Review Article

Carcinoma In Situ of Penis. G. S. Gerber

Original Articles

Effect of High Dose Vitamin C on Urinary Oxalate Levels. T. R. Wandzilak, S. D. D'Andre, P. A. Davis and H. E. Williams

Ureteroscopic Fragmentation Followed by Extracorporeal Shock Wave Lithotripsy: Treatment Alternative for Selected Large or Staghorn Calculi. S. P. Dretler

Endoscopic Infundibulotomy in Tuberculous Renal Infundibular Sticture. T.-K. Huang and Y.-H. Park

Transplant Nephrectomy Over 20 Years: Factors Involved in Associated Morbidity and Mortality. D. C. O'Sullivan, D. M. Murphy, P. McLean and M. G. Donovan

Symptomatic Cholelithiasis Following Continent Urinary Diversion Using Ileocolonic Bowel Segments. A. J. Kirsch and T. W. Hensele

Analysis of Factors Contributing to Success or Failure of 1-Stage Urethroplasty for Urethral Stricture Disease. C. G. Roehrborn and J. D. McConnell

Urethral Meatal Warts in Men: Results of Urethroscopy and Biopsy. I. Rothman, R. E. Berger, N. Kiviat, A. L. Navarro and M. L. Remington

Oral Terbutaline for Treatment of Priapism. F. E. Gouvier, E. Jonsson and D. Kramer-Levien

Editorial: Erectile Dysfunction Associated With Cavernous and Neurological Disorders. T. F. Lue

Post-Vasectomy Length of Testicular Vasal Remnant: Predictor of Surgical Outcome in Microscopic Vasectomy Reversal. M. A. Witt, S. Heron and L. I. Lipshultz

Polidocanol Sclerotherapy for Hydroceles and Epididymal Cysts. T. Sigurdsson, J. E. Johansson, S. Johnson, F. Helgesen and S. O. Andersson

Laparoscopic Pelvic Lymphadenectomy and Radical Perineal Prostatectomy: Viable Alternative to Radical Retropubic Prostatectomy. D. A. Levy and M. I. Resnick

Collagen Cross-Link Metabolites in Urine as Markers of Bone Metastases in Prostatic Carcinoma. K. K. Miyamoto, S. A. McSherry, S. P. Robins, J. M. Besterman and J. L. Mohler

Myocutaneous Flaps in Genitourinary Oncology. P. Russo, E. F. Saldana, S. Yu, T. Chaglassian and D. A. Hidalgo

Long-Term Results and Late Recurrence After Endoureteropyelotomy: Critical Analysis of Prognostic Factors. P. J. Van Cangh, J. F. Wilmart, R. J. Opsomer, A. Abi-Aad, F. X. Wese and F. Lorge

Editorial: Laparoscopy. H. Y. Wong and D. P. Griffith

Contents continued on page A10
Urologists At Work

Techniques to Negotiate Tortuous Ureter. D. M. Schwalb and M. Eshghi .. 939
Urethrovesical Anastomosis: Urethral Suturing Under Direct Vision. R. O. Fourcade .. 943

Urological Neurology and Urodynamics

Use of Intravesical Oxybutynin Chloride in Patients With Detrusor Hypertonicity and Detrusor Hyperreflexia. N. G. Kasabian, J. D. Vlachiotis, A. Lois, B. Klumpp, M. D. Kelly, M. B. Siroky and S. B. Bauer .. 944
Editorial: Bladder Compliance. E. J. McGuire .. 965

Case Reports

Transcatheter Embolization of Large Idiopathic Renal Arteriovenous Fistula. W. S. Kearse, Jr., A. E. Joseph and E. S. Sabanegh, Jr .. 967
Intraperitoneal Drainage of Recurrent Lymphoceles Using Internalized Tenckhoff Catheter. B. A. Lucas, I. S. Gill and L. C. Munch .. 970
Acute Renal Failure Secondary to Ciprofloxacin Use. J. P. Connor, J. M. Curry, T. L. Selby and A. D. Perlmutter .. 975
Spontaneous Perinephric Hemorrhage in Middle-Aged Diabetic Woman. E. Zucker, I. Masevitch, D. Eisenberg, R. Manasse and D. Yeshurun .. 977
Massive Intraperitoneal Hemorrhage Associated With Renal Pathology. V. Srinivasan, A. G. Turner and H. N. Blackford .. 980
Renal Malacoplakia With Secondary Hepato-Duodenal Involvement. C.-S. Chen, M.-K. Lai, S. Hsu, T.-L. Hsu, C.-K. Chuang .. 982
Giant Renomedullary Interstitial Cell Tumor. K. T. Mai .. 986
Transitional Cell Carcinoma in Tuberculous Kidney: Case Report and Review of Literature. D. Feeney, E. T. Quesada, D. M. Sirbasku and D. Kadmon .. 989
Spleenic Rupture During Occlusion of Porta Hepatis in Resection of Tumors With Vena Cava Extension. J. Baniel, R. Bihrle, G. R. Wahle and R. S. Foster .. 992
Knotted Upper End: New Complication in Use of Indwelling Ureteral Stent. P. Kundargi, M. Bansal and P. K. Pattnaik .. 995
Retrograde Ureteral Intussusception. J. Park, C. Siegel, M. Moll and J. Konnak .. 997
Ileal Ureter: Another Option for Treatment of Localized Amyloidosis of Upper Urinary Tract. Y. Tsuji, S. Michinaga and A. Arigoshi .. 999
Laparoscopic Repair of Intraperitoneal Bladder Perforation. R. O. Parra .. 1003
Laparoscopic Removal of Urachal Cyst. J. L. Jorion .. 1006
Pseudosarcomatous Myofibroblastic Proliferation of Bladder: Report of 2 Cases and Literature Review. J. C. Angulo, J. I. Lopez and N. Flores .. 1008
Hemorrhagic Cystitis Due to Adenovirus Infection Following Bone Marrow Transplantation. T. A. Londergan and M. P. Walzak .. 1013
Management of Extensive Urethral Hemangiomas With Endoscopic Sclerotherapy. N. K. Bissada, D. N. Frangos and C. Ferentzi .. 1015
Retrograde Ejaculation Due to Heterotropic Erectile Tissue. J. R. Fishman, A. Fishman and H. Tesluk .. 1017
Intraoperative Arteriography Facilitates Penile Revascularization. R. L. Bare, A. DeFranco and J. P. Jarow .. 1019
Familial Occurrence of Testicular Cancer. M. A. Cooper, J. Fellows and L. H. Einhorn .. 1022
Response of Metastasized Sex Cord Gonadal Stromal Tumor of Testis to Cisplatin-Based Chemotherapy. K.-P. Dieckmann and V. Loy .. 1024
Leiomyoma of Seminal Vesicle. A. T. Gentile, H. S. Moseley, S. F. Quinn, D. Franzini and T. M. Pitre .. 1027

Letters to the Editor

Contents continued on page A12

Erratum
Urinary Tract Infection ... 1032

PEDIATRIC UROLOGY

Prenatal and Postnatal Findings in Monochorionic, Monoamniotic Twins Discordant for Bilateral Renal Agenesis-Dysgenesis (Perinatal Lethal Renal Disease). B. G. Citlento, Jr., B. R. Benacerraf and J. Mandell ... 1034
Use of Urea for Dissolution of Urinary Mucus in Urinary Tract Reconstruction. W. Bushman and S. S. Howards ... 1036
Urodynamic Evaluation of Children With Caudal Regression Syndrome (Caudal Dysplasia Sequence). T. M. Boemers, J. D. van Gool, T. P. V. M. de Jong and K. M. A. Bax ... 1038
Cutaneous Vesicostomy With Direct Intravesical Application of Formalin: Management of Severe Vesical Hemorrhage Resulting From High Dose Cyclophosphamide in Boys. J. F. Redman and M. Kletzel ... 1048
Catheter Guide to Obviate Difficult Urethral Catherization in Male Infants and Boys. J. F. Redman ... 1051
Long-Term Followup of Bladder Mucosa Graft for Male Urethral Reconstruction. T. M. Kinkhead, P. A. Borzi, P. G. Duffy and P. Ransley ... 1056
Congenital Fistula of Penile Urethra. M. L. Ritchey, A. Sinha and L. Argueso ... 1061

INVESTIGATIVE UROLOGY

Somatic Allelic Loss at DCC, APC, nm23-H1 and p53 Tumor Suppressor Gene Loci in Human Prostatic Carcinoma. S. F. Brewster, S. Browne and K. W. Brown ... 1073
Comparative Studies on Ontogeny and Autonomic Responses of Fetal Calf Bladder at Different Stages of Development: Involvement of Nitric Oxide on Field Stimulated Relaxation. J. G. Lee, D. Coplen, E. Macarak, A. J. Wein and R. M. Levin ... 1096
Identification and Characterization of High-Affinity Peripheral-Type Benzodiazepine Receptor in Rabbit Urinary Bladder. R. J. Smyth, E. J. Uhlman and M. R. Ruggieri ... 1102
Effects of Nicorandil on Human Isolated Corpus Cavernosum and Cavernous Artery. P. Hedlund, F. Holmqvist, H. Hedlund and K.-E. Andersson ... 1107
Suggestions for Consultants ... 1114
UROLOGICAL SURVEY

Benign and Malignant Neoplasms of Prostate. P. C. Walsh .. 1116
Imaging. S. M. Goldman ... 1126
Pediatric Urology. J. S. Elder .. 1129
Perioperative Care. C. B. Brendler .. 1139
Urinary Tract Infection. A. J. Schaeffer .. 1148
Book Reviews ... 1151

Information for Authors ... 1153

PROPRIETARY NAMES

Many of the words appearing in the JOURNAL OF UROLOGY are proprietary names even though no reference to this fact is made in the text. The appearance of any name without designation as proprietary is, therefore, not to be regarded as a representation by the editorial board or publisher that it is not the subject of proprietary rights.

GUIDELINES FOR SUPPLEMENTS

The Editors of the Journal will consider requests for and solicit sponsors of Supplements to The Journal of Urology. For those interested the following are the proposed steps for publication of a Supplement.

1) Proposal formulated by sponsors of the Supplement or solicited by the Journal Editorial Staff that would include an indication of the major topics with a limited outline of subtopics, the nature of the articles to be included (review, original papers with or without discussion), identification of a sponsoring group or individual, identification of the type of internal quality control group available for the Journal Editors to work with and an indication of the financial support available.
2) Response by the Editorial Staff with identification of a specific individual to work with the Editorial Committee of the sponsors.
3) Agree to a deadline for submission of the papers, number of papers and so forth.
4) Formulation of and agreement on procedure for initial screening and editorial evaluation of manuscripts and discussions with active participation by the sponsoring group.
5) Submission to the Editorial Staff of the Journal for their evaluation.
6) Interaction between Journal and sponsoring editorial group. Final decision is retained by Journal Editorial Staff.
7) Redaction, page proofing and so forth by Editorial Staff. Articles in supplements would be indexed in the Journal.
8) Publication.

DISCLAIMER

The statements and opinions contained in the articles of JOURNAL OF UROLOGY are solely those of the individual authors and contributors and not of the American Urological Association, Inc. or Williams & Wilkins. The appearance of the advertisements in the Journal is not a warranty, endorsement or approval of the products or services advertised or of their effectiveness, quality or safety. The American Urological Association, Inc., and the Publisher disclaim responsibility for any injury to persons or property resulting from any ideas or products referred to in the articles or advertisements.
PROGNOSTIC FACTORS FOR THE POSTOPERATIVE OUTCOME OF PENILE VENOUS SURGERY FOR VENOGENIC ERECTILE DYSFUNCTION

CHRISTIAN G. STIEF, MOHAMMAD DJAMILIAN, MICHAEL C. TRUSS, HONKI TAN, WALTER F. THON AND UDO JONAS

From the Department of Urology, Medical School Hannover, Hannover, Germany

ABSTRACT

Since penile venous surgery is usually associated with a poor postoperative outcome, a study was done to evaluate possible prognostic factors for this procedure. A total of 77 patients with erectile dysfunction underwent ligation of all dorsal penile veins and resection of the deep dorsal penile vein for venous incompetence. In all patients a comprehensive evaluation was done preoperatively. All patients did not respond to pharmacotherapy and had a venous leak. After a followup of 6 months, patients were classified as having full spontaneous erections, failure and response to pharmacotherapy. Of the 77 patients 31 (40.3%) had full spontaneous erections, 8 (10.3%) were currently responding to pharmacotherapy and 38 (49.4%) failed. The maintenance flow was 75 ± 45 ml. per minute in the group with spontaneous erections and 103 ± 60 ml. per minute in the failure group (p = 0.20). Mean patient age was 49.8 ± 11.7 and 49.1 ± 10.2 years, respectively (p = 0.23). Of the 41 patients with normal single potential analysis of cavernous electrical activity 28 had full erections postoperatively, 5 responded to pharmacotherapy and 8 failed, compared to 3, 3 and 30, respectively, of the 36 patients with abnormal single potential analysis of cavernous electrical activity. After a mean followup of 21 months (range 6 to 47 months), 4 patients with full erections at 6 months postoperatively currently require intracavernous pharmacotherapy. Our results indicate that single potential analysis of cavernous electrical activity seems to be an important prognostic factor for the postoperative outcome of penile venous surgery for venogenic impotence.

Key Words: impotence, penile erection, veins

Although intracavernous injection therapy1-4 and penile prostheses5 offer reliable therapeutic options for most patients with erectile dysfunction, these alternatives are often rejected for various reasons. This rejection is reflected by dropout rates of 50% or more in some longitudinal studies following patients on auto-injection therapy or by low overall acceptance rates of penile prosthesis implantation. Many of these patients indicate that they would like a therapy that restores spontaneous erectile function. For these patients penile reconstruction seems to be an attractive option.

After years of great enthusiasm about cavernous arterialization,6,7 mid-term and long-term success rates are disappointing. In addition, significant complications of these procedures have been reported.8-10 Penile venous operations are also followed by poor long-term results,11-13 even when a more aggressive surgical approach is chosen.14-16 These observations led to the question of whether penile venous surgery for venogenic impotence is a basically useless procedure or if adequate patient selection has not yet been established. We evaluate the postoperative outcome of 77 consecutive patients with venous leakage who underwent penile venous surgery, thus possibly identifying prognostic factors for the outcome of this procedure.

PATIENTS AND METHODS

All patients at our impotence clinic undergo a comprehensive approach17 regarding the etiology of the erectile dysfunction, including a case history, physical examination, blood laboratory studies, sexual case history (performed by a psychiatrist), single potential analysis of cavernous electrical activity (SPACE),18 pharmacological testing17 and Doppler ultrasound.19 When indicated,17 patients undergo further examinations, such as cavernosometry and cavernosography,20 penile angiography or somato-motor and/or autonomic neurological examinations.

If patients do not respond to maximal doses of intracavernous injections (30 mg. papaverine plus 1 mg. phentolamine) plus additional psychogenic or reflexogenic stimulation, they are informed about the high likelihood of venous leakage as a (co)factor for the erectile dysfunction. They are also informed about the implication of this finding with either the alternative of further diagnostics, for example cavernosometry and cavernography, or other therapeutic strategies, such as vacuum devices, a penile prosthesis or a trial with intracavernous injection of a combination of calcitonin gene-related peptide plus prostaglandin E1.21 In patients who choose further diagnostic procedures, cavernosometry and cavernosography are done as described previously.20 The maintenance flow is measured after cavernous smooth muscle relaxation is induced by intracavernous injection of 30 mg. papaverine plus 1 mg. phentolamine, with a flow rate exceeding 14 ml. per minute being considered abnormal.22,23 If a venous leakage is diagnosed the patients are offered, independently from possibly existing other etiological factors, dorsal penile vein resection or ligation. They are extensively informed about the poor outcome of this procedure and about possible therapeutic alternatives.

From June 1989 to November 1992, 77 patients with erectile dysfunction and documented venous leakage underwent penile venous surgery. Independently from the site of leakage visualized by cavernosography, a longitudinal incision approximately 4 cm. long is made at the base of the penis. Then, all superficial dorsal and lateral penile veins (within Colles' fascia) are doubly ligated and divided. The deep dorsal vein(s) within Buck's fascia is resected from the suspensory ligament to the distal third of the cavernous bodies. Special attention is paid to avoid damage to the dorsal nerves and arteries supplying the glans penis. Cavernous vein ligation is not done.
pharmacological testing as well as cavernosometry and caver-

nous surgery. Patients and their partners were asked in detail
about preoperative and postoperative self-esteem and libido,
sexual function, partner relationships (general and sexual),
alternative or additional treatments of the (possibly) persistent
erectile dysfunction, and possible side effects they relate spe-
cifically to the operation. In case of an incomplete response to
the questionnaire or if no response was received within 3 weeks,
another questionnaire with an individualized cover letter was
sent. Again, if no reply was received, the patients were tele-
phoned and either asked to complete the questionnaire or
invited on an outpatient basis to reply to the questions person­
ally.

RESULTS
A total of 77 patients with venogenic erectile dysfunction
underwent penile venous surgery between June 1989 and No-
vember 1992. All 77 patients were available at 6 months post-
operatively and 70 were available for review in May 1993.
Followup was 6 to 47 months (mean 21.4 ± 15, median 18.5).
Patient age was 24 to 72 years (mean 50.1 ± 13.0 years). Mean
interval since the onset of erectile dysfunction was 4.9 years.
Case histories are shown in the table.

There was 1 severe postoperative complication. One patient
treated as an outpatient suffered an extensive penile hematoma
with subsequent skin necrosis that required multiple plastic
revisions and caused significant paresthesia of the glans penis.
In 20 patients minor side effects were reported: 7 had mild
paresthesia of the penile glans, 6 had minor paresthesia at the
incision, 14 had persistent edema of the prepuce and 5 had a
penile deviation.

At 6 months postoperatively 31 patients (40.3%) reported
full erections with normal intercourse possible, 8 (10.3%) re-
sponded to intracavernous papaverine plus phentolamine and
38 (49.4%) failed to achieve full spontaneous or pharmacologi-
cally-induced erections. During the extended followup until
May 1993, 4 patients with full spontaneous erections at 6
months required intracavernous pharmacotherapy to achieve
full erections. These 4 patients reported loss of spontaneous
erections after 6 (2), 9 (1) and 24 (1) months postoperatively.
For comparability of the data, the results were analyzed with
the outcome at 6 months postoperatively. Mean patient age
was 49.8 ± 11.7 years (range 24 to 72 years) for those with full
erections, 49.1 ± 10.2 years (range 27 to 66 years) in the failure
group (p = 0.23) and 56.0 ± 3.9 years (range 33 to 67 years) in
the pharmacotherapy group. Mean interval since the onset of
erectile dysfunction was 4.6, 4.7 and 5.2 years, respectively.
Regarding the medical histories, there was no correlation with
the postoperative outcome in patients with transurethral resec-
tion of the prostate or diabetes mellitus. Patients after radical
pelvic surgery or intervertebral disk prolapse, or those with
primary erectile dysfunction had a high likelihood of postopera-
tive failure (see table).

The maintenance flow was 75 ± 45 ml. per minute in the
group with spontaneous erections, 103 ± 60 ml. per minute in
the failure group (p = 0.20) and 61.9 ± 46 ml. per minute in
the pharmacotherapy group (p = 0.08, compared to the success
group). Of the 41 patients with normal preoperative SPACE
results 28 (68.3%) had full erections postoperatively, 8 (19.5%)
failed and 5 (12.2%) responded to pharmacotherapy, compared
to 3 (8.3%), 3 (8.3%) and 30 (83.4%), respectively, of the 36
patients with abnormal preoperative SPACE. When the pre-
operative SPACE findings are compared in the groups with
postoperative full erections or failure, the difference is highly
statistically significant (chi-square test, p <0.001). In May
1993, 42 patients had failed and 21 of these are currently using
other treatment options: 13 are on an auto-injection program
using a combination of calcitonin gene-related peptide plus
prostaglandin E1, 5 received a penile prosthesis and 3 use
vacuum devices.

In May 1993, 17 of 70 patients reported an increase in libido,
12 a decrease and 41 no change compared to the preoperative
status. Nocturnal or morning erections were improved in 12
patients, worse in 12 and unchanged in 35. A total of 43 patients
would undergo this procedure a second time, 25 would not and
2 were undecided. Of the men treated as outpatients 2 suggested
that this procedure should be performed only on an inpatient
basis due to postoperative pain that was not adequately man­
daged by the referring physician. Of 5 patients who reported
erections sufficient for intercourse but a lack of “100% rigidity,”
the female partners considered the postoperative erection to be
“100%.”

DISCUSSION
At our department venogenic erectile dysfunction is defined as
abnormal cavernous drainage, quantified by a maintenance
flow in cavernosometry exceeding 14 ml. per minute.22–24 The
decrease in intracavernous pressure during a defined interval
may also be considered as a parameter of cavernous veno-
clusive dysfunction25 but these 2 tests seem to examine the
same mechanisms of cavernous occlusion with, as shown by
others, consequently similar results in a comparative study.26
These quantitative tests of the cavernous occlusive function
rely heavily on adequate cavernous smooth muscle relaxa-
y by intracavernous pharmacological application of drugs.28,29 An
increased sympathetic tone, for example by stress or anxiety,
will cause cavernous smooth muscle contraction with subse-
quent false-positive cavernosometric results. To minimize this
effect, we performed cavernosometry and cavernosography at
the end of our evaluation, with the patient having received at
least 3 intracavernous injections on different days and, thus,
being familiar with diagnostic procedures in this intimate re-
region of the body. Furthermore, the patient is followed through­
out the study by the same urologist to obtain his confidence,
and cavernosometry and cavernosography are done in an at­
mosphere as relaxed as possible.

There have been attempts at objective followup after penile
reconstruction9,10 but in our series only a poor or even no
correlation was found between objective data and subjective
reports. Since no diagnostic test exists that can discriminate
with a high degree of accuracy between normal and abnormal
erectile function, it currently is generally accepted that post-
operative results of penile reconstruction are best monitored
by the patient estimate of the functional result.27 To substanci-
tuate further the patient personal estimate in this study, we
asked the partner for an evaluation of the preoperative and
postoperative erectile function.

The underlying etiology of abnormal cavernous veno-occlu-
sive function may be manifold, with factors such as incomplete

<table>
<thead>
<tr>
<th>Case History</th>
<th>No. Pts.</th>
<th>Postop. Results</th>
<th>Full Erections</th>
<th>Failures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diabetes mellitus</td>
<td>8</td>
<td></td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Primary erectile dysfunction</td>
<td>6</td>
<td></td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Peyronie’s disease</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Post-transurethral resection of the prostate</td>
<td>4</td>
<td></td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Intervertebral nucleus prolapse</td>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Kidney transplantation</td>
<td>3</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Radical pelvic surgery</td>
<td>3</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pelvic ring rupture</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Polynephropathy</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Open prostatectomy</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
cavernous smooth muscle relaxation due to endothelial or neurotransmitter defects, localized noncompression of sub-tunical or intra-tunical veins, cavernous smooth muscle degeneration. Since cavernous smooth muscle relaxation was induced in our series, as at most other institutions, by pharmacological agents (papaverine) not dependent on endothelial or neurotransmitter function, patients with venous leakage at cavernosometry and cavernosography are likely to have abnormal cavernous drainage due to either cavernous smooth muscle degeneration, or sub-tunical or intra-tunical venous malcompression.

From a theoretical standpoint, patients with venogenic erectile dysfunction due to cavernous smooth muscle degeneration will not benefit from penile venous surgery, since in that case this procedure does not address the causative mechanism. Penile prosthesis implantation or the use of a vacuum device seems to be the only treatment option left for these patients. However, for patients with a functioning cavernous smooth muscle but a localized defect in the sub-tunical or intra-tunical venous compression system (and no additional etiologies of the erectile dysfunction), penile venous surgery may be beneficial. In our opinion, these different underlying etiologies of venogenic erectile dysfunction with entirely different causative mechanisms explain the low overall success rate of penile venous surgery for venogenic erectile dysfunction.

Independently from the surgical approach, the mid-term and long-term success rates of penile venous surgery vary between 10% and 50%. Our results, with approximately 40% full spontaneous erections after 6 months and 35% after 21 months, fit in the frame of the aforementioned experiences. In our opinion these postoperative results are in that low range of success, since the classical diagnostic evaluation of erectile dysfunction, with pharmacological testing, Doppler or duplex ultrasonography, and cavernosography, did not allow for differentiation between the aforementioned 2 main etiologies of venous erectile dysfunction. This is also reflected by the results of our preoperative evaluation, which did not show any correlation of the postoperative results with patient age, duration since onset of erectile dysfunction or maintenance flow. Also, no correlation was found in patients with diabetes mellitus or erectile dysfunction after transurethral resection of the prostate. The only strong correlation in our series was found comparing the preoperative SPACE results (or corpus cavernosum electromyography, as it should now be referred to since the first international meeting on cavernous smooth muscle electromyography in April 1993 at Mannheim, Germany) and the postoperative outcome. Of the 36 patients with normal SPACE results 28 (78.3%) had full erections postoperatively, whereas 30 of 36 (83.4%) with abnormal SPACE findings failed. These data suggest that SPACE has an important role as a prognostic factor for patients with venogenic erectile dysfunction. Impotent patients with normal preoperative SPACE findings combined with venogenic erectile dysfunction are now encouraged at our institution to undergo penile venous surgery, since the likelihood of an improvement in erectile function is 70% or better. In contrast, patients with venogenic erectile dysfunction and abnormal preoperative SPACE findings are informed about the low success rate of penile venous surgery and are encouraged to choose another treatment option.

Since the introduction of corpus cavernosum electromyography much criticism was raised doubting that the signals recorded were actually electrical activity of cavernous smooth muscle cells or of different origin. In the meantime, experimental studies on isolated cavernous smooth muscle cells as well as extrinsic recordings of electric activity of cavernous smooth muscle strips showed a correlation of mechanical and electrical activity of these smooth muscle cells. Furthermore, corpus cavernosum electromyography in animal experiments showed marked differences before and after cavernous denervation. Although these studies demonstrated the sound scientific bases of corpus cavernosum electromyography, its interpretation and, subsequently, its clinical usefulness are still under debate. In our study corpus cavernosum electromyography/SPACE was the only predictive diagnostic parameter for penile venous surgery in patients with venogenic erectile dysfunction. For this clinical application corpus cavernosum electromyography/SPACE, a differentiation only between normal and abnormal potentials was attempted. Further differentiation, such as myogenic or neurogenic, was avoided since no consensus has yet been reached on this point. However, this discrimination is only of academic interest for the patients with venogenic erectile dysfunction, since the myogenic and neurogenic groups would not benefit from surgery. In contrast, patients with venogenic erectile dysfunction and normal corpus cavernosum electromyography/SPACE findings should have a normal cavernous innervation and a normal smooth musculature with a localized veno-occlusive dysfunction. Theoretically, these patients are likely to benefit from penile venous surgery. The results of our clinical study support these theoretical assumptions and showed that corpus cavernosum electromyography/SPACE has a predictive value for the postoperative outcome of penile venous surgery in patients with venogenic erectile dysfunction. However, further studies are needed to improve the interpretation of corpus cavernosum electromyography and to confirm our surgical findings.

REFERENCES

