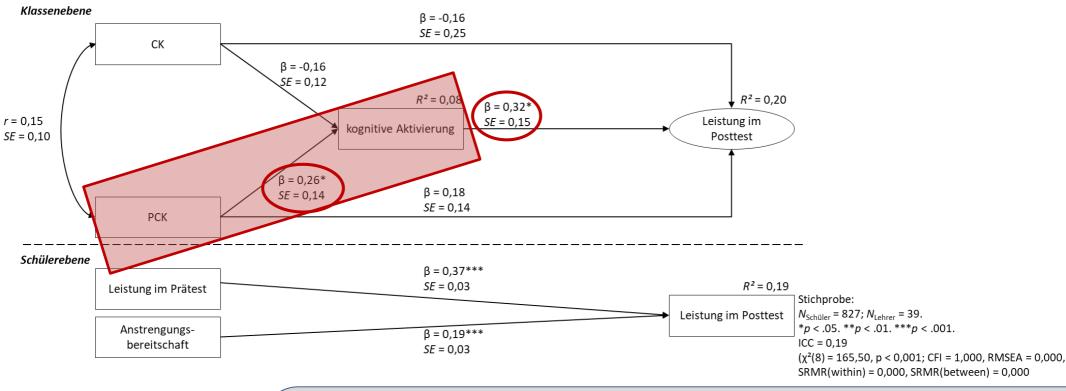
Prädiktor	Mod	Modell 1		Modell 2		Modell 3	
	β	SE	β	SE	- β	SE	
Klassenebene							
Kognitive Aktivierung			0,21+	0,11	0,22+	0,11	
Schülerebene							
Fachinteresse	- 0,05	0,05			- 0,06	0,05	
intrinsische Motivation	- 0,06	0,05			- 0,05	0,05	
Anstengungsbereitschaft	- 0,01	0,05			- 0,01	0,05	
Selbstkonzept	0,22***	0,05			0,22***	0,05	
R^2	0,05		0,10		0,15		
Deviance	1638	1638,85		1654,27		1639,66	

 β standardisierte HLM Regressionsgewichte, SE Standardfehler von β , ***p < .001; **p < .01, *p < .05, +p < .10

In Klassen, in denen im Unterricht viel kognitiv aktiviert wird, zeigen die Schülerinnen und Schüler eine bessere Leistung im Posttest.

Videostudien: Ergebnisse

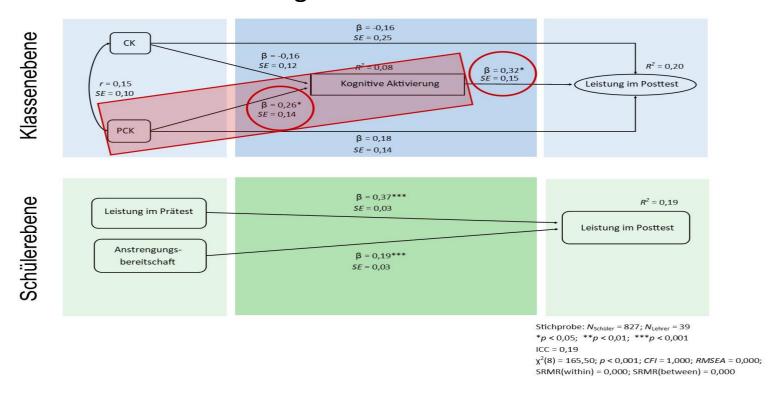
LerNT: Zusammenhang zwischen kognitiver Aktivierung im Unterricht und situationalem Interesse der Schülerinnen und Schüler


Prädiktor	Mod	Modell 1		Modell 2		Modell 3	
	β	SE	β	SE	β	SE	
Klassenebene							
Kognitive Aktivierung			0,23*	0,08	0,18**	0,06	
Schülerebene							
Fachinteresse	0,26***	0,05			0,26***	0,05	
intrinsische Motivation	0,23***	0,04			0,23***	0,04	
Anstengungsbereitschaft	0,12**	0,04			0,11**	0,04	
Selbstkonzept	0,01	0,04			0,01	0,04	
R^2	0,24		0,23		0,47		
Deviance	1560	1560,16		1730,42		1558,15	

 β standardisierte HLM Regressionsgewichte, SE Standardfehler von β , ***p < .001; **p < .01, *p < .05

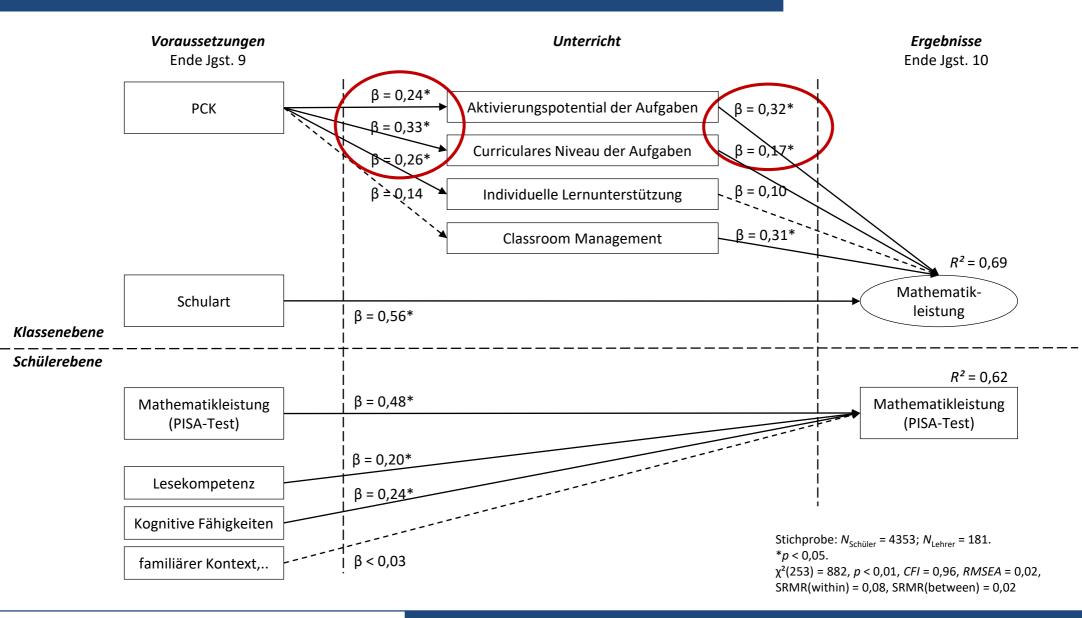
In Klassen, in denen im Unterricht viel kognitiv aktiviert wird, zeigen die Schülerinnen und Schüler ein höheres situationales Interesse.

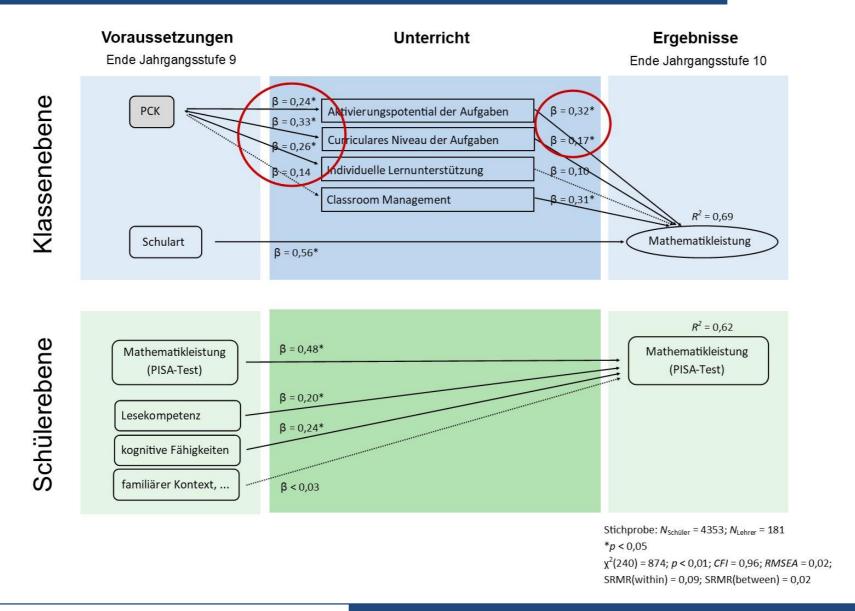
Videostudien: Ergebnisse


ProwiN: Zusammenhang zwischen PCK der Lehrkraft, kognitiver Aktivierung im Unterricht und Leistung der Schülerinnen und Schüler

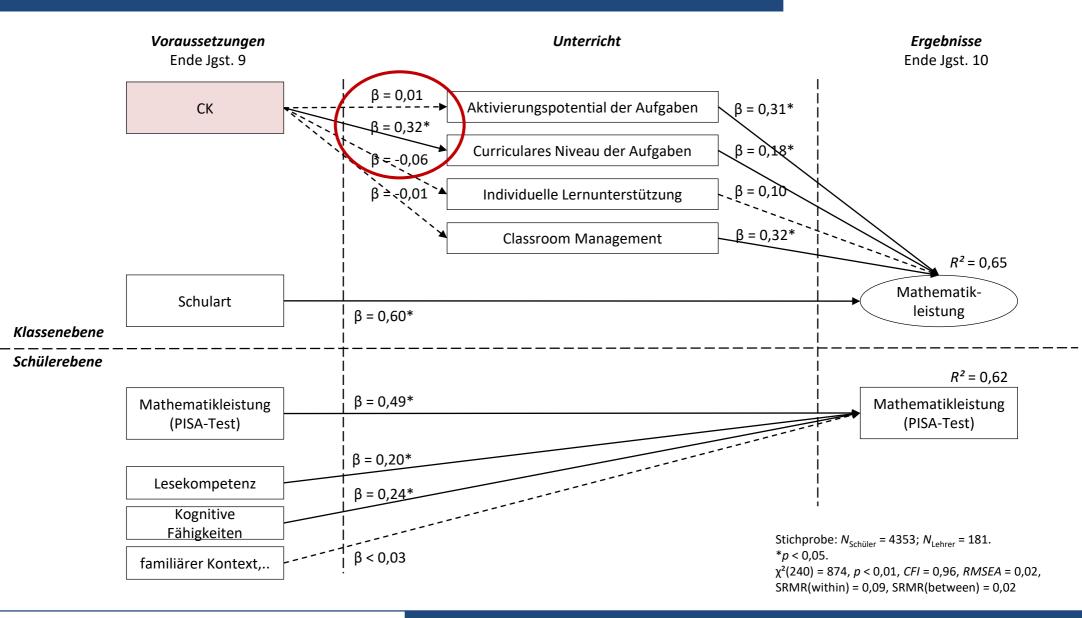
Um Unterricht kognitiv aktivierend zu gestalten, wird v. a. fachdidaktisches Wissen benötigt, das sich bis auf die Leistung von Schülerinnen und Schülern positiv auswirkt (mediiert um die kognitive Aktivierung im Unterricht).

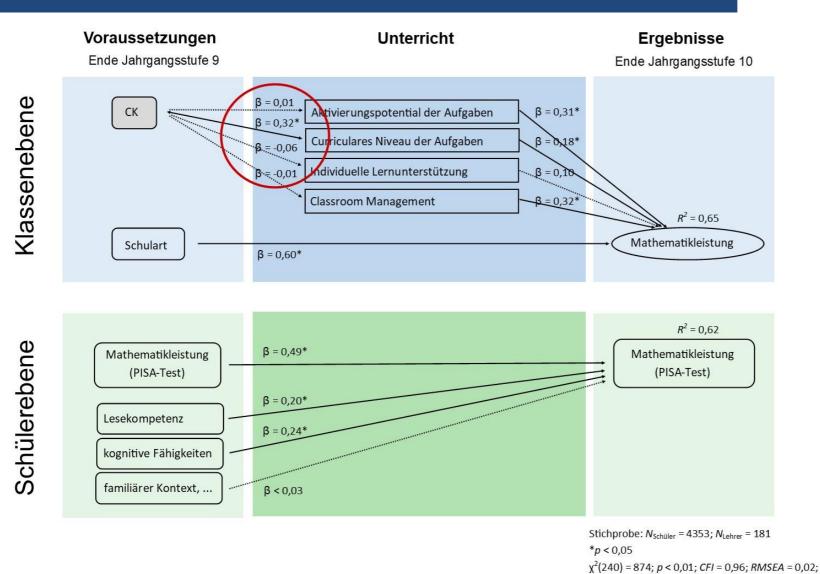
Videostudien: Ergebnisse


ProwiN: Zusammenhang zwischen PCK der Lehrkraft, kognitiver Aktivierung im Unterricht und Leistung der Schülerinnen und Schüler

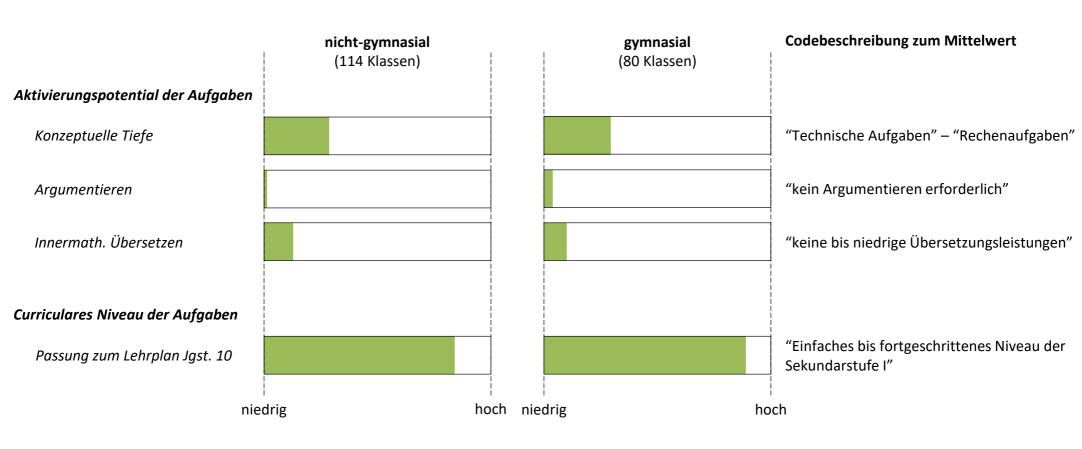

Um Unterricht kognitiv aktivierend zu gestalten, wird v. a. fachdidaktisches Wissen benötigt, das sich bis auf die Leistung von Schülerinnen und Schülern positiv auswirkt (mediiert um die kognitive Aktivierung im Unterricht).

Empirische Studie aus der Mathematik


COACTIV-Studie


COACTIV-Studie

COACTIV-Studie


COACTIV-Studie

SRMR(within) = 0,09; SRMR(between) = 0,02

COACTIV-Studie

Aufgabenpotential zur kognitiven Aktivierung

194 Klassen, 181 Lehrkräfte, ca. 53 Aufgaben pro Lehrkraft

Zusammenfassung der empirischen Ergebnisse

- Der Anteil der Aufgaben im Biologie- und Mathematikunterricht mit niedrigem kognitiven Niveau ist teilweise noch sehr hoch.
- In Klassen, in denen im Unterricht viel auf kognitive Aktivierung geachtet wird, schneiden die Schülerinnen und Schüler in Leistungstests besser ab.
- In Klassen, in denen im Unterricht viel auf kognitive Aktivierung geachtet wird, haben die Schülerinnen und Schüler ein höheres Interesse.
- Um Unterricht kognitiv aktivierend zu gestalten, wird v. a. fachdidaktisches Wissen benötigt, dass sich bis auf die Schülerleistung positiv auswirkt (mediiert durch die kognitive Aktivierung im Unterricht).

Quellen und Literaturverzeichnis

Literatur

- Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., . . . Tsai, Y.-M. (2010). Teachers' Mathematical Knowledge, Cognitive Activation in the Classroom, and Student Progress. *American Educational Research Journal*, 47(1), 133–180.
- Ergönenc, J., Neumann, K., & Fischer, H.E. (2014). The impact of pedagogical content knowledge on cognitive activation and students learning. In H.E. Fischer, P. Labudde, K. Neumann, & J. Viiri (Hrsg.), *Quality of instruction in physics* (S. 145–160). Münster: Waxmann.
- Förtsch, C., Werner, S., Dorfner, T., von Kotzebue, L., & Neuhaus, B.J. (2017). Effects of cognitive activation in biology lessons on students' situational interest and achievement. *Research in Science Education*, *47*(3), 559–578.
- Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B. (2016). Effects of biology teachers' professional knowledge and cognitive activation on students' achievement. *International Journal of Science Education*, 38(17), 2642–2666.
- Förtsch, C., Werner, S., von Kotzebue, L., & Neuhaus, B.J. (2018). Effects of high-complexity and high-cognitive-level instructional tasks in biology lessons on students' factual and conceptual knowledge. *Research in Science & Technological Education*, 36(3), 353–374.
- Hiebert, J., Gallimore, R., Garnier, H., Bogard Givvin, K., Hollingsworth, H., Miu-Ying Chui, A., . . . Stigler, J. (2003). *Teaching Mathematics in Seven Countries: Results From the TIMSS 1999 Video Study*.
- Jatzwauk, P., Rumann, S., & Sandmann, A. (2008). Der Einfluss des Aufgabeneinsatzes im Biologieunterricht auf die Lernleistung der Schüler Ergebnisse einer Videostudie. Zeitschrift für Didaktik der Naturwissenschaften, 14, 263–283.
- Jordan, A., Ross, N., Krauss, S., Baumert, J., Blum, W., Neubrand, M., Löwen, K., Brunner, M. & Kunter, M. (2006). Klassifikationsschema für Mathematikaufgaben. Materialien aus der Bildungsforschung. Berlin: Max-Planck-Institut.
- Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Hrsg.) (2013). *Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project*. New York: Springer.
- Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students' understanding of the Pythagorean Theorem. Learning and Instruction, 19(6), 527–537.
- National Center for Education Statistics (2006). Teaching Science in Five Countries: Results From the TIMSS 1999 Video Study. http://timssvideo.com/sites/default/files/TIMSS%201999%20Science%20Report.pdf. Zugegriffen: 19. Mai 2015.
- Seidel, T., Rimmele, R., & Prenzel, M. (2003). Gelegenheitsstrukturen beim Klassengespräch und ihre Bedeutung für die Lernmotivation. Unterrichtswissenschaft, 31(2), 142–165.

Quellen und Literaturverzeichnis

Literatur

- Stigler, J.W., & Hiebert, J. (1997). Understanding and improving classroom mathematics instruction: An overview of the TIMSS Video Study. Phi-Delta-Kappan, 79(1), 14–21.
- Vogelsang, C., & Reinhold, P. (2013). Gemessene Kompetenz und Unterrichtsqualität: Überprüfung der Validität eine Kompetenztests mit Hilfe der Unterrichtsvideografie. In U. Riegel & K. Macha (Hrsg.), Videobasierte Kompetenzforschung in den Fachdidaktiken (S. 319–334). Münster: Waxmann.
- von Kotzebue, L., Förtsch, C., Reinold, P., Werner, S., Sczudlek, M., & Neuhaus, B.J. (2015). Quantitative Videostudien zum gymnasialen Biologieunterricht in Deutschland Aktuelle Tendenzen und Entwicklungen. *Zeitschrift für Didaktik der Naturwissenschaften*, *21*(1), 231–237.
- Wadouh, J., Liu, N., Sandmann, A., & Neuhaus, B.J. (2014). The effect of knowledge linking levels in biology lessons upon students' knowledge structure. *International Journal of Science and Mathematics Education*, 12(1), 25–47.
- Wüsten, S., Schmelzing, S., Sandmann, A., & Neuhaus, B.J. (2010). Fachspezifische Qualitätsmerkmale von Biologieunterricht. In U. Harms & I. Mackensen-Friedrichs (Hrsg.), *Lehr- und Lernforschung in der Biologiedidaktik*: *Band 4* (S. 119–134). Innsbruck, München [u.a.]: Studienverl.

Quellen und Literaturverzeichniss

Bilder

- <u>Titelbild</u>: Bild von Gerd Altmann auf Pixabay: https://pixabay.com/images/id-5464441/
- Folie 4: Bild von Gerd Altmann auf Pixabay: https://pixabay.com/images/id-596009/
- Folie 5:
 - Bild von Mohamed Hassan auf Pixabay: https://pixabay.com/images/id-4258658/
 - Bild von Gerd Altmann auf Pixabay: https://pixabay.com/images/id-596009/
- Folie 11: Bild von Gerd Altmann auf Pixabay: https://pixabay.com/images/id-2300141/

Alle Bilder lizensiert unter CC-BY-SA 4.0

DigitUS-Projekt

Lizenzhinweis

Dieser Foliensatz "Bedeutung der kognitiven Aktivierung im Fachunterricht – Ergebnisse empirischer Studien" wurde im Rahmen des Projekts <u>DigitUS</u> von <u>Christian Förtsch</u>, <u>Stefan Ufer</u>, <u>Timo Kosiol</u>, <u>Dagmar Traub</u>, <u>Matthias Mohr</u>, <u>Monika Aufleger</u>, <u>Annemarie Rutkowski</u>, <u>Birgit Neuhaus</u>, <u>Christian Lindermayer</u> und <u>Michael Spangler</u> erstellt und ist als <u>CC-BY-SA4.0</u> lizensiert.

Einen Überblick über alle Materialien im DigitUS-Projekt findet sich im Einführungskapitel.

Eine ausführliche Darstellung der Inhalte der Präsentation findet sich in der <u>Handreichung für</u> <u>Mathematik-Lehrkräfte</u>.

Erstellt von Didaktik der Biologie, LMU München, im Projekt DigitUS. Die Logos von DigitUS und seiner Projektpartner sind urheberrechtlich geschützt.

DigitUS (Digitalisierung von Unterricht in der Schule) wird aus Mitteln des Bundesministerium für Bildung und Forschung gefördert (FKZ: 01JD1830A).

