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Abstract

Picking one ‘winner’ model for researching a certain phenomenon while discarding

the rest implies a confidence that may misrepresent the evidence. Multimodel infer-

ence allows researchers to more accurately represent their uncertainty about which

model is ‘best’. But multimodel inference, with Akaike weights—weights reflecting

the relative probability of each candidate model—and bootstrapping, can also be used

to quantify model selection uncertainty, in the form of empirical variation in parame-

ter estimates across models, while minimizing bias from dubious assumptions. This

paper describes this approach. Results from a simulation example and an empirical

study on the impact of perceived brand environmental responsibility on customer

loyalty illustrate and provide support for our proposed approach.
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1 | INTRODUCTION

The mechanisms underlying consumer behaviour are inherently com-

plex due to the multitude of causal interactions and processes. Con-

sumer researchers draw on theory and logic to derive models that

offer partial explanations of these mechanisms. However, such models

are always derived from specific theoretical lenses and reflect differ-

ent assumptions, interpretations, and levels of development (Sharma

et al., 2019). As a result, there is not a single best model that explains

a certain mechanism well, but rather a set of models which all account

for the observed phenomena in a reasonable way. Researchers there-

fore routinely estimate different models and pick the ‘best’ model

based on model fit statistics and conceptual considerations

(Preacher & Merkle, 2012)—albeit this process is rarely made transpar-

ent (e.g., John et al., 2012). Such multimodel inference recognizes the

practical reality that (1) researchers often face difficult choices among

multiple competing hypotheses rather than just two mutually exclu-

sive possibilities, and (2) the choice among the competitors is often

not clear-cut, so that researchers have an evidence-based reluctance

to discard all but one.

However, choosing a single ‘best’ model means ignoring all of the

evidence that favoured other models, not to mention any evidence

that was inconclusive (Danks et al., 2020). In an extreme case with

only two models in the set, 51% of the evidence could be translated

into 100% confidence in one model versus the other. This practice

ignores the uncertainty inherent in the model selection process

(Preacher & Merkle, 2012).

The problem of model selection uncertainty has been acknowl-

edged in research in several fields of scientific inquiry. For example,

Burnham and Anderson (2002) present a variety of methods that can

be used to measure the uncertainty associated with model selection.

Preacher and Merkle (2012) show that model selection uncertainty

can be considerable under common circumstances, leading to over-

confidence in the selected model. Finally, Lubke and Campbell (2016)

use bootstrapping to compute a selection rate that guides model

selection and safeguards the model's replicability. While these studies
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have advanced our understanding of model selection uncertainty,

they rely on an error-centric framework in that the authors define

uncertainty as a function of sampling variance only. However, as we

will conceptually argue and empirically show, sampling variance is only

one element of the uncertainty that comes with any model selection.

Capturing the other elements of model selection uncertainty

requires reaching beyond concepts discussed in the social sciences

and consider ‘uncertainty’ as done in metrology—measurement sci-

ence in the physical sciences (Bell, 1999). In metrology, uncertainty is

defined as quantified doubt about the value of the measurand, which

is the quantity whose value is sought (JCGM, 2012). High uncertainty

implies that a measurement is consistent with a wide range of plausi-

ble values for the measurand, which may lead to a wide range of

obtained values across different measurements and studies (Rigdon

et al., 2020). Researchers in the physical sciences not only quantify

overall uncertainty but also catalogue the material components or

sources of uncertainty, with the aim of perhaps improving design,

instrumentation, and execution in order to further reduce uncertainty

in future research (Bell, 1999). Those material components include

potential doubt about which statistical model is ‘best’.
While standard in the physical sciences, the concept of uncer-

tainty is largely unknown to consumer researchers. This is surprising

considering that consumer research focuses on perceptions, inten-

tions, and behaviours that are inherently difficult to measure. For

example, ambiguous concept definitions, item selection, and measure-

ment validation contribute to uncertainty in consumer research stud-

ies (Rigdon & Sarstedt, 2022). Researchers have therefore started

calling for bringing an uncertainty-centric research framework to con-

sumer research (Bach et al., 2020; Fisher & Stenner, 2017; Rigdon

et al., 2020), emphasizing that such an undertaking requires consider-

able effort (Rigdon & Sarstedt, 2022).1

The aim of this paper is to take a step in that direction by describ-

ing an approach for quantifying model selection uncertainty that cap-

tures variation in parameter estimates across models. Our approach

extends beyond prior research in that it captures all material compo-

nents that emerge from the model selection process—rather than

focusing on sampling variance only. To provide support for and illus-

trate our approach, we present the results of a simulation study and

an empirical study on the impact of perceived brand environmental

responsibility on customer loyalty. By quantifying model selection

uncertainty in full, our approach offers the means to contextualize

research findings and improve model selection practice over time.

2 | QUANTIFYING MODEL SELECTION
UNCERTAINTY

Model selection uncertainty exists whenever researchers could plausi-

bly consider alternative statistical models that imply different values

for parameter estimates, thereby increasing the range of possible esti-

mates which might plausibly be observed and, thus, might apply in the

real world. Assume a fixed effects model, where parameters have

fixed but unknown values. The total variance of a parameter estimate

can be represented as the sum of bias squared plus random sampling

variance (Fox, 1997; Kennedy, 2008). In a conventional analysis, if an

estimator is unbiased given certain supporting assumptions, and if all

of those supporting assumptions held exactly, then the variance in a

parameter estimate would by definition be purely a matter of random

sampling variance (e.g., Cohen et al., 2003).

Those supporting assumptions would typically include the

assumption that the model containing the parameter is correct in the

population. This assumption, in particular, is untenable in situations

with multiple candidate models, since the models cannot all be correct

at the same time. More likely, none of the models is anything more

than a reasonable approximation (Burnham & Anderson, 2002;

Sweeten, 2020). Because of this, metrics that depend on the model

being correct are potentially misleading. This could include model test

statistics, such as the chi-square statistic in factor-based structural

equation modelling and related metrics that quantify the divergence

between the covariance matrix as implied by the model specified by

the researcher—which is assumed to be correct in the population—

and the observed or empirical covariance matrix. Similarly, estimated

standard errors provided by statistical software such as AMOS, LIS-

REL, and Mplus are unlikely to reflect the uncertainty that comes with

the model selection task. Hence, any approach to quantify model

selection uncertainty needs to avoid relying upon those standard sta-

tistics. However, model selection uncertainty can be quantified, with-

out relying on statistics that fail to capture model selection

uncertainty's full scope. By relying on a combination of information-

theoretic model selection criteria and nonparametric bootstrapping,

the approach relaxes the assumption of one model being correct in

the population, while quantifying the variability of parameter esti-

mates that goes beyond mere sampling variance.

Akaike (1973) is credited with introducing and popularizing the

idea of approaching the relative probability of candidate models

through the likelihood of each model given the data, using what is

called the Akaike information criterion (AIC). The AIC is the most

prominent among an assortment of information-theoretic criteria that

seek to select the model being closest to the unknown true model

which generates the data.2 Being a relative fit measure, the AIC

expresses the relative distances of competing models from the

unknown true model, with the ‘best’ model having the smallest AIC

value. In more formal terms, given a data set containing n (n = 1, …, N)

observations on p variables, a model m can be defined by a vector of k

parameter estimates bθ. If the data are normally distributed, then

logL bθjdata� �
, the log likelihood of the data given the estimated

parameters, is a biased estimate of the Kullback–Leibler information

of the model, with the bias approximated by k (Burnham &

Anderson, 2002). Akaike (1973) derived the formula

AIC¼�2logL bθjdata� �
þ2k: ð1Þ

Smaller values in AIC indicate a superior model in information-

theoretic terms.3 The derivation behind AIC requires only that the

candidate models be reasonably close to the true model in terms of
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their Kullback–Leibler distance (Claeskens & Hjort, 2008, Chap. 2).

None of the candidate models need be strictly ‘correct’ (Preacher &
Merkle, 2012).

While the AIC proves useful for ranking and selecting models, the

models' actual criterion values do not offer any insights regarding the

relative weights of evidence in favour of models under consideration

(Danks et al., 2020). This particularly holds since, in empirical applica-

tions, the AIC differences are typically small (Preacher & Merkle, 2012).

To address this concern, Akaike (1983) proposed computing Akaike

weights that draw on the criterion's values to express each model's rela-

tive strength of evidence vis-à-vis the alternative models

(Wagenmakers & Farrell, 2004). With values AICi for all candidate

models mi, i = 1 to I, the process of deriving weights reflecting relative

probabilities begins by finding Δi = AICi � min(AIC), the minimum AIC

value across the set of candidates. The relative likelihood of each candi-

date, relative to the set, is then (Danks et al., 2020, p. 15, Equation 2)

L mið Þ/ exp �1
2
Δi

� �
, ð2Þ

where the symbol / means ‘proportional to’. These relative likeli-

hoods can be transformed into probabilities or weights wi (Danks

et al., 2020, p. 15, Equation 3)

wi ¼ L mið ÞP
iL mið Þ , ð3Þ

with
PI
i¼1

wi ¼1.

To estimate the actual uncertainty associated with a parameter

estimate, given multiple plausible models, a researcher might consider

taking the sum of the parameter estimates' variances (squares of the

estimated standard errors), weighted by the Akaike weights. But

because the estimated standard errors carry the assumption that the

estimated model is correct, the resulting weighted average would be

not adequately reflect the model selection-induced uncertainty.

To estimate model selection uncertainty without relying on this

‘model is correct’ assumption, researchers can draw on a (nonpara-

metric) bootstrapping procedure. In bootstrapping, a great number of

samples is drawn from the original data set with replacement to gen-

erate an empirical distribution for the model estimates (Efron &

Tibshirani, 1986). The empirical distribution facilitates computing the

variance and standard error (i.e., the standard deviation of the esti-

mates) for inference testing. This variance estimate incorporates both

random sampling variance and model selection uncertainty. To cap-

ture the variability of a parameter estimate across the different candi-

date models, researchers need to apply the following steps:

1. Calculate Akaike weight wi for each candidate model mi.

2. Choose a total number of bootstrap samples R. A large number of

samples such as 10,000 minimizes rounding when translating

model probabilities into numbers of bootstrap resamples, but

requires more computational time.

3. For each model mi, draw Ri ¼R �wi bootstrap samples and estimate

the parameter within that model. For example, if a researcher con-

siders two models with equal Akaike weights and 10,000 total boot-

strap samples, then the study will draw 10,000�0.5 = 5000

bootstrap samples for each model and estimate each model's parame-

ters Ri = 5000 times. The number of bootstrap samples must be large

enough to meet each model's minimum sample size requirement.

4. Combine the Ri estimates of the parameter from each model and

compute the standard deviation—a standard error that reflects

both uncertainty due to random sampling variance and model

selection uncertainty, as it captures the variability of the parameter

estimate across the different candidate models.

5. Calculate an overall uncertainty interval for the parameter estimate

across all candidate models and compare it with the intervals from

the individual models.

3 | SIMULATION EXAMPLE

In the following, we offer a simulation study to quantify the uncer-

tainty that comes with a model selection task. To do so, we compute

an overall uncertainty interval for a parameter estimate across several

models, and contrast this interval with those derived from the single

models. A wider combined interval suggests additional variance intro-

duced through the model selection.

We created a data set of 500 observations for the purposes of

estimating the parameters of three common factor models shown in

Figure 1. We chose the simplex model (a linear sequence of effects) as

a simple baseline (Jöreskog, 1970). The simplex model features promi-

nently in psychological research, where it is commonly used to mea-

sure constructs repeatedly on the same consumers over several

occasion (Hayduk, 1994). The three simplex models include five com-

mon factors and ten observed variables, but differ in the structural

paths included. All three models include paths from factor 1 to factor

2, from factor 2 to factor 3, and so forth. We chose this model type as

its simple structures offers a suitable basis for illustrating our

approach's basic principle. Candidate model 1 includes an additional

direct path from factor 1 to factor 5. Candidate model 2 includes an

additional direct path from factor 2 to factor 5, and candidate model

3 includes an additional direct path from factor 3 to factor 5. The pop-

ulation, from which the data were sampled, included all three addi-

tional paths, so that none of the estimated models is entirely correct

in the population. In line with simulation studies in structural equation

modelling (Cho et al., 2022; Hair et al., 2017; Sarstedt et al., 2016), we

selected pre-specified path coefficients of 0.5 for the first three rela-

tionships of the simplex model (i.e., β12 ¼ β23 ¼ β34 ¼0:5) and 0.4 for

the final relationship (i.e., β45 ¼0:4)—the last path uses 0.4 so that the

additional direct paths can potentially explain a significant share of

the terminal factor's variance. The additional paths of models 1–3

were set to β15 ¼0:2, β25 ¼0:2, and β35 ¼�0:3. The indicator loadings

were set to 0.8 for the first and 0.7 for the second indicator. These

values were chosen to safeguard the measures convergent validity

1598 RIGDON ET AL.
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and internal consistency reliability, which are functions of the indica-

tor loadings. The parameter of interest here is the path coefficient

β45. Given the direct paths to the terminal factor which are excluded

from various candidate models, this parameter should demonstrate a

substantial degree of variability across these models.

Multivariate normal data were randomly generated and factor

models estimated using the R environment (R Core Team, 2022)

and version 0.6.8 of the lavaan package (Rosseel, 2012).

Appendix A includes the covariance matrix of the observed vari-

ables for the data set used. Appendix B includes a complete R

script.

The results in Table 1 show that the fit statistics for the three

candidate models are very similar. All three models have χ2 values

which, given 30 degrees of freedom, imply p values less than .001 and

F IGURE 1 Simulation models.

RIGDON ET AL. 1599
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thus lead to rejection of the hypothesis of exact fit. All three models

have CFI and RMSEA values that can be taken to indicate good

approximate fit (Hu & Bentler, 1999). Hence, each of these models

can be judged to have good approximate fit if considered by itself.

Recall that in this simulation context, none of the three estimated

models is equivalent to the model that generated the data; in practice,

of course, researchers do not have this information.

Estimates of the focal path coefficient β45 vary somewhat across

the three candidate models. The estimates range from 0.262 (Model

2) to 0.455 (Model 3). Estimated standard errors range from 0.061

(Model 1) to 0.079 (Model 3).

AIC values for the three candidate models were calculated using

Equation (1). Equations (2) and (3) were used to calculate Akaike weights

(Table 1). A researcher wishing to select the ‘best’ model based on the

Akaike weights would therefore clearly favour Model 1 (0.691) over

Model 2 and Model 3, which yield weights of 0.183 and 0.126, respec-

tively, but choosing Model 1 as the exclusive ‘winner’would mean ignor-

ing the 31% of the evidence favouring the other models. Multiplying the

Akaike weights times 10,000 bootstrap samples provides the number of

samples to be bootstrapped for each candidate model (e.g., for Model 1:

Ri = 0.691 � 10,000 = 6910 bootstrap samples). Next, we ran boot-

strapping with the indicated number of resamples assigned to each can-

didate model, using the original data set, and computed the parameter

estimates for each bootstrap run.4 This provided the data to calculate

the empirical standard deviation of the parameter estimates—that is, the

standard error—weighted by the Akaike weights.

Across 10,000 total bootstrap samples, with each candidate model

weighted by the Akaike weights, the estimated mean path coefficient β45

is 0.310 with a standard error of 0.098. At the same time, however,

the estimated standard error for this parameter, associated with each

separate model mirrored the original results, ranging from 0.061

(Model 1) to 0.079 (Model 3). That is, the bootstrap value, which takes

into account the multiple candidate models, demonstrates more vari-

ability, hence more uncertainty, in the estimate of the focal path

coefficient.

These results provide the basis for calculating an overall uncer-

tainty interval for the parameter estimate across the three models

together, which can be compared to confidence intervals derived from

the original single-model parameter estimates and standard errors.

Sample size is large, so in all cases an approximately 95% interval can

be constructed as estimated mean ± 1.96 � standard error, which

yields the following intervals (Figure 2):

Model1 : 0:169, 0:409ð Þ
Model2 : 0:140, 0:384ð Þ
Model3 : 0:300, 0:610ð Þ
Combined : 0:118, 0:502ð Þ

The 95% uncertainty interval, accounting for model selection

uncertainty and random sampling variance instead of only random

sampling variance, is wider and includes values closer to 0. The com-

bined result alerts the researcher that outcomes from a policy imple-

mentation may be more varied than they would otherwise expect.

Researchers designing a future study might be surprised to find that

a planned sample size yields lower statistical power than they had

been counting on—or higher power, in which case money spent on

sample size may have been wasted. Competing conclusions across

different studies may actually all be consistent with this study's

results, granting the wider range of uncertainty implied by this

approach. In this study, even the expanded uncertainty range

excluded 0. In other situations, the impact of accounting for model

selection uncertainty could be to keep alive the possibility that there

is no non-zero effect at all.

In this example, recall that the Akaike weight for Model 1 was

w1 = 0.691; that is, almost 70%, dominating the 10,000 bootstrap

samples. In a situation with several very competitive candidate

models, the impact of model selection uncertainty could be substan-

tially larger. And, again, this approach only accounts for random sam-

pling variance and model selection uncertainty. In this simulation-

based scenario, other potential sources of uncertainty can be dis-

counted. In research with real data, researchers would likely need to

account for several other material sources of uncertainty.

Note that attempting to create a weighted standard error—by

squaring the reported standard errors for the three models,

weighting them using the Akaike weights, then taking the square

root to create a weighted standard error—necessarily fails. Even in

this situation, where distributional assumptions underlying maxi-

mum likelihood estimation hold, the standard errors for each can-

didate model are ignorant of the existence of other candidate

models, and so can hardly account for the impact of model selec-

tion uncertainty. Moreover, as noted previously, the existence of

multiple plausible candidate models undermines the assumption

that any one candidate model is correct, even though all three can-

didate models here show what could be called good approximate

fit. Of course, bootstrapped standard errors and standard errors

derived from distributional assumptions need not be equal, cer-

tainly not in any limited sample (Efron & Tibshirani, 1986). In cir-

cumstances where distributional assumptions are avoided, as is

typical with composite-based methods like partial least squares

path modelling (Lohmöller, 1989) or generalized structured compo-

nent analysis (Hwang & Takane, 2004), this procedure illustrates a

very plausible approach.

TABLE 1 Results for the three models.

Model 1 Model 2 Model 3

Parameter estimate 0.289 0.262 0.455

Estimated standard error 0.061 0.062 0.079

χ2 (df = 30, p value < .001) 68.625 71.281 72.033

CFI 0.974 0.972 0.972

RMSEA 0.051 0.052 0.053

AIC 13,340.479 13,343.135 13,343.887

Δ 0 2.656 3.408

Exp (�1/2 � Δ) 1 0.265 0.182

Akaike weight 0.691 0.183 0.126

1600 RIGDON ET AL.
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4 | EMPIRICAL EXAMPLE

To illustrate our approach for addressing model selection uncertainty,

we used a model depicting the impact of perceived brand environ-

mental responsibility—the extent to which stakeholders view a brand

as accounting for environmental interests (Öberseder et al., 2014)—on

customer loyalty, via customer-brand identification (Bhattacharya &

Sen, 2003) and customer satisfaction. While most of the model rela-

tionships are well established, prior research is inconclusive regarding

the effect of perceived brand environmental responsibility on cus-

tomer loyalty. Specifically, some studies suggest that this impact is

fully mediated by customer satisfaction (He & Li, 2011; Pérez & Del

Bosque, 2015), whereas others indicate a direct influence on cus-

tomer loyalty (Du et al., 2007; Glaveli, 2021). Hence, we proposed

two competing models, as depicted in Figure 3.

To measure the four constructs, we adapted scales from Öberse-

der et al. (2014) and Turker (2009) for perceived brand environmental

responsibility, from Mael and Ashforth (1992) for customer-brand

identification, from Cronin et al. (2000) for customer satisfaction, and

from Zeithalm et al. (1996) for customer loyalty. Table C1 in

Appendix C reports the item wordings along with validity and reliabil-

ity estimates.

The analysis draws on data collected by means of a survey con-

ducted among customers of personal care brands from Romania using

F IGURE 2 Confidence/uncertainty
intervals for candidate models and
combined model.

Model 1 

 
Model 2 

 

Customer 
loyalty 

LOY1 LOY2 

ε11 ε12 

εf4 

LOY3 

ε13 

Customer-
brand 

iden�fica�on 

CBI1 CBI2 

ε5 ε6 

εf2 

CBI3 

ε7 

Customer 
sa�sfac�on 

SAT1 SAT2 

ε8 ε9 

εf3 

SAT3 

ε10 

Perceived 
environmental 
responsibility 

ENV2 ENV3 

ε2 ε3 

εf1 

ENV4 

ε4 

ENV1 

ε1 

Customer 
loyalty 

LOY1 LOY2 

ε11 ε12 

εf4 

LOY3 

ε13 

Customer-
brand 

iden�fica�on 

CBI1 CBI2 

ε5 ε6 

εf2 

CBI3 

ε7 

Customer 
sa�sfac�on 

SAT1 SAT2 

ε8 ε9 

εf3 

SAT3 

ε10 

Perceived 
environmental 
responsibility 

ENV2 ENV3 

ε2 ε3 

εf1 

ENV4 

ε4 

ENV1 

ε1 

F IGURE 3 Empirical models.
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quota sampling. The final data set comprises answers from 1167 cus-

tomers (50.6% men, and 49.4% women; 37.7% under 30 years, 35.3%

between 30 and 44 years, and 27.0% older).5 We use the SEMinR

package (Ray et al., 2022) for the R statistical environment (R Core

Team, 2022) for model estimation.

Model-fit measures for the proposed four-factor model meet the

generally suggested thresholds (Hu & Bentler, 1999), indicating good

approximate but not exact fit (χ2 = 278.991, df = 59, p = .000;

CFI = 0.974 > 0.95, SRMR = 0.035 < 0.08, and RMSEA = 0.057 < 0.06).

Furthermore, the analysis offers support for measures' internal consis-

tency reliability, convergent validity, and discriminant validity (Tables C1

and C2 in Appendix C).

The results in Table 2 show that the two competing models have

very similar fit statistics. Neither of them achieves exact fit (χ2 with

p values less than .001), but both have CFI, SRMR and RMSEA values

that indicate good approximate fit (Hu & Bentler, 1999). The results

of the AIC computation clearly speak in favour of Model 1, as indi-

cated by its considerably larger Akaike weight (0.837 vs. 0.163).

Following the procedure outlined above, we computed 10,000

bootstrap samples and, using the Akaike weights (Table 2), determined

the number of samples to be bootstrapped for each candidate model

(i.e., 8370 for Model 1, and 1630 for Model 2). Next, we ran boot-

strapping with the indicated number of samples for each model, using

the original data set, and computed the parameter estimates for each

bootstrap run. Eventually, we combined the parameter estimates of all

10,000 bootstrap runs, and computed bootstrap estimates, standard

errors, and 95% intervals for all model relationships (Table 3).

According to the proposed procedure, model selection uncertainty

is reflected by the discrepancies between (1) the standard errors and

confidence intervals of the candidate models' parameter estimates,

computed based on 8370 bootstrap samples for Model 1, and 1630 for

Model 2, and (2) the standard errors and uncertainty intervals computed

by combining parameter estimates of all 10,000 bootstrap samples.

Additionally, the discrepancy between standard errors derived from

bootstrap samples and the original standard errors also reflect uncer-

tainty related to the distributional assumptions supporting the original

parametric estimation method. Comparing the results for the various

models, we find that the estimates are very stable. For example, stan-

dard errors and confidence intervals for the ENV ! CBI relationship

are very similar across Model 1, Model 2, and the combined sample.

The combined bootstrap standard error for the CBI ! LOY relationship

(0.033) demonstrates slightly more variability than the bootstrap stan-

dard error in Model 1 (0.032). Comparing the combined confidence

interval (0.070, 0.200) to that of Model 1 (0.068, 0.195) suggests that

selecting Model 1 may lead to a small degree of overconfidence regard-

ing the direct effect of customer-brand identification on customer loy-

alty. Overall, however, these results indicate that the model selection

task does not induce a substantial degree of additional uncertainty.

5 | CONCLUSION

5.1 | Discussion and implications

This paper extends the pioneering work of Burnham and Anderson (2002,

2004) by proposing a procedure for quantifying uncertainty elements in

TABLE 2 Structural models assessment.

Model 1 Model 2

Parameter estimates

ENV ! CBI 0.370*** 0.371***

CBI ! SAT 0.211*** 0.207***

ENV ! SAT 0.233*** 0.243***

CBI ! LOY 0.131*** 0.152***

SAT ! LOY 0.720*** 0.735***

ENV ! LOY 0.063* N.A.

Model fit

χ2 278.991*** (df = 59) 284.258*** (df = 60)

CFI 0.974 0.974

SRMR 0.035 0.038

RMSEA 0.057 0.057

Model selection

AIC 342.991 346.258

Δ 0 3.267

Exp (�1/2 � Δ) 1 0.195

Akaike weights 0.837 0.163

***p < .001.*p < .05.

TABLE 3 Standard errors and confidence/uncertainty intervals.

Model 1 (8370 samples) Model 2 (1630 samples) Combined (10,000 samples)

B SE LB UB B SE LB UB B SE LB UB

ENV ! CBI 0.369 0.032 0.307 0.431 0.372 0.031 0.311 0.434 0.369 0.032 0.307 0.431

CBI ! SAT 0.209 0.039 0.134 0.285 0.204 0.038 0.129 0.280 0.209 0.039 0.133 0.285

ENV ! SAT 0.234 0.036 0.162 0.305 0.243 0.036 0.172 0.315 0.235 0.037 0.164 0.307

CBI ! LOY 0.131 0.032 0.068 0.195 0.153 0.030 0.093 0.212 0.135 0.033 0.070 0.200

SAT ! LOY 0.720 0.027 0.668 0.772 0.734 0.025 0.685 0.783 0.722 0.027 0.670 0.775

ENV ! LOY 0.063 0.034 �0.004 0.129 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Note: B, bootstrap parameter estimate; SE, bootstrap estimated standard error; LB/UB, 95% interval lower/upper bound (computed as B ± 1.96 � SE).
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multimodel inference beyond mere sampling variance. There are several

implications that follow not just from this specific procedure but also from

what it suggests about the impact of researchers' model comparison prac-

tice on the uncertainty of the results obtained. Uncertainty exists whether

it is quantified and documented or not. Standard errors for a single candi-

date model implicitly rest on the assumption that a single candidate model

is being tested against a null hypothesis—regardless whether the models

are theoretically motivated or whether they have been derived from an

exploratory perspective (Liengaard et al., 2021). If researchers consider

multiple models, then it is quite likely that parameter estimates vary

across models. In terms of researchers' uncertainty about the actual value

of the parameter in the population, the existence of multiple candidate

models cannot be ignored.

The ASA has taken great pains to overcome misunderstandings

about p values (Wasserstein et al., 2019), and researchers in multiple

fields are increasingly concerned about trying to root out statistical pro-

cedures being abused to produce the p value that makes research pub-

lishable (Hussey, 2021). These abuses include researchers estimating

many models but then reporting only the one that supports a maximum

share of hypothesized relationships. The problem is compounded if the

many candidate models arise from opportunistic exploration or ‘fishing’
rather than from divergent a priori theoretical perspectives. Estimating

many models carries costs, including in terms of increased uncertainty.

If a cost is never quantified, then it will never appropriately influence

decision-making. This makes it very important that researchers begin

quantifying all aspects of uncertainty related to data analysis procedure

(Rigdon et al., 2020).

The most ominous implication of this research is that it accounts

for only one small component of the overall uncertainty that con-

sumer researchers generally ignore. The effect of accounting for

model selection uncertainty, in this hypothetical example, is to expand

the ex post range of uncertainty regarding a given measurand. Incor-

porating additional material components of uncertainty will only fur-

ther widen the resulting window of doubt, possibly leading to the

conclusion that many or most studies are producing no knowledge at

all. But part of the point of building uncertainty budgets is that

researchers become aware of sources of uncertainty that need to be

controlled. Including such controls in future research designs will lead

to studies that more surely produce actual contributions to the body

of consumer research knowledge.

5.2 | Limitations and future research

A primary limitation of this approach to quantifying model selection

uncertainty is that it assumes that the models involved were all cho-

sen a priori, independent of the data. An alternative approach, proba-

bly quite common, is that a researcher develops candidate models in

response to the data (Danilov & Magnus, 2004; Simmons et al., 2011),

favouring those that appear to be consistent with the data at hand. In

this alternative situation, an assessment of uncertainty must encom-

pass not only the parameter estimates arising from the set of models

that the researchers actually considered but also the parameter

estimates that would have arisen from the other models that the

researchers might have considered if the researchers had observed

different data (Gelman & Loken, 2014).

One caution worth noting is that the behaviour of AIC and related

information-theoretic model selection criteria can be sensitive to sam-

ple size. In cases where the number of parameters being estimated is

large relative to sample size, an adjusted AIC with a different penalty

function may be appropriate (Burnham & Anderson, 2004) such as

Bedrick and Tsai's (1994) AICc. Similarly, future research should con-

sider asymptotically consistent information theoretic criteria such as

the BIC and Geweke and Meese's (1981) criterion, which have been

shown to perform well in structural equation modelling-based model

selection tasks (Sharma et al., 2019, 2021). Such an assessment

requires comparing models with different degrees of freedom in order

to impose different penalty functions on the candidate models.

Finally, we have demonstrated the uncertainty that comes with a

model selection task in the context of common factor-based methods like

covariance structure analysis where the Akaike weights express a model's

overall fit, relative to the other candidate models in the set. However,

Akaike weights can also be computed in the context of composite-based

methods like partial least squares path modelling or generalized structured

component analysis (Sharma et al., 2019) where they express a model's

relative fit with regard to a specific endogenous construct. Such an assess-

ment leaves the model selection uncertainty triggered by differences in

relationships in other parts of the model largely untapped. Nevertheless,

future research should consider composite-based SEM method's perfor-

mance in that regard, focusing on smaller models and acknowledging the

limitations of focusing on a specific endogenous construct.

5.3 | Concluding remarks

The approach described here effectively inflates the assessment of

uncertainty due strictly to random sampling variance to also include

model selection uncertainty. Unfortunately, that leaves additional,

potentially material sources of uncertainty that impact other aspects

of the research practice unaccounted for. It will probably be a while

before quantitative social science has anything close to a full set of

tools for quantifying uncertainty. Lacking a full assessment of uncer-

tainty, researchers need to acknowledge that any evaluation of

uncertainty strictly on the basis of statistical p values—as done in

common accounts of uncertainty (Preacher & Merkle, 2012) is not

enough. This call goes beyond the ASA's concerns regarding ‘statis-
tical significance’ as a criterion for judging the meaning and worth of

research findings. To the extent that research is evaluated in terms

of relevance—the relationship of research fundings to real-world

problems—consumer researchers need to acknowledge the full

extent of uncertainty associated with research fundings. Doing so

will increase confidence in and practical relevance of consumer

research findings.
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ENDNOTES
1 Note, however, that some fields of consumer research also rely on labo-

ratory instruments that allow for a more straightforward quantification

of uncertainty (e.g., functional magnetic resonance imaging, electroen-

cephalography, and eye tracking; Camerer & Yoon, 2015; de Jong &

Pieters, 2019; Oliveira et al., 2023).
2 Criteria in another stream such as Schwarz (1978) Bayesian information

criterion, provide estimates of the posterior probability of a model being

true with researchers choosing the model that maximizes this probability

on a given data set. However, as these criteria are based on the same

principle—an empirical likelihood with a penalty that favours sparse models

over more saturated models—we focus on the AIC as the primary

criterion.
3 The AIC is typically written as a function of the maximum value of the

likelihood function, but the metric can be derived from the average

squared residual across observations (Burnham & Anderson, 2002,

p. 62), provided that the error distribution is normal with a constant vari-

ance. This characteristic makes the AIC amenable to regression-based

techniques such as partial least squares path modelling (Sharma

et al., 2019) and generalized structured component analysis (Hwang &

Takane, 2004), which do not rely on maximum likelihood estimation

(Hair et al., 2022).
4 Convergence failed on 16 of the original bootstrap samples—11 for

Model 1, 4 for Model 2 and 1 for Model 3. We reran the bootstrapping

procedure to generate additional samples for each model.
5 The dataset can be downloaded from the OSF at https://osf.io/usymf/?

view_only=None.
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APPENDIX A: COVARIANCE MATRIX OF THE OBSERVED

VARIABLES IN THE SIMULATION EXAMPLE

APPENDIX B: COMPLETE R SCRIPT FOR THE SIMULATION

EXAMPLE

# load lavaan package‐‐install first, if necessary

library(lavaan)

# specify population model with parameter values

simmod<‐'

#factor‐factor

f2~0.5*f1

f3~0.5*f2

f4~0.5*f3

f5~0.4*f4+0.2*f1+0.2*f2+‐0.3*f3

#factor‐indicator

f1=~0.8*y1+0.7*y2

f2=~0.8*y3+0.7*y4

f3=~0.8*y5+0.7*y6

f4=~0.8*y7+0.7*y8

f5=~0.8*y9+0.7*y10

y1~~0.36*y1

y2~~0.51*y2

y3~~0.36*y3

y4~~0.51*y4

y5~~0.36*y5

y6~~0.51*y6

y7~~0.36*y7

y8~~0.51*y8

y9~~0.36*y9

y10~~0.51*y10

'

# generate initial sample of 500 observations consistent with

simmod

simdat<‐simulateData(model=simmod,std.lv=T,model.type =

“SEM”,sample.nobs=500)

# specify candidate model 1, with path from f1 to f5

mod1<‐'

#factor‐factor

f2~f1

f3~f2

f4~f3

f5~f4 + f1 # but no direct paths from f2 or f3

#factor‐indicator

f1=~y1+y2

f2=~y3+y4

f3=~y5+y6

f4=~y7+y8

f5=~y9+y10

'

# estimate candidate model 1

mod1.out<‐sem(model=mod1,data=simdat)

# get AIC for model 1

# remember that R is case‐sensitive almost always

mod1.AIC<‐AIC(mod1.out)

# specify candidate model 2, with direct path from f2 to f5

mod2<‐'

#factor‐factor

f2~f1

f3~f2

f4~f3

f5~f4 + f2 # but no direct paths from f1 or f3

#factor‐indicator

f1=~y1+y2

f2=~y3+y4

f3=~y5+y6

f4=~y7+y8

f5=~y9+y10

'

# estimate candidate model 2

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

y1 0.96

y2 0.51 0.97

y3 0.30 0.23 1.25

y4 0.26 0.20 0.78 1.15

y5 0.25 0.11 0.44 0.39 1.25

y6 0.21 0.12 0.41 0.30 0.77 1.16

y7 0.04 �0.01 0.17 0.10 0.37 0.37 1.13

y8 �0.02 �0.05 0.21 0.14 0.36 0.31 0.70 1.06

y9 0.09 0.10 0.15 0.13 �0.01 0.03 0.30 0.24 1.24

y10 0.17 0.13 0.24 0.20 0.02 0.01 0.22 0.17 0.75 1.12
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mod2.out<‐sem(model=mod2,data=simdat)

# get AIC value for candidate model 2

mod2.AIC <‐ AIC(mod2.out)

# specify candidate model 3, with direct path f3 to f5

mod3<‐'

#factor‐factor

f2~f1

f3~f2

f4~f3

f5~f4+f3 # but no direct paths from f1 or f2

#factor‐indicator

f1=~y1+y2

f2=~y3+y4

f3=~y5+y6

f4=~y7+y8

f5=~y9+y10

'

# estimate candidate model 3

mod3.out<‐sem(model=mod3,data=simdat)

# get AIC

mod3.AIC<‐AIC(mod3.out)

# Find deltaAIC for the three candidate models

mod1.delta<‐mod1.AIC‐min(mod1.AIC,mod2.AIC,mod3.AIC)

mod2.delta<‐mod2.AIC‐min(mod1.AIC,mod2.AIC,mod3.AIC)

mod3.delta<‐mod3.AIC‐min(mod1.AIC,mod2.AIC,mod3.AIC)

# Calculate Akaike weights for the three candidate models

mod1.w<‐exp(‐.5*mod1.delta)/(exp(‐.5*mod1.delta)+exp

(‐.5*mod2.delta)+exp(‐.5*mod3.delta))

mod2.w<‐exp(‐.5*mod2.delta)/(exp(‐.5*mod1.delta)+exp

(‐.5*mod2.delta)+exp(‐.5*mod3.delta))

mod3.w<‐exp(‐.5*mod3.delta)/(exp(‐.5*mod1.delta)+exp

(‐.5*mod2.delta)+exp(‐.5*mod3.delta))

# Set total number of bootstrap resamplings

totalboot<‐10000

# Set number of resamplings for each candidate model,

# rounded to a whole number

mod1.n<‐round(totalboot*mod1.w,0)

mod2.n<‐round(totalboot*mod2.w,0)

mod3.n<‐round(totalboot*mod3.w,0)

# Run the bootstrapping‐‐this may take a while, with 10,000 total

resamplings

mod1.boot<‐bootstrapLavaan(mod1.out,mod1.n)

mod2.boot<‐bootstrapLavaan(mod2.out,mod2.n)

mod3.boot<‐bootstrapLavaan(mod3.out,mod3.n)

# Extract the desired column of parameter estimates from the

output matrix

# Look at the matrix first to determine which column contains

# the desired parameter estimate

# It could be a different column in different output objects

param.boot1<‐mod1.boot[,4]

param.boot2<‐mod2.boot[,4]

param.boot3<‐mod3.boot[,4]

## Check the number of replications obtained. If you have

had some

## nonconvergence, you may need to run some replacement

resamplings

library(psych)

describe (param.boot1)

describe (param.boot2)

describe (param.boot3)

# lavaan's bootstrap output is a matrix, so the extracted column

# is also a matrix. It will be convenient o have it be a data.frame,

# so convert it

param.boot1<‐as.data.frame(param.boot1)

param.boot2<‐as.data.frame(param.boot2)

param.boot3<‐as.data.frame(param.boot3)

# it is also convenient to give the column of data a name

colnames(param.boot1)<‐“f4f5”
colnames(param.boot2)<‐“f4f5”
colnames(param.boot3)<‐“f4f5”
# combine the parameter estimates into one variable

param.boots<‐rbind(param.boot1,param.boot2,param.boot3)

# Get mean and standard deviation (standard error) of bootstrap

# parameter estimates across all resamplings

mean(param.boots$f4f5)

sd(param.boots$f4f5)
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APPENDIX C: MEASUREMENT MODEL ASSESSMENT FOR THE

EMPIRICAL EXAMPLE

Tables C1 and C2
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TABLE C1 Reliability and convergent validity assessment.

Constructs and items L CA CR AVE

ENV Perceived brand environmental responsibility

ENV1 Tries to reduce its impact on the environment 0.796 0.884 0.886 0.661

ENV2 Strives to minimize the consumption of limited resources 0.878

ENV3 Works diligently to use environmentally friendly materials 0.837

ENV4 Is concerned with waste management and recycling 0.733

CBI Customer-brand identification

CBI1 I am interested in what others think about this brand 0.672 0.839 0.846 0.649

CBI2 I feel angry when someone criticizes this brand 0.883

CBI3 I feel good when someone praises this brand 0.846

SAT Customer satisfaction

SAT1 I am very satisfied with this brand's products 0.758 0.867 0.869 0.689

SAT2 This brand's products are exactly what I need 0.872

SAT3 My choice to buy this brand was a very good one 0.856

LOY Customer loyalty

LOY1 This brand is my first choice, compared to other brands 0.767 0.828 0.841 0.639

LOY2 I will continue to be a customer of this brand 0.867

LOY3 In the future I plan to purchase more products from this brand 0.759

Note: AVE, average variance extracted; CA, Cronbach's alpha; CR, composite reliability; L, standardized factor loadings.

TABLE C2 Discriminant validity assessment.

ENV CBI SAT LOY

ENV 0.813 0.373 0.327 0.384

CBI 0.370 0.806 0.314 0.405

SAT 0.311 0.297 0.830 0.782

LOY 0.336 0.368 0.779 0.799

Note: Bold = square root of AVE; Regular = correlation; Italic = HTMT

value (Henseler et al., 2015).
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