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ABSTRACT

Management researchers often develop theories and policies that are forward-looking.
The prospective outlook of predictive modeling, where a model predicts unseen or
new data, can complement the retrospective nature of causal-explanatory modeling that
dominates the field. Partial least squares (PLS) path modeling is an excellent tool for
building theories that offer both explanation and prediction. A limitation of PLS, how-
ever, is the lack of a statistical test to assess whether a proposed or alternative theoretical
model offers significantly better out-of-sample predictive power than a benchmark or an
established model. Such an assessment of predictive power is essential for theory devel-
opment and validation, and for selecting a model on which to base managerial and policy
decisions. We introduce the cross-validated predictive ability test (CVPAT) to conduct
a pairwise comparison of predictive power of competing models, and substantiate its
performance via multiple Monte Carlo studies. We propose a stepwise predictive model
comparison procedure to guide researchers, and demonstrate CVPAT’s practical utility
using the well-known American Customer Satisfaction Index (ACSI) model. [Submit-
ted: May 3, 2019. Revised: February 10, 2020. Accepted: February 11, 2020.]

Subject Areas: Cross-Validation, Explanation, Partial Least Squares,
Prediction, and Structural Equation Modeling.

INTRODUCTION

Management and social science disciplines have historically placed substantial em-
phasis on theory and understanding, where prediction devoid of a causal explana-
tion is considered suspect and attributed to chance correlation (Douglas, 2009;
Tsang, 2009). However, deprived of the ability to predict, a causal explanation
becomes unverifiable and uncontradictable, and so loses its practical relevance
(Shmueli, 2010). In his seminal treatise on the philosophy of science, Conjectures
and Refutations, Popper (1962) posited that prediction is the primary criterion for
evaluating falsifiability and that all explanatory theories must “rise and fall based
on their objective predictions” (Shugan, 2009, p. 994). Thus, a successful marriage
between explanation and prediction lends authority to our knowledge of a system
(Dubin, 1969). This is the fundamental quest of science.

Although explanation and prediction are philosophically compatible, in
practice they are often not treated as such (Yarkoni & Westfall, 2017). For
example, the supervised machine-learning models utilized in data-driven fields
such as artificial intelligence, computational linguistics, and bioinformatics have
traditionally focused solely on predictive assessments. Only recently have re-
searchers started to explore how to draw causal inferences from these predictive
models (Athey, 2017; Chernozhukov et al., 2018; Wager & Athey, 2018). In
contrast, the explanation-oriented models typically used in the management
and social science disciplines often ignore predictive power assessments using
established methods such as cross-validation (Shmueli & Koppius, 2011; Yarkoni
& Westfall, 2017). A possible reason for this singular focus is that a large seg-
ment of theory-driven management and social science research does not rely on
observational data as is commonly processed by machine-learning techniques. In-
stead, researchers frequently deal with latent constructs such as individuals’
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attitudes, intentions, and perceptions that are analyzed by using complex
regression-based techniques.

Researchers frequently bemoan the lack of prediction in management and
social science research, calling for the routine use of methods that facilitate esti-
mating an explanatory model’s predictive power (e.g., Shmueli & Koppius, 2011;
Hofman, Sharma, & Watts, 2017; Hair, Sarstedt, & Ringle, 2019b). One particu-
larly useful technique in this respect is the composite-based partial least squares
path modeling (PLS), which has gained substantial popularity in the last few years
in management research (e.g., Hair, Sarstedt, Pieper, & Ringle, 2012a; Ringle,
Sarstedt, Mitchell, & Gudergan, 2019) and numerous other fields (e.g., Kaufmann
& Gaeckler, 2015; Nitzl, 2016). PLS is considered well-suited to create and evalu-
ate explanatory-predictive theories due to its predictive stance coupled with its ex-
planatory strengths (Joreskog & Wold, 1982; Sarstedt, Ringle, & Hair, 2017). For
example, Becker, Rai, and Rigdon (2013) and Evermann and Tate (2016) show
that PLS has high predictive accuracy across a broad range of conditions. Re-
lated developments have expanded the scope of PLS’s predictive abilities by in-
troducing a framework to assess out-of-sample predictive power (Shmueli, Ray,
Velasquez Estrada, & Chatla, 2016), error-based out-of-sample metrics (Becker
et al., 2013; Evermann & Tate, 2016), and information theory-based metrics for
prediction-oriented model selection (Sharma, Sarstedt, Shmueli, Kim, & Thiele,
2019a; Sharma, Shmueli, Sarstedt, Danks, & Ray, 2019b).

Despite these promising developments, a weakness in the PLS armory is the
lack of a statistical test to compare whether a proposed or alternative theoreti-
cal model (henceforth the AM) offers significantly better out-of-sample predictive
power than a theoretically derived benchmark or established model (henceforth the
EM). This is a critical requirement if PLS is to fulfill its promise as a predictive
tool for theory development, because expert predictions in the social sciences are
often unreliable due to their reliance on causal-explanatory models based solely on
in-sample assessments (Silver, 2012; Gonzalez, 2015). The ability to conduct such
assessments to improve the predictive relevance of models is crucial, not only for
theory development and validation, but also for selecting models on which to base
managerial and policy decisions (Shmueli et al., 2016; Hofman et al., 2017).

Our primary contribution is to fill this research gap by introducing the cross-
validated predictive ability test (CVPAT) in PLS. The test enables a pairwise com-
parison between theoretically derived competing models, and selecting the model
with the highest predictive power based on a prespecified statistical significance
level, to enhance the theoretical and managerial relevance of PLS studies. Due to
its reliance on cross-validation, CVPAT helps reduce generalization error, thereby
increasing the likelihood that the associated inferences will apply well to other
datasets drawn from the same population (Markatou, Tian, Biswas, & Hripcsak,
2005). This characteristic is particularly useful for decision makers who often face
binary choices while designing and reviewing policies, and who want to know
whether they will be effective in other situations as well (Snow & Phillips,2007).

In the following, we discuss the concerns with the current predictive model
assessment tools in PLS, and introduce CVPAT. Next, we demonstrate CVPAT’s
ability to select the best model for prediction purposes by assessing its statistical
power and Type I error probability using multiple Monte Carlo studies. We then
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introduce a stepwise predictive model comparison procedure to guide researchers,
and illustrate its practical utility using the well-known American Customer Sat-
isfaction Index (ACSI) model. Finally, we discuss potential misconceptions that
may arise in the application of the CVPAT, and provide guidance to researchers to
support its adoption.

EXPLANATION SANS PREDICTION: CONCERNS REGARDING
THE CURRENT PLS PREDICTION TOOLKIT

In recent years, PLS has become a popular tool in management and the social sci-
ences to model relationships among latent and manifest variables (e.g., Hair et al.,
2012a; Kaufmann & Gaeckler, 2015; Nitzl, 2016).! Several models relevant to the
broader management field, such as the ACSI (Fornell, Johnson, Anderson, Cha, &
Bryant, 1996) and the unified theory of acceptance and use of technology accep-
tance model (UTAUT;, Venkatesh, Morris, Davis, & Davis, 2003), have relied al-
most exclusively on PLS in their development. PLS is well-suited for building the-
ories that offer both explanation and prediction, because of its empirical strengths
that bridge both explanatory and predictive goals (Shmueli et al., 2016).> Unlike
supervised machine-learning techniques—such as artificial neural networks, which
are considered “black boxes” because they offer good predictions but no causal
interpretability (Yarkoni & Westfall, 2017)—PLS is a transparent technique. It en-
ables interpretability in the form of a diagram depicting causal linkages between
variables based on theory so that researchers can fine-tune the actual theoretical
underpinnings of predictions (Shmueli et al., 2016; Sarstedt et al., 2017).

Methodological developments in PLS have focused on developing its causal-
explanatory strengths by proposing several goodness-of-fit measures. Examples
include the standardized root mean square residual (SRMR) and the exact fit test
(Henseler et al., 2014). Besides the conceptual concerns regarding their useful-
ness in PLS (e.g., Lohmoller, 1989; Hair et al., 2019b), the goodness-of-fit criteria
are usually in-sample measures oriented toward assessing a model’s explanatory
power and specification, but not its out-of-sample predictive power (Shmueli et al.,
2016; Sharma, Pohlig, & Kim, 2017). As a result, these measures provide no guar-
antee regarding how well the model will fit another dataset, nor regarding how
generalizable the inferences and policy recommendations will be to other, similar
contexts (Petter, 2018). In contrast to causal-explanatory model evaluation where
the focus is on parameter estimation and model fit (Fornell & Bookstein, 1982),
predictive model evaluation relies on the use of cross-validation and out-of-sample
error metrics (Shmueli & Koppius, 2011).

Research on PLS has only recently begun to follow calls to focus on its
strength as a predictive technique (e.g., Rigdon, 2012, 2014) and propose metrics
to assess predictive relevance (Shmueli et al., 2016; Shmueli et al., 2019). For
example, Sharma et al. (2019b) introduced several information theory-based

! Online Supplement OS.1 presents a detailed mathematical description of the PLS methodology.

2 Gregor (2006) distinguishes between scientific theories that are geared more toward explanation (e.g., evo-
lutionary theory), prediction (e.g., the standard model of particle physics), or both explanation and prediction
(e.g., Shannon’s [1948] information theory). Management and social science theories typically seek to ex-
plain the underlying causal mechanisms, as well as to provide verifiable and generalizable predictions, to
enhance the scope and practical utility of research.
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model selection criteria to PLS, such as the Akaike information criterion (AIC)
and the Bayesian information criterion (BIC), to enable model comparisons
by balancing model fit and complexity (i.e., the bias-variance trade-off). These
criteria strengthen PLS’s repertoire by allowing researchers to select correctly
specified models with low prediction error. Their in-sample nature, however,
means that researchers cannot assess the actual out-of-sample performance of
models on unseen data.

Thus far, the Stone—Geisser criterion (Q?), which is based on the blindfolding
procedure, has been the only (quasi) out-of-sample test criterion with which to as-
sess amodel’s predictive relevance in PLS (Chin, 1998; Hair, Hult, Ringle, & Sarst-
edt, 2017a). Shmueli et al. (2016) note, however, that the Q? has several major lim-
itations, namely (1) it does not draw a clear distinction between the training and the
holdout sets® (i.e., it is not a “true” out-of-sample metric), (2) it is an ad hoc mea-
sure, which provides no clear cutoffs for model comparisons, and (3) its imputation
steps do not take heterogeneity in prediction errors into account. As a remedy, they
introduced the PLSpredict procedure, which provides a framework within which
to assess a PLS path model’s predictive quality via true out-of-sample metrics such
as the root mean square error (RMSE) and the mean absolute error (MAE).

Although PLSpredict improves PLS’s prediction-oriented model assessment
capabilities considerably, the approach does not offer an overall inferential test to
assess whether the AM’s predictive capabilities are significantly better than the
EM’s. Deprived of this capability, researchers are left in the dark regarding the
generalizability of their models to other samples and contexts, and incapable of
successfully utilizing the strengths of predictive modeling in the management and
social science disciplines (Shmueli & Koppius, 2011; Hofman et al., 2017). Ad-
dressing this critical concern, we propose CVPAT to enable such comparisons, and
substantiate its performance via several Monte Carlo studies.

CVPAT FOR PREDICTIVE MODEL COMPARISON

CVPAT is designed to conduct a pairwise comparison between two theoretically
derived models for their ability to predict the indicators of all the dependent latent
variables simultaneously. For practical utility and ease in decision-making, the
test determines whether the AM has a significantly better predictive accuracy than
the EM (or not) at a prespecified significance level (e.g., @ = .05). To quantify the
out-of-sample prediction errors, CVPAT relies on k-fold cross-validation (Stone,
1974), which is a widely used procedure in modern machine-learning prediction
methods, but which Shmueli et al. (2016) have only recently introduced in the PLS
context. Cross-validation seeks to assess a model’s out-of-sample predictive power
or generalization error by recycling and splitting the sample into training and
holdout sets k-times (Hastie, Tibshirani, & Friedman, 2009). For representative
samples, the cross-validated generalization error estimate will typically be very
close to the model’s true out-of-sample performance (Yarkoni & Westfall, 2017).
As such, cross-validation enables the assessment of a model’s generalization

3 The training set is the subset of data on which the predictive model is built. The model is then applied and
tested on the holdout set to assess its generalization error (Shmueli & Koppius, 2011).
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performance, and acts as a safeguard against overfitting and underfitting, particu-
larly in situations where researchers build complex models using relatively small
datasets—as is often the case in PLS.

CVPAT randomly splits the dataset into a specific number of groups or folds
(e.g., 10-folds) and iterates through all the folds. In the first iteration, it reserves the
first fold as an independent holdout set and estimates the model on the remaining
observations, which act as the training set. Using the training parameter estimates,
the output variables of the first fold are predicted by their input variables. The
out-of-sample prediction error is the difference between the predicted value of the
output variables and their actual values. The procedure is repeated for each fold
to generate the out-of-sample prediction errors for each observation in the dataset.
Online Supplement OS.2 presents a detailed description of the CVPAT algorithm.

The loss in predictive power associated with a given model is calculated as the
average squared prediction error over all indicators associated with the endogenous
latent variables. This is done as follows: let N be the sample size and L; ; and L; »
denote the individual losses for the EM and the AM, respectively; then the average
loss difference D is calculated as

I R 1 &
D=~ ;(Ll,z Li1) _N;w,). (1)

The average loss difference is, thus, a measure of the difference in the av-
erage out-of-sample performance between the two competing models when pre-
dicting the indicators of the dependent latent variables. A higher loss implies a
higher average prediction error, which indicates an inferior out-of-sample model
performance. For significance testing, we use the following test statistic:

D

T = , (2)
V/S?/N
where the variance, S2, is defined as
Q" >
2= _—— D; — D)". 3
PR ®

Under the null hypothesis (Hy), the EM and AM have equal predictive abil-
ities, such that the average loss equals zero (i.e., E (D) = 0). The structure of the
CVPAT test statistic given in Equation (2) resembles the Diebold and Mariano
(1995) test, which also considers the average loss differences divided by its vari-
ance. Although Diebold and Mariano (1995) introduced their test to support model
selection in a time-series framework, CVPAT is designed to be used with cross-
sectional data in which the losses are estimated by cross-validation. Analogous to
the Diebold—Mariano test, CVPAT also represents a form of the paired #-test to
investigate the average effect of treating each observation with a different model.
Based on the use of cross-validated paired #-tests in the prior literature (Dietterich,
1998; Alpaydin, 2014), we evaluate the test statistic in Equation (2) with respect
to a t-distribution with N — 1 degrees of freedom.*

4 We provide evidence regarding the validity of our use of the r-distribution in the robustness checks section.
Alternatively, bootstrapping can be used to derive the p-values and confidence intervals.
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Figure 1: Population model and the two misspecified models.

g

PM 1.1 (population model) MM 1.2 (non-nested misspecified model)

MM 1.3 (nested misspecified model)

SIMULATION STUDY
Design

To ensure researchers can reliably utilize CVPAT in their applications with real
data, we assessed its performance in several Monte Carlo studies by systematically
manipulating an expansive set of experimental conditions. The aim was to compare
a population model (PM) to a misspecified model (MM) and calculate CVPAT"’s
probability of selecting the PM (e.g., Ericsson, 1991).>

The simulation study used a relatively complex model setup (Figure 1) that
mirrored the ACSI model’s principal structure (Fornell et al., 1996) and reflects
the typical degree of complexity seen in PLS studies in marketing, management,
and other social science fields (e.g., Hair, Sarstedt, Ringle, & Mena, 2012b; Ringle
et al., 2019). The data were generated based on PM 1.1 for the simulation study.
This model was compared to a particularly challenging nonnested alternative for

3 In practical CVPAT applications, researchers compare the EM against an AM, both of which have been
established on theoretical grounds. However, we use a different more suitable terminology for the simulation
study, and refer to the models being compared as PM and MM.
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predictive purposes, MM 1.2, which used all latent variables as direct antecedents
of the target construct n;. We also contrasted PM 1.1 to a parsimonious misspec-
ified version, MM 1.3, to assess CVPAT’s applicability in nested model compar-
isons that are widely encountered in empirical SEM research (Cagli, 1984; Porn-
prasertmanit, Wu, & Little, 2013).

Following prior simulation studies (e.g., Reinartz, Haenlein, & Henseler,
2009; Goodhue, Lewis, & Thompson, 2012), we manipulated the following ex-
perimental factors:

» Twenty conditions of equally spaced and increasing R> values in the endoge-
nous constructs ranging from .1 to .6, with the inner model coefficients changing
accordingly.

* Five conditions of sample size (50, 100, 250, 500, and 1,000).

* Five conditions of varying numbers of indicators per construct (1, 2, 4, 6, and 8).

» Two conditions of loadings (.5 and .8).°

We generated normally distributed composite model data using the approach
employed by Sarstedt, Hair, Ringle, Thiele, and Gudergan (2016), as well as by
Hair, Hult, Ringle, Sarstedt, and Thiele (2017b).” We also conducted additional
analysis using nonnormal data, reported in the robustness checks section. We
ran 3,000 replications of each of the factorial combinations, using the follow-
ing settings: equal weights for initialization of the algorithm (Hair et al., 2017a),
correlation weights for the outer model estimations in all the initial simulations
(Wold, 1982; Chin, 1998), path weighting scheme for the inner model estima-
tions (Lohmoller, 1989), and a stop criterion of 107 (Tenenhaus, Esposito Vinzi,
Chatelin, & Lauro, 2005). All simulations were run using the R statistical software
(R Core Team, 2019) on a parallel computing environment.

Results of the Power Analysis

We investigated CVPAT’s ability to correctly reject the null hypothesis that the PM
and the MM have equal predictive capabilities (Hy : loss MM — loss PM = 0) in
favor of the alternative hypothesis that the PM has a higher predictive capability
(i.e., a lower loss) than the MM (H, : loss MM — loss PM > 0). A specific factor

combination’s estimated power is calculated as Power = é ZF:] 1(p: < .05) at
the 5% significance level, where p; is the p-value of the " Monte Carlo run, 1(-)
is the indicator function, and R is the total number of Monte Carlo repetitions
(Cameron & Trivedi, 2005). A power level of .8 signifies that CVPAT chose the
PM in at least 80% of the simulation runs across the experimental conditions. Note,
however, that a power level of .8 does not imply the CVPAT chose the incorrect

model 20% of the time.

%1In the additional one-indicator composite simulation case, the loadings should be set to one in order to
comply with composite data generation.

7 We also generated factor model data using the method recommended by Reinartz, Haenlein, and Henseler
(2009) and Sarstedt, Hair, Ringle, Thiele, and Gudergan (2016). This alternative data generation approach
leads to very similar results, findings, and conclusions. The only notable difference is related to the number
of indicators per measurement model. In contrast to composites, a lower number of indicators does have a
negative effect on the power levels when considering common factors.
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Figure 2: Power analyses for varying sample sizes.

Comparison between PM 1.1 and the non-nested MM 1.2 Comparison between PM 1.1 and the nested MM 1.3
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The graphs in Figure 2 show the power results with varying sample sizes
when keeping the number of indicators fixed at four. The x-axis plots increasing
levels of R? values for specific constructs. The discrepancy between the null and
alternative hypothesis increases with an increase in R values, resulting in higher
power levels for CVPAT.

When comparing PM 1.1 with the nonnested MM 1.2, we found that CV-
PAT’s power increased with sample size and R? (Figure 2, left). With larger sam-
ple sizes (>250), power levels surpassed the recommended threshold value of .8
at moderate R? values of .35 (Cohen, 1988). With sample size 100, power levels
passed .8 when R? was higher than .45. In contrast, with smaller sample sizes (n =
50), power levels breached the .8 level only when R? was higher than .55. For the
nested model comparison between PM 1.1 and MM 1.3 (Figure 2, right), we found
that power levels surpassed .8 for larger sample sizes (>250) at relatively low R?
values of .25 and higher. A sample size of 100 required R” to be greater than .35
for acceptable power, whereas small sample (n = 50) required relatively high R?
values of .5 and higher.

Next, we analyzed the effect of the number of indicators in the measurement
model on the CVPAT power levels. Figure 3 shows that the number of indicators
per construct did not have an appreciable effect on the power level. Although the
results shown in Figure 3 are for a sample size of 250, these differences did not
change noticeably with other sample sizes.

These results hold for acceptable item loadings of .8 for the construct’s
measurement. In contrast, low item loadings had a negative effect on the power.
Figure 4 displays the power levels with four indicators per construct, each with a
low loading of .5, which is less than the recommended threshold of .7. As can be
seen in the figure, low loadings necessitated larger samples with much higher inner
model R? values to reach an acceptable power level. For example, sufficient power
was achieved with a sample size of 250 only when the R? was higher than .5 for the
nonnested comparison, and .4 for the nested comparison. In particular, we found
that sufficient power levels may not be achievable with sample sizes smaller than
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Figure 3: Power analyses for varying number of indicators.
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Figure 4: Power analyses for different sample sizes with low loadings (.5).
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100 and low item loadings. These results suggest that recommended levels of item
loadings are required to achieve sufficient power levels when using CVPAT.

Overall, this analysis provides evidence that CVPAT is effective in correctly
rejecting the null hypothesis with standard sample sizes and levels of measurement
model loadings, and when the inner models show moderate to high levels of R?, as
is generally seen in management research. Under these conditions, PLS researchers
can confidently expect to achieve high power levels with CVPAT, underlining its
practical utility for most research situations. With small sample sizes (e.g., 100),
researchers can still expect to achieve satisfactory power levels, provided that R?
values are also high (.45 or higher). However, the use of CVPAT becomes im-
practical when sample sizes are smaller than 100 or when item loadings are low,
because high R? values may not be achievable under these circumstances, and thus
sufficient power is not guaranteed.
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Table 1: The CVPAT’s Type I error probability results when using a paired #-test.

Sample Sizes

Inner Model Number of

Coefficient Indicators 50 100 250 500 1,000 10,000

Low: .15 1 .029 .026 .029 .041 .041 .045
2 .075 .062 .036 .042 .041 .051
4 .066 .048 .030 .037 .040 .059
6 .062 .053 .036 .036 .038 .050
8 .073 .051 .027 .034 .042 .049

Medium: .3 1 .043 .046 .047 .042 .045 .042
2 .056 .046 .041 .049 .038 .043
4 .044 .042 .037 .039 .039 .045
6 .045 .039 .038 .045 .037 .043
8 .038 .048 .036 .038 .037 .051

High: .5 1 .047 .042 .040 .034 .036 .040
2 .049 .047 .033 .043 .042 .039
4 .041 .040 .038 .040 .028 .039
6 .040 .043 .036 .037 .039 .040
8 .042 .038 .032 .037 .040 .034

Robustness Checks

We provide further evidence of CVPAT’s practical utility by conducting several
robustness checks that assessed its performance under a broader range of condi-
tions. First, we assessed the CVPAT test statistic’s reliance on the ¢-distribution. A
test statistic that follows a z-distribution with N — 1 degrees of freedom is expected
to incorrectly reject a true null hypothesis (i.e., Type I error) in 5% of cases given
a .05 significance level. To determine whether our test statistic met this criterion,
we conducted an additional model comparison study under the null hypothesis of
equal predictive ability, assuming a #-distribution with N — 1 degrees of freedom
and a .05 significance level. We repeated the analysis 3,000 times to calculate the
percentage of runs in which the null hypothesis was falsely rejected. Table 1 shows
the results of this simulation study. For an explanation of the models compared
and the different factor levels considered in the simulation study, please see On-
line Supplement OS.3. The results show that the Type I error rates in general were
slightly lower than 5%, which confirms that CVPAT is a well-sized, but mildly
conservative inferential test.®

Second, we assessed the effect of nonnormally distributed data on CVPAT’s
power level by re-running the model setup shown in Figure 1. We used exponential
distribution with a scale parameter of one, kurtosis six, and skewness two (for simu-
lations with nonnormal data in PLS, also see Ringle, Sarstedt, & Schlittgen, 2014).
As shown in Figure OS.2 (Online Supplement OS.4), nonnormality adversely af-
fected CVPAT power levels. In general, compared to normal data (c.f. Figure 2),

8 The probability of making a Type I error is sometimes called the size of the test (Cameron & Trivedi, 2005,
p. 246). Accordingly, by “well-sized” we mean that the true size of the test corresponds well to the nominal
size of the test. That is, when the researcher uses a test on a significance level of 5% (nominal size) and the
null hypothesis is true, s/he will also falsely reject the null hypothesis in approximately 5% of the cases.
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CVPAT required somewhat higher levels of R? to achieve similar power for each
sample size. For example, a sample size of 250 required an R” value of at least .45
for the nonnested comparison and .3 for the nested comparison. Moreover, a small
sample size of 100 required an R? of at least .55 for nonnested comparison, and
.45 for nested comparison. With smaller sample sizes (n = 50), sufficient power
levels may be very difficult to achieve in practice, in which case the use of CVPAT
is not recommended.

Third, we investigated CVPAT’s performance for measurement models with
formative indicators (Sarstedt et al., 2016; Bollen & Diamantopoulos, 2017). This
analysis compared PM 1.1 with the nested MM 1.3. However, in both models,
n; was now specified as a formative construct and we used regression weights to
estimate their outer weights (Rigdon, 2012; Becker et al., 2013). The power results
with the formative measurement model generally mirrored those of the reflective
measurement model (Figure OS.3 in Online Supplement OS.4). In particular, the
sample size and R? values continued to be the primary drivers of CVPAT power
levels.

Fourth, we investigated CVPAT’s performance in the presence of mediation
effects that are widely assessed in PLS (Nitzl, Roldan, & Cepeda Carri6n, 2016;
Hair et al., 2017a). Figure OS.4 in Online Supplement OS.5 shows the simple
model setup with three reflective constructs similar to the study by Henseler and
Sarstedt (2013). Model 2.1 has two relationships, that is, between 1, and 7,, and
between 1, and n3. Thus, n, (fully) mediates the relationship between 7, and ;.
In contrast, Model 2.2 has no relationship between 7, and 73, but a relationship
between 1, and n3. To mitigate the possibility of bias against a specific type of
model structure, each of the two models acted as the PM in turn, whereas the other
acted as the MM. This resulted in two model comparison cases. For each case, we
assessed CVPAT’s performance in selecting the PM. The results show that power
levels easily surpassed .8 in both cases for sample sizes of 100 or more and when
the R? was .25 or higher (Figure OS.5 in Online Supplement OS.5). Similar to our
main analysis (Figure 4), we found that low item loadings (.5) had a negative ef-
fect (Figure OS.6 in Online Supplement OS.5), but the number of indicators did
not have any noticeable effect on power (Figure OS.7 in Online Supplement OS.5).
We also found that the effect of nonnormality was less pronounced in the simple
model setup (Figure OS.8 in Online Supplement OS.5) than in the complex model
setup (Figure OS.2 in Online Supplement OS.4). This analysis confirms CVPAT’s
practical utility when dealing with both mediation and nonmediation model com-
parisons across a wide range of factor levels.

Fifth, we considered that researchers can implicitly assume that the model
with the highest number of predictors is the best predictive model due to its high
R? value, although overspecified models often offer weaker predictive outcomes
(Shmueli & Koppius, 2011). We therefore investigated whether CVPAT has a sys-
tematic tendency to select a more complex model (i.e., overfitting) by conducting
an additional simulation study that compared the PM with more complex, system-
atically overspecified model alternatives; that is, the MMs included more paths
than the PM (Figure OS.9 in Online Supplement OS.6). As expected, additional
predictors in the overspecified models improved their in-sample explanatory power
(R*) (Figure 0S.10 in Online Supplement OS.6). At the same time, however, as
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the increased loss indicates, their out-of-sample predictive capabilities decreased,
suggesting overfitting. Although the PM had the lowest explanatory power (as ex-
pressed by the lowest R? value), it had the highest out-of-sample predictive power.
This finding is not surprising, because the model with the highest in-sample ex-
planatory power might not be the best model for out-of-sample prediction (Sharma
et al., 2019a; Sharma et al., 2019b). CVPAT’s average loss function showed the
lowest value for the PM, whereas the average loss increased with the level of model
overspecification. Overall, these results substantiate that CVPAT avoids selecting
falsely overspecified models.

Finally, we analyzed the probability of incorrectly choosing an overspecified
model as a better predictive alternative compared to a proposed PM. In order to do
so, we used the simulations in the previous paragraph, where a parsimonious PM
was tested against a systematically overspecified model alternative. We found that
the use of CVPAT reduced the probability of choosing an incorrect model substan-
tially in comparison to using a rule of thumb for selecting the model with the lowest
loss. For instance, when considering the two-indicator case and one overspecifica-
tion in the MM, approximately 85% of the results had the correct signs in the
loss differences (Figure OS.11, left, in Online Supplement OS.6). In other words,
by simply relying on a rule of thumb, researchers can expect about 15% of their
decisions to be false. However, by relying on CVPAT, researchers can expect sub-
stantially better outcomes. In fact, the probability of selecting a false overspecified
model is close to zero with CVPAT regardless of the degree of overspecification
(Figure OS.11, right, in Online Supplement OS.6).

APPLICATION OF CVPAT

Procedure

We propose a stepwise prediction-oriented model selection procedure to enable
researchers and practitioners to systematically apply CVPAT in their PLS analyses
(Figure 5). Step 1 involves the selection of two theoretically motivated models to be
compared for their out-of-sample predictive abilities. Because PLS analyses focus
on providing causal explanations (Joreskog & Wold, 1982; Chin, 1995), the models
selected for comparison must be based on valid theoretical reasoning and might not
be purely empirically motivated (Sharma et al., 2019a). In accordance with the null
hypothesis testing practice, the model that represents the current state of theoreti-
cal knowledge typically serves as the EM, whereas the model that the researcher is
proposing serves as the AM. Because the EM represents the status quo, it serves as
the null hypothesis and is only rejected if there is strong statistical evidence against
it (Larsen & Marx, 2018). For example, in customer satisfaction research, Olsen
and Johnson (2003) propose an alternative “‘satisfaction-first” model that is com-
pared to the widely accepted “equity-first” formulation of customer loyalty. The
specific goal of the CVPAT analysis is to test whether the AM offers a statistically
significant improvement over the EM in its out-of-sample predictive power.

In Step 2, the researcher must ensure the suitability of the empirical context
for a fair model comparison and conduct the PLS analysis for both the EM and
the AM to assess whether the models meet the established requirements in terms
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Figure 5: Stepwise prediction-oriented model selection procedure based on CV-
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of data and measurement quality (Hair et al., 2017a). First, the researcher must
ensure that the data collection procedure follows the established guidelines for
sample representativeness and minimum sample size requirements for PLS (Hair
et al., 2017a). Second, a specific model comparison aspect requires the empirical
context to be unbiased, that is, the observed difference in predictive abilities should
be attributable to models themselves, rather than to the specific sample chosen for
comparison. An objective and fair model comparison process requires data that
do not unfairly favor one theory over another (Cooper & Richardson, 1986).° In
addition, it is important that the constructs use the same measurement model in the
EM and AM (i.e., the same indicators) and the same mode of model estimation (i.e.,
Mode A or B) for a valid comparison. Other settings also have to be identical in
the EM and AM estimations (e.g., missing data treatment, PLS algorithm settings).
Finally, both the EM and the AM have to meet the established measurement model
evaluation criteria (Chin, 1998; Hair, Risher, Sarstedt, & Ringle, 2019a).

Step 3 compares the EM and the AM for their out-of-sample predictive power
by using CVPAT. The goal is to identify the model with higher out-of-sample pre-
dictive accuracy. The two key CVPAT algorithm settings are the number of cross-
validation folds and bootstrap samples. Prior literature suggests the use of five- or

% To avoid this issue, the context chosen for comparison must respect the application domain and the spe-
cific boundary conditions of the models involved. For example, Mathieson (1991) compared the technology
acceptance model (TAM) and the theory of planned behavior (TPB) for their ability to explain individuals’
intentions to use information technologies. Although TAM was designed to maximize applicability across
different technologies and user populations, TPB is context specific and requires specific outcomes and ref-
erent groups. Mathieson (1991) provides a theoretical rationale as to why the empirical context chosen for
the study is appropriate for both TAM and TPB to ensure a fair comparison.
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Table 2: Use of the CVPAT significance testing.

EM is Favored A Priori Over AM

One-Sided Significance test Conclusion
loss EM — loss AM <0 Cannot reject Hy: retain EM
loss EM — loss AM > 0 Reject Hy: choose AM

Hy: loss EM — loss AM = 0 and H;: loss EM — loss AM > 0.
Abbreviations: EM, established model; AM, alternative model; loss, average prediction
error.

10-folds (e.g., Hastie et al., 2009) and 5,000 or more bootstrap samples (e.g., Hair
etal., 2017a).

Finally, in Step 4 the researcher selects a model based on the CVPAT out-
come. If the AM has a higher loss than the EM, the researcher retains the EM as
the predictive model of choice. In contrast, a statistically significant (i.e., p < .05)
positive loss difference (i.e., loss EM — loss AM > 0) is interpreted as evidence
that the null hypothesis is incompatible with the observed data (Greenland et al.,
2016). It is important to note that a small p-value only suggests relative support
for the AM based on the comparison with the EM, and does not convey any infor-
mation about the size of the loss difference or its practical significance (Wasser-
stein & Lazar, 2016). Researchers should further consult evidence provided by the
95% confidence interval along with the p-value to make the decision (Ferguson &
Speier-Pero, 2017). Table 2 summarizes the decision-making based on the CVPAT
results in Step 4.

Empirical Illustration

We illustrate the application of CVPAT on empirical data to showcase its util-
ity and provide additional validation. We draw on the ACSI, which is one of the
most widely used models in business research and practice for analyzing the im-
pact of customer satisfaction on repurchase intentions or customer loyalty (Fornell
et al., 1996; Anderson & Fornell, 2000).10 The ACSI conceptualizes customer sat-
isfaction as a cumulative construct and asks customers to rate their overall experi-
ence with the provider to date. This contrasts with transaction-specific satisfaction
models that evaluate satisfaction based on customers’ experience related to a spe-
cific product or service transaction (Olsen & Johnson, 2003). The main benefit
of cumulative evaluations is they are better predictors of customer behavior. Fig-
ure 6 (left) shows the ACSI model, which is widely supported by research (e.g.,
Fornell et al., 1996; Hult, Sharma, Morgeson, & Zhang, 2019), and thus serves as
the EM in Step 1 of the procedure. The model consists of five reflectively measured
constructs: customer satisfaction (ACSI), customer expectations (CUEX), customer
loyalty (CUSL), perceived quality (PERQ), and perceived value (PERV).!!

10The ACSI has become the favored performance indicator for companies and government agencies, as
well as entire industries and sectors (Fornell, Morgeson, & Hult, 2016; Hult, Morgeson, Morgan, Mithas, &
Fornell, 2017).

''In accordance with prior research, we utilize a modified version of the original ACSI model without the
customer complaint construct for which the measurement relies on a single dummy-coded item; in addition,
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Figure 6: The ACSI model example.

Established Model (EM) Alternative Model (AM)

We focused on the causal link between PERV, CUSA, and CUSL to identify
a theoretically motivated AM for the purpose of our illustration. The majority of
customer research supports the “value-first” conceptualization of the EM where
PERYV serves as the immediate antecedent of customer satisfaction (CUSA) (Hult
et al., 2019). In contrast, research in customer value equity literature suggests an
alternative “satisfaction-first” conceptualization, where PERV mediates the effect
of CUSA on CUSL, particularly when cumulative satisfaction is being considered
for customers who have had no reason to complain (Johnson, Gustafsson, An-
dreassen, Lervik, & Cha, 2001). For example, Olsen and Johnson (2003) argue
that customers’ cumulative satisfaction determines their value equity judgments
when they are making repurchase decisions.'> Cumulative satisfaction is therefore
seen as the direct cause of customers’ attitude formation regarding the value asso-
ciated with a product or service provider. In other words, satisfied customers with
no reason to complain in the long run are likely to perceive the provider’s service
as “good value for money,” which affects their loyalty positively (Vogel, Evan-
schitzky, & Ramaseshan, 2008). Related research by Chang and Wildt (1994) also
supports the direct effect of PERV on repurchase intentions, which is an item of
CUSL. Based on this line of reasoning, we propose an AM (i.e., the “satisfaction-
first” research model) as depicted in Figure 6 (right). The two models (EM and
AM) form the starting point of our illustration of the stepwise predictive model
comparison procedure using CVPAT. The main question of interest is: which of
the two theoretical models (i.e., EM and AM) exhibits higher out-of-sample pre-
dictive ability?

In Step 2, to ensure a fair comparison among the models, we followed Olsen
and Johnson’s (2003) recommendations and focused only on the customers of the
utilities industry who did not complain.'® Previous research has validated the ap-
plicability of both the EM (e.g., Schlittgen, Ringle, Sarstedt, & Becker, 2016) and

CUSL only uses a single indicator, and indicator cuex3 has been dropped because of its low outer loading
(e.g., Rigdon, Ringle, Sarstedt, & Gudergan, 2011; Ringle, Sarstedt, & Schlittgen, 2014).

12 Value equity is defined as the perceived ratio of what is received (e.g., the quality of a product or ser-
vice) to what is sacrificed (e.g., price paid; Vogel, Evanschitzky, & Ramaseshan, 2008). PERV, however, is
largely similar to value equity and also captures customers’ perceptions regarding the quality of products
and services in relation to the price (Olsen & Johnson, 2003).

13 We would like to thank Claes Fornell and the ICPSR for making the ACSI data available.
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Table 3: The CVPAT results of the ACSI model illustration.

Average Losses

EM AM EM-AM p-value? cr

CVPAT results .682 .690 —.008 1.000 [-0.012, o]

Note: A negative average loss value difference between the EM and AM indicates that
the EM has a smaller average loss and is therefore preferable. If the average loss value
difference is positive, the AM has superior predictive power.

2The null hypothesis is equal predictive ability and the alternative hypothesis is that the AM
(column 3) has better predictive ability than the EM (column 2); the p-value is based on
10,000 bootstrap samples.

5CI = 95% confidence interval of the one-sided test.

Abbreviations: EM, established model; AM, alternative model.

the AM (e.g., Olsen & Johnson, 2003) for such customers. Our final sample con-
sisted of 2,854 unique survey responses.'* For the PLS model creation, estimation,
and validation, we utilized the SmartPLS 3 software (Ringle, Wende, & Becker,
2015). Online Supplements OS.7 and OS.8 present the PLS results of the EM and
AM. The outcomes of both models meet the established evaluation criteria of PLS
for the measurement models and the structural model (e.g., Chin, 1998; Hair et al.,
2017a).

Next, we ran a CVPAT-based model comparison (Step 3) using our own
code for R statistical software (R Core Team, 2019)."5 The goal was to deter-
mine whether the AM offers significantly higher predictive power than the EM. We
therefore tested the EM against the AM using a one-sided hypothesis test.'® The
null hypothesis proposes equal out-of-sample predictive abilities (i.e., Hp: Loss of
EM = Loss of AM), whereas the alternative hypothesis proposes that the AM has
lower average loss than the EM (i.e., H;: Loss of EM > Loss of AM).

We found that the EM exhibited lower loss (.682) than the AM (.690), which
supported retaining the EM as the best predictive model (Table 3). The high p-value
of 1 indicated that we cannot reject the null hypothesis of the two models having
equal predictive ability given the alternative hypothesis. The same inference was
supported by the 95% CI.

Step 4 focuses on the final decision-making and model selection. Based on
the empirical evidence, we chose to retain the EM, which offers higher predictive
accuracy than the AM. Overall, the results support the PERV’s theoretically estab-
lished role as a predecessor of CUSA as conceptualized in the original ACSI model
for improving the predictive accuracy of the ACSI model.!”

14 Note: The findings of this example do not substantially change when using the full sample (i.e., including
customers who did and did not complain).

15 The CVPAT code for the statistical software R and technical instructions for its application are available
for download at the following webpage: https://github.com/ECONshare/CVPAT/.

161t is also possible to carry out a two-sided test. In this case, the EM and the AM are considered equally
suitable model alternatives a priori. A significant CVPAT result could provide evidence in favor of the one
or the other model; if not, we cannot reject their having equal predictive accuracy.

7n contrast to Olsen and Johnson (2003) results that favor CUSA as a predecessor, the CVPAT results
support the original conceptualization of the ACSI model for the utilities industry. One possible explanation
for this discrepancy is that Olsen and Johnson (2003) compare the models for their fit and R-, which are in-
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DISCUSSION

Findings

Management and business disciplines are inherently forward-looking where an-
ticipation is a crucial element for making successful policy decisions. To remain
ahead of the competition, management experts and practitioners invest heavily not
only in identifying the current trends and perceptions, but also in preparing for un-
foreseen changes in the dynamic social, technological, and economic environment.
In this vein, the prospective outlook of predictive modeling, in which a model is
constructed to predict unseen or new data, can provide a valuable lens for theoreti-
cal validation that complements the retrospective (or postdictive) nature of causal-
explanatory modeling that dominates the field (Gauch & Zobel, 1988; Shmueli,
2010).

From an academic standpoint, predictive modeling is valuable for theory con-
struction and enhancement via comparison, relevance assessment, improvement in
measures and construct operationalizations, and benchmarking the predictability
of a given phenomenon (Shmueli et al., 2016; Hofman et al., 2017). From a practi-
tioner’s perspective, the focus is not typically on validating or testing theories, but
rather on generalizable approaches or policies with immediate commercial utility
or predictive power (Ruddock, 2017).

Predictive modeling has the potential to engage stakeholders on both sides
of the theoretical spectrum. A sharper focus on a model’s predictive abilities can
help to connect the subjective and objective realities by helping assess the distance
between theory and practice, and narrowing the range of possibilities to ensure
successful policy making (Shmueli & Koppius, 2011; Silver, 2012). PLS empha-
sizes prediction in estimating statistical models with a structure designed to si-
multaneously provide theoretical explanation (Wold, 1982; Lohmdller, 1989). To
fulfill its initial promise as a predictive technique, PLS researchers need to have
proper tools to reliably conduct and compare the out-of-sample predictive abili-
ties of their models—as recent research calls have indicated (e.g., Richter, Cepeda
Carrién, Roldan, & Ringle, 2016). To this end, we introduce the CVPAT—a proce-
dure that permits researchers to develop and examine theoretical models through a
predictive lens rather than with purely explanation-oriented model evaluation met-
rics. More specifically, by relying on cross-validation and out-of-sample prediction
errors and allowing for the null hypothesis testing of two competing models (i.e.,
the EM against an AM), CVPAT distinguishes itself from current PLS-based ex-
planatory fit criteria that support the postdictive approach to model building (e.g.,
SRMR and exact fit; Henseler et al., 2014).

Our simulations confirm CVPAT’s capability to reliably assess an established
model’s predictive performance compared to that of an alternative model. Fur-
thermore, our simulations point to CVPAT’s potential to help detect the best in-
ner model for prediction purposes. We find that CVPAT performs in accordance
with the expectations of a null hypothesis-based test (Cameron & Trivedi, 2005).
Specifically, our simulation results reveal that CVPAT has very high power with
sample sizes of 250 and more, and when the measurement model loadings are .8.

sample tests for model adequacy but are not geared for assessing their true out-of-sample predictive abilities
(Shmueli & Koppius, 2011).
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With lower sample sizes, researchers can still expect to achieve satisfactory CV-
PAT power levels when R? values are .4 or higher. However, CVPAT power levels
are generally below the recommended threshold of .8 when sample sizes are 100
or smaller. The number of indicators per construct and model complexity do not
have a significant impact on the power levels. Moreover, CVPAT is well sized but
slightly conservative, and it does not show a tendency to systematically choose the
model with the highest number of predictors (i.e., highest R?). Due to its favorable
characteristics and performance across a wide range of model and data constella-
tions, CVPAT can be a valuable tool to support both researchers and practitioners
in their prediction-oriented model assessments.

Guidelines to avoid pitfalls in the application of CVPAT

Although the assessment of a model’s predictive power is well documented in prior
PLS research (Shmueli et al., 2016; Danks & Ray, 2018), predictive model compar-
isons have remained unaddressed, with few available guidelines. Hence, we issue
several clarifying remarks below to help researchers avoid certain pitfalls when
applying CVPAT:

Role of theory is paramount

A sound theoretical basis for the proposed and the alternative models is mandatory
in order to ensure that the analysis focuses on a limited number of theoretically
plausible model alternatives (Sharma et al., 2019a). The proposed stepwise proce-
dure should not be used in data-driven searches for a model that offers best predic-
tive fit but lacks theoretical foundation. Other purely predictive methods, such as
neural networks, support such a goal better than PLS—the latter technique seeks to
balance explanation and prediction. Comparing a limited number of theoretically
plausible models also safeguards against difficulties related to multiple compar-
isons. Although approaches for maintaining the familywise error rate of statistical
tests (e.g., the Bonferroni correction) can be applied to CVPAT, there is no clear
consensus on when to apply them, because their use often causes substantial in-
crease in Type II error rates (Cabin & Mitchell, 2000).

In-sample and out-of-sample assessments might differ

In-sample model assessment criteria might not agree with CVPAT’s out-of-
sample prediction assessments, because they serve different purposes (Shmueli &
Koppius, 2011). For instance, the best predictive model may not necessarily offer
the highest in-sample explanatory power (i.e., highest R?) or the greatest number
of statistically significant paths (Lo, Chernoff, Zheng, & Lo, 2015). It is also im-
portant to note that CVPAT does not represent an all-encompassing assessment
of PLS results. Instead, researchers should carefully define the specific goal of
their research and apply the metrics that support it. For example, when the fo-
cus is on explaining trends specific to the sample-at-hand, researchers should rely
on the in-sample explanatory criteria, such as R”, but with the caveat that the
inferences drawn will be tailored to the specific context being studied, with lit-
tle or no justification for generalizability to other datasets (Ward, Greenhill, &
Bakke, 2010). However, CVPAT should be preferred when the main analytic goal is
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prediction and theoretical generalization beyond the sample-at-hand, because
cross-validation provides an assessment of the generalization error. Models se-
lected for their out-of-sample predictive ability are more likely to apply well to
other, similar contexts (Yarkoni & Westfall, 2017).

Statistically significant loss differences do not automatically imply
predictive relevance

In large samples, even small loss differences can become statistically significant,
whereas large loss differences may fail to reach statistical significance in small
samples (Lin, Lucas, & Shmueli, 2013). This holds for null hypothesis testing in
general, as well as for CVPAT, because the differences in the predictive power of
models—while significant—can sometimes be marginal. Researchers can make
more informed decisions regarding the relevance of loss differences by construct-
ing confidence intervals that provide more information in the form of the range of
actual values and the precision of the estimates (Gardner & Altman, 1986).

CONTRIBUTION AND FUTURE RESEARCH

The PLS method plays an important role in management studies and broader social
sciences (e.g., Mateos-Aparicio, 2011) to develop robust theories that offer both ex-
planation and prediction in parallel (Evermann & Tate, 2016; Shmueli et al., 2016).
Researchers place great emphasis on in-sample explanatory power and model spec-
ifications, but ignore the out-of-sample predictive performance of PLS models. We
address this imbalance and gap in research practice by introducing CVPAT as a
means to conduct a pairwise comparison of models for their out-of-sample predic-
tive abilities. Our complex simulation study shows that CVPAT is a reliable and
practical tool for researchers. Applying CVPAT allows researchers and practition-
ers to compare EMs with theoretically motivated AMs to provide stronger evidence
of theoretical progress. More specifically, by offering the means to compare com-
peting PLS path models in terms of their out-of-sample predictive power, CVPAT
contributes to management research and practice in the following respects:

Theory Validation and Development

Documenting the predictive superiority of one model over another is a crucial as-
pect of theory validation that offers direct evidence regarding whether the current
theory development effort has been successful (Shmueli, 2010). When compar-
ing the predictive abilities of two competing theories in such a manner, the focus
should be less on assessing the statistical significance of the individual paths (or
variables) in the models, and more on holistically assessing whether a model offers
significantly better predictions than its rival model. This is because a statistically
significant variable in a model does not automatically imply stronger prediction. In
fact, a variable with strong predictive power can sometimes fail to be statistically
significant (Shmueli & Koppius, 2011). Thus, relying on statistical significance at
the individual path or variable level can result in the researcher overlooking highly
predictive variables (Lo et al., 2015). CVPAT offers a means of statistically com-
paring predictive power at the model level, thereby aiding theory development via
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(relative) predictive power assessments and identification of variables with high
predictive power.

Reduced Uncertainty in Model Selection

Researchers typically rely on out-of-sample error metrics, such as RMSE or MAE,
to judge their models’ predictive accuracy. These metrics, however, do not have
well-defined thresholds, which renders any relative judgments about the quality
of model predictions arbitrary (Roy, Das, Ambure, & Aher, 2016). In addition,
because out-of-sample prediction is a data-driven activity (Shmueli & Koppius,
2011), ruling out chance as an alternative explanation is a valuable and necessary
step in theory confirmation (Lempert, 2009). Using CVPAT enables researchers
to statistically compare the predictive strengths of models to judge whether model
choice is reliable and not affected by chance or sampling error.

The Ability to Quantify Loss (Gain) in Predictive Accuracy

CVPAT enables researchers to quantify the loss in predictive accuracy associated
with the models being compared, and to assess how far their predictions are from
the observed value. Recall that loss represents the penalty for inaccurate predic-
tions in that a model with higher associated loss has inferior predictive accuracy
compared to a model associated with lower loss. Quantifying predictive accuracy
via the loss functions has been the bread and butter of machine learning researchers.
Research using the PLS method has lacked a mathematically rigorous and objec-
tive measure to indicate whether theoretical modeling has been successful in cap-
turing information that will also apply beyond the sample-at-hand. For example, it
is widely known that adding more variables (or paths) to the model will increase
the model’s ability to fit the observed data (e.g., R?). The use of CVPAT can provide
complementary information regarding whether the inclusion of the variable(s) has
resulted in improved out-of-sample predictive accuracy, and if so, by how much.

Improved Confidence in Decision-Making

Prediction is pivotal for making decisions under conditions of uncertainty, and in
creating opportunities to compete for fresh business strategies (Agrawal, Gans, &
Goldfarb, 2018). Decision makers regularly face binary choices while designing
and reviewing crucial policies that require a decision on whether to take a specific
course of action or not. They often wonder whether their policies will work well in
other situations (Snow & Phillips, 2007). CVPAT makes such decisions less error-
prone by reducing generalization error so that the policy decisions will be more
likely to work in other settings (Markatou et al., 2005).

A Useful Tool to Avoid Overfitting

Overfitting occurs when a model confuses spurious patterns (sample-specific
noise) in the data as signal. Sole reliance on the in-sample fit measures (e.g., R?)
means that there is always an incentive to overfit the models by introducing more
parameters than are needed, because R” increases with model complexity by si-
multaneously tapping both noise and the signal (Sharma et al., 2019a). CVPAT
helps guard against overfitting because the cross-validation procedure assists in
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recovering the signal in the data minus the noise (Yarkoni & Westfall, 2017). As
researchers build their models by progressively adding more parameters, explana-
tory power will continue to rise, whereas predictive accuracy will taper off and
decrease after peaking at the so-called “Ockham’s hill” (Gauch, 1993). This point
of divergence between the in-sample explanatory power and out-of-sample predic-
tive accuracy reflects the regime of overfitting.

Future Research

CVPAT is certainly not a panacea for all PLS modeling efforts. Varoquaux (2018,
p- 5) notes, however, that cross-validation (as implemented in CVPAT) “is the best
tool available, because it is the only non-parametric method to test for model gen-
eralization.” In order to further improve the method’s usefulness, future research
should address our study’s limitations. First, although CVPAT reduces uncertainty
regarding predictive model selection, it does not focus on the accurate predic-
tion for single cases. Future research can investigate predictive errors on the level
of single observations when applying CVPAT. Second, CVPAT permits assessing
whether an AM has a significantly higher predictive accuracy than the EM, when
considering all constructs in the model simultaneously. However, the method can
be readily extended to assess losses at the level of a specific construct to comple-
ment the single target construct-oriented model selection based on the BIC and
GM criteria proposed by Sharma et al. (2019b). Such an assessment would enable
researchers to identify constructs that have a diminishing effect on the model’s pre-
dictive power, which would be particularly valuable as the statistical significance of
path coefficients offers no guidance in this respect (Ward et al., 2010). Third, CV-
PAT might have the potential to identify misspecifications of measurement models.
For example, an exogenous indicator could have a high cross loading with another
exogenous construct. CVPAT could be used to show which construct the indicator
should be assigned to when the main objective is the prediction of the endoge-
nous latent variables. However, improving indicator allocation based on CVPAT
must always be guided by theoretical reasoning. Future research should address
this worthwhile CVPAT extension. Fourth, future research should fully address
the statistical significance versus relevance question when comparing models for
their predictive accuracy. For instance, predetermined levels of minimum loss dif-
ferences could be established to guide researchers in deciding whether a small, but
significant, loss difference is relevant to select an AM over a theoretically estab-
lished model. Fifth, as with all simulation studies, the results depend on the manip-
ulated factors and their levels. In line with prior publications on cross-validation
in machine learning (e.g., Kim, Park, & Williams, 2019), we used 10-folds for the
CVPAT. Future research could address the question whether 10-folds is an ade-
quate parameter when running the CVPAT in detail. Also, it would be beneficial to
investigate whether the complex models’ relatively low power is due to the mixture
of low and high inner coefficients, or whether it is the consequence of model com-
plexity. Studying the effect of other data distributions can offer further insight into
CVPAT’s performance in settings commonly encountered in management research
(e.g., model complexity in relation to sample size and/or R? values required to en-
sure sufficient power). Similarly, future CVPAT simulation studies should analyze

85U01 SUOWILIOD A1) 8|qeo! [dde au Aq peuseob sk Sapie YO ‘8sh JO'Sa|n 10} AriqiT 8UlUO AB|IM UO (SUOPUOD-PUB-SWBH 00" A3 1M Aeq| 18U JU0//SdNY) SUORIPUOD pue SWwis | 8U18eS *[£202/c0/TE] Uo AriqiTauliuo AjIm ‘Auewes sueiyood Aq ST 198p/TTTT 0T/I0p/w0d Ae|im Areiq1jeuluo//sdny wo.j pepeojumod ‘Z ‘T20Z ‘STESOYST



384 Prediction: Coveted, Yet Forsaken?

a broader range of AMs and their different forms of model misspecification. Sixth,
our empirical illustration is limited to a prominent example from the literature.
Future research should assess CVPAT on a broader range of empirical applica-
tions with different kinds of theoretically substantiated model alternatives. These
results would be important to support the adequacy and relevance of CVPAT in
practical applications. Also, the outcomes of these applications would allow com-
parison of the EM with potential alternatives and, based on the results, provide
additional clarification for the model choice in subsequent applications. For ex-
ample, the analysis of the UTAUT model in information systems research (e.g.,
Shiau & Chau, 2016) can be a particularly fruitful area for future CVPAT applica-
tions. Finally, we have assessed CVPAT’s abilities for PLS analyses. However, the
method is also amenable to alternative composite-based structural equation model-
ing methods such as generalized structured component analysis (GSCA) (Hwang
& Takane, 2014; Hwang, Sarstedt, Cheah, & Ringle, 2020). Future research should
expand the use of CVPAT to such related methods.
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