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ABSTRACT 
 

While analysts, customers, and lenders rely on financial disclosures to make decisions regarding a 

company, executives often manage the disclosed earnings. Detecting such practices is thus a concern 

for company stakeholders and regulators. Qualitative disclosures are an additional source of 

information about a company's financial situation, but executives likely attempt to hide their earnings 

management activity in these disclosures, as well. We use supervised machine learning models to 

predict earnings management by property and casualty insurers from the Management’s Discussion 

and Analysis filings. For this, we utilize a new algorithm that interprets textual data conditional on the 

reported financial situation of the company. We show that the qualitative disclosures can predict 

earnings management, revealing that executives are unable to remove all subliminal messages from 

them. The results demonstrate that qualitative disclosures can be useful for learning about the 

accounting choices of companies. 
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Predicting Earnings Management from Qualitative Disclosures

1 Introduction

Earnings are a major explanatory factor for returns to equity, and they are considered an impor-

tant item of a financial statement by analysts, investors, and boards of directors alike (Bhojraj

et al., 2009; Degeorge et al., 1999; Hazarika et al., 2012; Kothari and Sloan, 1992; Leuz et al.,

2003). Executives thus have a strong incentive to manage the firm’s earnings. On the one hand,

they might act out of self-interest because employee bonuses, employment decisions, or concerns

about their external reputation are often tied to earnings. On the other hand, they might act on

the stakeholders’ behalf, since they expect a higher stock price from smoothed earnings (Graham

et al., 2005). Executives can manage earnings by making choices about the real economic activ-

ity of a firm and by using the flexibility allowed by standard accounting principles – a practice

that is often referred to as accrual-based earnings management (Roychowdhury, 2006; Dechow

et al., 2010; Fields et al., 2001). Both forms of earnings management compromise the informa-

tion value of financial reports. This is problematic for stakeholders who base their decisions on

these statements. Detecting earnings management is thus an important question in accounting

research (Bhojraj et al., 2009; Dechow and Skinner, 2000; Efendi et al., 2007).

In this study, we use companies’ qualitative disclosures to provide a new approach to pre-

dicting earnings management. In general, qualitative disclosures contain a wealth of information

(Armstrong et al., 2010; Guay et al., 2016; Lang and Stice-Lawrence, 2015) and provide exec-

utives with more opportunities to exercise discretion than quantitative disclosures (Brown and

Tucker, 2011; Bozanic et al., 2018). It is thus possible that such disclosures contain information

pertaining to the earnings management of the firm. Even though managers may not intend to

disclose any such information, previous research in other contexts has shown that the subtext of

qualitative statements might nevertheless include it (Hoberg and Maksimovic, 2014; Humpherys

et al., 2011). In a first step, we use supervised machine learning techniques to calibrate a text-

based classification model on qualitative disclosures in annual statements. In a second step, we

enrich these models by also using financial disclosures as predictors. We are thus the first to

use a classification protocol that integrates quantitative information with qualitative disclosures

and allows such disclosures to have different meaning depending on the economic context of the

firm. In our analysis, we use detailed financial filings by 722 property and casualty insurance

companies and match them with Management’s Discussion and Analysis (MD&A) filings. The

insurance industry offers a precise and unbiased measure of earnings management, the so-called

reserve error. We transform the sign of this reserve error into a binary classification of over- and

underreserving firms, which we then use as the target variable of our earnings management clas-

sification protocol. We search for the best classification model in a broad set of models proposed

in the literature. Subsequently, we fine-tune the parameters of the most promising candidates.

We also explore different forms of text representation, including an unsupervised topic model. To

ensure validity, we use a cross-validation approach throughout the model selection and evaluate

the final classification model on a hold-out test sample.

Our results confirm that the qualitative disclosures published by a company are indicative

of that company’s earnings management. Prediction quality increases further when financial

indicators are used in addition to the qualitative information. In our empirical setting, we find

that, depending on the final model employed, using the information from the MD&A sections
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and financial indicators helps to predict the sign of the insurers’ reserve error with an accu-

racy of 68 to 70 percent. This prediction is achieved by a Stochastic Gradient Descent model

that uses term frequency–inverse document frequency (TF-IDF) statistics of uni- and bigram

word combinations together with profit, growth, business concentration and financial distress

information on the company. Considering the specific prediction errors, over three out of four

predicted cases of overreserving are actually overstated reserves (precision) and the share of

predicted overstated reserves among all actual overstated reserves is between 76 and 83 percent

(recall).

We contribute to the literature by demonstrating the utility of MD&A sections for learning

about the accounting choices of a company. Managers who aim to manipulate disclosed earnings

to influence share prices or their own reputation should also aim for an MD&A section that is

fully consistent with the firm’s reported earnings. The fact that our model does render predic-

tions based on qualitative information shows that managers are unsuccessful in this attempt.

Our classification model thus presents a tool for practitioners to obtain early information on a

company’s earnings management. The model indicates the potential direction of the earnings

management immediately after the financial disclosure. This is opposed to conventional calcula-

tions of earnings management, which often require a considerable time delay. The reserve error

calculations for insurance companies, for example, have a time lag of five or more years.

We also provide a methodological contribution to the use of machine learning in accounting

research. We test different ways of combining text-based information with quantitative disclo-

sures. This includes a method that embeds the qualitative information in the economic context

of the firm. Here, we allow qualitative disclosures to have different meanings based on the

financial situation of the analyzed company. To achieve this, we condense the financial infor-

mation into a set of binary indicators and interact those with the sparse TF-IDF matrix that

represents the MD&A section. Previous literature which combines qualitative and quantitative

information uses only qualitative information in the machine learning protocol and then uses

the protocol’s prediction in conjunction with the quantitative information. Since the protocol’s

prediction aggregates the information provided by the words used in the qualitative disclosures,

such a procedure can only bestow a fixed meaning on a single word, which is less flexible than

the approach developed here. Our results demonstrate that the integrated analysis of both qual-

itative and quantitative information in a machine learning model leads to better predictions –

both in-sample and out-of-sample – than the previously used approaches.

Prior literature has used different approaches to identify earnings management. While some

studies have exploited specific real activity choices, like asset sales and decreases in research

and development expenditures (Dechow and Sloan, 1991; Bartov, 1993) or overproduction and

sales discounts (Roychowdhury, 2006), the earnings management literature is mainly focused on

accrual-based earnings management (see, e.g., Bergstresser et al., 2006; Cornett et al., 2008).1

These studies can be categorized into three types of approaches (McNichols, 2000): aggregate

accruals, industry-specific accruals, and the distribution of earnings. Aggregate accruals models

attempt to decompose total accruals into their discretionary and non-discretionary components.

1 Dechow and Skinner (2000), Dechow et al. (2010), Healy and Wahlen (1999) and Schipper (1989) provide
comprehensive reviews of the earnings management literature.
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Even though such measures are commonly used to study earnings management, results may

be biased by the potential for a misspecification error in the discretionary accrual proxy (see

McNichols, 2000, for a detailed analysis). This potential bias is not present in certain industry-

specific accruals. For example, insurers’ reserve errors allow for a more precise and largely

unbiased measurement of earnings management (see, e.g., Beaver et al., 2003; Ding et al., 2020;

Eckles et al., 2011; Grace and Leverty, 2012). However, this measure implies a substantial time

lag for any analysis because such discrepancies can only be observed several years after the

initial loss reserve is published. Distributional measures of earnings management do not suffer

from this shortcoming as they investigate anomalies in the distribution of earnings in a specific

year. Yet, these measures can, by definition, only provide an aggregated metric for a group

of companies (Burgstahler and Dichev, 1997; Degeorge et al., 1999). Our prediction approach

combines the measurement specification benefits of industry-specific accruals with the timely

indication of earnings management as it is achieved by distributional earnings and aggregated

accrual measures.

Our paper contributes to a growing literature examining the informative power of qualita-

tive disclosures for accounting research. Gentzkow et al. (2019) and Loughran and McDonald

(2016) provide surveys of historical advances and recent innovations in textual analysis in social

sciences with an emphasis on finance. Early contributions find that executives are willing to

provide more information in qualitative disclosures when their firms are performing well (see,

e.g., Lang and Lundholm, 1993; Schrand and Walther, 2000). Subsequent research assesses

the linguistic characteristics of qualitative information, such as tone (Tetlock, 2007), readability

(Li, 2008), and forward-looking information (Bozanic et al., 2018; Muslu et al., 2014). Another

stream of research explores a different approach by examining the similarity between disclo-

sures. Applications range from creating new industry classifications (Hoberg and Phillips, 2016)

to measuring financial constraints (Hoberg and Maksimovic, 2014). A recent line of research

investigates how unsupervised machine learning topic models can retrieve information from the

qualitative disclosure in 10-K filings (see, e.g., Bao and Datta, 2014; Dyer et al., 2017; Huang

et al., 2018; Lopez-Lira, 2019). However, only a few papers use machine learning classifica-

tion protocols to make predictions based on information from qualitative disclosures. An early

application is presented by Antweiler and Frank (2004), who classify news on internet stock

message boards as bullish, bearish, or neither with an accuracy of 84 percent. They show that

these classifications help in predicting stock market volatility. Li (2010) uses a machine learning

model to classify the forward-looking statements in MD&A sections. His model indicates the

tone and content category of a statement with an accuracy of 63-67 percent. He finds that the

tone of the statements is positively associated with future earnings.

Our study is most closely related to three previous analyses. Frankel et al. (2010) show that

historical MD&A sections can add explanatory power to aggregated accruals models by creating

a new MD&A-based, independent variable with a machine learning model. Contrary to them, we

study the predictive capabilities of MD&A sections across firms rather than across time. We also

combine qualitative and quantitative disclosures within the machine learning model rather than

considering quantitative information only after training the model. Frankel et al. (2010) thus

enrich the aggregated accruals framework, while we develop a new and alternative framework for

studying earnings management. Ding et al. (2020) use supervised machine learning to estimate
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the loss reserve of property and casualty insurers from financial disclosures. They thus also

work outside the aggregated accruals framework, but consider only the loss reserve part of

the earnings management process and ignore the managerial estimate of the reserve. While

their results demonstrate the power of machine learning to improve accounting estimates like

business line specific loss reserves, their study neither considers qualitative disclosures nor studies

earnings management. Thus, while similar in methodology, our study differs from that by Ding

et al. (2020) in purpose. We simply use machine learning tools to test hypotheses derived

from our conceptual model. Lastly, in a study unrelated to earnings management but with a

similar approach as ours, Humpherys et al. (2011) apply supervised machine learning to detect

fraudulent financial statements from qualitative disclosures. Their final classification model,

which has an accuracy of 67 percent, is only based on qualitative information. Similar to our

result, their model shows the managers’ lack of ability to remove all involuntary information

disclosure from the MD&A section. Note, however, that Humpherys et al. (2011) use 10-fold

cross-validation to test their model, while we use a hold-out set that was completely separated

from the calibration process.2

The rest of the paper is organized as follows. In Section 2, we present a conceptual model,

that links earnings, earnings management, and disclosure, and the institutional setting. In

Section 3, we describe the sample selection process as well as the basic characteristics of the

data. The methodological approach is outlined in Section 4. We present the results of the

earnings management predictions in Section 5 before we conclude in Section 6.

2 Model and institutional setting

2.1 Conceptual model

We use the conceptual model in Figure 1 to outline how economic activity, earnings manage-

ment, and disclosure are connected. Operational choices let fundamental earnings evolve during

a business year. Managers can influence this process through real activity earnings management

as describe above. Once fundamental earnings are realized for a business year, they are reported

in the financial disclosure. The reported earnings differ from the fundamental earnings if the

management decides to manage earnings through accounting choices. The earnings manage-

ment literature makes the abstraction that fundamental earnings are the accurate depiction of

economic activity through the firm’s accounting system (Dechow et al., 2010). Earnings man-

agement in form of accounting choices adjusts the accurate picture to an inaccurate picture.

The difference between real activity and accounting choice earnings management is that real

activity earnings management changes the activity of the firm, such that the accurate depiction

in the fundamental earnings would be changed. Hence, reported earnings are a function of fun-

damental earnings and accounting choices (Dechow et al., 2010). In addition to the financial

2 Given certain assumptions on the data generating process, n-fold cross-validation can be used to construct a
consistent estimator of out-of-sample prediction validity (Rabinowicz and Rosset, 2020). In practice, however,
this property does not always seem to hold, even when only cross-sectional data is analyzed. This can also be
observed in our results reported here. 10-fold cross-validation on the training set leads to significantly different
results for our main fit criterion (the AUC) than the test on the hold-out set (compare results reported in
Tables 6 and 7).
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disclosures, managers create the accompanying MD&A section. Together, both parts form the

annual statement of the company (Hoberg, 2016).

Figure 1: Conceptual model of earnings, earnings management, and disclosure

Managers engage in earnings management for various reasons. Fields et al. (2001) use the

conditions of Modigliani and Miller (1958) to classify the goals for accounting choices in three

categories: contracting, asset pricing, and influencing external parties. The first category is a

result of agency costs in an incomplete market, where earnings management is used to influ-

ence a contractual arrangement, such as managerial compensation (see, e.g., Bergstresser and

Philippon, 2006; Cornett et al., 2008; Eckles and Halek, 2010; Efendi et al., 2007, for empiri-

cal analyses). The second category stems from asymmetric information between managers and

investors and attempts to influence asset prices (Beaver et al., 2003; Louis, 2004; Teoh et al.,

1998a,b). The third category, driven by existing externalities, is to influence external non-

contracting parties. By earnings management, managers hope to influence the decision of third

parties, such as the regulator or the Internal Revenue Service (Folsom et al., 2017; Gaver and

Paterson, 2004; Grace and Leverty, 2010; Scholes et al., 1990; Shrieves and Dahl, 2003).

Given the common motivations for earnings management, managers usually should not be

interested in disclosing any indications that they have engaged in the practice. Thus, managers

will attempt to make any qualitative information they disclose consistent with the reported earn-

ings (McCornack, 1992; Bloomfield, 2008). As such, the only path of influence that fundamental

earnings should have on the MD&A section should be through the reported earnings. However,

recent analyses of qualitative disclosures (Humpherys et al., 2011; Muslu et al., 2014) as well as

applications of linguistic theory to disclosures (Li, 2008) let us hypothesize that managers fall

short of this goal and that MD&A sections might in fact be influenced by fundamental earnings

directly. This hypothesis is denoted by the dashed arrow in Figure 1 and constitutes the main

research question of our analysis.

2.2 MD&A sections

The main qualitative disclosure required by the Securities and Exchange Commission (SEC)

for annual and quarterly financial reporting is the MD&A section. While this section must

cover certain topics, managers have flexibility in choosing the breadth and depth of what is

6



Predicting Earnings Management from Qualitative Disclosures

discussed. The SEC specifies the purpose of the MD&A section as providing readers with

information ”necessary to an understanding of [a company’s] financial condition, changes in

financial condition and results of operations” (SEC, 2003). To fulfill this purpose, the SEC

requires managers to discuss and analyze the company through the eyes of the management.

Therefore, the MD&A should not simply recite the financial statements in a qualitative form,

but rather provide the management’s perspective on the financial statements and the context

within which they should be analyzed (SEC, 2003). For instance, the MD&A should address

why earnings have changed or what liquidity needs the firm has. Despite these requirements,

content of the MD&A disclosure is largely discretionary and not audited, which is in contrast

to the notes accompanying the financial statements (Humpherys et al., 2011).

The timeline of how the MD&A section is created is portrayed in Figure 2. Operations

and managerial choices throughout the business year result in fundamental earnings which are

transformed to reported earnings through accounting choices. Based on these reported earnings,

which are commonly determined in the month after the business year ends, managers then

prepare the MD&A section. We can thus see a clear temporal structure in the creation of the

different disclosures. Managers have the option to tailor the MD&A section to the reported

earnings, which are determined and audited before its creation. At first glance, this option

also seems achievable, given that managers both have sufficient time and substantial ressources

(in the form of aides or consultants) to craft the MD&A section according to their preferences.

However, linguistic theory informs us that the creation of any qualitative communication consists

of attributes in several different dimensions, leading to virtually infinite combinations of choices

available to the managers (Grice, 1989). Because there is no one obvious choice available for

phrasing the MD&A section and because receivers of the communication might interpret it

differently than senders (Shannon, 1948), it is likely that managers are unable to eliminate

all subliminal messages in the communication. Thus, the MD&A section will likely include

information which, against the intend of the managers, is not fully consistent with the reported

earnings.

Figure 2: Exemplary firm’s creation of an annual statement

Empirical findings also suggest that managers unintentionally disclose information that they

(at least by best assumptions) do not want to disclose. Hoberg and Lewis (2017) and Humpherys

et al. (2011) are able to differentiate fraudulent from non-fraudulent firms based on their qual-
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itative disclosure. One can conjecture that managers have no incentive to be detected in their

fraudulent activities. However, even if managers are able to remove all indications of fraudulent

behavior from their disclosure, the very act of deception itself can lead to cues in their qualita-

tive statements which would normally be absent (for a summary, see Humpherys et al., 2011).

In addition to the results on fraudulent behavior, these studies also reveal that managers will

subconsciously use ”nonimmediate” language to disassociate themselves from bad events and

give greater weight to internal factors as explanation for good events. This self-serving attribu-

tion is also found to increase overconfidence, which manifests another bias that causes managers

to overestimate their ability to predict future firm performance and influences their disclosure

behavior (Billett and Qian, 2008; Larcker and Zakolyukina, 2012).3

2.3 Property and casualty insurers and earnings management through loss

reserves

In this study, we analyze the property and casualty insurance industry which is frequently used to

study earnings management (Beaver et al., 2003; Gaver and Paterson, 2004; Grace and Leverty,

2012). The industry has the key advantage that it provides an unbiased industry-specific measure

of earnings management, the loss reserve error, which is based on publicly available financial

disclosures. In comparison to methods based on aggregate accruals, the measurement error is

relatively low, which makes the loss reserve error an attractive earnings management measure

for our study aimed at predicting earnings management.

Property and casualty insurance is an umbrella for different types of insurance covering

personal and commercial property and legal responsibility for losses stemming from damage to

another’s property or personal well-being. Exemplary property and casualty insurance types

are homeowners insurance, auto liability insurance and medical malpractice insurance. The

industry does not provide certain other types of insurance coverage, such as health or life in-

surance. The property and casualty insurance industry contributes to the global economy with

$1.6 trillion in gross written premiums. In North America, the industry generates $723 billions

in gross written premiums.4 The regulation of the property and casualty industry in the United

States is performed exclusively by the states. However, the National Association of Insurance

Commissioners (NAIC) provides expertise, data, and analysis for insurance commissioners to ef-

fectively regulate the industry and collects all financial filings. This ensures consistent disclosure

practices throughout all states.

Earnings management in property and casualty insurers is primarily measured through loss

reserve errors (Beaver et al., 2003; Grace and Leverty, 2012; Petroni, 1992). The loss reserve

represents the estimated future cost of settling claims which occurred in the current business

year but are not yet fully settled. It is thus a material accrual, that is estimated subjectively and

the development of which is observable over time. The loss reserve is usually the largest liability

on a property and casualty insurer’s balance sheet and due to its subjective nature, offers the

largest amount of discretion for earnings management. After receiving a recommendation for

3 See Baker and Wurgler (2013) for a survey of the related behavioral finance literature.

4 Figures for 2018, based on McKinsey & Company (2020).
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an acceptable loss reserve by the firm’s actuaries, management will choose the final amount of

the reserve.

Over time, as claim settlement progresses, the insurer adjusts its estimated loss reserve.

These revisions indicate whether the insurer under- or overreserved in the business year of the

loss. The loss reserve error for a company i is calculated as the estimated total incurred losses in

a calendar year t minus the revised estimate of the incurred losses in t reported in the calendar

year t+n (Beaver et al., 2003; Gaver and Paterson, 2004; Grace and Leverty, 2012):

Errori,t,n = Incurred lossesi,t,t − Incurred lossesi,t,t+n (1)

If the estimated loss reserve is overstated, the insurer overreserved and the loss reserve error

is positive. With an increasing n the estimate of the reserve error becomes more acurate as

more claims are settled and more information about still outstanding claims is available. The

common assumption for n is 5 (Beaver et al., 2003; Gaver and Paterson, 2004; Eckles and Halek,

2010; Grace and Leverty, 2012). That is, the reserve error compares the estimated loss reserve

with the revised estimate after 5 years.

3 Data

In our study, we use detailed financial filings by 722 group and unaffiliated property and casualty

insurance companies and match them with hand collected MD&A sections of filings. Because

prediction algorithms in general and machine learning techniques in particular cannot with

standard techniques be applied to panel data, we focus our analysis on a single year of data.5

We use the year 2012 because it is sufficiently long ago such that we can calculate the reserve

error reliably. For financial information, the primary data source are the annual statement filings

with the NAIC. The sample is collected using the following criteria:

(i) the company’s total assets are positive,

(ii) the company reports a positive loss reserve in 2012,

(iii) the company’s developed loss reserve after five years (i.e., in 2017) is available,

(iv) the company is not primarily a reinsurer, whose direct premiums written exceed its as-

sumed premiums,

(v) the company is based in the U.S.,

(vi) the company’s reserve error is not extreme (i.e., the absolute reserve error scaled to total

assets is smaller than one),

(vii) the company is a stock or mutual firm, and

(viii) the company’s MD&A section is available.

5 Prediction in panel data needs to take the autocorrelated nature of the data into account. This is typically
done by assuming an autocorrelation mechanism and estimating its parameters from the available data. The
estimation error introduced by this process could influence our result and would distract from the research
question analyzed here. For machine learning, standard methods of cross-validation are dependent on non-
correlated data, such that a panel structure would bias the results (Rabinowicz and Rosset, 2020).
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For qualitative information, we manually collect the MD&A section for the reporting year

2012 for each insurance company, that meets the selection criteria (i) to (vii). The selection

process yields a sample of 722 insurance companies as summarized in Table 1. The MD&A

section has been filed as part of a 10-K filing with the SEC for 60 publicly traded companies

and as part of the annual statements for 370 privately held stock insurance companies and 292

mutual insurance firms. Property and casualty insurance companies are required to file annual

statements with the NAIC. We transformed all filings to raw text files. The details of the MD&A

collection and document transformation are described in Appendix A.3.

Table 1: Sample selection

Selection criteria Number of firms

Total assets > 0 1222
Reported reserve > 0 980
Developed reserve > 0 945
No primary reinsurer (DPW > Assumed Premiums) 909
Domestic US firm 907
|Scaled reserve error| < 1 904
Stock or mutual ownership form 733
Available MD&A section 722

Total 722

Data comes from the companies’ respective NAIC annual statements for 2012.

Table 2 shows the descriptive statistics for our sample. Consistent with prior studies (see,

e.g., Beaver et al., 2003; Eckles and Halek, 2010; Grace and Leverty, 2012), we examine the

five-year reserve errors, so n = 5 in Equation (2), and scale the reserve error to total assets to

control for the company size.6 On average, we observe the loss reserve to be overstated by 1%

of total assets. Consequently, the mean original reserve exceeds the developed reserve.

Table 2 also presents descriptive statistics for other firm characteristics. Besides total ad-

mitted assets, net income, direct premiums written and revenue growth in direct premiums

written, we also consider business concentration and financial distress. Business concentration

is measured using the Herfindahl index, which denotes the sum of the squared percentage shares

of premiums earned in each of the 45 property and casualty lines of business. The higher the

Herfindahl index, the more concentrated is the business of a company. To measure financial

distress, we add information about the Risk-Based Capital (RBC) ratio. The RBC method was

developed as an additional monitoring tool to assist regulators. It establishes a minimum capital

requirement based on a company’s risk profile. A company’s RBC ratio can trigger regulatory

actions. Actions range from filing a business plan to the regulator being required to take control

over the company unless the RBC level is corrected within 90 days.7

6 Prior studies find that results are robust regarding different choices of the scaling variable and the development
window (see, e.g., Beaver et al., 2003; Eckles and Halek, 2010; Grace and Leverty, 2012).

7 The four RBC levels are defined: company action (RBC ratio ≤ 200%), regulatory action (RBC ratio ≤ 150%),
authorized control (RBC ratio ≤ 100%), and mandatory control (RBC ratio ≤ 70%) (National Association of
Insurance Commissioners (NAIC), 2019).
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Table 2: Summary statistics

Count Mean SD 25% 50% 75%

Scaled reserve error 722 0.0149 0.1006 -0.0061 0.0151 0.0514
Reported reserve 722 734.2433 3,868.8758 2.4380 16.0270 116.4905
Developed reserve 722 702.3914 3,790.7891 2.1318 13.4585 109.8980
Total assets 722 2,048.1794 11,574.8734 17.8359 80.7031 445.2465
Net income 721 49.0255 403.9909 0.0229 1.1751 8.7625
Direct premiums
written

722 631.7138 3,193.1869 7.2752 36.7996 186.5501

Growth of direct pre-
miums written

691 12.2079 46.2521 -0.0071 5.7713 13.0655

Business concentra-
tion index

695 0.5480 0.3309 0.2476 0.4753 0.9813

RBC ratio 683 1,297.1244 2,914.9587 496.2897 826.6821 1,281.0761

MD&A characters 722 32.1458 82.7371 8.3875 13.1140 20.6820

All numbers are taken from the companies’ respective NAIC annual statements for 2012. Reported
reserve, developed reserve, total (admitted) assets, net income, and direct premiums written are presented
in million US-Dollars. Growth of direct premiums written and RBC ratio are expressed in percentage
rates. Reserve error is scaled to total admitted assets. Developed reserve is calculated for a five-year
development window, i.e., it is measured in 2017. Premiums growth measures the annual growth rate of
direct premiums written from 2011 to 2012. Business concentration index is a Herfindahl Index across the
property and casualty lines of business and is based on direct premiums earned. RBC ratio indicates the
ratio of adjusted capital to the authorized control level. MD&A characters denote the count of characters
(in 1,000) in the MD&A section of a company.

Mean (median) total assets are approximately $2,048 million ($81 million), which indicates

that the sample is skewed by some particularly large insurance companies. This pattern is also

reflected in the mean (median) net income of $49 million ($1 million), in the mean (median)

direct premiums written of $632 million ($37 million), and in the mean (median) RBC ratio

of 1,297 percent (827 percent). Growth of direct premiums written and business concentration

are comparatively less skewed with a mean (median) of 12 percent (6 percent) and a Herfindahl

Index of 0.55 (0.48). Note that the reserve error scaled to total assets is not skewed anymore,

since those companies with high assets also display high original and developed loss reserves.

Some differences between the two analyzed organizational forms exist. Mutual insurers have a

higher average reserve error with otherwise similar distributional characteristics (see Figure A.2

in Appendix A.2). Stock insurers exhibit a larger size, higher growth, higher concentration of

lines of business, higher RBC ratio, and longer MD&A sections compared to mutual companies

(see Appendix A.2). Despite these differences, we will see that our model performs well in

classifying stock and mutual companies in one sample.

Regarding the companies’ qualitative disclosure, the MD&A sections comprise on average

32,150 characters. Figure 3 describes the most common words after ignoring words that are

present in more than 80 percent of the documents and, thereby, largely uninformative.8 The

8 This filter is also a result of the text preprocessing fine-tuning which is part of the parameter tuning and
presented in Section 4. Abbreviations and verbally written numbers are also ignored in Figure 3.
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second column of the figure indicates the number of documents a specific word appears in. Even

after filtering out words that appear in more than 80 percent of the documents, we can still

observe some words without informative value among the remaining list of the most common

words. For instance, the two most common words are ”any” and ”may” with approximately

8,000 mentions. Yet, most of these uniformative words are ignored as result of the filter. The

remaining set of commonly used words consists mainly of industry-specific terms, such as ”secu-

rity”, ”ratio”, ”line”, or ”property”, and evaluative terms, such as ”value”, ”estimate”, ”under”,

”than”, ”primarily”, or ”compare”.

Figure 3: Most common words in MD&A sections

The left panel shows the word counts of the 50 most common words after ignoring words that are present
in more than 80 percent of the documents. The right panel indicates in how many documents a word
appears in.
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4 Methodology

This study tests whether the qualitative information in the MD&A section is indicative of

earnings management. To that end, we transform the sign of the five-years reserve errors into a

binary classification of over- or underreserving firms, which we then use as the target variable

of our earnings management classification protocol. The machine learning approach follows six

steps:

(i) the definition of feature matrix X and target variable y,

(ii) the split into a training and a (hold-out) test set for evaluation and text vectorization,

(iii) the model selection and parameter tuning,

(iv) the optimization of text preprocessing,

(v) the integration of financial information, and

(vi) the model evaluation.

Steps (iii) to (v) are carried out solely on the training set, while only the last step uses both

the training set (for calibrating the model) and the test set (for evaluating the model fit).

4.1 Definition of feature matrix and target variable

In a first step, we define the feature matrix X and the target variable y. Our basic feature set

comprises the MD&A sections of the insurers. From that, we create lemmatized tokens from

each MD&A section’s raw text. A token is a segment of the text in a document that is discovered

based on text boundaries, such as white space, punctuation, or special case rules (e.g., N.Y. is

not split into two tokens). A lemma is the base form of a word (i.e., the word’s dictionary

form), and allows to identify words with the same meaning (e.g., ”is”, ”are”, and ”being”

become ”be”). As target variable y for our classification model, we create a binary indicator

of over- and underreserving firms based on the sign of the five-years reserve errors.9 While 227

insurance companies (31.44%) underreserve in our sample, a majority of 495 companies (68.56%)

overestimate the loss reserve as presented in Figure 4.

4.2 Hold-out test set approach and text vectorization

In a second step, we split the sample of 722 property and casualty insurance companies into a

training and a test set. This is necessary for any prediction model, including supervised learning

models, in order to address the problem of overfitting: The prediction should be accurate out-

of-sample, but we can only fit the model in-sample (Hastie et al., 2009). In our study, we use

80 percent of the observations for the training set (577 companies) and hold out the remaining

20 percent of the observations for the test set (145 companies). The assignment into training

and test set is stratified on the target variable such that the proportion between under- and

9 To evaluate different definitions, we also test the classification performance for an alternative target variable
that splits the five-years reserve errors at the median. The results of this specification are described in the
Section 5.
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Figure 4: Distribution of loss reserve error scaled to total assets

The figure shows the distribution of the loss reserve error scaled to total assets. The annotations indicate
the number of over- and underreserving firms.

overreserving companies in each subset is the same as in the complete sample. We fit the model

on the training set and eventually evaluate it on the hold-out test set to assess how the model

performs on new instances.

For all calibration steps (steps (iii) to (v) above), we use a cross-validation approach with

folding to identify the best model based on the data in the training set. Under the condition

of uncorrelated error terms, this procedure gives an unbiased estimate of the prediction error

in out-of-sample predictions (Rabinowicz and Rosset, 2020). Cross validation implies that we

fit the model on only a part of the training set and ask which parameters perform best on the

other part of the data. Folding means that this process is repeated multiple times with different,

equally sized subsamples of the training set – so-called folds – used for the evaluation in each

step. In our study, we split the training set into five folds.10 We hold out one of the folds

for evaluation while fitting the model for a range of parameters on the remaining four folds.

Then, we pick the parameter with the best average performance across all folds. As with the

training-test-split, the folding procedure is stratified on the target variable.

Before we make any classification, we rescale the text features according to their informa-

tiveness. For this, we ignore all numbers and any punctuation in the MD&A sections. For

the verbal content, we transform the lemmatized tokens of an MD&A section into a vector of

TF-IDF weights (Salton and McGill, 1986). The term frequency counts the word appearances in

a document and divides it by the document’s total word count. The term frequency for a token

is multiplied with the inverse document frequency, which is defined as the logarithm of the total

documents divided by the number of documents that contain the particular word. Intuitively, a

high weight is given to any term that appears often in a particular document but not in many

10 For step five, the integration of financial information, we apply a ten-fold cross-validation approach due to a
reduced sample size. Full financial information is only available for 649 firms.
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documents. Thus, the token is descriptive for the content of the document. The result is a

term-by-document matrix whose columns contain the TF-IDF values for each document in the

sample. Thus, the TF-IDF transformation reduces documents of arbitrary length to fixed-length

lists of term weights.11

4.3 Model selection and parameter tuning

In a third step, we consider twelve different machine learning classification models in a horse

race for the most promising model. The models belong to different model families, including

neighbor models, tree-based models, ensembling models like gradient boosting, vector machines,

and neural networks.12 For a brief summary of these models, see Appendix A.5 or refer to Hastie

et al. (2009) for a more detailed discussion. Table 3 lists the average test scores of the cross-

validation predictions on the training set. We report four different evaluation criteria. Accuracy

is defined as the share of correct predictions. Precision measures the share of true positives

(that is, the case of overreserving in our model) among all predicted positives. The F1 score is

calculated as the harmonic mean of precision and recall (which measures the share of predicted

positives among all actual positives). The area under the receiver operating characteristic curve

(AUC) estimates the probability that a random positive is ranked before a random negative (in

our model, the case of underreserving), without specifying a particular decision threshold.

We choose the most promising candidates based on the AUC, which is a standard measure

of performance ranking (Hanley and McNeil, 1982; Ferri et al., 2011; Müller and Guido, 2016).

The AUC is particularly appropriate when the sample is imbalanced, that is when the target

variable is not uniformly distributed. In the case of an imbalanced sample with a binary target

variable, accuracy should not be used alone, since the accuracy score would also indicate a high

performance when the model only predicts the most prominent class of the target variable.13

Next, we fine-tune the model parameters of the most promising models, a Gradient Boost-

ing Machine and a Stochastic Gradient Descent model. The Gradient Boosting Machine is an

ensemble method that combines several decision trees. Gradient Boosting builds trees sequen-

tially, where each tree tries to correct the errors of the previous one. The Stochastic Gradient

Descent is a method associated with discriminant learning of linear classifiers under convex loss

functions. A Gradient Descent measures the local gradient of the cost function with regards

to the parameter vector and it moves in the direction of the descending gradient. Once the

gradient is zero, it reaches a minimum. The gradient vector contains all the partial derivatives

11 The term frequency assigns a high weight to tokens often appearing in a document, while the inverse document
frequency scales down commonly used tokens in a sample. Since the inverse document frequency depends on
the documents under consideration, we use a pipeline that first converts each feature subset with the TF-IDF
method and then predicts with a particular classification model. If we were not to use a pipeline, the TF-IDF
weights would be calculated based on the complete data set rather than only on the training subset.

12 Namely, the twelve machine learning classification models in the horse race are K Neighbors, Logistic Regression,
Naive Bayes Classifier, Decision Tree, Random Forest, Gradient Boosting Machine, Support Vector Machine
with linear kernel, Support Vector Machine with RBF kernel, Linear Support Vector Machine, Stochastic
Gradient Descent, Linear Discriminant Analysis, and Neural Network (lbfgs solver).

13 For example, in our full sample, 68 percent of instances are of positive value. Thus, a model that always
predicts a positive value would have an accuracy of 68 percent.
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Table 3: Model selection

Accuracy Precision F1 AUC AUC ranking

K Neighbors 0.6049 0.7080 0.7125 0.5399 11
(0.044) (0.0267) (0.0531) (0.0385)

Logistic Regression 0.6881 0.6875 0.8148 0.6100 6
(0.004) (0.003) (0.0021) (0.0328)

Naive Bayes Classifier 0.6863 0.6863 0.8140 0.5540 9
(0.0013) (0.0013) (0.0009) (0.0578)

Decision Tree 0.6133 0.7128 0.7183 0.5495 10
(0.0562) (0.0246) (0.0554) (0.0602)

Random Forest 0.6898 0.6935 0.8128 0.5994 8
(0.0197) (0.01) (0.0136) (0.0304)

Gradient Boosting Machine 0.6915 0.7164 0.8022 0.6366 1
(0.0286) (0.0173) (0.018) (0.0397)

SVC (linear kernel) 0.6898 0.6887 0.8157 0.6115 5
(0.0049) (0.0037) (0.0026) (0.0173)

SVC (RBF kernel) 0.6863 0.6863 0.8140 0.6090 7
(0.0013) (0.0013) (0.0009) (0.0141)

Linear SVC 0.6915 0.6997 0.8110 0.6262 4
(0.0075) (0.005) (0.0059) (0.0304)

Stochastic Gradient Descent 0.6759 0.7136 0.7847 0.6332 2
(0.0437) (0.0224) (0.0598) (0.0302)

Linear Discriminant Analysis 0.6621 0.7250 0.7694 0.6317 3
(0.0279) (0.0255) (0.0163) (0.0298)

Neural Network (lbfgs solver) 0.6672 0.7051 0.7848 0.5243 12
(0.0174) (0.0095) (0.0163) (0.0307)

The table summarizes the performance scores of the cross-validation prediction of the alternative classi-
fication models with TF-IDF unigram word tokens of the MD&A sections. The table reports mean and
standard deviation over the five cross-validation folds in brackets. Accuracy is defined as the share of
correct predictions. Precision measures the share of true positives (that is, the case of overreserving in our
model) among all predicted positives. The F1 score is calculated as the harmonic mean of precision and
recall, which measures the share of predicted positives among all actual positives. The AUC estimates
the probability that a random positive is ranked before a random negative (in our model, the case of
underreserving), without specifying a particular decision threshold.

of the cost function for the complete training set. A Stochastic Gradient Descent is an efficient

learning approach for linear classifiers with a convex cost function. The gradients are computed

based on that single instance rather than on full training set.

The optimal parameters are found in a cross-validation grid-search with five folds. For the

Gradient Boosting, we first search for optimal number of trees and then fine-tune tree-specific

parameters. The tree-specific parameters are evaluated sequentially. First, we evaluate the

maximal depth, which limits the number of nodes in each tree, and minimal samples to split

an internal node. Second, we choose the optimal number of minimal samples at a leaf node.

Third, we consider the maximal number of features considered at each split. The results are

summarized in Section A.5.1 in Appendix A.5. The best cross-validation score is achieved by

a Gradient Boosting model with 80 trees, where each tree has a maximal depth of 10, at least
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20 samples at an internal node to be split, and at least 10 samples at a leaf node. In the best

fitting model, all features are considered at each split.

For the Stochastic Gradient Descent, we search for the highest AUC score by varying the

learning rate and the regularization term. The learning rate determines the strength of the model

update after each loss gradient estimation. In general, the model is updated with a decreasing

strength. If the learning rate is too small, then the algorithm will have to go through many

iterations to converge. A too large learning rate may causes drastic updates that can hinder

conversion. The regularization term is a penalty, which is added to the loss function and shrinks

model parameters towards zero using either the squared euclidean norm (L2) or the absolute

norm (L1) or a combination of both (Elastic Net). We evaluate different specifications of the

regularization term together with a range of values for the learning rate in a cross-validation

gridsearch. The results are shown in Table A.7 in Appendix A.5. The best Stochastic Gradient

Descent model in the parameter tuning has a learning rate of 0.001 and implements regularization

with an L2 penalty.

4.4 Optimization of text preprocessing

In a fourth step, we optimize the text preprocessing parameters to achieve the best prediction

results. The initial model selection used the complete lemmatized text of the MD&A sections

as a feature set. However, the individual lemmas vary in their informative value. If a lemma

appears only in a small number of documents or is used in a large share of documents, its

presence in a new document, for which a classification should be made, has little information.

As such, we evaluate the prediction performance for possible combinations of different values

for the maximal share of documents that a word appears in and for the minimum number of

documents that a word appears in. The preprocessing parameter tuning results are shown in

Appendix A.5.14 We find that we can improve the performance of the Stochastic Gradient

Descent model by fine-tuning the text preprocessing to ignore words that appear in less than

10 documents and words that appear in more than 80 percent of the documents. The Gradient

Boosting model performs best with the complete text corpus.

We also investigate whether we can increase out-of-sample performance by removing certain

categories of words from the lemmatized text. Specifically, we consider dropping individual

and company names, locations, verbally expressed numbers, and abbreviations. These word

categories are typically highly informative regarding an individual company, but may lead the

model to overfit on the training set, which reduces out-of-sample performance.15 We combine

this analysis in a cross-validation grid-search together with an analysis of how may words are

considered for each lemma. The meaning of a word often not only depends on the word itself

but also on its neighbors. We compare the performance of unigram, uni-/bigram, and uni-/bi-

/trigram word models. Unigram contain single tokens, bigrams contain two tokens that follow

each other, and trigrams are a series of three subsequent tokens in a document. For example,

”loss” is a unigram, ”loss reserve” is a bigram, and ”loss reserve decrease” is a trigram.

14 See Table A.6 for the Gradient Boosting model and Table A.8 for the Stochastic Gradient Descent model.

15 Appendix A.6.3 shows the full list of words for each described word category.
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We search for the most promising text representation in cross-validation gridsearch that

explores all possible combinations of ngram ranges and stop words. We find that a Stochastic

Gradient Descent model using uni- and bigrams and ignoring company names, individual names,

and verbally expressed numbers is most promising as shown in Table A.9 in Appendix A.6.1. The

results of the evaluation of the text representation for the Gradient Boosting model are shown

in Appendix A.6.2. The best cross-validation result for the Gradient Boosting model is achieved

by using unigrams and no stop word exclusions. However, the best Gradient Boosting model

achieves an AUC score more than 1 percentage point lower than that of the best Stochastic

Gradient Descent model (scores are 0.6602 and 0.6732, respectively). We thus continue with

analyzing the Stochastic Gradient Descent model in the main text and only report the remaining

results for the Gradient Boosting model in the appendix.16 Since we continue by analyzing the

best-performing model, the stop word selection decreases the length of the dictionary from 5,205

words to 5,020.

4.5 Integration of financial information

In a last step, we examine whether the combination of the text-based information with financial

information can increase prediction performance. Adding financial information provides an

economic context for the qualitative disclosures in the MD&A section by allowing to take the

financial situation of the company into consideration. Specifically, we test information on profit,

growth, business concentration, and financial distress. However, in prediction models, using

continuous scales on financial indicators can lead to overfitting and poor out-of sample prediction.

Additionally, incorporating an interaction of financial and qualitative information is conceptually

difficult with continuous information and likely uninformative. For each of the four types of

financial information we not only consider the reported continuous values, but also construct a

binary indicator.

The profit indicator is positive in case the company has a net income greater than zero.

As such, the indicator separates the profitable from loss-burdened companies. The growth

indicator identifies companies with growing direct premiums written. Because the majority

of firms reported growing premiums in 2012, we also evaluate a second version of the growth

indicator that splits the sample at the growth median. Business concentration is measured using

the Herfindahl index and we partition the sample at the median to form the indicator. We create

an indicator of financial distress by setting it to one if a company breaches the company action

RBC level (RBC ratio ≤ 200%). A company that breaches the company action level needs to

produce a plan to restore its RBC levels. While this is an intuitive threshold for the indicator,

only 16 companies in our sample are below company action level. We thus additionally consider

a second version of the RBC ratio indicator that splits the sample at the median of the RBC

ratio. The resulting sample splits are summarized in Table 4.

The question how to combine qualitative and financial information in a prediction model

is not well explored in financial and accounting research. The most common alternative is a

16 The results for the integration of financial information can be found in Appendix A.8. The hold-out test set
results are shown in Appendix A.10.
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Table 4: Financial information variables and indicators

Variable 0 1 Total Missing

Profit
Profit Indicator 172 549 721 1
Growth
Growth Indicator (Positive) 175 516 691 31
Growth Indicator (Median) 345 346 691 31
Business concentration
Business concentration Indicator 347 348 695 27
RBC ratio
RBC ratio Indicator (Action) 667 16 683 39
RBC ratio Indicator (Median) 341 342 683 39

All numbers are taken from the companies’ respective NAIC annual statements for 2012. Profit is 1, if
the net income is greater than 0. Growth (Positive) is 1, if the annual growth rate of direct premiums
written from 2011 to 2012 is greater than 0. Growth (Median) is 1, if the company’s growth rate is above
the median. Business concentration is 1, if the Herfindahl index, the sum of the squared percentage
shares of premiums earned in each of the 45 property and casualty lines of business, is above the median.
RBC ratio (Action) is 1, if the RBC ratio is below the company action level. RBC ratio (Median) is 1,
if the RBC ratio is below the sample median.

two-stage approach. In the first stage, only the qualitative information is used in a prediction

model. The classification of this prediction model and the financial information are then used

as regressors in a standard regression model in the second stage. The advantage of this model

is that it provides utilizable standard errors and can thus be used for testing hypotheses (see,

e.g., Antweiler and Frank, 2004). However, the primary purpose of such a model is hypothesis

testing rather than prediction, which makes it less applicable to our case. We nevertheless test

this model as a first alternative for the integration of qualitative and financial information. To

make the results of the model comparable to those of typical machine learning classification

models, we use a logistic regression for forming binary predictions and test both a model with

continuous financial information and one with binary indicators.

The second alternative is a pure prediction model in which both the qualitative information

and the quantitative information are used as potential predictors. We test this procedure with

the reported continuous variables as well as with the financial indicators. The biggest problem

with it is, however, that while some machine learning procedures, such as random forests, can

form interaction terms themselves, linear models, such as the stochastic gradient descent model

used in this analysis, cannot do so. As such, the prediction model we use here will include

both qualitative and financial information if it is useful for prediction, but is unable to assign

qualitative information a different meaning based on the financial information. Since taking into

account the economic context of the firm was our primary motivation for integrating qualitative

and financial information, this second approach is also not fully suitable for our application.

We thus use a novel approach to integrating both types of information as our third alter-

native. As in the second approach, we include both the qualitative TF-IDF statistics of uni-

and bigram word combinations and the financial indicators in our set of potential predictors. In

addition, we interact each financial indicator with the TF-IDF statistics and use the resulting

matrix of interaction terms as additional predictors in the model.

19



Predicting Earnings Management from Qualitative Disclosures

To determine which of the financial information should be included in the prediction models,

we again use a cross-validation grid search. For every possible combination of financial indicators,

we report the average AUC score of the prediction models using binary financial indicators with

and without interaction terms.17 Table 5 shows that the highest performance according to the

AUC score is achieved when adding information on profit, growth (Median), and the RBC ratio

(Median), where the RBC ratio indicator is built based on the median cut-off and the growth

indicator is created by partitioning the sample at the median.

Table 5: Selection of financial information model
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1. 1. x 0.6334 45

2. x 0.6255 62

3. x 0.6427 29

4. x 0.6265 60

5. x 0.6299 53

6. x 0.6696 3

2. 1. x x 0.6341 43

2. x x 0.6468 25

3. x x 0.6278 58

4. x x 0.6377 39

5. x x 0.6647 7

6. x x 0.6205 68

7. x x 0.6284 56

8. x x 0.6614 13

9. x x 0.6425 31

10. x x 0.6399 37

11. x x 0.6689 5

12. x x 0.6247 64

13. x x 0.6633 9

3. 1. x x x 0.6234 66

2. x x x 0.6321 51

3. x x x 0.6594 17

4. x x x 0.6417 33

17 Note that we did not consider models which included multiple binary indicators for a single piece of financial
information (such as including both the above median and positive growth indicators in a single model).
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Table 5: Selection of financial information model (continued)
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5. x x x 0.6462 27

6. x x x 0.6705 1

7. x x x 0.6328 47

8. x x x 0.6567 21

9. x x x 0.6157 70

10. x x x 0.6579 19

11. x x x 0.6345 41

12. x x x 0.6602 15

4. 1. x x x x 0.6323 49

2. x x x x 0.6533 23

3. x x x x 0.6407 35

4. x x x x 0.6619 11

Baseline 0.6286 55

The table summarizes the AUC scores of the ten-fold cross-validation prediction of the alternative clas-

sification models with TF-IDF uni- and bigram word tokens of the MD&A sections. The AUC estimates

the probability that a random positive is ranked before a random negative (in our model, the case of

underreserving), without specifying a particular decision threshold. The columns Profit to RBC ratio

(Median) indicate which financial information is included. The models are specified in two variants: only

with indicators and with indicators and interaction terms. The average of the test scores of both variants

is reported in the column Average AUC score. The column Rank AUC score indicates the rank of a

specific average AUC score. The Baseline category shows the results without financial information.

In Table 6, the alternative models are evaluated with a comparison of cross-validation results

on the training set. In this comparison, we can see that the models that using qualitative and

quantitative information in a single stage returns the most accurate predictions according to

the AUC. This renders credibility to the idea that financial and qualitative information should

be used in conjecture when making predictive statements. The two-stage models, while more

useful for hypothesis testing, can not perform as well. The table also shows, as conjectured, that

continuous financial information likely leads to worse predictions than using binary indicators.

This is true for both the two-stage model (model 1.1 in Table 6) and when integrating financial

and qualitative information in a single stage (model 2 in Table 6). We nevertheless evaluate the

performance of all five models in Table 6 on the test set in Section 5, such that their value for

out-of-sample predictions is also assessed.
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Table 6: Classification results for models integrating financial information

Accuracy Precision F1 AUC

(1.1) Two-stage model with reported continu-
ous information

0.6975 0.6997 0.8194 0.5132

(1.2) Two-stage model with financial indicators 0.6860 0.7477 0.7854 0.5933
(2) Prediction model with MD&A and re-

ported continuous information
0.5026 0.6487 0.5587 0.4738

(3) Combination of MD&A and financial in-
dicators

0.6802 0.7520 0.7786 0.6723

(4) Combination of MD&A, financial indica-
tors and interaction terms

0.6764 0.7402 0.7780 0.6630

The table summarizes the average performance scores of a ten-fold cross-validation on the training set
of the alternative models. Accuracy is defined as the share of correct predictions. Precision measures
the share of true positives (that is, the case of overreserving) among all predicted positives. The F1
score is calculated as the harmonic mean of precision and recall, which measures the share of predicted
positives among all actual positives. The AUC estimates the probability that a random positive is ranked
before a random negative, without specifying a particular decision threshold. Model (1) is a classification
based on a logistic regression model with financial information and the predicted sign of the reserve
error of Stochastic Gradient Descent model using MD&A information. Model variant (1.1) uses reported
continuous information, whereas variant (1.2), includes financial indicators. Model (2) is a Stochastic
Gradient Descent classifier with MD&A information and reported continuous information. Model (3) is
a Stochastic Gradient Descent classifier with MD&A information and financial indicators. Model (4) is a
Stochastic Gradient Descent classifier with MD&A information and financial indicators and interaction
terms. MD&A information represents TF-IDF uni- and bigram word combinations of MD&A sections.
Reported continuous information summarizes continuous data on net income, growth of direct premiums
written, and RBC ratio. Used financial indicators are profit, growth (Median) and RBC ratio (Median)
indicators.

4.6 Robustness: Alternative text representation with unsupervised learning

model

The entire process of model selection has, so far, only considered supervised machine learning

models. Alternatively, text can also be decomposed into topics instead of word combinations by

using unsupervised learning models. To test whether this approach renders better predictions

than our model, we evaluate an unsupervised machine learning model as alternative text repre-

sentation model. Specifically, we test whether a Latent Dirichlet Allocation (LDA) topic model

can outperform the Stochastic Gradient Decent model.

The idea of an LDA topic model is that ”documents are represented as random mixtures

over latent topics, where each topic is characterized by a distribution over words” (Blei et al.,

2003). Here, the weighting of TF-IDF is not necessary, since the LDA is a probabilistic model

that tries to estimate probability distributions for topics in documents and words in topics. The

LDA topic model requires only few parameter inputs. One key assumption is that there exists

a finite number of topics and that every document consists of a mix of these topics. It is thus

important to determine the appropriate number of topics and we use a cross-validation approach

to determine it from a set of possible values (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 25, 50, 75, 100, 125,

150, 175, 200, 225, 250).

We approach the optimization from two directions. First, as suggested by Blei et al. (2003),

we compare the ”perplexity” of topic models with different numbers of topics. A lower perplexity
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score indicates a better generalization performance. Since perplexity is calculated as the inverse

of the geometric mean per-word likelihood, it monotonically decreases with the likelihood. Thus,

we select the number of topics that maximizes the log-likelihood. Then, we use an LDA model

with the best identified number of topics (3) as input for the earnings management classification

model. However, this model only achieves an average AUC of 49 percent, when evaluated in a

cross-validation classification with the Stochastic Gradient Descent model on the training set.

Next, we explore a different perspective and search for the best number of topics as part of

our overall classification model. That is, we look for the number of topics that optimizes the

performance of the earnings management classification model. This model achieves an AUC

score of 61 percent with 150 topics as optimal model parameter (see Appendix A.7 for detailed

results). However, the model using TF-IDF weights and uni- and bigrams still yields a higher

performance with an AUC score of 67 percent. Therefore, we do not use the unsupervised topic

model for the prediction.

5 Results

5.1 Prediction results on the hold-out test set

We evaluate the final classification model on a hold-out test sample and report the results in

Table 7. The final classification model is a Stochastic Gradient Descent model that uses TF-

IDF statistics of uni- and bigram word combinations in the MD&A section together with profit,

growth, and financial distress information on the company. The model variant with financial

interaction terms achieves a 70%-accuracy of the predicted sign of the company’s reserve error

and achieves an AUC score of 62 percent. The corresponding values for the model without

interaction terms are a lower accuracy of 68% but a higher AUC score of 64%.18 19 Our results

confirm that the MD&A section published by a property and casualty insurer is indicative of the

insurer’s reserve error and, hence, the company’s fundamental earnings. Managers thus seem

unable to remove all indications of earnings management from their qualitative disclosures.

The test set evaluations of Table 7 also allow for a comparison of the quality of the out-of

sample predictions by the different analyzed models. As with the in-sample predictions, we can

see that binary indicators of financial information lead to significantly better predictions than

continuous variables. Additionally, we can see that the two-stage model (1.2) still performs

worse than the integrated models (3 and 4), but that the gap is smaller. In both accuracy and

AUC, the two-stage model always performs similar to the worse of the two preferred models.

Nevertheless, when considering both in-sample and out-of-sample predictions, the integrated

approach seems more promising for predictive accuracy than the two-stage analysis. It needs

to be emphasized though that this result only applies to predictions and not for other purposes

such as hypothesis testing, where the two-stage approach has significant advantages.

18 The Gradient Boosting model with financial information achieves a accuracy of 70 percent, but only a AUC score
of 55 percent. The test set classification results for the Gradient Boosting model are reported in Appendix A.10.

19 If we alternatively split the target variable at the median of the reserve error, the AUC score of 61 percent in
a model with interaction terms and 62 percent in a model without interaction term.
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Table 7: Classification results for models integrating financial information on test set

Value Target
Variable

Precision Recall F1 Accuracy AUC

(1.1)
Two-stage
model with
reported
continuous
information

0 0.0000 0.0000 0.0000

1 0.6899 0.9889 0.8128 0.6846 0.4944

Weighted
average

0.3450 0.4944 0.4064

(1.2) Two-stage
model with
financial
indicators

0 0.4865 0.4500 0.4675

1 0.7634 0.7889 0.7760 0.6846 0.6194

Weighted
average

0.6782 0.6846 0.6811

(2)
Prediction
model with
MD&A and
reported
continuous
information

0 0.2841 0.6250 0.3906

1 0.6429 0.3000 0.4091 0.4000 0.4625

Weighted
average

0.5325 0.4000 0.4034

(3) Combination
of MD&A and
financial
indicators

0 0.4884 0.5250 0.5060

1 0.7816 0.7556 0.7684 0.6846 0.6403

Weighted
average

0.6914 0.6846 0.6876

(4)
Combination
of MD&A,
financial
indicators and
interaction
terms

0 0.5161 0.4000 0.4507

1 0.7576 0.8333 0.7937 0.7000 0.6167

Weighted
average

0.6369 0.6167 0.6222

The table summarizes the performance scores on the hold-out test set of the alternative models. Accuracy
is defined as the share of correct predictions. Precision measures the share of true positives (that is, the
case of overreserving) among all predicted positives. The F1 score is calculated as the harmonic mean of
precision and recall, which measures the share of predicted positives among all actual positives. The AUC
estimates the probability that a random positive is ranked before a random negative, without specifying
a particular decision threshold. The weighted average calculates the weighted mean per label. Model (1)
is a classification based on a logistic regression model with financial information and the predicted sign
of the reserve error of Stochastic Gradient Descent model using MD&A information. Model variant (1.1)
uses reported continuous information, whereas variant (1.2), includes financial indicators. Model (2) is
a Stochastic Gradient Descent classifier with MD&A information and reported continuous information.
Model (3) is a Stochastic Gradient Descent classifier with MD&A information and financial indicators.
Model (4) is a Stochastic Gradient Descent classifier with MD&A information and financial indicators
and interaction terms. MD&A information represents TF-IDF uni- and bigram word combinations of
MD&A sections. Reported continuous information summarizes continuous data on net income, growth
of direct premiums written, and RBC ratio. Used financial indicators are profit, growth (Median) and
RBC ratio (Median) indicators.
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Table 7 also shows that all tested classification models are significantly better at predicting

overreserving (when the value of the target variable is 1) than they are at predicting under-

reserving (when the target variable is 0). Between 76 and 78 percent of the firms predicted

to overreserve by our preferred prediction models, actually overstate their reserves (precision).

Further, the share of predicted overstated reserves among all actual overstated reserves by these

models are between 76 and 83 percent (recall). The corresponding values for underreserving

firms are lower, but still better (on average) for our preferred models than for all other ones

tested.

Do our preferred models provide a good prediction result? As of yet, only few studies in

the accounting literature have used text-based machine learning classification. In most textual

analyses, the similarity of documents is used to create a new variable for statistic regressions.

For studies with a machine learning classification, often only accuracy is reported, and it ranges

between 50 to 84 percent (Antweiler and Frank, 2004; Li, 2010; Humpherys et al., 2011; Kang

et al., 2013). However, in some studies, the model is either not evaluated on a hold-out test set,

which may cause overfitting, or it is not clear whether a hold-out set has been used to derive

the final prediction scores. For our preferred models, the accuracy score lies within the range of

values observed in the literature. This is true both when evaluated on the training set and when

evaluated on the test set. In addition, the models’ AUC scores lie well above 50% (the value for

an uninformative model) in both evaluations. We thus argue that our preferred models provide

a good prediction. The qualitative disclosure in the MD&A section is informative of the reserve

error and, thus, for fundamental earnings.

As described in section 4.5, we use a model that integrates financial information with the

qualitative information of MD&A sections. The methodological contribution provided here is

that in our approach the linear classification models are capable of embedding qualitative infor-

mation in the economic context in which it is collected. As can be seen in Table 7, the procedure

with financial indicators as well as the procedure with financial indicators and interaction terms

provide the best predictive performance on the test set of all models which integrate qualitative

and financial information. This is particularly true when considering the AUC criterion, which

we have used throughout the entire model selection procedure.

5.2 Qualitative information in the MD&A

Our final model contains a total of 21,065 uni- and bigram word combinations, which leads

to 84,263 features after including the financial indicators and interaction terms with the word

combinations. To examine how the model creates the prediction, we can inspect the most

important features in the model. Panel (a) in Figure 5 shows the features with the top and

bottom 30 coefficients for the model with MD&A and financial indicators and panel (b) shows

the same for the model with MD&A, financial indicators and interaction terms.20 We can see

that some words that indicate financial threats, such as ”peril”, ”sinkhole”, ”multiple peril”,

and ”exposure” have strong negative coefficients. On the contrary, expressions for safety, such as

20 We excluded locations from this analysis of the word features, since they do not relate to the managers’ wording
choices, but are a result of the business context of the firm. An representation including locations is shown in
Appendix A.9.
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”harbor”, ”safety”, ”safety and”, and ”arch”, as well as forward-looking statements like ”run”,

”be up”, and ”road” exhibit high positive coefficients. Also information on the ”mutual” and

”group” company form are present among the most positive coefficients.

Figure 5: Most important feature coefficients in the prediction model with MD&A and financial
indicators

(a) Model with MD&A and financial indicators

(b) Model with MD&A, financial indicators, and interaction terms

The figure shows features with the 30 largest and the 30 smallest coefficients for two classification models
for over- and underreserving. Both models use a Stochastic Gradient Descent classifier with TF-IDF
uni- and bigram word. Models include financial indicators for profit, growth (Median), and RBC ratio
(Median). Word features that contain information on locations and abbreviations are not shown in the
figure.

In the model with interaction terms, again words that indicate financial threats have strong

negative coefficients. In contrast to the model without interaction terms, also the information on

the business type, ”farmer”, ”commercial”, ”treaty” or ”medical” exhibit strong negative coef-

ficients. Moreover, combinations with ”of the capital” bear strong negative coefficients. Among

the strongest positive coefficient, the emerging scheme is very similar to the model without in-

teraction terms. Forward-looking statements, expressions for safety as well as information on

”mutual” and ”group” have strong positive coefficients.
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In a next step, we evaluate whether individual words are similarly important among the

subsamples created by the financial indicators. Figure 6 illustrates the top 15 and bottom 15

aggregated coefficients of word combinations. The aggregated coefficient of a word combination

is the result from taking into account that each word combination is also part of the interaction

terms with the financial indicators. We can see that the importance of the single words as

well as the profit and growth interaction terms are similar, while the RBC ratio interaction

terms seem to value some words in a different manner. For instance, the word ”harbor” has a

strong positive coefficient as a stand-alone word as well as in the case of a profitable, growing

company. However, for companies with an higher RBC ratio, the word ”harbor” is associated

with a smaller coefficient.
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Figure 6: Feature coefficient rankings of single word tokens and interaction terms

The figure shows word combinations with the 15 largest and the 15 smallest aggregated coefficients for the
classification model for over- and underreserving, that uses a Stochastic Gradient Descent classifier with
TF-IDF uni- and bigram word combinations of MD&A sections and profit, growth (Median), and RBC
ratio (Median) indicators and interaction terms with the word tokens. Aggregated coefficient magnitude
is calculated as sum of coefficients of single words and the interaction terms of the specific word with
profit, growth (Median), and RBC ratio (Median). The figure shows in the first panel the coefficient
magnitude for the single word and the other panels the coefficient maghnitude for the interaction terms.

Comparing the top 15 and bottom 15 aggregated coefficients in Figure 6 with the top 30

and bottom 30 individual coefficients in Figure 5, a common scheme emerges: Combinations

with ”mutual” and expressions for safety exhibit strong positive coefficients, while ”capital” and

words for financial threats bear strong negative coefficients. This link is not only provided by

the statistical model, but also makes sense from an intuitive perspective. Expressions of safety

are used because the financial situation of the firm is safe (due to untapped reserves). Words for

financial threats imply a threatened situation because there are unpaid liabilities in the balance

sheet.

28



Predicting Earnings Management from Qualitative Disclosures

6 Conclusion

In this study, we examine the association between a company’s fundamental earnings and the

qualitative information in the MD&A section. Our conceptual model is based on the earnings

management process within a company and exhibits the role of qualitative information disclosed

in the MD&A section. Managers seek to allow only a link between reported earnings and

the MD&A section and to cover any direct indication on fundamental earnings in the MD&A

section, that would reveal accrual-based earnings management. We use a new machine learning

approach to predict earnings management based on the disclosed qualitative information and

apply it to property and casualty insurers. Using machine learning techniques on the MD&A

section, we document that the qualitative disclosure is indicative of an insurer’s reserve error,

the industry-specific earnings management measure. This suggests that managers are unable to

cover earnings management in the qualitative disclosure. Our results show that it is possible to

link the information in the MD&A section directly to fundamental earnings.

Our findings suggest that the qualitative information in the MD&A section has an informa-

tional value, as opposed to previous doubts whether the disclosure provides useful information

(Brown and Tucker, 2011). Regarding the MD&A section of 10-K filings, the SEC has repeatedly

urged firms to reduce needless information and provide helpful information for investors (SEC,

2003, 2013). Our findings underpin that the MD&A section indeed helps investors to evaluate

a company’s performance by gaining information about fundamental earnings. Benefiting from

machine learning applications, company stakeholders can make better-informed decisions.

We contribute to the growing literature on machine learning in accounting research. For this

purpose, we analyze different approaches for integrating financial information and qualitative

disclosures in a prediction model. This includes a novel approach which allows the interpretation

of qualitative information in the economic context of the firm even in linear models. We find

that models using a single stage and integrating both text processing and financial information

in the cross-validation procedure lead to better predictions than models doing so in a two-stage

approach. In the specific field of earnings management, we are the first to utilize qualitative

information for predicting the reserve error of property and casualty insurance companies. While

our results are industry-specific, the approach can be applied to other industry-specific measures

or be generalized to cross-industry indicators of earnings management.

Our study has certain limitations. First, our analysis develops a prediction model and does

not focus on causal inference. We can thus not answer why managers choose to manager their

earnings or what the specific employed disclosure strategies are. We simply provide a test of

the link between qualitative disclosures and earnings management. Future research can utilize

this link to investigate causal research questions of earnings management, strategic disclosure

and managerial behavior. Second, we provide a stepwise introduction of our machine learning

model, using cross-validation grid-search algorithms in several stages from model selection, over

parameter tuning, text preprocessing and finally the integration of financial information. It is

theoretically likely that the predictive power of our model would be increased by integrating

all these steps into a single grid-search. However, as of now, this approach is not computa-

tionally feasible. Lastly, we only briefly cover the class of unsupervised learning models, such

that we may not have investigated their full potential. Nevertheless, the model which we did
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test had a relatively poor performance with an AUC score 6 percentage points lower than the

best supervised model after parameter tuning. There is thus a reasonable indication that su-

pervised learning models perform better in the prediction of earnings management than their

unsupervised counterparts.

30



Predicting Earnings Management from Qualitative Disclosures

References

Antweiler, W. and Frank, M. Z. (2004). Is all that talk just noise? The information content of
internet stock message boards. Journal of Finance, 59(3):1259–1294.

Armstrong, C. S., Guay, W. R., and Weber, J. P. (2010). The role of information and financial re-
porting in corporate governance and debt contracting. Journal of Accounting and Economics,
50(2-3):179–234.

Baker, M. and Wurgler, J. (2013). Behavioral corporate finance: An updated survey. In
Handbook of the Economics of Finance, volume 2, pages 357–424. Elsevier.

Bao, Y. and Datta, A. (2014). Simultaneously discovering and quantifying risk types from
textual risk disclosures. Management Science, 60(6):1371–1391.

Bartov, E. (1993). The timing of asset sales and earnings manipulation. Accounting Review,
pages 840–855.

Beaver, W. H., McNichols, M. F., and Nelson, K. K. (2003). Management of the loss reserve
accrual and the distribution of earnings in the property-casualty insurance industry. Journal
of Accounting and Economics, 35(3):347–376.

Bergstresser, D., Desai, M., and Rauh, J. (2006). Earnings manipulation, pension assumptions,
and managerial investment decisions. Quarterly Journal of Economics, 121(1):157–195.

Bergstresser, D. and Philippon, T. (2006). CEO incentives and earnings management. Journal
of Financial Economics, 80(3):511–529.

Bhojraj, S., Hribar, P., Picconi, M., and McInnis, J. (2009). Making sense of cents: An exami-
nation of firms that marginally miss or beat analyst forecasts. Journal of Finance, 64(5):2361–
2388.

Billett, M. T. and Qian, Y. (2008). Are overconfident CEOs born or made? Evidence of self-
attribution bias from frequent acquirers. Management Science, 54(6):1037–1051.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3(Jan):993–1022.

Bloomfield, R. (2008). Discussion of “Annual report readability, current earnings, and earnings
persistence”. Journal of Accounting and Economics, 45(2-3):248–252.

Bozanic, Z., Roulstone, D. T., and Van Buskirk, A. (2018). Management earnings forecasts and
other forward-looking statements. Journal of Accounting and Economics, 65(1):1–20.

Brown, S. V. and Tucker, J. W. (2011). Large-sample evidence on firms’ year-over-year md&a
modifications. Journal of Accounting Research, 49(2):309–346.

Burgstahler, D. and Dichev, I. (1997). Earnings management to avoid earnings decreases and
losses. Journal of Accounting and Economics, 24(1):99–126.

Cornett, M. M., Marcus, A. J., and Tehranian, H. (2008). Corporate governance and pay-
for-performance: The impact of earnings management. Journal of Financial Economics,
87(2):357–373.

Dechow, P., Ge, W., and Schrand, C. (2010). Understanding earnings quality: A review of the
proxies, their determinants and their consequences. Journal of Accounting and Economics,
50(2-3):344–401.

31



Predicting Earnings Management from Qualitative Disclosures

Dechow, P. M. and Skinner, D. J. (2000). Earnings management: Reconciling the views of
accounting academics, practitioners, and regulators. Accounting Horizons, 14(2):235–250.

Dechow, P. M. and Sloan, R. G. (1991). Executive incentives and the horizon problem: An
empirical investigation. Journal of Accounting and Economics, 14(1):51–89.

Degeorge, F., Patel, J., and Zeckhauser, R. (1999). Earnings management to exceed thresholds.
Journal of Business, 72(1):1–33.

Ding, K., Lev, B., Peng, X., Sun, T., and Vasarhelyi, M. A. (2020). Machine learning improves
accounting estimates: evidence from insurance payments. Review of Accounting Studies,
25:1–37.

Dyer, T., Lang, M., and Stice-Lawrence, L. (2017). The evolution of 10-K textual disclosure:
Evidence from Latent Dirichlet Allocation. Journal of Accounting and Economics, 64(2-
3):221–245.

Eckles, D. L. and Halek, M. (2010). Insurer reserve error and executive compensation. Journal
of Risk and Insurance, 77(2):329–346.

Eckles, D. L., Halek, M., He, E., Sommer, D. W., and Zhang, R. (2011). Earnings smooth-
ing, executive compensation, and corporate governance: Evidence from the property–liability
insurance industry. Journal of Risk and Insurance, 78(3):761–790.

Efendi, J., Srivastava, A., and Swanson, E. P. (2007). Why do corporate managers misstate
financial statements? The role of option compensation and other factors. Journal of Financial
Economics, 85(3):667–708.

Ferri, C., Hernández-Orallo, J., and Flach, P. A. (2011). A coherent interpretation of AUC as
a measure of aggregated classification performance. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 657–664.

Fields, T. D., Lys, T. Z., and Vincent, L. (2001). Empirical research on accounting choice.
Journal of Accounting and Economics, 31(1-3):255–307.

Folsom, D., Hribar, P., Mergenthaler, R. D., and Peterson, K. (2017). Principles-based standards
and earnings attributes. Management Science, 63(8):2592–2615.

Frankel, R., Mayew, W. J., and Sun, Y. (2010). Do pennies matter? Investor relations conse-
quences of small negative earnings surprises. Review of Accounting Studies, 15(1):220–242.

Gaver, J. J. and Paterson, J. S. (2004). Do insurers manipulate loss reserves to mask solvency
problems? Journal of Accounting and Economics, 37(3):393–416.

Gentzkow, M., Kelly, B., and Taddy, M. (2019). Text as data. Journal of Economic Literature,
57(3):535–74.

Grace, M. F. and Leverty, J. T. (2010). Political cost incentives for managing the property-
liability insurer loss reserve. Journal of Accounting Research, 48(1):21–49.

Grace, M. F. and Leverty, J. T. (2012). Property–liability insurer reserve error: Motive, manip-
ulation, or mistake. Journal of Risk and Insurance, 79(2):351–380.

Graham, J. R., Harvey, C. R., and Rajgopal, S. (2005). The economic implications of corporate
financial reporting. Journal of Accounting and Economics, 40(1-3):3–73.

Grice, H. P. (1989). Studies in the Way of Words. Harvard University Press.

32



Predicting Earnings Management from Qualitative Disclosures

Guay, W., Samuels, D., and Taylor, D. (2016). Guiding through the fog: Financial statement
complexity and voluntary disclosure. Journal of Accounting and Economics, 62(2-3):234–269.

Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver
operating characteristic (ROC) curve. Radiology, 143(1):29–36.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning: Data
mining, inference, and prediction. Springer Science & Business Media.

Hazarika, S., Karpoff, J. M., and Nahata, R. (2012). Internal corporate governance, CEO
turnover, and earnings management. Journal of Financial Economics, 104(1):44–69.

Healy, P. M. and Wahlen, J. M. (1999). A review of the earnings management literature and its
implications for standard setting. Accounting Horizons, 13(4):365–383.

Hoberg, G. (2016). Discussion of using unstructured and qualitative disclosures to explain
accruals. Journal of Accounting and Economics, 62(2):228–233.

Hoberg, G. and Lewis, C. (2017). Do fraudulent firms produce abnormal disclosure? Journal of
Corporate Finance, 43:58–85.

Hoberg, G. and Maksimovic, V. (2014). Redefining financial constraints: A text-based analysis.
Review of Financial Studies, 28(5):1312–1352.

Hoberg, G. and Phillips, G. (2016). Text-based network industries and endogenous product
differentiation. Journal of Political Economy, 124(5):1423–1465.

Huang, A. H., Lehavy, R., Zang, A. Y., and Zheng, R. (2018). Analyst information discovery
and interpretation roles: A topic modeling approach. Management Science, 64(6):2833–2855.

Humpherys, S. L., Moffitt, K. C., Burns, M. B., Burgoon, J. K., and Felix, W. F. (2011).
Identification of fraudulent financial statements using linguistic credibility analysis. Decision
Support Systems, 50(3):585–594.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to statistical
learning, volume 112. Springer Science & Business Media.

Kang, J. S., Kuznetsova, P., Luca, M., and Choi, Y. (2013). Where not to eat? Improving
public policy by predicting hygiene inspections using online reviews. In Proceedings of the
2013 conference on empirical methods in natural language processing, pages 1443–1448.

Kothari, S. P. and Sloan, R. G. (1992). Information in prices about future earnings: Implications
for earnings response coefficients. Journal of Accounting and Economics, 15(2-3):143–171.

Lang, M. and Lundholm, R. (1993). Cross-sectional determinants of analyst ratings of corporate
disclosures. Journal of Accounting Research, 31(2):246–271.

Lang, M. and Stice-Lawrence, L. (2015). Textual analysis and international financial reporting:
Large sample evidence. Journal of Accounting and Economics, 60(2-3):110–135.

Larcker, D. F. and Zakolyukina, A. A. (2012). Detecting deceptive discussions in conference
calls. Journal of Accounting Research, 50(2):495–540.

Leuz, C., Nanda, D., and Wysocki, P. D. (2003). Earnings management and investor protection:
An international comparison. Journal of Financial Economics, 69(3):505–527.

Li, F. (2008). Annual report readability, current earnings, and earnings persistence. Journal of
Accounting and Economics, 45(2-3):221–247.

33



Predicting Earnings Management from Qualitative Disclosures

Li, F. (2010). The information content of forward-looking statements in corporate filings—a
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A Internet appendix

A.1 Actuarial background on loss reserve

The original loss reserve for a specific year is defined as the estimated total incurred losses in

the calendar year less the cumulated paid losses in that year. The corresponding developed

reserve describes the revision of the total incurred losses from the original calendar year after a

development window minus the cumulated paid losses in the original calendar year. Both the

original and the developed loss reserve are reported to the NAIC in the Schedule P - Part 2

and 3 of the company’s annual statements. An example for a Schedule P with annotations is

shown in Figure A.1. The loss reserve error is the difference between original and developed

reserve. Thus, the loss reserve error for a company i is calculated as the total incurred losses in

a calendar year t minus the revised estimate of the incurred losses in t reported in the calendar

year t+n:

Errori,t = Incurred lossesi,t,t − Incurred lossesi,t,t+n (2)

An insurer underreserved in case the original loss reserve was less than the developed reserve.

Vice versa, the insurer overreserved in case the original loss reserve was greater than the devel-

oped reserve.

Figure A.1: Example for Annual Statement Schedule P
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A.2 Descriptive statistics for stock and mutual companies

Figure A.2: Comparison of the reserve error distribution for stock and mutual companies

The figure compares the reserve error scaled to total assets for stock and mutual companies. The boxplot
indicates the 25%-, 50%-, and 75%- percentile. The light lines are whiskers indicating the data ranging
within 1.5 times interquantile range past the low and high quartiles. Points outside this range are
identified as outliers.

37



Predicting Earnings Management from Qualitative Disclosures

Table A.1: Groupwise summary statistics

Count Mean SD 25% 50% 75%

Scaled
reserve
error

Total 722 0.0149 0.1006 -0.0061 0.0151 0.0514
Mutual 293 0.0324 0.0698 0.0038 0.0214 0.0547
Stock 429 0.0028 0.1156 -0.0208 0.0082 0.0483

Reported
reserve

Total 722 734.2433 3,868.8758 2.4380 16.0270 116.4905
Mutual 293 316.0753 1,973.6405 1.8010 17.0510 99.8590
Stock 429 1,019.8452 4,728.2283 2.6810 14.9980 130.2620

Developed
reserve

Total 722 702.3914 3,790.7891 2.1318 13.4585 109.8980
Mutual 293 289.7807 1827.4979 1.3870 12.5200 87.9450
Stock 429 984.1978 4661.8533 2.7370 13.7670 125.2510

Total
assets

Total 722 2,048.1794 11,574.8734 17.8359 80.7031 445.2465
Mutual 293 1,187.8026 8,796.4823 14.9741 72.6196 402.2610
Stock 429 2,635.8026 13,116.8798 18.8117 83.0273 522.3763

Net
income

Total 721 49.0255 403.9909 0.0229 1.1751 8.7625
Mutual 293 22.2802 163.3603 0.0571 1.1013 8.4124
Stock 428 67.3347 506.0863 -0.0476 1.2581 8.8335

Direct
premiums
written

Total 722 631.7138 3,193.1869 7.2752 36.7996 186.5501
Mutual 293 425.3609 3,307.0738 5.9046 29.7026 155.2256
Stock 429 772.6495 3,109.0426 8.3644 39.4052 231.9189

Growth of
direct
premiums
written

Total 691 12.2079 46.2521 -0.0071 5.7713 13.0655
Mutual 292 6.3113 16.8378 0.3787 5.1518 9.7688
Stock 399 16.5232 58.7987 -0.3767 6.6728 17.0965

Business
concentra-
tion
index

Total 695 0.5480 0.3309 0.2476 0.4753 0.9813
Mutual 291 0.5059 0.3273 0.2271 0.3794 0.9258
Stock 404 0.5783 0.3305 0.2802 0.5198 0.9967

RBC ratio
Total 683 1,297.1244 2,914.9587 496.2897 826.6821 1,281.0761
Mutual 271 1,227.7156 1,010.9459 668.6531 973.1861 1,507.3788
Stock 412 1,342.7792 3,663.7355 451.2245 707.9099 1,166.5369

MD&A
characters

Total 722 32.1458 82.7371 8.3875 13.1140 20.6820
Mutual 293 17.5471 40.8568 8.1660 12.9210 18.7280
Stock 429 42.1164 100.7336 8.4900 13.4460 22.3990

All numbers are taken from the companies’ respective NAIC annual statements for 2012. Reported
reserve, developed reserve, total admitted assets, net income, and direct premiums written are presented
in million US-Dollars. Growth of direct premiums written and RBC ratio are expressed in percentage
rates. Reserve error is scaled to total admitted assets. Developed reserve is calculated for a five-year
development window, i.e., it is measured in 2017. Premiums growth measures the annual growth rate of
direct premiums written from 2011 to 2012. Business concentration index is a Herfindahl Index across the
property and casualty lines of business and is based on direct premiums earned. RBC ratio indicates the
ratio of adjusted capital to the authorized control level. MD&A characters denote the count of characters
(in 1,000) in the MD&A section of a company.
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A.3 MD&A collection procedure

Document retrieval

We search for MD&A sections for all companies fulfilling the financial sample selection

criteria described in section 3. For companies that have been publicly traded in 2012, we

collect the 10-K filing for the reporting year 2012. We use a Python script to cut out

the MD&A section on the basis of the beginning and ending of the section. We identified

the beginning based on the header ”Item 7.” and the ending based on the header of

the next section ”Item 8.”. We account for possible spelling variants, such as ”Item 7”,

”Item7”, ”item.7”. For all remaining private companies, stock as well as mutual, we collect

the MD&A section as part of the annual statement filing with the NAIC. All filings are

accessed via the S&P Global Market Intelligence Documents & Filings Search. If entities of

a company group have individual filings, the filing of the largest US property and casualty

entity in terms of reported capital and surplus is collected.

Transformation to raw text

All filings are stored as a PDF document and need to be changed to raw text for the textual

analysis. We use the tool pdftotext.com for the conversion. In case of a technical error

of the pdf text conversion, we assessed whether an alternative, pdf2go.com, is successful.

However, in some cases the pdf consists of an image of the MD&A section and we need to

use an adequate image conversion tool, www.convertimagetotext.net. In case of a technical

error during the image conversion, we use www.newocr.com.

Merge with data set

Lastly, we merge the MD&A raw text sections with the financial dataset. Any further text

cleaning, such as lower casing or deletion of numbers, is done by the TF-IDF vectorizer

itself.
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A.4 Machine learning models

This section introdues the machine learning models that we have used to classify the sign of

the reserve error. We consider twelve different models that belong to different model families.

During the model selection, we use all unigrams of lemmatized tokens in the MD&A sections

as feature set. We fit the models in a cross-validation approach to maximize the out-of-sample

power. A detailed presentation is beyond the scope of this paper and we refer to (Hastie et al.,

2009; James et al., 2013).

K-Nearest Neigbors model belongs to instance-based learning. It classifies a new data

point based on the closest data points in the training data, the data point’s nearest neighbors.

It is conducted as a simple majority vote of the k nearest neighbors of the data point, whereby

k is an integer number chosen by the researcher. The data point is allocated to the group with

the most representatives in its neighborhood.

We use Python scikit-learn package ”KNeighborsClassifier” to fit the k-nearest neighbors

model with the default number of neighbors that equals five neighbors.

Logistic Regression, also known as logit regression of log-linear classifier, is a linear classi-

fication model. Despite its name, it is a classification algorithm and not a regression algorithm.

It uses a logistic function to model the probability that the data point’s value of the target

variable belongs to a certain target variable class given the datapoint’s features. The logistic

function ensures that the predicted probability ranges between 0 and 1. It thereby compensates

the inability of linear regression models to appropriately investigate influences on discrete vari-

ables. For any data point, a prediction of the target variable’ value can be made by defining

a decision boundary. It uses the maximum likelihood to estimate the features’ coefficients. If

the probability to belong to a certain class is above the defined threshold, the target variable is

predicted to belong to this particular class.

We use Python scikit-learn package ”LogisticRegression” to fit the logistic regression model

with the default L2 penalty. Additionally, we set a random initial starting value to be able to

replicate the results.

Linear Discriminant Analysis is a classifier that assumes that the sample is drawn from

a multivariate Gaussian distribution with a class-specific mean vector and a common covariance

matrix. By projecting input data into a linear subspace whose directions maximize class separa-

tion, it can be applied to reduce dimensionality in a supervised manner.The Linear Discriminant

Analysis is closely connected to the Logistic Regression model: Both approaches produce linear

decision boundaries, but the models differ in the way the coefficients are computed.

We use Python scikit-learn package ”LinearDiscriminantAnalysis”. Since a Linear Discrim-

inant Analysis requires dense data, but the TF-IDF-matrix is sparse, we add a FunctionTrans-

former to the pipeline to generate dense matrix.

Naive Bayes Classifier belongs to the supervised learning algorithms that apply the Bayes

theorem. The underlying assumption is that feature pairs are conditionally independent from

each other given the class variable value. While the assumption does not hold true in general, it

considerably facilitates the estimation. The Multinomial Naive Bayes Classifier is one variant of

the Naive Bayes method and it applies the Naive Bayes algorithm to data that is multinomially
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distributed. The Multinomial Naive Bayes Classifier is suitable for classification with discrete

features (e.g., word counts for text classification) (Schütze et al., 2008).

We use Python scikit-learn package ”MultinomialNB” to fit the Mulitnomial Naive Bayes

Classification model with the default additive smoothing parameter of 1.0.

Decision Tree models are part of the non-parametric supervised learning methods. As

such, they find use in both regressions and classifications. In essence, they learn a hierarchy

of True/False questions, that lead to a decision. Decision Trees take data features and derive

decision-making rules from them to devise a model that can predict a given target variable’s

value. In more detail, they split the feature space into rectangles and subsequently fit a model

for each one. Decision Trees can be used with both categorical and numerical data.

We use Python scikit-learn package ”DecisionTreeClassifier” to fit the decision tree model.

To avoid overfitting, we restrict the maximum depth of the tree to ten (Müller and Guido, 2016).

Additionally, we set a random initial starting value to be able to replicate the results.

Random Forest belongs to the group of ensemble methods, and within that to the subgroup

of averaging methods. As such, it constructs a vast array of uncorrelated decision trees that are

built on bootstrapped training samples. The resulting element of randomness allows for trees

with prediction errors, that can cancel each other out upon averaging them. This reduces the

amount of overfitting. Consequently, compared to a single Decision Tree, Random Forests can

often yield a significantly lower variance at the expense of only a little increase in bias, and thus

a better performing model.

We use Python scikit-learn package ”RandomForestClassifier” to grow a random forest of

100 decision tree model. We restrict the maximum depth of any decision tree to ten (Müller

and Guido, 2016). Additionally, we set a random initial starting value to be able to replicate

the results.

Gradient Boosting Machine is another ensemble method that combines several decision

trees. In contrast to the Random Forest model, gradient boosting builds trees sequentially,

where each tree tries to correct the errors of the previous one. Thereby, several weaker models

can be synthesized into a more powerful one. The method particularly stands out due to its

robustness regarding outliers.

We use Python scikit-learn package ”GradientBoostingClassifier” with 100 boosting stages

to perform. We restrict the maximum depth of any decision tree to three nodes (Müller and

Guido, 2016). The contribution of each new tree shrinks with the learning rate, which is set to

0.1. Additionally, we set a random initial starting value to be able to replicate the results.

Support Vector Machine is a representation of the examples as points in space, mapped

in way such that the examples of the separate categories are divided by a clear gap that is as

wide as possible. The model classifies samples to find the decision boundary with the largest

margin. New examples are then mapped into that same space and predicted to belong to a

category based on the side of the gap on which they fall. Support Vector Machines are soft-

margin classifiers: In the interest of better classification of most of the training set and greater

robustness to new examples, the maximum margin does not need to perfectly separate the two

classes. There are several variants of Support Vector Machines. The linear Support Vector

Classifier works with a linear class boundary, whereas Support Vector Machines are extensions
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of the Support Vector Classifier and accommodate non-linear class boundaries. Support Vector

Machines result results from enlarging the feature space using kernels (James et al., 2013).

We assess a linear Support Vector Classifier by using the scikit-learn package ”LinearSVC”.

Moreover, we use the Python scikit-learn package ”SVC” to make classifications with a Support

Vector Machine. We investigate to two different kernel function: Radial basis function kernel

(”rbf”) and a linear kernel. Gamma, the kernel coefficient for ”rbf”, is set to ’scale’, which uses

the value 1/(number of features * X.var()). In all three models, we set a random initial starting

value to be able to replicate the results.

Stochastic Gradient Descent is a method associated with discriminant learning of linear

classifiers under convex loss functions. The method recently rose to prominence along with some

of its major fields of application that include natural language processing or text classification.

Being comparatively efficient and simple, it particularly proved useful in tasks characterized by

large scale and scarce data. A Gradient Descent measures the local gradient of the cost function

with regards to the parameter vector and it moves in the direction of the descending gradient.

Once the gradient is zero, it reaches a minimum. The gradient vector contains all the partial

derivatives of the cost function for the complete training set. A Stochastic Gradient Descent is

an efficient learning approach for linear classifiers with a convex cost function. The gradients

are computed based on that single instance rather than on full training set.

We use Python scikit-learn package ”SGDClassifier” with a hinge loss function. The hinge

loss function describes a soft-margin linear Support Vector Machine, which is equivalent to a SVC

with a linear kernel. We set a random initial starting value to be able to replicate the results.

We use balanced class weights to adjust weights inversely proportional to class frequencies. A

class denotes a specific value of the target variable).

Neural Network comprise a selection of numerous non-linear statistical models. In general,

a neural network can be understood as a regression or classification model with two steps. In

step one, the idea is to arrive at features that are derived from linear input combinations. In

step two, the features serve to model the target as a function of those features. Neural Networks

have proven powerful in many ways and thus have found broad application in diverse fields.

We use Python scikit-learn package ”MLPClassifier” for the Multi-Layer Perceptron Network

with 100 hidden layers. We set a random initial starting value to be able to replicate the results.
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A.5 Parameter fine-tuning of the most promising models of the model selec-

tion

A.5.1 Parameter fine-tuning of the Gradient Boosting model

Table A.2: Tuning of number of trees

Number of trees Mean test score SD test score Rank test score

1 20 0.6268 0.0364 8

2 30 0.6213 0.0392 9

3 40 0.6314 0.0433 6

4 50 0.6301 0.0432 7

5 60 0.6369 0.0473 3

6 70 0.6355 0.0483 5

7 80 0.6427 0.0445 1

8 90 0.6390 0.0391 2

9 100 0.6364 0.0397 4

The table shows the grid search results for the first-level parameter fine-tuning of the Gradient Boosting

model. The first-level parameter fine-tuning identifies the number of trees with the highest test score

among the range from 20 to 100. The table shows the mean, the standard deviation (SD), and the rank

of the AUC test scores of the five-fold cross-validation.

Table A.3: First tree-specific tuning level: Maximal depth and minimum of samples for a split

Maximal

depth

Minimum

samples for

split

Mean test

score

SD test

score

Rank test

score

1 3 2 0.6427 0.0445 3

2 3 5 0.6354 0.0259 6

3 3 7 0.6432 0.0318 2

4 3 10 0.6338 0.0190 8

5 3 15 0.6314 0.0067 10

6 3 20 0.6324 0.0223 9

7 3 30 0.6362 0.0308 5

8 5 2 0.6148 0.0283 24

9 5 5 0.6018 0.0510 35

10 5 7 0.6021 0.0321 34

11 5 10 0.6077 0.0379 31

12 5 15 0.6196 0.0293 19

13 5 20 0.6185 0.0213 20

14 5 30 0.6376 0.0356 4

15 7 2 0.6115 0.0540 28
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Table A.3: First tree-specific tuning level: Maximal depth and minimum of samples for a split
(continued)

Maximal

depth

Minimum

samples for

split

Mean test

score

SD test

score

Rank test

score

16 7 5 0.6168 0.0373 21

17 7 7 0.6160 0.0662 22

18 7 10 0.6207 0.0450 18

19 7 15 0.6271 0.0533 15

20 7 20 0.6350 0.0444 7

21 7 30 0.6140 0.0229 26

22 10 2 0.5994 0.0446 36

23 10 5 0.5951 0.0517 38

24 10 7 0.6071 0.0694 32

25 10 10 0.6148 0.0511 25

26 10 15 0.6291 0.0410 12

27 10 20 0.6493 0.0555 1

28 10 30 0.6302 0.0474 11

29 12 2 0.6156 0.0579 23

30 12 5 0.5804 0.0598 41

31 12 7 0.6132 0.0589 27

32 12 10 0.6069 0.0469 33

33 12 15 0.6253 0.0531 16

34 12 20 0.6247 0.0497 17

35 12 30 0.6274 0.0382 14

36 15 2 0.5993 0.0449 37

37 15 5 0.5815 0.0597 40

38 15 7 0.5789 0.0480 42

39 15 10 0.5859 0.0535 39

40 15 15 0.6085 0.0522 29

41 15 20 0.6082 0.0508 30

42 15 30 0.6289 0.0277 13

The table shows the grid search results for the first tree-specific tuning level, which consider a range of

maximal depth from 3 to 15 and a range of minimum of samples required for a split from 2 to 30. The

Gradient Boosting model’s number of trees is 80, which has been identified in the first-level parameter

fine-tuning of the Gradient Boosting model. The table shows the mean, the standard deviation (SD),

and the rank of the AUC test scores of the five-fold cross-validation.
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Table A.4: Second tree-specific tuning level: Minimum of samples at a leaf

Minimum

samples at

leaf

Mean test

score

SD test score Rank test

score

1 1 0.6493 0.0555 2

2 2 0.6228 0.0431 5

3 5 0.6142 0.0212 6

4 7 0.6440 0.0268 4

5 10 0.6602 0.0183 1

6 15 0.6463 0.0263 3

The table shows the grid search results for the second tree-specific tuning level, which considers a range

of minimum of samples at a leaf from 1 to 15. The Gradient Boosting model has the following parameters,

which have been identified in the first-level parameter fine-tuning and the first tree-specific tuning: the

number of trees is 80, the maximal depth of a tree is 10, and the minimum of samples for a split is 20.

The table shows the mean, the standard deviation (SD), and the rank of the AUC test scores of the

five-fold cross-validation.

Table A.5: Third tree-specific tuning level: Maximal number of features considered for split at
a node

Maximal

features

Mean test

score

SD test score Rank test

score

1 10 0.5696 0.0224 6

2 20 0.5848 0.0384 5

3 50 0.6264 0.0649 2

4 100 0.6019 0.0240 3

5 Squareroot(N

features)

0.5950 0.0598 4

6 N features 0.6602 0.0183 1

The table shows the grid search results for the third tree-specific tuning level, which considers a range

of maximal features considered at each node from 10 to number of all features. The number of features

is 18600 and the square root of the number of features is 138. The Gradient Boosting model has the

following parameters, which have been identified in the first-level parameter fine-tuning and the first and

second tree-specific tuning: the number of trees is 80, the maximal depth of a tree is 10, the minimum

of samples for a split is 20, and the minimum samples at a leaf are 10. The table shows the mean, the

standard deviation (SD), and the rank of the AUC test scores of the five-fold cross-validation.
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Table A.6: Text preprocessing parameter tuning for the Gradient Boosting model

Maximal

share of

documents

Minimal

number of

documents

Mean test

score

SD test

score

Rank test

score

1 1 1 0.6602 0.0183 1

2 1 5 0.6349 0.0405 3

3 1 10 0.6400 0.0270 2

4 0.9 1 0.6130 0.0381 7

5 0.9 5 0.6168 0.0424 5

6 0.9 10 0.6096 0.0287 9

7 0.8 1 0.6189 0.0361 4

8 0.8 5 0.6159 0.0464 6

9 0.8 10 0.6110 0.0528 8

The table shows the grid search results for a range of the maximum share of documents for a token from

0.8 and 1.0 in combination with a range of the minimum number of documents for a token from 1 to 10.

The Gradient Boosting model has the following parameters, which have been identified in the first-level

parameter fine-tuning and the tree-specific tuning: the number of trees is 80, the maximal depth of a tree

is 10, the minimum of samples for a split is 20, the minimum samples at a leaf are 10, and all features

are considered for a split. The table shows the mean, the standard deviation (SD), and the rank of the

AUC test scores of the five-fold cross-validation.
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A.5.2 Parameter fine-tuning of the Stochastic Gradient Descent model

Table A.7: Parameter fine-tuning for the Stochastic Gradient Descent model

Alpha L1 ratio Mean test score SD test score Rank test score

1 0.0001 0 0.6148 0.0336 10

2 0.0001 0.1 0.6139 0.0347 14

3 0.0001 0.15 0.6141 0.0335 13

4 0.0001 0.2 0.6133 0.0330 16

5 0.0001 0.3 0.6137 0.0321 15

6 0.0001 0.4 0.6145 0.0364 12

7 0.0001 0.5 0.6119 0.0369 18

8 0.0001 0.6 0.6103 0.0404 20

9 0.0001 0.7 0.6111 0.0413 19

10 0.0001 0.8 0.6099 0.0432 21

11 0.0001 0.9 0.6076 0.0442 24

12 0.0001 1 0.6030 0.0465 26

13 0.001 0 0.6219 0.0389 1

14 0.001 0.1 0.6186 0.0407 3

15 0.001 0.15 0.6189 0.0431 2

16 0.001 0.2 0.6156 0.0452 7

17 0.001 0.3 0.6146 0.0481 11

18 0.001 0.4 0.6157 0.0507 6

19 0.001 0.5 0.6168 0.0538 5

20 0.001 0.6 0.6154 0.0561 8

21 0.001 0.7 0.6149 0.0565 9

22 0.001 0.8 0.6128 0.0537 17

23 0.001 0.9 0.6091 0.0532 22

24 0.001 1 0.6083 0.0502 23

25 0.01 0 0.5899 0.0311 28

26 0.01 0.1 0.5734 0.0310 31

27 0.01 0.15 0.5638 0.0343 32

28 0.01 0.2 0.5620 0.0437 33

29 0.01 0.3 0.5540 0.0557 34

30 0.01 0.4 0.5821 0.0695 30

31 0.01 0.5 0.5934 0.0645 27

32 0.01 0.6 0.6058 0.0291 25

33 0.01 0.7 0.6176 0.0297 4

34 0.01 0.8 0.5383 0.0485 35

35 0.01 0.9 0.5231 0.0464 36

36 0.01 1 0.5000 0.0000 37

37 0.1 0 0.5884 0.0319 29
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Table A.7: Parameter fine-tuning for the Stochastic Gradient Descent model (continued)

Alpha L1 ratio Mean test score SD test score Rank test score

38 0.1 0.1 0.5000 0.0000 37

39 0.1 0.15 0.5000 0.0000 37

40 0.1 0.2 0.5000 0.0000 37

41 0.1 0.3 0.5000 0.0000 37

42 0.1 0.4 0.5000 0.0000 37

43 0.1 0.5 0.5000 0.0000 37

44 0.1 0.6 0.5000 0.0000 37

45 0.1 0.7 0.5000 0.0000 37

46 0.1 0.8 0.5000 0.0000 37

47 0.1 0.9 0.5000 0.0000 37

48 0.1 1 0.5000 0.0000 37

The table shows the grid search results for a range of the learning rate alpha from 0.0001 to 0.1 in

combination with a range of the L1 ratio from 0 to 1. The L1 ratio describes the form of the penalty. It

can be the squared euclidean norm (L2, which corresponds to the value of the L1 ratio 0) or the absolute

norm (L1, which corresponds to the value of the L1 ratio1) or combinations of both (L1 ratio between

0 and 1). The Stochastic Gradient Descent model has a hinge loss function and balanced class weights.

The table shows the mean, the standard deviation (SD), and the rank of the AUC test scores of the

five-fold cross-validation.

Table A.8: Text preprocessing parameter tuning for the Stochastic Gradient Descent model

Maximal

share of

documents

Minimal

number of

documents

Mean test

score

SD test

score

Rank test

score

1 1 1 0.6219 0.0389 7

2 1 5 0.6179 0.0337 8

3 1 10 0.6156 0.0354 9

4 0.9 1 0.6498 0.0404 4

5 0.9 5 0.6470 0.0282 6

6 0.9 10 0.6496 0.0321 5

7 0.8 1 0.6531 0.0505 2

8 0.8 5 0.6499 0.0434 3

9 0.8 10 0.6556 0.0399 1

The table shows the grid search results for a range of the maximum share of documents for a token from

0.8 and 1.0 in combination with a range of the minimum number of documents for a token from 1 to 10.

The Stochastic Gradient Descent model has a L2 penalty, a learning rate of 0.001, a hinge loss function

and balanced class weights. The table shows the mean, the standard deviation (SD), and the rank of the

AUC test scores of the five-fold cross-validation.
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A.6 Evaluation of alternative text representation

A.6.1 Tuning of text representation refinements of the Stochastic Gradient De-

scent model

Table A.9: Text representation refinement

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

1 (1, 1) 0.6618 0.0411 10

2 (1, 1) Abbreviations 0.6538 0.0418 28

3 (1, 1) Numbers 0.6682 0.0422 3

4 (1, 1) Locations 0.6465 0.0452 41

5 (1, 1) Names 0.6609 0.0396 15

6 (1, 1) Abbreviations,

Numbers

0.6584 0.0414 20

7 (1, 1) Abbreviations,

Locations

0.6401 0.0426 46

8 (1, 1) Abbreviations,

Names

0.6547 0.0430 27

9 (1, 1) Numbers,

Locations

0.6560 0.0400 25

10 (1, 1) Numbers,

Names

0.6675 0.0374 4

11 (1, 1) Locations,

Names

0.6496 0.0413 34

12 (1, 1) Abbreviations,

Numbers,

Locations

0.6456 0.0389 42

13 (1, 1) Abbreviations,

Numbers,

Names

0.6615 0.0408 12
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Table A.9: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

14 (1, 1) Abbreviations,

Locations,

Names

0.6415 0.0422 44

15 (1, 1) Numbers,

Locations,

Names

0.6588 0.0399 19

16 (1, 1) All 0.6486 0.0361 36

17 (1, 2) 0.6675 0.0228 5

18 (1, 2) Abbreviations 0.6600 0.0293 17

19 (1, 2) Numbers 0.6726 0.0222 2

20 (1, 2) Locations 0.6548 0.0302 26

21 (1, 2) Names 0.6671 0.0223 6

22 (1, 2) Abbreviations,

Numbers

0.6617 0.0309 11

23 (1, 2) Abbreviations,

Locations

0.6470 0.0383 40

24 (1, 2) Abbreviations,

Names

0.6595 0.0277 18

25 (1, 2) Numbers,

Locations

0.6574 0.0344 22

26 (1, 2) Numbers,

Names

0.6732 0.0221 1

27 (1, 2) Locations,

Names

0.6562 0.0300 24
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Table A.9: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

28 (1, 2) Abbreviations,

Numbers,

Locations

0.6481 0.0419 39

29 (1, 2) Abbreviations,

Numbers,

Names

0.6645 0.0279 9

30 (1, 2) Abbreviations,

Locations,

Names

0.6481 0.0374 38

31 (1, 2) Numbers,

Locations,

Names

0.6610 0.0324 14

32 (1, 2) All 0.6496 0.0426 35

33 (1, 3) 0.6607 0.0298 16

34 (1, 3) Abbreviations 0.6503 0.0333 31

35 (1, 3) Numbers 0.6651 0.0273 7

36 (1, 3) Locations 0.6499 0.0310 32

37 (1, 3) Names 0.6614 0.0294 13

38 (1, 3) Abbreviations,

Numbers

0.6569 0.0312 23

39 (1, 3) Abbreviations,

Locations

0.6396 0.0363 47

40 (1, 3) Abbreviations,

Names

0.6512 0.0320 29

41 (1, 3) Numbers,

Locations

0.6508 0.0338 30
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Table A.9: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

42 (1, 3) Numbers,

Names

0.6649 0.0252 8

43 (1, 3) Locations,

Names

0.6483 0.0313 37

44 (1, 3) Abbreviations,

Numbers,

Locations

0.6430 0.0366 43

45 (1, 3) Abbreviations,

Numbers,

Names

0.6578 0.0317 21

46 (1, 3) Abbreviations,

Locations,

Names

0.6378 0.0382 48

47 (1, 3) Numbers,

Locations,

Names

0.6497 0.0329 33

48 (1, 3) All 0.6404 0.0389 45

The table shows the grid search results for ngram range and stopword compositions of the Stochastic

Gradient Descent model. The ngram range describes whether unigrams, uni- and bigrams, or uni-,bi-,

and trigrams should be used by the classification model. Four stop word lists are defined: Abbreviations,

verbally written numbers, locations, and names. The stop word lists are shown in Section A.6.3. The

classification model is a Stochastic Gradient Descent model with a L2 penalty, a learning rate of 0.001,

a hinge loss function and balanced class weights. The text preprocessing ignores lemmatized tokens of

the MD&A section that appear either in more than 80 percent of the documents or in less than 10

documents. The table shows the mean, the standard deviation (SD), and the rank of the AUC test scores

of the five-fold cross-validation.
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A.6.2 Tuning of text representation refinements of the Gradient Boosting model

Table A.10: Text representation refinement

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

1 (1, 1) 0.6602 0.0183 1

2 (1, 1) Abbreviations 0.6376 0.0398 3

3 (1, 1) Numbers 0.6280 0.0144 5

4 (1, 1) Locations 0.6305 0.0307 4

5 (1, 1) Names 0.6136 0.0325 11

6 (1, 1) Abbreviations,

Numbers

0.6020 0.0303 18

7 (1, 1) Abbreviations,

Locations

0.5936 0.0299 35

8 (1, 1) Abbreviations,

Names

0.6234 0.0360 6

9 (1, 1) Numbers,

Locations

0.6061 0.0363 14

10 (1, 1) Numbers,

Names

0.6383 0.0215 2

11 (1, 1) Locations,

Names

0.6223 0.0292 7

12 (1, 1) Abbreviations,

Numbers,

Locations

0.5946 0.0359 34

13 (1, 1) Abbreviations,

Numbers,

Names

0.6218 0.0295 8
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Table A.10: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

14 (1, 1) Abbreviations,

Locations,

Names

0.5930 0.0320 36

15 (1, 1) Numbers,

Locations,

Names

0.6144 0.0210 10

16 (1, 1) All 0.6049 0.0261 16

17 (1, 2) 0.6188 0.0444 9

18 (1, 2) Abbreviations 0.6000 0.0395 22

19 (1, 2) Numbers 0.5955 0.0469 31

20 (1, 2) Locations 0.6122 0.0554 12

21 (1, 2) Names 0.6061 0.0307 15

22 (1, 2) Abbreviations,

Numbers

0.6003 0.0490 21

23 (1, 2) Abbreviations,

Locations

0.5985 0.0645 26

24 (1, 2) Abbreviations,

Names

0.5970 0.0437 28

25 (1, 2) Numbers,

Locations

0.6082 0.0548 13

26 (1, 2) Numbers,

Names

0.6009 0.0417 20

27 (1, 2) Locations,

Names

0.5974 0.0433 27
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Table A.10: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

28 (1, 2) Abbreviations,

Numbers,

Locations

0.5997 0.0663 23

29 (1, 2) Abbreviations,

Numbers,

Names

0.5957 0.0315 30

30 (1, 2) Abbreviations,

Locations,

Names

0.6024 0.0603 17

31 (1, 2) Numbers,

Locations,

Names

0.5915 0.0460 37

32 (1, 2) All 0.5739 0.0477 46

33 (1, 3) 0.5685 0.0269 47

34 (1, 3) Abbreviations 0.5863 0.0287 40

35 (1, 3) Numbers 0.5948 0.0522 33

36 (1, 3) Locations 0.5968 0.0395 29

37 (1, 3) Names 0.5764 0.0340 45

38 (1, 3) Abbreviations,

Numbers

0.5624 0.0268 48

39 (1, 3) Abbreviations,

Locations

0.5846 0.0118 42

40 (1, 3) Abbreviations,

Names

0.5765 0.0497 44

41 (1, 3) Numbers,

Locations

0.5950 0.0411 32
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Table A.10: Text representation refinement (continued)

Ngram

range

Stop words Mean test

score

SD test

score

Rank test

score

42 (1, 3) Numbers,

Names

0.5848 0.0291 41

43 (1, 3) Locations,

Names

0.5885 0.0343 38

44 (1, 3) Abbreviations,

Numbers,

Locations

0.5881 0.0439 39

45 (1, 3) Abbreviations,

Numbers,

Names

0.5831 0.0441 43

46 (1, 3) Abbreviations,

Locations,

Names

0.5995 0.0261 25

47 (1, 3) Numbers,

Locations,

Names

0.5997 0.0444 24

48 (1, 3) All 0.6015 0.0498 19

The table shows the grid search results for ngram range and stopword compositions of the Gradient

Boosting model. The ngram range describes whether unigrams, uni- and bigrams, or uni-,bi-, and trigrams

should be used by the classification model. Four stop word lists are defined: Abbreviations, verbally

written numbers, locations, and names. The stop word lists are shown in Section A.6.3. The classification

model is a Gradient Boosting model with the following parameters: the number of trees is 80, the maximal

depth of a tree is 10, the minimum of samples for a split is 20, the minimum samples at a leaf are 10,

and all features are considered for a split. The table shows the mean, the standard deviation (SD), and

the rank of the AUC test scores of the five-fold cross-validation.

56



Predicting Earnings Management from Qualitative Disclosures

A.6.3 Stop words lists

Table A.11: Stop word list: Abbreviations

aa co gic mga ri

aaa col gl mgas rli

ab coli gmdb mi rm

abs comp gmib mic rmbs

ac cpa gnma mm rrg

ace cpcu gse mn sa

ach cpp guam mo sba

acl csi hcc mpci sc

acre ct hi mrb sch

ad da hm ms sd

adj dac ho mt se

afs db ia na sr

ag dc ibnr nalc ss

ak dcc id nc ssap

al ddr ii ncci st

alae de iii nd ste

amt dec iine ne sti

ann des ike nh su

aoci dfs il nj svo

ar dl inc nm tac

asc doi inure nol te

asi dpac inv nols tenn

asic edp inve nr tn

asu eea iong nt toa

ay eft ioss nv too

az en irs nys top

ba ent isda occ toss

baa epli iv oci tpa

bb er ix oh tri

bbb es ks ooo tria

bi et ky otc tx

bma etc le otti ulae

bona ex lee pa un

bop exp li pcs va

bp fa liab pd vi

bps fas liabili phs vie

ca fasb llc pip vii

caa fcas llp pl viii

cc fcic loc plc vp
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Table A.11: Stop word list: Abbreviations (continued)

ccc fdic los pml vs

cd fhcf lp po vt

cdo fhlb lpt ppa wa

cdos fhlmc ltd pr wc

cds fico ltv pra wi

ce fide lus pre wm

cfc fio ma prem wv

cfo fl maaa proj xi

cfpb forma mac pt xol

chg frb maj qbe xxx

cic fsa map rata yr

cio fsb mbia rd

clo fsoc mbs rec

cmbs ft md reins

cmp ga mda relie
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Table A.12: Stop word list: Company names and names

aic davis isaac marie sachs
aig dennis james mark samuel
alexander deutsche jean marsh san
allianz donald jefferson martin sandy
allstate douglas jeffrey mary sap
ally edward jim matthew scor
andrew edwin john mesothelioma scott
anthony eric johnson michael scottsdale
antonio erisa jones moody smith
aon everest joseph moore statewide
arthur fannie jp morgan stephen
barclays ferguson jpmorgan morris sterling
benjamin francis katrina nationwide susan
berkley frank keith obama terry
berkshire franklin kelly odyssey thomas
bernard freddie kenneth oliver thompson
bradley frederick kevin onebeacon timothy
brian gary kpmg patrick vincent
bruce george larry paul watson
carlson goldman lehman penn wayne
catlin gregory levy peter wells
christopher hampshire lewis pimco william
chubb hancock lisa ransom willis
citigroup harold lloyd republic wilson
clarendon harris lloyds richard wyman
columbus hathaway logan rita
craig henry louis robert
dale howard lynn roger
daniel irene mae ronald
david iris maiden russell
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Table A.13: Stop word list: Locations

africa chile ireland mississippi southeast
alabama china irish missouri southeastern
alaska cincinnati island moines southern
america colorado islands montana southwest
american columbia italy montpelier spain
americas connecticut japan munich sweden
angeles dakota japanese nebraska swiss
arizona dallas jersey netherlands switzerland
arkansas doddfrank kansas nevada tennessee
asia ecuador kentucky north texas
atlanta england kingdom northeast thailand
atlantic eu kong northeastern tokio
austin euro la northern transatlantic
australia europe latin northwest uk
australian european louisiana norway usa
baltimore eurozone luxembourg ny utah
belgium florida madison ohio vermont
bermuda francisco madrid oklahoma virginia
bermudian georgia maine ontario washington
bermudians germany markel oregon wellington
boston greece maryland pennsylvania west
brazil hannover mass philadelphia western
british harrisburg massachusetts pittsburgh wilmington
california hartford mexico portugal wisconsin
canada hawaii miami puerto wyoming
canadian houston michigan rhode york
caribbean idaho midwest richmond zealand
carolina illinois midwestern rico zurich
cayman indiana milwaukee silica
chicago iowa minnesota singapore

Table A.14: Stop word list: Verbally expressed numbers

eight fifth hundred seventy three
eighteen fifty million six twelfth
eighth first nine sixteen twelve
eighty five ninety sixth twenty
eleven fiveyear ninth sixty twice
eleventh four seven ten two
fifteen fourteen seventeen tenth frst
fifteenth fourth seventh thousand fve
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A.7 Evaluation of alternative text representation with unsupervised learning

model

Table A.15: Topic model for text representation: Selection of model with highest log-likelihood

Number of

topics

Mean test

score

SD test score Rank test

score

1 1 -1530471.2433 598967.3572 6

2 2 -1522172.4140 593308.8462 2

3 3 -1522006.3645 592921.8627 1

4 4 -1524864.9429 591504.7287 3

5 5 -1525066.7913 584522.1268 4

6 6 -1529305.7810 584581.6824 5

7 7 -1530918.5237 582089.6876 7

8 8 -1533400.0806 580285.3188 8

9 9 -1537138.7123 579939.5564 9

10 10 -1541156.5680 579141.6590 10

11 25 -1586107.7619 574894.7218 11

12 50 -1639754.8785 574702.5288 12

13 75 -1667214.5548 581008.9054 13

14 100 -1699796.8030 578719.6818 14

15 125 -1716609.9218 577471.3137 15

16 150 -1744294.8105 575696.9019 16

17 175 -1762914.5238 574048.3657 17

18 200 -1784962.2406 579433.2413 18

19 225 -1804446.8797 569826.6527 19

20 250 -1813993.3589 575374.9190 20

The table shows the grid search results for the number of topics of an LDA topic model. The text

preprocessing ignores lemmatized tokens of the MD&A section that appear either in more than 80 percent

of the documents or in less than 10 documents. Words that are names or verbally expressed numbers are

also ignored. The table shows the mean, the standard deviation (SD), and the rank of the log-likelihood

test scores of the five-fold cross-validation.
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Table A.16: Topic model for text representation: Performance of classification model combined
with best identifying LDA model

Accuracy Precision F1 AUC

0.4950 0.4141 0.4407 0.4882
(0.1547) (0.3381) (0.3633) (0.0269)

The table summarizes the performance scores of the cross-validation prediction of a Stochastic Gradient
Descent classification model based on the topics of the best identifying LDA model. The Stochastic
Gradient Descent model is implemented with a L2 penalty, a learning rate of 0.001, a hinge loss function
and balanced class weights. The text preprocessing ignores lemmatized tokens of the MD&A section that
appear either in more than 80 percent of the documents or in less than 10 documents. Words that are
names or verbally expressed numbers are also ignored. An LDA topic model with 3 topics is used as
second step of the text preprocessing. The table reports mean and standard deviation over the five cross-
validation folds. Accuracy is defined as the share of correct predictions. Precision measures the share of
true positives (that is, the case of overreserving in our model) among all predicted positives. The F1 score
is calculated as the harmonic mean of precision and recall, which measures the share of predicted positives
among all actual positives. The AUC estimates the probability that a random positive is ranked before
a random negative (in our model, the case of underreserving), without specifying a particular decision
threshold.

Table A.17: Topic model for text representation as part of overall classification model

Number of

topics

Mean test

score

SD test score Rank test

score

1 5 0.5051 0.0560 16

2 6 0.5114 0.0484 15

3 7 0.5389 0.0464 11

4 8 0.5277 0.0474 13

5 9 0.5248 0.0307 14

6 10 0.5385 0.0509 12

7 25 0.5630 0.0694 9

8 50 0.5822 0.0518 7

9 75 0.5874 0.0720 6

10 100 0.5898 0.0511 5

11 125 0.6006 0.0655 3

12 150 0.6134 0.0223 1

13 175 0.5942 0.0455 4

14 200 0.5809 0.0368 8

15 225 0.5547 0.0663 10

16 250 0.6076 0.0282 2

The table shows the grid search results for the number of topics of a classification model that combines

an LDA topic model with a Stochastic Gradient Descent classification model. The classification model

is a Stochastic Gradient Descent model with a L2 penalty, a learning rate of 0.001, a hinge loss function

and balanced class weights. The text preprocessing ignores lemmatized tokens of the MD&A section that

appear either in more than 80 percent of the documents or in less than 10 documents. Words that are

names or verbally expressed numbers are also ignored. An LDA topic model is used as second step of the

text preprocessing. The table shows the mean, the standard deviation (SD), and the rank of the AUC

test scores of the five-fold cross-validation.
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A.8 Integration of financial information in Gradient Boosting model

Table A.18: Selection of financial information model
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U
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1. 1. x 0.5964 25

2. x 0.6019 16

3. x 0.5881 32

4. x 0.5933 27

5. x 0.6081 10

6. x 0.5794 36

2. 1. x x 0.6100 9

2. x x 0.6113 7

3. x x 0.5985 22

4. x x 0.6072 12

5. x x 0.5931 30

6. x x 0.5976 23

7. x x 0.6015 18

8. x x 0.6125 6

9. x x 0.6018 17

10. x x 0.6013 19

11. x x 0.6003 20

12. x x 0.5933 28

13. x x 0.5873 33

3. 1. x x x 0.5892 31

2. x x x 0.6052 14

3. x x x 0.5991 21

4. x x x 0.5863 34

5. x x x 0.6176 3

6. x x x 0.6040 15

7. x x x 0.6167 4

8. x x x 0.6068 13

9. x x x 0.6159 5

10. x x x 0.6080 11

11. x x x 0.6102 8

12. x x x 0.5971 24
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Table A.18: Selection of financial information model (continued)
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4. 1. x x x x 0.5858 35

2. x x x x 0.6251 1

3. x x x x 0.5932 29

4. x x x x 0.6197 2

Baseline 0.5937 26

The table summarizes the AUC scores of the ten-fold cross-validation prediction of the alternative clas-

sification models with TF-IDF unigram word tokens of the MD&A sections. The column Average AUC

score shows the mean AUC test score of the cross-validation and the column Rank AUC score indicates

the rank of a specific average AUC score. The AUC estimates the probability that a random positive is

ranked before a random negative (in our model, the case of underreserving), without specifying a particu-

lar decision threshold. The columns Profit to RBC ratio (Median) indicate which financial information is

included. Compared to the Stochastic Gradient Descent model, interaction terms are not explicitly con-

structed, since the model is based on decision trees, which already consider the combination of different

features at each decision node. The Baseline category shows the results without financial information.
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A.9 Strongest features including locations and abbreviations

Figure A.3: Most important feature coefficients in the prediction model with MD&A and finan-
cial indicators

(a) Model with MD&A and financial indicators

(b) Model with MD&A, financial indicators, and interaction terms

The figure shows features with the 30 largest and the 30 smallest coefficients for two classification models
for over- and underreserving. Both models use a Stochastic Gradient Descent classifier with TF-IDF
uni- and bigram word. Models include financial indicators for profit, growth (Median), and RBC ratio
(Median). Word features that contain information on locations and abbreviations are shown in the figure.
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A.10 Results for Gradient Boosting model

Table A.19: Classification results for a model integrating financial information on test set

Precision Recall F1 Accuracy AUC

0 0.5385 0.1750 0.2642

1 0.7179 0.9333 0.8116 0.7000 0.5542

Weighted
average

0.6627 0.7000 0.6432

The table summarizes the performance scores of predictions on the hold-out test set of the alternative
classification models. Accuracy is defined as the share of correct predictions. Precision measures the
share of true positives (that is, the case of overreserving in our model) among all predicted positives.
The F1 score is calculated as the harmonic mean of precision and recall, which measures the share of
predicted positives among all actual positives. The AUC estimates the probability that a random positive
is ranked before a random negative (in our model, the case of underreserving), without specifying a
particular decision threshold. The weighted average calculates the support-weighted mean per label. The
prediction model is a Gradient Boosting classifier with TF-IDF unigrams of MD&A sections and profit,
growth (Positive), concentration and RBC ratio (Median) indicators.
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