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Abstract
Background: Multiple sclerosis (MS) is a chronic neuroinflammatory disease affecting about 
2.8 million people worldwide. Disease course after the most common diagnoses of relapsing-
remitting multiple sclerosis (RRMS) and clinically isolated syndrome (CIS) is highly variable 
and cannot be reliably predicted. This impairs early personalized treatment decisions.
Objectives: The main objective of this study was to algorithmically support clinical decision-
making regarding the options of early platform medication or no immediate treatment of 
patients with early RRMS and CIS.
Design: Retrospective monocentric cohort study within the Data Integration for Future 
Medicine (DIFUTURE) Consortium.
Methods: Multiple data sources of routine clinical, imaging and laboratory data derived from 
a large and deeply characterized cohort of patients with MS were integrated to conduct a 
retrospective study to create and internally validate a treatment decision score [Multiple 
Sclerosis Treatment Decision Score (MS-TDS)] through model-based random forests (RFs). 
The MS-TDS predicts the probability of no new or enlarging lesions in cerebral magnetic 
resonance images (cMRIs) between 6 and 24 months after the first cMRI.
Results: Data from 65 predictors collected for 475 patients between 2008 and 2017 were 
included. No medication and platform medication were administered to 277 (58.3%) and 198 
(41.7%) patients. The MS-TDS predicted individual outcomes with a cross-validated area under 
the receiver operating characteristics curve (AUROC) of 0.624. The respective RF prediction 
model provides patient-specific MS-TDS and probabilities of treatment success. The latter 
may increase by 5–20% for half of the patients if the treatment considered superior by the  
MS-TDS is used.
Conclusion: Routine clinical data from multiple sources can be successfully integrated to 
build prediction models to support treatment decision-making. In this study, the resulting  
MS-TDS estimates individualized treatment success probabilities that can identify patients 
who benefit from early platform medication. External validation of the MS-TDS is required, 
and a prospective study is currently being conducted. In addition, the clinical relevance of the 
MS-TDS needs to be established.
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Introduction
Multiple sclerosis (MS) is a chronic neuroinflam-
matory disease affecting more than 200,000  
people in Germany and 2.8 million people world-
wide.1,2 At the time the disease becomes sympto-
matic, it is classified as clinically isolated syndrome 
(CIS), relapsing-remitting multiple sclerosis 
(RRMS), or primary progressive multiple sclero-
sis (PPMS). CIS is a patient’s first clinical event 
without meeting criteria of dissemination both in 
time and space.3 Many patients with CIS are 
likely to convert to RRMS later on. A number of 
disease-modifying therapy (DMT) options have 
been approved and are available for treatment of 
patients with RRMS and CIS. Treatment with 
DMT is most efficacious during the early phase 
of the diseases and the efficacy of DMTs decreases 
over time especially when the disease converts 
into secondary progressive MS.

Although many patients take advantage of early 
DMT, long-term studies have demonstrated that 
a proportion of patients with CIS and MS, who 
are not treated with DMT, do not acquire signifi-
cant disability even decades after diagnosis.4 
Given the increase in prevalence over the last 
decades5 and the observation of a much better 
prognosis of recently diagnosed patients, which 
cannot be fully explained by the availability of 
DMT,6 it is conceivable to conclude that a subset 
of patients with MS or CIS may not require long-
term DMT treatment. Identifying these patients 
may not only protect them from possible side 
effects of DMTs, which often go along with 
impaired quality of life, but may also avoid sig-
nificant costs for the health care system. Thus, 
the algorithms that allow to stratify patients with 
respect to prognosis and treatment responses are 
warranted.

The course of the disease is difficult to predict 
from the onset and varies greatly among patients. 
Therefore, various data sources have been used to 
identify prognostic factors and build multivaria-
ble predictive models for disease progression 
through statistical modelling and machine learn-
ing. The results of several recent systematic 
reviews show that there is a broad awareness of 
the relevance of the research question, which is 
reflected in the extensive literature and the many 
proposed prognostic models.7–9 Their common 
conclusion, however, is that most of the reviewed 
studies and respective models are at high risk of 

bias and lack external validation. A few methodo-
logically well-conduced examples with low risk of 
bias exist, but these models show only weak  
accuracy.10–12 A related and even more complex 
research question arises from the field of person-
alized medicine and concerns the modification  
of treatment effects by predictive factors. 
Appropriate predictive models should support 
individualized treatment recommendations based 
on a patient’s characteristics. As a practical con-
sequence, patients requiring effective treatment 
at an early stage could be identified, as well as 
patients with an expected mild disease course 
who may not be unnecessarily exposed to the risk 
of adverse effects.

This retrospective monocentric cohort study 
(Retro-MS) was conducted to develop and inter-
nally validate a clinically relevant and individual-
ized treatment decision score (Multiple Sclerosis 
Treatment Decision Score – MS-TDS) for  
newly diagnosed CIS and RRMS patients. The 
MS-TDS is supposed to support the treating phy-
sician and the patient in making an informed 
decision based on anticipated treatment success 
between no or platform medication. A further 
objective was to identify patient features from 
clinical, imaging and laboratory data that are pre-
dictive factors in this regard.

Methods
The Retro-MS cohort was formed from the rou-
tine care patients treated at the Department of 
Neurology at the Klinikum rechts der Isar of the 
Technical University of Munich (TUM) to create 
the MS-TDS by predictive modelling of existing 
multidimensional baseline data. The MS-TDS 
predicts the outcome of no new or enlarging 
T2-lesions13–16 in cerebral magnetic resonance 
images (cMRIs) of a newly diagnosed CIS or 
RRMS patient on platform or no medication 
between 6 and 24 months after their first cMRI 
using patient features collected at baseline. This 
outcome is considered to be a sensitive short-
term surrogate of clinical disease activity observed 
in the long-term.17 Baseline was defined as the 
first date of cMRI available or DMT start date, 
whichever occurred first. Patients were followed-
up as long as they had eligible cMRI, which is 
defined as a cMRI acquired until 32 months after 
baseline or until the first cMRI acquired after 
32 months.
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Study population and sample
Patients treated at the TUM Department of 
Neurology at the Klinikum rechts der Isar during 
the years 2008–2017 were taken into account. 
They were diagnosed according to the 2005 and 
2010 McDonald diagnostic criteria depending 
on the time point of diagnosis. They were all seen 
in the outpatient centre of the department in reg-
ular intervals, and clinical parameters related to 
disease activity and severity were recorded. To 
align the sample of Retro-MS with the study 
population of the ongoing prospective validation 
study ProVal-MS,18 we applied the following 
selection criteria. Only patients diagnosed with 
CIS or RRMS earliest 3 years before and latest 
1 month after their first cMRI were included. 
They also had to be previously untreated, includ-
ing the possibility of a DMT no earlier than 
6 months before their first cMRI. Thereby, a 
period of 6 months was considered as the run-in 
phase after which a medication becomes effec-
tive.19 Patients with less than two cMRI images 
available or a difference of more than 32 months 
between their consecutive cMRI images were 
excluded. Patients whose data complied with the 
above rules were eligible for analysis. An illustra-
tion of these definitions is given in Figure 1 for an 
example patient.

Platform medication included the following 
DMTs: Glatiramer acetate, Interferon-beta 1a 
and 1b, Peg-Interferon, Dimethyl fumarate and 
Teriflunomide. A total of 12 patients, who 
received a more active DMT (e.g. Alemtuzumab, 
Cladribine, Natalizumab, Mitoxantrone, 
Rituximab) as first medication, were excluded 
from analysis. Each interval between two consec-
utive cMRI dates was assigned one of the two 
treatment regimens of no medication or platform 
medication, depending on which was used for the 
majority of the time within that interval.

Data
Because Retro-MS is based on routine clinical 
data, the timings of clinical assessments were not 
under the control of the investigators. Many fea-
ture values were collected at baseline, that is, 
within a 6-month time window around the first 
date of cMRI or DMT onset. If any data or meas-
urements existed during the 3-month period prior 
to this date, then the latest of those measurements 
was considered the baseline value. Otherwise, the 
earliest measurement within the 3-month period 
after this date was considered the baseline value 
(Figure 1). Standarized cMRIs were available 
from the beginning of 2009 until the end of 2017. 
Baseline data were collected from 2008 onwards 
and the outcome assessment was limited to until 
the end of 2017. The timeframes and definitions 
of the features included in the analysis were con-
sented between the centres participating in the 
Retro-MS and ProVal-MS studies. Details are 
provided in Appendix 1.

Data were exported from different clinical infor-
mation systems as specified below to a central 
staging area in the protected clinical network. 
Data were extracted from tabular form in the 
staging area and loaded into the Informatics for 
Integrating Biology and the Bedside (i2b2) and 
TranSMART data marts for data exploration. 
Final data integration, data cleaning and con-
struction of patient histories were performed 
within the software R version 3.6.3 (The R 
Foundation for Statistical Computing, Vienna, 
Austria) by creating a data frame object that was 
used for analysis. All steps were performed 
according to German and European data protec-
tion regulations.

Clinical data.  Clinical data were collected during 
outpatient visits of the patients and stored in  
the clinical information system. These included 

Figure 1.  Patient-level data progression for an example patient.
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demographics, information on diagnosis and clin-
ical presentation at onset, occurrence and clinical 
presentation of relapses, disease severity 
[Expanded Disability Severity Scale (EDSS), 
multiple sclerosis functional composite (MSFC)], 
fatigue [Fatigue Scale for Motor and Cognitive 
Functions (FSMC)] and depression [Beck 
Depression Inventory (BDI)].

Imaging data.  The cMRIs were acquired during 
routine clinical practice at one and the same 
3 Tesla scanner (Achieva; Philips Healthcare, Best, 
the Netherlands) and stored in the radiology 
information system. The intervals between  
available consecutive images were of different 
length. The respective outcome assessment was 
performed retrospectively in a semi-automated 
manner based on a fluid-attenuated inversion 
recovery (FLAIR) sequence [voxel size =  
1.5 × 1 × 1 mm; repetition time (TR) = 10,000 ms; 
time to echo (TE) = 140 ms; inversion time 
(TI) = 2750 ms] and a three-dimensional (3D) 
spoiled gradient echo T1-weighted sequence 
(1 mm isotropic; TR = 9 ms; TE = 4 ms). All images 
were converted from dicom to Nifti format using 
dcm2niix. First, lesions in baseline scans were 
automatically segmented by the lesion segmenta-
tion tool (LST, https://www.applied-statistics.de/
lst.html) yielding binary lesion segmentations in 
native space.20 Next, all images were rigidly co-
registered to the T1-weighted image of the same 
time point using NiftyReg. Then, all images were 
rigidly brought to Montreal Neurological Institute 
(MNI) space, and skull-stripped using parameters 
derived from the T1-weighted image of the same 
time point (HD-BET, github.com/MIC-DKFZ/
HD-BET).21 Now, segmented lesions from base-
line images were labelled according to their loca-
tion (periventricular, juxtacortical/cortical, 
infratentorial, subcortical/unspecific) using an 
atlas-based approach, in which the MNI tissue 
atlas was deformably registered onto the 
T1-weighted image using ANTs SyN. Segmented 
lesions were manually reviewed and corrected by 
one out of four experienced neuroradiologists 
using ITK-SNAP.22 Baseline FLAIR images were 
rigidly co-registered to follow-up FLAIR images 
using NiftyRegand, to ensure comparable image 
intensities, FLAIR baseline images were intensity-
scaled according to FLAIR follow-up images by a 
histogram-matching algorithm (using the ‘match_
histograms’ function of the Python package scikit-
image); finally, subtraction images were rendered 
by a voxel-wise subtraction of the baseline FLAIR 

image from the follow-up FLAIR image. In these 
difference images, raters only segmented new or 
enlarging lesions.23 New solitary lesions had to be 
at least 3 mm in diameter according to the current 
diagnostic criteria.3 New lesions that showed any 
overlap (i.e. >0 voxels) with an existing lesion and 
that, hence, could be regarded enlarged were 
counted if the new lesion area was of a shape that 
(virtually) could best be described by two (or even 
more) spheroids, as we then assumed that a new 
lesion had grown into an existing one. Again, only 
those lesions with an estimated diameter of at least 
3 mm were counted. Lesions having enlarged 
along the whole of their circumference (towards 
brain parenchyma) were only counted if the 
enlargement was clear to the observers. Such 
‘truly’ enlarged lesions were hardly ever observed. 
Both new and enlarging lesions were considered 
as disease progression. All image evaluations were 
finally reviewed by one senior neuroradiologist 
(J.S.K.). This assessment of lesions was blinded to 
the treatment, medication or future cMRI of a 
patient.

Laboratory data.  Routine laboratory data were 
generated by the central clinical laboratory and 
stored in the laboratory information system. 
Cerebrospinal fluid (CSF) data were generated 
by the CSF laboratory of the Department of Neu-
rology. Data were transferred into the clinical 
information system.

Statistical analysis
In Retro-MS, the definition of baseline data and 
outcome assessment is mainly governed by the 
timing of cMRI. The latter, however, is not per-
fectly regular due to the fact that the patient visits 
in routine care can deviate from preplanned 
schedule and observations may have different 
patterns for different patients. This obstacle was 
overcome by conceptualizing predictive model-
ling in a time-to-event framework. The occur-
rence of the primary endpoint – that is, new or 
enlarged cMRI lesions between consecutive 
images – was considered as an interval-censored 
event. The conditional probability of observing 
an event time T between 6 and 24 months for a 
patient with feature vector X , given the event did 
not occur until month 6, calculates to 
P T T X P T X P T X S X S X S( | , ) ( | ) / ( | ) ( ( | ) ( | ))/ ( |6 24 6 6 24 6 6 24 6< < > = < < > = − XX )

P T T X P T X P T X S X S X S( | , ) ( | ) / ( | ) ( ( | ) ( | ))/ ( |6 24 6 6 24 6 6 24 6< < > = < < > = − XX ). The com
plement of this conditional probability, that is, 
1 6 24 6 24 6− < < > = > >P T T X P T T X( | , ) ( | , ), 
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is the MS-TDS that predicts treatment success, 
instead of treatment failure. In the formula above, 
S t X( | ) is the probability of no event until time t 
for a patient with feature vector X. In this frame-
work, we assumed noninformative censoring.

A predictive RF model was implemented through 
transformation forests based on fully parameter-
ized Cox proportional hazards models (using a 
smooth baseline hazard function) to deal with the 
interval-censored outcome and to finally provide 
the MS-TDS.24,25 The predictive RF had treat-
ment (no medication versus platform medication) 
as a predictor variable in the underlying Cox mod-
els while other features were used as potential 
splitting variables to build the tree structure of the 
forest. With this approach, the interaction of the 
features with treatment is explicitly modelled. The 
optimized hyperparameters of the RF were the 
number of variables randomly sampled as candi-
dates for splitting (usually termed ‘mtry’) and the 
minimum number of observations to be consid-
ered for splitting (‘minsplit’). The hyperparameter 
tuning was based on a prespecified set of potential 
values. Recommended values p  and p/3 were 
chosen for mtry, in which p is the number of split-
ting variables.26 The set of values considered for 
minsplit was 20, 30 and 40. The combination of 
these values resulted in six models for the model 
selection procedure described below. The imple-
mentation of the RF was through the R packages 
‘trtf’ and ‘tram’.24,27,28 Package defaults were used 
for the remaining hyperparameters.

A benchmark study was performed for hyperpa-
rameter tuning and to choose the best performing 
model as well as to obtain an unbiased estimate of 
its performance. The area under the receiver 
operating characteristics curve (AUROC) at 
24 months served as the corresponding perfor-
mance measure using the MS-TDS as predictor 
variable.29 Models were compared by internal 
validation, that is, via nested threefold cross-vali-
dation. Thereby, a best performing model was 
determined in each inner cross-validation loop. 
These models were refit to the whole data of the 
respective inner loop and applied to the test data 
of the corresponding outer loop to obtain unbi-
ased performance estimates. The average of these 
values provides an unbiased assessment of the 
overall performance of a best model. The best 
model itself was determined through the best per-
forming model in the outer loop and refit to the 

whole data to produce the MS-TDS. Likelihood-
based permutation variable importance measures 
(VIMPs) of this final model were used to identify 
informative predictor variables.30,31 Predictor var-
iables with a VIMP lower than the VIMP of an 
additionally included random variable were 
excluded from VIMP display.32 To further evalu-
ate the counterfactual analysis, the MS-TDS was 
calculated assuming both treatment alternatives 
for each patient and compared between the actual 
medication groups.

In addition to the above-mentioned analyses, 
baseline data were described for the analysis 
cohort by medication group. Descriptive statistics 
used are absolute and relative frequencies for cat-
egorical variables and median and interquartile 
range (IQR) for numeric or ordinal variables. The 
interval-censored outcome was described by plot-
ting Weibull estimates of event probabilities by 
medication group.

Before the analysis, missing values of patient fea-
tures were imputed by an RF imputation model 
provided by the R package ‘missForest’.33 The 
interval-censored outcome was omitted during 
imputation to prevent artificially creating rela-
tions between that and the patient features.

All analyses were performed with the software  
R 3.6.3 (The R Foundation for Statistical 
Computing). The session info including informa-
tion about the used packages is provided in 
Appendix 2. A Transparent Reporting of a multi-
variable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) checklist for prediction 
model development and validation is provided in 
Appendix 4.34

Results
A total of 2992 patients had a record of any neu-
rological diagnosis in the clinical data of the neu-
rology department during the years 2008–2017. 
Of these, 774 patients had a diagnosis of CIS or 
RRMS and at least two T2 FLAIR cMRI images. 
A subset of 509 patients further met the eligibility 
criteria based on diagnosis, imaging and treat-
ment history. A further 34 patients had to be 
excluded because of technical problems in image 
analysis, pregnancy, unknown medication status 
or use of high efficacy medication from baseline. 
Finally, 475 patients contributed 1804 images to 
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analysis. A detailed flow chart of patient selection 
is presented in Figure 2.

A summary of baseline characteristics by medica-
tion is given in Table 1. No medication and plat-
form medication were administered to 277 
(58.3%) and 198 (41.7%) patients at baseline, 
respectively. Patients with no medication at base-
line had fewer lesions in their first cMRI (median 
13.0 versus 17.5), and were more likely to be diag-
nosed with CIS rather than RRMS (54.2% versus 
45.5%). The primary endpoint was met by 214 
patients and 167 patients under no medication 
and platform medication, respectively. Some data 
were missing in 44 of 65 features (68%) with an 
average of 20.5% missing values per feature 
(median = 22.5%, IQR = 0.0–36.0%). A detailed 
presentation of the number of missing values per 
feature and medication group is given in Table 1.

The estimated probabilities of observing no  
event until time t are displayed in Figure 3. The 
estimated median time-to-event is 122.0 days 
(4.0 months) under platform medication and 
136.9 days (4.5 months) under no medication. 
The estimated probability of being event-free at 
6 months is 43.2% and 45.3% under platform 
medication and no medication, respectively. At 
24 months, these probabilities are 18.6% and 
20.5%, respectively.

The average performance of the best prediction 
model was AUROC = 0.624 (in-depth informa-
tion about the results of the benchmark study are 
given in Appendix 3). The VIMPs of the most 
important features of the final model, that 
exceeded the VIMP of a random noise variable, 
are displayed in Figure 4. Medication is clearly the 
most important predictor variable. Demographics 

Figure 2.  Flow chart of patient selection.
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Table 1.  Baseline characteristics of all patients by medication at baseline.

No medication (n = 277) Platform medication (n = 198)

  Missing 
values

Median/N IQR/% Missing 
values

Median/N IQR/%

Outcome-related

 � Follow-up since first 
cMRI (days)

0 365 (175–623) 0 378.5 (359.0–680.5)

  Primary endpoint 0 214 (77.3%) 0 167 (84.3%)

Demographics

  Sex (F) 0 184 (66.4%) 0 134 (67.7%)

  Age (years) 0 34.7 (28.1–42.0) 0 32.4 (25.6–39.3)

  Height (cm) 110 170 (164–178) 33 172 (165–178)

  Weight (kg) 110 72.5 (62.5–85) 33 73 (62.5–85)

  BMI (kg/m2) 110 24.2 (22.0–27.7) 33 24.2 (21.1–27.9)

 � Smoking (yes/no/
former/unknown)

0 86/98/45/48 31.0/35.4/16.2/17.3% 0 71/82/34/11 35.9/41.4/17.2/5.6%

Diagnosis

 � Diagnosis at baseline 
(CIS)

0 150 (54.2%) 0 90 (45.5%)

 � Time since diagnosis 
at baseline (days)

0 31 (16–76) 0 54 (25.2–78.8)

First symptom

  Numbness 0 142 (51.3%) 0 104 (52.5%)

 � Other cranial nerve 
symptom

0 47 (17.0%) 0 22 (11.1%)

  Paresis 0 32 (11.6%) 0 20 (10.1%)

  Optic neuritis 0 91 (32.9%) 0 62 (31.3%)

  Any other symptom 0 54 (19.5%) 0 51 (25.8%)

Relapses (± 3 months from baseline)

  Numbness 0 113 (40.8%) 0 82 (41.4%)

 � Other neurological 
symptom

0 45 (16.2%) 0 22 (11.1%)

  Paresis 0 29 (10.5%) 0 19 (9.6%)

  Optic neuritis 0 65 (23.5%) 0 48 (24.2%)

  Any other symptom 0 56 (20.2%) 0 56 (28.3%)

(Continued)

https://journals.sagepub.com/home/tan


Therapeutic Advances in 
Neurological Disorders Volume 16

8	 journals.sagepub.com/home/tan

No medication (n = 277) Platform medication (n = 198)

  Missing 
values

Median/N IQR/% Missing 
values

Median/N IQR/%

 � Number of relapses 
during 3 years before 
baseline

0 1 (1–1) 0 1 (1–2)

EDSS/functional score

  Total 64 1 (0–2) 35 1 (1–2)

  Pyramidal 145 0 (0–1) 94 0 (0–1)

  Cerebellar 153 0 (0–0) 102 0 (0–1)

  Brainstem 150 0 (0–0) 102 0 (0–0)

  Sensory 137 0 (0–1) 98 1 (0–1)

  Bowel and bladder 159 0 (0–0) 104 0 (0–0)

  Visual 135 0 (0–1) 92 1 (0–1)

  Cognitive 157 0 (0–0) 105 0 (0–0)

  Ambulation 223 0 (0–0) 167 0 (0–0)

FSMC

  Fatigue cognitive 124 15 (11–22) 56 14.5 (10–24)

  Fatigue motor 124 16 (12–23) 56 16 (11.2–25.0)

  Total 125 32 (23.0–47.2) 60 31 (23.0–48.8)

MSFC

 � Nine-Hole Peg test 
result – hand/arm

88 17.6 (16.1–19.0) 36 17.5 (16.1–19.0)

 � 25-Foot Walk test 
result – ambulation

88 4 (3.4–4.5) 37 3.9 (3.5–4.4)

BDI-II – depression 88 5 (1–9) 37 6 (2–9)

First cMRI

  Total lesions count 0 13 (5–27) 0 17.5 (9–37)

 � Periventricular lesions 
present

0 243 (87.7%) 0 187 (94.4%)

 � Subcortical/unspecific 
lesions present

0 249 (89.9%) 0 189 (95.5%)

 � Juxtacortical or 
cortical lesions 
present

0 188 (67.9%) 0 157 (79.3%)

Table 1.  (Continued)

(Continued)
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No medication (n = 277) Platform medication (n = 198)

  Missing 
values

Median/N IQR/% Missing 
values

Median/N IQR/%

 � Infratentorial lesions 
present

0 125 (45.1%) 0 103 (52.0%)

CSF

 � Leucocyte count (cnt/
mcl)

100 6 (3–12) 76 7 (3.2–12)

  Glucose (mg/dl) 100 62 (57–68) 76 63 (57–71)

Total protein (mg/dl) 98 491 (398–637) 75 532 (428–635)

 � Albumin quotient 
(×10−3)

96 5.3 (3.9–7.0) 75 5.4 (4.3–7.0)

 � CSF-specific 
oligoclonal bands (no/
borderline/yes)

95 21/29/132 11.5/15.9/72.5% 75 8/21/94 6.5/17.1/76.4%

 � IgG Quo/Alb Quo (IgG-
index)

96 0.7 (0.5–1.0) 75 0.7 (0.5–1.0)

 � IgM Quo/Alb Quo (IgM-
index)

107 0.1 (0.1–0.1) 79 0.1 (0.0–0.2)

 � IgA Quo/Alb Quo (IgA-
index)

96 0.3 (0.2–0.3) 76 0.3 (0.2–0.3)

Laboratory – blood analysis

  Basophils (%) 81 0 (0–1) 50 0 (0–1)

  Bilirubin (mg/dl) 81 0.5 (0.4–0.7) 51 0.5 (0.4–0.7)

 � Blood urea nitrogen 
(mg/dl)

60 13 (10–15) 37 13 (11–15)

  Eosinophils (%) 76 1 (1–2) 44 1 (1–2)

 � Erythrocytes (cnt/pl) 30 4.6 (4.4–5.0) 9 4.6 (4.3–4.9)

  GOT (ASAT) (U/l) 94 25 (21–31.5) 29 25 (21–31)

  GPT (ALAT) (U/l) 32 22 (16–34) 9 23 (17–36)

  Haematocrit (%) 30 40.6 (38.3–43) 9 40.4 (38.3–43.5)

  Haemoglobin (g/dl) 30 13.9 (13.0–14.9) 9 13.9 (13.1–15.0)

  Leucocytes (cnt/nl) 30 7 (5.7–9.0) 9 6.9 (5.7–9.8)

  Lymphocytes (%) 73 28 (20–35) 42 26 (21–33)

  MCH (pg) 30 30 (29–31) 9 30 (29–31)

Table 1.  (Continued)

(Continued)
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No medication (n = 277) Platform medication (n = 198)

  Missing 
values

Median/N IQR/% Missing 
values

Median/N IQR/%

  MCHC (g/dl) 30 34.4 (33.7–35.1) 9 34.3 (33.6–34.9)

  MCV (fl) 30 88 (85–90) 9 88 (86–91)

  Monocytes (%) 73 7 (6–9) 42 7 (6–9)

  Neutrophils (%) 87 63 (54–70) 54 64.5 (58–70)

 � Thrombocytes  
(cnt/nl)

30 245 (215.5–285.5) 9 242 (204–277)

  TSH (mcIU/ml) 79 1.7 (1.2–2.3) 45 1.7 (1.2–2.2)

AST, aspartate transaminase; ALAT, alanine transaminase; BDI, Beck Depression Inventory; BMI, body mass index; CIS, clinically isolated 
syndrome; cMRI, cerebral magnetic resonance images; CSF, Cerebrospinal fluid; EDSS, Expanded Disability Severity Scale; FSMC, Fatigue 
Scale for Motor and Cognitive Functions; GOT, glutamic oxaloacetic transaminase; GPT, glutamic-pyruvic transaminase; IgA, Immunoglobulin 
A; IgG, Immunoglobulin G; IgM, Immunoglobulin M; IQR, interquartile range; MCH, mean corpuscular haemoglobin; MCHC, mean corpuscular 
haemoglobin concentration; MCV, mean corpuscular volume; MSFC, MS functional composite; Quo, quotient; TSH, thyroid-stimulating hormone.

Table 1.  (Continued)

Figure 3.  Weibull estimates (solid lines) and pointwise 95% confidence 
intervals (dashed lines) of observing no event until time t, that is, estimates 
of S t( ), by medication at baseline.

Further relevant patient features include the lesion 
count at baseline as well as the presence of perive-
ntricular lesions, the number of relapses, the diag-
nosis at baseline (CIS or RRMS) as well as the 
presence of CSF-specific oligoclonal bands and 
interestingly the Immunoglobulin A (IgA)-index 
(i.e. IgA Quotient/Albumin Quotient). It is impor-
tant to note that causal effects or biological rele-
vance cannot be inferred for the variables listed in 
Figure 4, as the prediction model can also benefit 
from spurious correlations with the outcome.

Predicting the outcome
The final model provides the MS-TDS, which is 
the probability of observing no new or enlarged 
T2-lesion between 6 and 24 months under plat-
form medication or no medication. Given a 
patient’s characteristics X  and event time T , it  
is defined as P T T X( | , )> >24 6 . In addition, 
the conditional probability of observing no  
event until time t , given the event did not occur 
before month 6 can be calculated by 
P T t T X P T t X P T X S t X S X( | , ) ( | ) / ( | ) ( | ) / ( | )> > = > > =6 6 6 

P T t T X P T t X P T X S t X S X( | , ) ( | ) / ( | ) ( | ) / ( | )> > = > > =6 6 6 with t ≥ 6.  Some illustrative 
examples are given in Figure 5. Each figure shows 
two curves, one for each medication group. This 
is a counterfactual information for the treating 
neurologist regarding what would happen under 
no medication or platform medication in terms  
of radiologically assessed disease activity. The 

like age, weight, height, body mass index (BMI) 
and sex also play an important role in the predic-
tion of the outcome and as predictive factors. 
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treatment with the higher curve provides the best 
prognosis in terms of no radiological disease 
activity for the particular patient. Given the 
patient features at baseline, the treatment with 
the better prognosis could be recommended for 
the patient. For example, a patient may be 
expected to benefit from platform medication (cf. 
Figure 5(a) versus (b) and (c)).

According to the MS-TDS, about 61.4% of 
patients with no medication would have benefitted 
from platform medication with an expected 
median increase of 6.9% (IQR = 3.7–10.9%) in 
the probability of being event-free between month 
6 and month 24. For patients with platform medi-
cation, it is expected that 45.5% benefitted from 
this treatment option by a corresponding 5.1% 
(IQR = 2.3–12.8%). These and additional num-
bers, as well as the distribution of expected differ-
ences in the probabilities of being event-free 
between month 6 and month 24 under either 
potential treatment option, are shown in Figure 6. 
In summary, the median and maximum values 
suggest that for half of the patients, the risk of an 
event is expected to be reduced by about 5–20% if 
the treatment recommended by the TDS is given.

Discussion
Data collected in routine practice are becoming 
increasingly available for observational studies in 
MS research on predictive factors and related 
treatment decisions.35 Similarly, advanced statis-
tical and machine learning methods are continu-
ously evolving within a theoretically sound 
framework for estimating average and individual 
treatment effects (ITEs).25,36–38 Building on these 
insights, we developed and internally validated 
the MS-TDS to predict the outcome of no new or 
enlarging cMRI lesions in a newly diagnosed CIS 
or RRMS patient on platform or no medication 
between 6 and 24 months after their first cMRI.

We are publishing the results from the MS-TDS 
development before performing an external vali-
dation study. This provides an objective state-
ment on what will be evaluated in the planned 
external validation based on the ProVal-MS 
cohort (ProVal-MS study; German Clinical 
Trails Register study ID: DRKS00014034).

A predictive RF based on fully parameterized 
Cox proportional hazards models was fit to the 
prediction problem and internally validated in a 

Figure 4.  Predictor variables with VIMP exceeding the VIMP of a random noise variable in the final model.
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Figure 5.  Illustration of the individual probabilities of being event-free, given the event did not occur before month 6, that is, 
P T t T X( | , )> > 6 , as predicted by the final model. The respective MS-TDS, which corresponds to the probability of observing the event 
later than after 24 months, that is, P T T X( 24 6, )> >| , is given in the figure legends. Each figure shows a patient who benefits from no 
medication (a), platform medication (c) or neither option (b).

Figure 6.  Increase in the probability of being event-free between month 6 and month 24 if the treatment option considered superior 
according to the MS-TDS rather than the inferior one would have been or was administered to a patient, stratified by actual treatment.

benchmark study that included hyperparameter 
tuning. The resulting MS-TDS is informative in 
many ways, suggesting features relevant to the 
prediction problem by calculating variable impor-
tance measures, and predicting individual patient 
probabilities of being event-free, as a function of 
time or for the focused time frame of 6–24 months. 
An illustration of the latter showed that it is 

possible to identify newly diagnosed patients who 
would benefit from no medication or platform 
medication through computation of the MS-TDS 
based on individual characteristics.

This study identified a number of clinical, labora-
tory and imaging features as predictive factors of 
the investigated outcome. Among the strongest 
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predictor variables were the total lesion count at 
baseline as well as the presence of periventricular 
lesions, the diagnosis at baseline (CIS versus 
RRMS), the number of relapses before baseline 
as well as two CSF parameters – that is the pres-
ence of CSF-specific oligoclonal bands and the 
IgA-index. Most of these have previously been 
identified as being predictors of the disease course 
of MS.39–41 In contrast to previous studies, our 
model is based on an unbiased approach without 
preselecting supposedly informative variables and 
internally validated. To our knowledge, none of 
the prediction models reported so far had low risk 
of bias in their model development and evalua-
tion steps and performed higher than area under 
the curve (AUC) = 0.7.10,11,12,42 Although the per-
formance of the model is weak, the results of the 
prediction are promising and provide a basis for 
future developments.

The present Retro-MS study has several limita-
tions. The analysis of observational data obtained 
from nonrandomized trials for treatment effect esti-
mation and the exploration of predictive factors 
generally inherits the risk of confounding and selec-
tion bias. The inferiority of platform medication 
illustrated in Figure 3 indicates that this may also 
apply to this study. A counterfactual framework 
involving the concept of potential outcomes, which 
are the expected outcomes of a patient under each 
treatment, has been suggested as a solution and has 
been applied in the present work. A commonly 
used approach is the application of weighted, con-
ditional or stratified analyses to estimate average 
treatment effects (ATEs). An underlying assump-
tion is the strongly ignorable treatment assignment 
(SITA), which suggests that the actual treatment 
assignment is conditionally independent from the 
potential outcomes given the observed covariables. 
Against that background, potential outcomes can 
be estimated from the observed data.36 A known 
limitation of the potential counterfactual frame-
work, which is a limitation shared with any other 
study trying to estimate ATE or ITEs from obser-
vational data of nonrandomized trials, is that SITA 
might not hold. This might result in biased effect 
estimation and models. Such models, however, 
might still be useful for prediction purposes, which 
is a property that was internally validated in this 
study. Another source of potential selection bias is 
the fact that the data were collected at a specialized 
centre. External validation will be provided by the 
subsequent prospective and multicentric ProVal 
study and may indicate such problems.

Lu et al.36 suggest the estimation of ITE by RF 
under SITA. In a comparison of several RF 
implementations, they found that tuned RF, with 
a separate RF model fit to each treatment group, 
performed best. The strategy of fitting separate 
models to the treatment groups has been criti-
cized though. Powers et al.37 state, for the case of 
two treatments, that ‘it is to be expected that the 
selected basis be different between the 2 regres-
sion functions. This can cause differences between 
the conditional means attributable not to a het-
erogeneous treatment effect but rather to ran-
domness in the basis selection’. In this study, we 
therefore fitted tuned RF to the whole data and 
estimated treatment effects within Cox models 
simultaneously fitted to both treatments.

Furthermore, the reality of routinely collected 
data necessitated defining the outcome as interval 
censored, dealing with missing values, and mak-
ing consensus decisions regarding ambiguous 
data. Even at the level of feature definitions, 
strong assumptions had to be made to consider 
some features as ‘none’ when there was no entry 
in the source data. Such decisions were made in 
consensus meetings with the authors. The assign-
ment of baseline measurements and of treatment 
groups to the intervals had to be operationalized. 
In combination with the methodologically chal-
lenging task to properly estimate treatment 
effects, these conditions narrowed the set of appli-
cable statistical models and machine learning 
methods to a model-based RF, a recently devel-
oped one used in the present work. In addition, 
only internal validation using patients from the 
same clinic and period could be performed with 
the available data set. The results on predictive 
factors should be considered exploratory as they 
were only discovered to be relevant during the 
analysis, although the set of potential features was 
determined in preparatory consensus meetings of 
the investigators. The routine data also carry a 
potential risk of misclassification, for example, in 
the diagnosis of CIS, where oligoclonal band 
analysis was not recorded in 174/240 (72.5%) 
patients. The true misclassification rate, however, 
is likely to be lower because the diagnosis of CIS 
was based on further diagnostic criteria depend-
ing on the time of diagnosis. A similar problem is 
posed by unobserved confounding, which may be 
present and may have led to biased findings. 
Another source of potential bias is the selection of 
the study population with the imposed restric-
tions on data availability and timing of DMT 
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onset, first cMRI and diagnosis. For these rea-
sons, the aforementioned prospective ProVal-MS 
study was initiated simultaneously to the present 
Retro-MS study to allow an external and unbi-
ased assessment of the MS-TDS. With an 
AUROC of 0.624, the performance of the 
MS-TDS can be considered weak43 but is compa-
rable to the performance of other models from 
studies with low risk of bias.10,11,12,42 The robust-
ness of the result has yet to be demonstrated in a 
prospective study currently being conducted for 
external validation.18 Clinical relevance also 
remains to be proven. While the score can pro-
vide clear treatment recommendations, there are 
also patients for whom no clear decision is possi-
ble (see Figure 5(b)). Some variables that have 
shown to be relevant in the present prediction 
model may be so because of spurious correla-
tions, and may not be of direct biological rele-
vance to the outcome. Further insights into more 
specific medication subgroups with differential 
efficacy – such as dimethyl fumarate, terifluno-
mide and injectable medications – could not be 
obtained due to the moderate overall sample size 
available for analysis in this study. Further tar-
geted studies with increased sample sizes are 
needed to investigate such differences and pro-
vide more specific treatment recommendations.

Conclusion
Clinical routine data can be used to support treat-
ment decision-making by statistical modelling and 
machine learning. The MS-TDS predicts the 
24-month outcome of no new or enlarging cMRI 
lesions in newly diagnosed CIS and RRMS patients. 
It provides risk estimates that can be used to iden-
tify patients who are expected to benefit from no 
medication or platform medication. The overall 
performance of the prediction model is weak but 
comparable to similar models that have recently 
been suggested. A prospective study is currently 
being conducted to allow for external validation. 
The clinical relevance of MS-TDS has yet to be 
demonstrated. The task of developing models for 
supporting treatment decisions in early MS remains 
challenging, and the present work can serve as a 
methodological example for future studies.
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Appendix 1.  Timeframes and definitions of patient features.

Numeric variables:

Domain/test Variable name Type Unit Timespan

BDI Test result 
(depression)

Integer The earliest of closest to 
baseline during ±3 months

FSMC Fatigue cognitive Integer The earliest of closest to 
baseline during ±3 months

FSMC Fatigue motor Integer The earliest of closest to 
baseline during ±3 months

FSMC Total Integer The earliest of closest to 
baseline during ±3 months

MSFC Nine-Hole Peg test 
result – hand/arm

Numeric The earliest of closest to 
baseline during ±3 months

MSFC 25-Foot Walk test 
result – ambulation

Numeric The earliest of closest to 
baseline during ±3 months

CSF Leucocyte count Integer cnt/mcl The earliest of closest to 
baseline during ±3 months

CSF Glucose Integer mg/dl The earliest of closest to 
baseline during ±3 months

CSF Total protein Integer mg/dl The earliest of closest to 
baseline during ±3 months

CSF Albumin quotient Numeric ×10−3 The earliest of closest to 
baseline during ±3 months

CSF CSF-specific 
oligoclonal bands

Ordered no/borderline/yes The earliest of closest to 
baseline during ±3 months

CSF IgG Quo/Alb Quo Numeric The earliest of closest to 
baseline during ±3 months

CSF IgM Quo/Alb Quo Numeric The earliest of closest to 
baseline during ±3 months

CSF IgA Quo/Alb Quo Numeric The earliest of closest to 
baseline during ±3 months

EDSS Total Ordered The earliest of closest to 
baseline during ±3 months

EDSS Pyramidal Ordered The earliest of closest to 
baseline during ±3 months

EDSS Cerebellar Ordered The earliest of closest to 
baseline during ±3 months

EDSS Brainstem Ordered The earliest of closest to 
baseline during ±3 months

EDSS Sensory Ordered The earliest of closest to 
baseline during ±3 months

(Continued)
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Domain/test Variable name Type Unit Timespan

EDSS Bowel and bladder Ordered The earliest of closest to 
baseline during ±3 months

EDSS Visual Ordered The earliest of closest to 
baseline during ±3 months

EDSS Cognitive Ordered The earliest of closest to 
baseline during ±3 months

EDSS Ambulation Ordered The earliest of closest to 
baseline during ±3 months

Laboratory Basophils Numeric % The earliest of closest to 
baseline during ±3 months

Laboratory Bilirubin Numeric mg/dl The earliest of closest to 
baseline during ±3 months

Laboratory Blood urea nitrogen Numeric mg/dl The earliest of closest to 
baseline during ±3 months

Laboratory Eosinophils Numeric % The earliest of closest to 
baseline during ±3 months

Laboratory Erythrocytes Numeric cnt/pl The earliest of closest to 
baseline during ±3 months

Laboratory GOT ASAT Numeric U/l The earliest of closest to 
baseline during ±3 months

Laboratory GPT ALAT Numeric U/l The earliest of closest to 
baseline during ±3 months

Laboratory Haematocrit Numeric % The earliest of closest to 
baseline during ±3 months

Laboratory Haemoglobin Numeric g/dl The earliest of closest to 
baseline during ±3 months

Laboratory Leucocytes Numeric cnt/nl The earliest of closest to 
baseline during ±3 months

Laboratory Lymphocytes Numeric % The earliest of closest to 
baseline during ±3 months

Laboratory MCH Numeric pg The earliest of closest to 
baseline during ±3 months

Laboratory MCHC Numeric g/dl The earliest of closest to 
baseline during ±3 months

Laboratory MCV Numeric fl The earliest of closest to 
baseline during ±3 months

Laboratory Monocytes Numeric % The earliest of closest to 
baseline during ±3 months

Laboratory Neutrophils Numeric % The earliest of closest to 
baseline during ±3 months

(Continued)
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Domain/test Variable name Type Unit Timespan

Laboratory Thrombocytes Numeric cnt/nl The earliest of closest to 
baseline during ±3 months

Laboratory TSH Numeric mcIU/ml The earliest of closest to 
baseline during ±3 months

Demographics Age Numeric Years N/A

Relapses Number of relapses Numeric Count During 3 years before 
baseline

Demographics Height Numeric cm The earliest of closest 
to ever before than 
+3 months from baseline

Demographics Weight Numeric kg The earliest of closest 
around baseline

Demographics BMI Numeric kg/m2 The earliest of closest 
to ever before than 
+3 months from baseline

Diagnosis Time since diagnosis 
at baseline

Integer Days The earliest of closest 
to baseline during 
−36/+1 months

cMRI Total number of 
spatially separated 
lesions

Integer Enhancing and 
non-enhancing

First image

ASAT, aspartate transaminase; ALAT, alanine transaminase; BDI, Beck Depression Inventory; BMI, body mass index; 
CIS, clinically isolated syndrome; cMRI, cerebral magnetic resonance images; CSF, Cerebrospinal fluid; EDSS, Expanded 
Disability Severity Scale; FSMC, Fatigue Scale for Motor and Cognitive Functions; GOT, glutamic oxaloacetic transaminase; 
GPT, glutamic-pyruvic transaminase; IQR, interquartile range; MCH, mean corpuscular haemoglobin; MCHC, mean 
corpuscular haemoglobin concentration; MCV, mean corpuscular volume; MSFC, MS functional composite; N/A, not 
applicable; Quo, quotient; TSH, thyroid-stimulating hormone.

Categorical variables:

Domain/test Variable name Type Categories Timespan

Demographics Smoking Ordered Yes/former/no/
unknown

Ever smoker (at base document 
or following visits) ELSE/ever 
ex-smoker (at base document 
or following visits) ELSE/ever 
nonsmoker (at base document 
or following visits) ELSE/no 
information at base document or 
following visits

First symptoma,b Numbness Logical No/yes Ever before baseline

First symptoma,b Other cranial 
nerve symptom

Logical No/yes Ever before baseline

Appendix 1.  (Continued)
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Domain/test Variable name Type Categories Timespan

First symptoma,b Paresis Logical No/yes Ever before baseline

First symptoma,b Optic neuritis Logical No/yes Ever before baseline

First symptoma,b Any other 
symptom

Logical No/yes Ever before baseline

Demographics Sex Factor Male/female N/A

Relapsesa,b Numbness Logical No/yes During ±3 months from baseline

Relapsesa,b Other 
neurological 
symptom

Logical No/yes During ±3 months from baseline

Relapsesa,b Paresis Logical No/yes During ±3 months from baseline

Relapsesa,b Optic neuritis Logical No/yes During ±3 months from baseline

Relapsesa,b Any other 
symptom

Logical No/yes During ±3 months from baseline

cMRI Periventricular 
lesions

Logical No/yes First image

cMRI Subcortical/
unspecific 
lesions

Logical No/yes First image

cMRI Juxtacortical or 
cortical lesions

Logical No/yes First image

cMRI Infratentorial 
lesions

Logical No/yes First image

Diagnosis Diagnosis at 
baseline (CIS)

Factor CIS/RRMS Earliest of closest to baseline 
during −36/+1 months

cMRI, cerebral magnetic resonance images; CIS, clinically isolated syndrome; RRMS, relapsing-remitting multiple 
sclerosis.
aNo if no information.
bInclude if only year is available in the same year as baseline.

Appendix 2

Session Info
> sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.6 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1

Appendix 1.  (Continued)
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locale:
[1] LC_CTYPE=C.UTF-8    LC_NUMERIC=C    LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8    LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8    LC_NAME=C    LC_ADDRESS=C
[10] LC_TELEPHONE=C    LC_MEASUREMENT=C.UTF-8    LC_IDENTIFICATION=C

attached base packages:
[1] parallel grid    stats    graphics grDevices utils    datasets
[8] methods base

other attached packages:
[1] profvis_0.3.7    tictoc_1.0.1    icenReg_2.0.15
[4] coda_0.19-4    Rcpp_1.0.7    intcensROC_0.1.3
[7] ALassoSurvIC_0.1.0    caret_6.0-90    lattice_0.20-45
[10] trtf_0.3-8    partykit_1.2-15    mvtnorm_1.1-3
[13] libcoin_1.0-9    tram_0.6-1    mlt_1.3-2
[16] basefun_1.1-1    variables_1.1-1    missForest_1.4
[19] itertools_0.1-3    iterators_1.0.13    foreach_1.5.1
[22] randomForest_4.6-14    survival_3.2-13    BBmisc_1.11
[25] summarytools_1.0.0    forcats_0.5.1    stringr_1.4.0
[28] dplyr_1.0.7    purrr_0.3.4    readr_2.1.1
[31] tidyr_1.1.4    tibble_3.1.6    ggplot2_3.3.5
[34] tidyverse_1.3.1    openxlsx_4.2.4    xtable_1.8-4
[37] rio_0.5.29    knitr_1.36    reshape2_1.4.4
[40] lubridate_1.8.0    readxl_1.3.1

loaded via a namespace (and not attached):
[1] TH.data_1.1-0    colorspace_2.0-2    pryr_0.1.5
[4] class_7.3-19    ellipsis_0.3.2    base64enc_0.1-3
[7] fs_1.5.1    rstudioapi_0.13    listenv_0.8.0
[10] prodlim_2019.11.13    fansi_0.5.0    xml2_1.3.3
[13] codetools_0.2-18    splines_3.6.3    polynom_1.4-0
[16] Formula_1.2-4    jsonlite_1.7.2    nloptr_1.2.2.3
[19] pROC_1.18.0    broom_0.7.10    dbplyr_2.1.1
[22] compiler_3.6.3    httr_1.4.2    backports_1.4.0
[25] assertthat_0.2.1    Matrix_1.3-4    fastmap_1.1.0
[28] cli_3.1.0    htmltools_0.5.2    tools_3.6.3
[31] gtable_0.3.0    glue_1.5.1    cellranger_1.1.0
[34] vctrs_0.3.8    nlme_3.1-153    timeDate_3043.102
[37] inum_1.0-4    gower_0.2.2    xfun_0.28
[40] globals_0.14.0    rvest_1.0.2    lifecycle_1.0.1
[43] future_1.23.0    MASS_7.3-54    zoo_1.8-9
[46] scales_1.1.1    ipred_0.9-12    hms_1.1.1
[49] sandwich_3.0-1    curl_4.3.2    pander_0.6.4
[52] rpart_4.1-15    stringi_1.7.6    checkmate_2.0.0
[55] orthopolynom_1.0-5    BB_2019.10-1    zip_2.2.0
[58] lava_1.6.10    rlang_0.4.12    pkgconfig_2.0.3
[61] matrixStats_0.61.0    htmlwidgets_1.5.4    recipes_0.1.17
[64] rapportools_1.0    tidyselect_1.1.1    parallelly_1.29.0
[67] plyr_1.8.6    magrittr_2.0.1    R6_2.5.1
[70] magick_2.7.3    generics_0.1.1    multcomp_1.4-17
[73] DBI_1.1.1    pillar_1.6.4    haven_2.4.3
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[76] foreign_0.8-76    withr_2.4.3    nnet_7.3-16
[79] future.apply_1.8.1    modelr_0.1.8    crayon_1.4.2
[82] coneproj_1.14    utf8_1.2.2    alabama_2015.3-1
[85] tzdb_0.2.0    data.table_1.14.2    ModelMetrics_1.2.2.2
[88] reprex_2.0.1    digest_0.6.29    numDeriv_2016.8-1.1
[91] stats4_3.6.3    munsell_0.5.0    tcltk_3.6.3
[94] quadprog_1.5-8

Appendix 3

Detailed results of the benchmark study
In the three inner loops of the benchmark study 
conducted for model selection and performance 
estimation, one of the selected models used the 
parameters minsplit = 40 and mtry = p/3 = 22 and 
two of the selected models each used the param-
eters minsplit = 30 and mtry = p/3 = 22. Average 
area under the receiver operating characteristics 

curves (AUROCs) of these models were 0.598, 
0.587 and 0.617 in the inner loops. The AUROCs 
obtained on the respective test data of the outer 
loop were 0.676, 0.588 and 0.607, leading to an 
overall estimate of the average performance of a 
best model of 0.624. In the outer loop, the 
parameter settings minsplit = 20 and 
mtry = p/3 = 22 performed best and were there-
fore used in refitting the final model to the whole 
data set.

Appendix 4.  TRIPOD checklist for prediction model development and validation.

Section/topic Itema Checklist item Page

Title and abstract

  Title 1 D;V Identify the study as developing and validating a 
multivariable prediction model, the target population 
and the outcome to be predicted.

1

  Abstract 2 D;V Provide a summary of objectives, study design, 
setting, participants, sample size, predictors, 
outcome, statistical analysis, results and 
conclusions.

1

Introduction

 � Background and 
objectives

3a D;V Explain the medical context (including whether 
diagnostic or prognostic) and rationale for developing 
or validating the multivariable prediction model, 
including references to existing models.

2

3b D;V Specify the objectives, including whether the study 
describes the development or validation of the model 
or both.

2

Methods

  Source of data 4a D;V Describe the study design or source of data (e.g. 
randomized trial, cohort or registry data), separately 
for the development and validation data sets, if 
applicable.

3–4

4b D;V Specify the key study dates, including start of accrual; 
end of accrual; and, if applicable, end of follow-up.

3

(Continued)
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Section/topic Itema Checklist item Page

  Participants 5a D;V Specify key elements of the study setting (e.g. 
primary care, secondary care, general population) 
including number and location of centres.

3

5b D;V Describe eligibility criteria for participants. 3

5c D;V Give details of treatments received, if relevant. 3

  Outcome 6a D;V Clearly define the outcome that is predicted by the 
prediction model, including how and when assessed.

4

6b D;V Report any actions to blind assessment of the 
outcome to be predicted.

NA

  Predictors 7a D;V Clearly define all predictors used in developing 
or validating the multivariable prediction model, 
including how and when they were measured.

3–4,  
Table 1

7b D;V Report any actions to blind assessment of predictors 
for the outcome and other predictors.

NA

  Sample size 8 D;V Explain how the study size was arrived at. 3

  Missing data 9 D;V Describe how missing data were handled (e.g. 
complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.

5

 � Statistical 
analysis methods

10a D Describe how predictors were handled in the 
analyses.

5

10b D Specify type of model, all model-building procedures 
(including any predictor selection) and method for 
internal validation.

5

10c V For validation, describe how the predictions were 
calculated.

5

10d D;V Specify all measures used to assess model 
performance and, if relevant, to compare multiple 
models.

5

10e V Describe any model updating (e.g. recalibration) 
arising from the validation, if done.

5

  Risk groups 11 D;V Provide details on how risk groups were created, if 
done.

NA

 � Development 
versus validation

12 V For validation, identify any differences from the 
development data in setting, eligibility criteria, 
outcome and predictors.

NA

Results

  Participants 13a D;V Describe the flow of participants through the study, 
including the number of participants with and without 
the outcome and, if applicable, a summary of the 
follow-up time. A diagram may be helpful.

5–6,  
Figure 2

Appendix 4.  (Continued)
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Section/topic Itema Checklist item Page

13b D;V Describe the characteristics of the participants (basic 
demographics, clinical features, available predictors), 
including the number of participants with missing 
data for predictors and outcome.

6, Table 1

13c V For validation, show a comparison with the 
development data of the distribution of important 
variables (demographics, predictors and outcome).

NA

 � Model 
development

14a D Specify the number of participants and outcome 
events in each analysis.

6

14b D If done, report the unadjusted association between 
each candidate predictor and outcome.

NA

 � Model 
specification

15a D Present the full prediction model to allow predictions 
for individuals (i.e. all regression coefficients and 
model intercept or baseline survival at a given time 
point).

NA

15b D Explain how to the use the prediction model. 10–11

 � Model 
performance

16 D;V Report performance measures (with CIs) for the 
prediction model.

6

  Model-updating 17 V If done, report the results from any model updating 
(i.e. model specification, model performance).

6

Discussion

  Limitations 18 D;V Discuss any limitations of the study (such as 
nonrepresentative sample, few events per predictor, 
missing data).

13

  Interpretation 19a V For validation, discuss the results with reference to 
performance in the development data, and any other 
validation data.

11

19b D;V Give an overall interpretation of the results, 
considering objectives, limitations, results from 
similar studies and other relevant evidence.

13–14

  Implications 20 D;V Discuss the potential clinical use of the model and 
implications for future research.

14

Other information

 � Supplementary 
information

21 D;V Provide information about the availability of 
supplementary resources, such as study protocol, 
Web calculator and data sets.

18–23

  Funding 22 D;V Give the source of funding and the role of the funders 
for this study.

15

TRIPOD, Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis; NA: not applicable.
aItems relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a 
prediction model are denoted by V and items relating to both are denoted D;V.
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