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Abstract 

Background  Overweight and obesity are severe public health problems worldwide. Obesity can lead to chronic dis-
eases such as type 2 diabetes mellitus. Environmental factors may affect lifestyle aspects and are therefore expected 
to influence people’s weight status. To assess environmental risks, several methods have been tested using geo-
graphic information systems. Freely available data from online geocoding services such as OpenStreetMap (OSM) can 
be used to determine the spatial distribution of these obesogenic factors. The aim of our study was to develop and 
test a spatial obesity risk score (SORS) based on data from OSM and using kernel density estimation (KDE).

Methods  Obesity-related factors were downloaded from OSM for two municipalities in Bavaria, Germany. We visual-
ized obesogenic and protective risk factors on maps and tested the spatial heterogeneity via Ripley’s K function. Sub-
sequently, we developed the SORS based on positive and negative KDE surfaces. Risk score values were estimated at 
50 random spatial data points. We examined the bandwidth, edge correction, weighting, interpolation method, and 
numbers of grid points. To account for uncertainty, a spatial bootstrap (1000 samples) was integrated, which was used 
to evaluate the parameter selection via the ANOVA F statistic.

Results  We found significantly clustered patterns of the obesogenic and protective environmental factors according 
to Ripley’s K function. Separate density maps enabled ex ante visualization of the positive and negative density layers. 
Furthermore, visual inspection of the final risk score values made it possible to identify overall high- and low-risk areas 
within our two study areas. Parameter choice for the bandwidth and the edge correction had the highest impact on 
the SORS results.

Discussion  The SORS made it possible to visualize risk patterns across our study areas. Our score and parameter 
testing approach has been proven to be geographically scalable and can be applied to other geographic areas and in 
other contexts. Parameter choice played a major role in the score results and therefore needs careful consideration in 
future applications.
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Background
Overweight and obesity are severe problems worldwide, 
causing a number of diseases such as type 2 diabetes, and 
thus reducing expected life years and quality of life [1, 2]. 
In Germany, for example, the prevalence of being over-
weight or obese among adults was 54.0% according to 
the GEDA (GEDA, German Health Update) study from 
the Robert Koch Institute (a national public health insti-
tute in Germany) in 2014/2015, with men being affected 
more often than women [3]. Other personal aspects 
affecting obesity besides gender were low education and 
higher age according to Mader et al. [4]. In addition, sev-
eral German cohort studies have shown that the aver-
age weight in middle-aged populations increased slightly 
during recent years [5].

Obesity has become a major public health concern, and 
recent studies describe regional heterogeneity [6, 7]. In 
obesity-related research, the term “obesogenic environ-
ment” describes environmental influences such as green 
space or fast food restaurants on the development of 
obesity [8, 9], which has been investigated intensively in 
the past [10]. Several approaches have been developed in 
order to analyze the effect of the environment on the risk 
of obesity. Examples include obesogeneity assessment via 
questionnaires [11] and via data visualization tools for 
obesity policy [12].

Some geographic modeling approaches were used to 
characterize the accumulation of environmental factors. 
Common techniques include kernel density estimation 
(KDE), a density method that allows for the estimation 
of a continuous risk surface [13, 14], as well as hot spot 
mapping [15] and further geographic information sys-
tem (GIS) methods [16]. These methods can be used to 
develop obesity risk scores [17].

Online geocoding services offer low-cost geographic 
data for researchers that can be downloaded and used 
for spatial statistical analyses. Their validity has been 
investigated in the past with reasonable results regard-
ing completeness of environmental factors and positional 
accuracy of their coordinates [18, 19]. Therefore, they 
offer a rich database on which geographic tools can be 
built. However, geocoding services such as Google Maps 
offer data only in a limited way. In contrast, geodata from 
OpenStreetMap (OSM) contain geographic information 
provided by volunteers and thus are less restricted [20]. 
In a recent study, we performed an extensive literature 
search to identify obesity-related environmental factors 
[18]. Furthermore, we operationalized and downloaded 
corresponding points of interest (POIs).

The aim of our study extends this approach by devel-
oping and testing the spatial obesity risk score (SORS) 
based on data from OSM. The SORS calculates the obe-
sity risk for each geographic point in a given region based 

on the local density of positive and/or negative obesity-
related environmental factors. In our study, we developed 
a methodological framework for risk score estimation 
using KDE and tested the influence of five KDE param-
eters on the SORS values: (1) bandwidth, (2) edge correc-
tion via the size of the download area, (3) number of grid 
points, (4) risk interpolation method, and (5) weighting 
scheme of the environmental factors.

Methods
Overview of the study approach
We describe the general strategy of obesity risk score 
estimation, which consists of several steps, by applying it 
to two regions in Bavaria, Germany. First, we chose our 
study area and downloaded POIs related to obesogenic 
environmental factors (cf. [18]). Second, the data were 
processed to adjust for some imprecisions and minimize 
redundancy, e.g., we adapted the coordinate units to rep-
resent the same length. Third, we analyzed the spatial 
heterogeneity of the study area and inspected the study 
area visually to get first insights regarding the distribu-
tion of POIs. Fourth, we presented the basic risk score 
estimation approach, as well as a deterministic sensitivity 
analysis, in which a spatial POI resampling approach was 
integrated. This approach made it finally possible in a last 
step to evaluate the deterministic parameter selection 
via the ANOVA F statistic. An overview of the risk score 
estimation process is shown in Fig.  1. Further details 
regarding each step are given below.

Area selection and data download
We based our analysis on the overall obesogenic and 
protective environmental factors identified in our previ-
ous study [18]. The list of chosen variables for the score 
was derived via an extensive literature review, i.e., pre-
vious work by Mackenbach et al. [10], Jia et al. [21], and 
enriched with our own further searches.

We chose two areas in the south of Bavaria, Germany, 
to illustrate our approach and develop the SORS. Our 
aim was to base the geographical analysis on different 
levels of urbanity. The first area was the city of Augs-
burg with about 300,000 inhabitants covering an area of 
147 km2. A more rural region, the town of Meitingen with 
11,000 inhabitants and a size of 30 km2 lying 20 km north 
of Augsburg, was chosen as the second area. Information 
on these regions was available from the German Federal 
Statistical Office [22]. We selected the region around the 
city of Augsburg, as it is well known within obesity- and 
diabetes-related research [23].

Spatial POIs related to the selected variables, such as 
fast food restaurants and parks (compare Additional 
file 1), were downloaded from OSM using the online data 
filtering tool Overpass turbo [24]. Data regarding the area 
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borders of Augsburg and Meitingen were downloaded in 
shape file format from a geographic online portal pro-
vided by the Bavarian government [25]. We directly 
downloaded maps intended for graphical visualization 
of results from the OSM web page [26]. Additional file 2 
contains further information regarding data download.

Data processing
The downloaded GeoJSON files contained information 
on each POI regarding name, type of obesity-related envi-
ronmental factor, spatial coordinates in latitude and lon-
gitude format, and other characteristics such as opening 

hours and street addresses. The relevant information, 
i.e., name, coordinates, and type of environmental fac-
tor, was extracted for each spatial POI and processed into 
lists and data frames. Table A1 of Additional file 1 gives 
an overview of the downloaded and processed variables 
from OSM.

As a further pre-processing step, we introduced a syn-
thetic origin to the south-west of both study areas and 
adapted the length of a longitudinal coordinate unit 
to the length of a latitudinal coordinate unit. The sche-
matic structure after the introduction of the origin and 
the coordinate adaptation is shown in Table 1. The single 

Fig. 1  Modelling process for obesity risk score estimation. ANOVA = analysis of variances, KDE = kernel density estimation

Table 1  Schematic example of six processed POIs

POI Point of interest
a Coordinates after equidistant transformation and relative to the synthetic origin
b Categories were derived from the literature [10, 18]
c The subcategories were derived from OpenStreetMap map features [27]

Categorization Coordinatesa

Type of environmental factor Category of the POIb Subcategory of the POIc Longitude Latitude

Obesogenic Unhealthy_food Pastry 0.2595 0.3189

Obesogenic Unhealthy_food Pastry 0.2488 0.3161

Obesogenic Unhealthy_food Sweets 0.2303 0.2657

Protective Physical_activity Canoe 0.2789 0.2966

Protective Physical_activity Climbing 0.2404 0.2867

Protective Physical_activity Climbing 0.3009 0.2084
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bus stops were reduced from POIs to centroids of dense 
regions of bus stops. Further details regarding these addi-
tional pre-processing steps can be found within Addi-
tional file 2.

Spatial inhomogeneity and ex ante KDE visualization
Ripley’s K function was calculated for the unweighted 
obesogenic and protective POIs separately to describe 
the spatial inhomogeneity of the two study areas. The K 
function is a second-order moment function that is based 
on the variance of the radial interpoint distance r around 
each POI [28]. It compares the cumulative number of 
actual POIs with the number of expected POIs under 
random distribution assumption [29]. This random com-
parison process is realized via the Poisson process, which 
has a K value of r2π [30]. K functions lying above the K 
values of a random process therefore represent clus-
tered patterns, whereas smaller values indicate regular 
processes [31]. We examined the spatial inhomogeneity 
to investigate ex ante whether clusters are expected to 
occur in our subsequent POI analysis. The isotropic edge 
correction, which is a method based on weighting of the 
POIs according to the probability of their next neighbors 
being within the study area, was applied to the K function 
[32]. In order to test whether the K functions of the POIs 
were significantly different from the K function of a ran-
dom point pattern, we estimated bootstrap confidence 
bands around the K functions of the POIs based on the 
method of Loh with 1000 simulations [33].

In order to visualize the spatial distribution of the POIs, 
we created KDEs separately for positive and negative spa-
tial data points [34]. These density layers were superim-
posed and shown together on a single map. Within this 
process, we defined certain parameter choices as the base 
case, which were then changed as part of the sensitivity 
analysis in a later step.

Risk score estimation
We estimated the SORS based on the integration of obe-
sogenic and protective kernel densities into a combined 

score. The aim of KDE is to provide a smooth and con-
tinuous estimation of the accumulation of spatial data 
points based on a sliding window technique. The geo-
graphic plane is represented by two dimensions and the 
estimated densities account for a third dimension, which 
thus leads to a three-dimensional mountainous structure, 
a so-called “risk surface”. To visualize this structure on a 
map, the level of the density coordinate can be plotted 
by contour lines or via coloring [35]. An overview of this 
method is provided by Hastie et al., for example, as well 
as by King et al. [36, 37].

To estimate risk score values, several steps have been 
performed. First, the positive spatial data points were 
included into a single positive spatial data layer. Anal-
ogously, the negative spatial data points were inte-
grated into a data layer. Second, an observation window 
together with a grid of suitable size was set up and laid 
on the respective study area. For each of the follow-
ing calculations, the same grid was used. Third, KDEs 
were performed to generate a risk surface based only on 
positive environmental factors and a second risk sur-
face based only on negative environmental factors. Fol-
lowing this process, a density value based on positive 
factors and a value based on negative factors were gener-
ated at each grid point. Fourth, these positive and nega-
tive estimates were set against each other by taking the 
difference, which results in the final score values at the 
grid points [34]. Finally, to determine the risk value at 
the exact desired spatial location, interpolation methods 
were applied.

Deterministic analysis
The procedure described above implies several param-
eter choices within its different steps. We tested alterna-
tive values for five of these parameters: bandwidth, edge 
correction, number of grid points, interpolation method, 
and an alternative weighting scheme (see overview in 
Table 2). For each given parameter variation, the remain-
ing KDE parameters were set to their base case values 

Table 2  Overview on the sensitivity parameters

Parameter Base case Deterministic sensitivity analysis

1) Bandwidth Method of Terrell [38] 1/3, 2/3, 4/3, 5/3 of the base case bandwidth

2) Size of download area (edge correction) 1.4 * side length of the exact box x * side length of the exact box,
with x ϵ {1.8, 2.2, 2.6, 3.0}

3) Number of grid points 35 × 35 grid points 70 × 70 grid points, 105 × 105 grid points

4) Interpolation method Automatic interpolation with the R func-
tion “interp.surface”

Inverse distance weighting
density of the nearest grid cell
ordinary Kriging

5) Weighting scheme of the environmental factors Equal weighting with unity Double weighting of supermarkets and gyms
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(see also Table  2). Further explanations regarding the 
parameters are provided below.

Bandwidth selection
The bandwidth is an important parameter in KDE that 
determines the degree of smoothing. An increased band-
width results in a higher smoothing level. For the base 
case, the oversmoothing bandwidth proposed by Ter-
rell et al. [38] was chosen, which can be described as the 
maximum smoothing degree that can be suitably applied 
to a given data set. Within the deterministic scenarios, 
alternative higher and lower values in steps of 1/3 of 
the base case bandwidth were tested. We used a pooled 
bandwidth as described by Davies and colleagues [39].

Size of the download area (edge correction)
Restricting the observational window for KDE to the area 
boundaries would lead to an underestimation of the true 
densities at the borders. These effects are especially high 
if the observation window has a complex structure. To 
correct for edge effects, we defined a rectangular obser-
vation window around the area borders, which simul-
taneously served as the POI download area and as the 
KDE area. As a first step, a window was determined from 
the maximum latitude, maximum longitude, minimum 
latitude, and minimum longitude of the city boundaries. 
This minimum bounding rectangle around the study area 
will be called the “exact box”. For the base case, each side 
length of the rectangle was increased by 40%, and the 
resulting rectangle was held in a concentric orientation 
to the smaller rectangle from the step before. The whole 
observation window was used for the creation of the risk 
surface. However, risk score values were only evaluated at 
locations that lay within the boundaries of the respective 
study area. To determine the effects of the window size, 
we gradually increased the download area in steps of 40% 
of the exact box.

Number of grid points
A further central parameter of KDE is the number of grid 
points. These points were distributed equally on the esti-
mation rectangle. Therefore, KDEs were generated for 
grid points lying both inside and outside the study area, 
and both types of grid points were used to estimate the 
risk score inside the borders of the study areas. A higher 
number of grid points means that the amount of inter-
polation is reduced, as more spatial points exist at which 
an exact estimation is known. To preserve the location 
of and distance between the inner grid points within the 
edge correction scenarios, we increased the number of 
grid points in 40% steps according to the increase in the 
side length of the download area. Setting the number of 
grid points to 25 × 25 for the exact box, this led to a base 

case grid of 35 × 35. For each of the following 40% steps 
of edge correction, again 10 additional grid points were 
added to each grid point dimension. Within the remain-
ing grid point sensitivity analyses, increased numbers of 
70 × 70 and 105 × 105 grid points were tested.

Interpolation method
The automatic interpolation function “interp.surface” of 
the R package “fields” [40] was applied within the base 
case. As an alternative interpolation approach, we used 
inverse distance weighting using the four grid points 
surrounding a targeted evaluation point. Furthermore, 
extraction of the score value of the grid point with the 
minimum distance to the targeted evaluation point was 
implemented as the third interpolation method [41]. As 
a fourth scenario, we chose ordinary Kriging which has 
proven its reliability for interpolating surfaces [42].

Weighting scheme of the environmental factors
Several approaches exist for the design of proper weight-
ing schemes. One approach, for example, would be to 
weight factors according to the strength of evidence for 
a positive or negative correlation. Regarding our analy-
sis, we chose an equal weighting scheme as a base case 
scenario. To test an alternative weighting scenario, we 
followed the approach of Jones-Smith et  al. [34]. These 
authors gave a higher weighting to factors that gener-
ally reach more people because of their longer opening 
hours or size. For the deterministic sensitivity analysis, 
we therefore tested a double weighting of supermarkets 
and gyms.

Resampling approach to account for uncertainty 
in the distribution of the POIs
Uncertainty concerning POIs was integrated into density 
score estimations via a spatial bootstrapping method. We 
generated 1000 bootstrap samples for the positive and 
1000 bootstrap samples for the negative environmen-
tal POIs at random with replacement. For each of the 
samples, the parameter variation described above was 
executed. This made it possible to integrate probabilistic 
variation of POIs into SORS value estimation for each 
deterministic scenario. These uncertainty estimates were 
used for the calculation of the ANOVA F statistic, which 
we applied to compare the deterministic sensitivity sce-
narios for a given parameter. We describe further details 
regarding the sampling process in Additional file 2.

Evaluation of the risk score estimates
A random sample (N = 50) of spatial data points (eval-
uation points, EPs) was drawn from each of the two 
areas for which we calculated and compared risk score 
results across the scenarios defined above. Our aim 
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was to develop a robust and stable score that accounts 
for uncertainty and exhibits discriminatory power. To 
describe how much the choice of parameter values influ-
ences the discrimination of data points with low and 
high risk, we performed analysis of variance (ANOVA) 
between all 50 EPs based on their bootstrap replica-
tions. Thus, for each EP, 1000 bootstrap replicates of the 
SORS constituted an ANOVA group of estimates for a 
given parameter scenario. We calculated the F statistic 
in order to determine the degree of separation between 
the 50 groups of estimates with higher F values indicat-
ing higher degrees of separation. Therefore, the highest 
value of the F statistic within a given parameter varia-
tion analysis in this sense indicates the best result. The 
relative influence of the parameters on model results is 
estimated based on a normalization of the F statistic val-
ues. The algorithm used to implement deterministic and 
probabilistic analysis is shown in Fig.  2. Finally, we cre-
ated heat maps based on the risk score estimates of the 
base case. For this purpose, the KDE values were again 
transferred back to the original map dimensions that 

were used in the pre-visualization step. To compare this 
base case risk map to an alternative visualization using 
a common geographical methodology, we estimated an 
inhomogeneous cluster point process with polynomial 
trend of degree two for positive and negative POIs that is 
designed to provide similar cluster structures compared 
to our KDE approach. Subsequently, we derived intensi-
ties for risk score plotting in a comparable way as it was 
done for the kernel density approach, i.e., via setting off 
the surfaces. We tested several point process types, such 
as “Thomas” and MatClust”, and chose the model with 
the best fit based on the Akaike Information Criterion 
[43]. The code for data download, data processing, and 
analysis of the scenarios defined above can be found in 
the supplementary information.

Software
The spatial POIs were processed and analyzed using R 
version 4.0.2 [44]. For graphical visualization, R pack-
ages “ggplot2” [45], “graphics” [44], and “fields” [40] were 
used. We applied the “spatstat” [46] package to estimate 

Fig. 2  Algorithm describing the combination of deterministic and probabilistic analysis, BS = bootstrap sample, EC = edge correction
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Ripley’s K function and the bootstrap confidence bands 
around it. For KDEs, the packages “MASS” [47] and 
“sparr” [39] were chosen. Spatial data objects were built 
and handled via the packages “rgdal” [48], “geojsonR” 
[49], “prob” [50], and “spatstat” [46]. For interpolation 
and for the generation of risk score maps, the packages 
“fields” [40] and “gstat” [51] were used. To plot spatial 
objects on maps, we used the package “png” [52]. Finally, 
the DBSCAN algorithm was applied using the package 
“dbscan” [53].

Results
Spatial inhomogeneity and visual inspection of the study 
area
The upper part of Fig.  3 shows estimates of Ripley’s 
K function for Augsburg, separately for the obeso-
genic and the protective POIs. The point pattern for 

Augsburg was significantly clustered, as the lower con-
fidence bands of the K functions lay above the random 
Poisson processes for each interpoint distance r, which 
means that the actual number of POIs within a distance 
r was greater than the number of expected POIs under 
random distribution assumptions [31]. This underlined 
the importance of subsequent KDE analysis, as the spa-
tial pattern was suitable for clustering tasks. Estimates 
of the obesogenic and the protective K functions for 
Meitingen also revealed significantly clustered patterns, 
as the lower confidence bands lay above the random 
pattern for all or at least for several interpoint distances 
r, which is shown in the bottom part of Fig. 3.

The separate obesogenic and protective risk sur-
faces are shown in Fig.  4 for Augsburg and Meitin-
gen. The obesogenic and protective kernel densities 
for Augsburg accumulated within a region lying to the 

Fig. 3  Spatial inhomogeneity measured via Ripley’s K function for Augsburg (top) and Meitingen (bottom), r = interpoint distance, K(r) = Ripley’s K 
function, iso = isotropic edge correction, pois = Poisson point process
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Fig. 4  Contour lines of obesogenic and protective kernel densities in Augsburg (left) and Meitingen (right). Values of KDE are constant on a contour 
line with increasing values toward the respective KDE center

Fig. 5  Final set of randomly chosen spatial data points for Augsburg (left, N = 50) and Meitingen (right, N = 50)
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northwest within the city boundaries, whereas the east-
ern and the southern areas showed no dense region. In 
contrast, kernel densities for Meitingen showed several 
dense regions outside the town borders.

Randomly drawn sample points
The final set of randomly chosen EPs for the evaluation 
of the risk score for Augsburg (N = 50) and Meitingen 
(N = 50) is presented in Fig. 5. As seen within the graph-
ics, the sample points generated via the random drawing 
process inside the study areas widely covered the respec-
tive regions under consideration.

Effect of parameter variation within KDE estimation 
process
Table  3 summarizes the values of the ANOVA F statis-
tic for each scenario of base case and deterministic sen-
sitivity analysis. The higher the F statistic for a given 
parameter variation, the higher the degree of separation 

between the sample point groups, and thus higher val-
ues were more preferable. Values of the F statistic for 
Augsburg and Meitingen increased with the amount of 
bandwidth for the first three scenarios. This trend con-
tinued for Meitingen with decreasing slope, whereas it 
showed a rather inverted u-shaped functional behavior 
for Augsburg. Regarding edge correction for Augsburg 
and Meitingen, increasing the study area to some degree 
led to the highest F statistic, but this effect was not per-
manently observed with increasing amounts of edge cor-
rection. For Augsburg, the second grid point scenario 
was preferred according to the ANOVA value, in contrast 
to Meitingen, for which the base case was preferred. Fur-
thermore, the inverse distance weighting had the highest 
F value in Meitingen and Augsburg,. Finally, the second 
weighting scenario had a higher F value than the equal 
weighting scenario in Augsburg, whereas the opposite 
was seen for Meitingen. Overall, the bandwidth and the 
edge correction had the highest influence on the values of 
the F statistic.

Obesity risk score map
Figure  6 depicts the risk score maps for Augsburg and 
Meitingen in which the five parameters bandwidth, edge 
correction, number of grid points, interpolation method 
and weighting, were set to their base case. The score val-
ues of the SORS are depicted as incremental densities 
resulting from subtracting the negative surface from the 
positive surface. The risk score map shows a compos-
ite picture of the separate estimates illustrated in Fig. 4. 
There was little heterogeneity in risk scores for the region 
of Augsburg except for a small area with higher obeso-
genic scores at the northwestern city boundary. The 
risk score map for Meitingen showed high risk scores 
for the northwestern part of the town as well as for the 
area north of the town borders. The risk score map based 
on point processes for comparison purposes is shown 
in Fig. 7. A region with a low obesity level is present in 
Figs. 6 and 7 for both study areas partly at similar places, 
however, obesity hotspots could only be derived from the 
SORS KDE plot in Fig. 6.

Discussion
We developed the SORS based on KDE using freely avail-
able data from online geocoding services. We tested 
several parameters which could potentially influence 
the final score values. Our tests showed that the SORS 
depended on the choice of bandwidth and the amount 
of edge correction applied to the KDE; the latter, how-
ever, for only one of the two study areas. In contrast, the 
interpolation method, the numbers of grid points, and an 
alternative weighting scenario had a small influence on 
the results.

Table 3  ANOVA F statistics for Augsburg and Meitingen

BC Base case, BW Bandwidth, EC Edge correction, GP Grid points, INT 
Interpolation, WT Weighting
a  bandwidth, edge correction, and number of grid points presented in 
ascending order, i.e., with the first scenario describing the least amount of 
bandwidth, edge correction, and number of grid points respectively
b  The F statistic refers to the ANOVA F statistic between the groups of estimated 
data points at the 50 evaluation points for a given area (1000 data points at 
each evaluation point), calculated as follows: F = between-group variability/
within-group variability; higher values of the F statistic reflect more preferable 
parameter values for a given scenario. The groups are generated based on the 
POI bootstrap replications

Augsburg Meitingen

Scenarioa F statisticb Scenarioa F statisticb

BW1 871 BW1 1460

BW2 1095 BW2 3014

BW3 (BC) 1135 BW3 (BC) 4531

BW4 848 BW4 4779

BW5 657 BW5 4079

EC1 (BC) 1135 EC1 (BC) 4531

EC2 956 EC2 8372

EC3 724 EC3 9158

EC4 854 EC4 7047

EC5 1156 EC5 7912

GP1 (BC) 1135 GP1 (BC) 4531

GP2 1495 GP2 4293

GP3 1398 GP3 4530

INT1 (BC) 1135 INT1 (BC) 4531

INT2 1274 INT2 4628

INT3 1121 INT3 4306

INT4 875 INT4 6

WT1 (BC) 1135 WT1 (BC) 4531

WT2 1180 WT2 4335
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Fig. 6  Risk score maps for Augsburg (left) and Meitingen (right) showing the base case with the following parameters: bandwidth: method 
of Terrell [38]; edge correction: area side length: 1.4 * side length of the exact box; number of grid points: 35 × 35; weighting scheme of the 
environmental factors: equal weighting with unity, interpolation here via the “image.plot” function

Fig. 7  Risk Score map based on incremental intensities derived from inhomogeneous cluster point processes
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The SORS was calculated by taking the difference of 
the positive and the negative kernel density surface. 
We followed a similar approach to that in the work of 
Jones-Smith et  al. [34]. They estimated correlations 
of their score with obesity. In contrast, the aim of our 
study was to investigate the effect of parameter varia-
tion on the robustness of our score. Furthermore, we 
covered an extensive list of obesogenic and protective 
environmental factors that expanded the approach of 
a food score to a more comprehensive measure, also 
including the physical activity environment. Some 
alternative approaches using KDE were based on the 
division of the kernel density surfaces [54]. A major 
drawback of these quotients is the issue with division 
by zero leading to values approaching infinity and thus 
leading to instability. Our approach to the SORS avoids 
this and also the need for some adjustments correcting 
for the instability.

Previous studies used various approaches to estimate 
risk scores based on kernel techniques, both in obesity-
related research areas and elsewhere. Fitzpatrick and col-
leagues [55], for example, developed the keeping score 
based on KDE to characterize crime patterns, which has 
often been used by the police. Crime heat maps can be 
generated with this technique. This approach is based on 
the locations of past events instead of geolocated envi-
ronmental factors, and the authors assumed that the pat-
tern of these historic events would be maintained in the 
future.

Some studies created kernel density surfaces based on 
POIs and extracted density estimations from these sur-
faces in order to investigate the association with weight 
status. Rundle et  al. (2009) analyzed the effects of envi-
ronmental factors on body mass index (BMI). Results 
of KDE analysis concerning healthy and unhealthy food 
outlets were used to classify the neighborhood environ-
ment of each individual within the study based on a quin-
tile approach [56]. Furthermore, walkability, land use 
mix, and population density were considered. These vari-
ables could not be implemented in our study based on 
the chosen POI approach with OSM data.

The five chosen SORS parameters, bandwidth, edge 
correction, grid points, interpolation, and weights, have 
also been investigated in the literature. Laraia et  al. 
(2017) used a business software and ArcGIS to geoc-
ode the information from the study data [57]. As in our 
analysis, several bandwidths were tested within their 
KDE approach, which was found to be a sensitive model 
parameter. Similarly, we also found a fundamental influ-
ence of bandwidth on the results.

Effects at the edge of the study area were estimated 
in a simulation study concerning cluster models for 

food outlets [58]. Estimations at the boundaries were 
biased, and the authors came to the conclusion that 
edge effects should be corrected in studies considering 
measures of availability and accessibility. This under-
lined the importance of edge correction, which was 
also a major topic in our study. In addition, extending 
the study area has been proven to be a valuable edge 
correction method.

Finding the optimal number of grid points was also dis-
cussed in the literature. Some authors suggested that a 
choice between 100 and 500 grid points gives reasonable 
results [59]. In our analysis, we chose 25 × 25 points for 
the minimum bounding rectangle, i.e., 625 grid points, 
and chose some additional amount of edge correction 
for the base case. In addition, we performed some adjust-
ments to preserve the distance between the grid points 
for the edge correction scenarios. In this case, the num-
ber of grid points was extended proportionally to the 
amount of edge correction applied, i.e., to the amount 
of study area extension. This made it possible to analyze 
grid point and edge effects separately. The choice of grid 
points in our base case and sensitivity analysis was cho-
sen in accordance with default grid sizes implemented in 
KDE packages.

An inverse distance weighting method was applied in 
the past in KDE estimation regarding homicide locations 
as a parameter of area safety [60]. This method could be 
used to estimate effects at specific locations. We used 
such an inverse distance method in our model as an alter-
native to the automatic interpolation function of the base 
case. As a further common method, linear interpolation 
has been applied within the literature [61]. The “interp.
surface” function applied to our SORS model was based 
on bilinear weights.

It was challenging to find a suitable weighting scheme 
applicable within our analysis. For the base case, we 
assumed that each factor has the same positive or nega-
tive weight, although this might look different in reality. 
Additionally, we tested an example from the literature 
[34]. We found that double weighting of supermarkets 
and physical activity facilities had little effect on the 
results. Owing to several possible weighting methods for 
spatial POIs, it is necessary to test further alternatives 
within future studies.

Finally, the SORS was graphically compared to a risk 
score that was derived from incremental intensities of 
inhomogeneous spatial point processes. Although the 
methodology applied here changed from KDE-based to 
intensity-based estimations, similar visual patterns could 
be derived from the two score approaches for protective 
patterns, which further underlines the robustness of our 
chosen algorithm.
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Implications of the SORS on obesity‑related research 
and policy
The SORS is a helpful tool to understand the spatial dis-
tribution of health-related harmful environmental factors 
in relation to health-promoting environmental factors. 
Risk score maps allow for an overall intuitive view on 
summarized structures, which can be a valuable help in 
obesity-related research and also within policy. Although 
the actual use of those structures might look different 
in reality, it nevertheless gives a composite simplifying 
measure of the environment and can be further extended 
to a more comprehensive tool accounting for several 
health dimensions affecting individuals simultaneously.

Strengths and limitations
Several strengths exist regarding our study. The auto-
mated processing of data and the automated testing of 
several important KDE parameters makes it possible to 
repeat the application of risk score estimation for other 
areas efficiently, given that the spatial data points and 
the shape files of the city or town boundaries have been 
downloaded before. This enables the user to describe, 
compare, and monitor (if done repeatedly) risk scores 
as well as the influence of relevant risk score parameters 
within several areas of interest, within other regions 
worldwide, and also on a larger geographic scale. For 
example, the analysis could be performed for a whole 
country in order to identify national inequalities regard-
ing environmental obesity risks or to guide and prior-
itize prevention efforts that concentrate on the food 
and the physical activity environment. To achieve this 
on a regional scale, the data download area simply has 
to be increased to cover a larger area for the subsequent 
data download from OSM. The data files would be of a 
manageable size, as only a small number of features are 
important for this kind of analysis. For Augsburg, i.e., for 
the larger of our two study areas, the data file size was 
8 MB. For larger areas, e.g., for Germany, other portals 
such as Geofabrik should be used. In this case, no query 
process is needed, and the data files are directly ready 
for download. The data size for Germany, for exam-
ple, would be 3.1 gigabytes in this case [62]. Further-
more, using so-called planet OSM files, data disk space 
of around one terabyte (compressed 89 GB) or less is 
required [63].

We integrated uncertainty into our analysis by per-
forming a spatial bootstrap. Subsequently, we used the 
samples directly for the evaluation of our method. This 
allowed us to assess the stability of the score values 
against POI variations and helped us to compare deter-
ministic parameter scenarios based on the ANOVA F 
statistic. On the one hand, the impact of each parameter 
on score results could be assessed. In addition, the values 

of the F statistic could be used to find optimal parameter 
combinations for the SORS.

We checked the robustness of the score and repeated 
our analysis several times for a given area. Results were 
qualitatively equivalent, i.e., for each given parameter 
variation, the repeated analysis could be used to rank the 
scenarios in the same order.

However, there are also some limitations regarding the 
study. First, some of the environmental factors discovered 
during the literature search could not be implemented 
based on spatial POIs, especially complex constructs 
such as land use mix or walkability.

Second, the categorization of positive and negative 
obesogenic factors was based on data from pre-existing 
literature, and it is not known whether POIs categorized 
as “positive” or “negative” are really positively or nega-
tively associated with obesogenic health (behavior). Fur-
ther studies could compare the SORS with external data 
sources, such as walk scores in a given region, in order to 
test these associations [64].

As the content of OSM is generated by users, it is nec-
essary to assess the data quality within validation studies. 
Within our previous work, we calculated sensitivity, speci-
ficity, and positive predictive values for OSM and com-
pared the results with the corresponding values for Google 
Maps [18]. It became evident that both geocoding services 
performed adequately. OSM had higher positive predictive 
value but, in contrast, lower sensitivities than Google Maps.

Conclusion
KDE has been proven to be a useful methodology in the 
development of an obesity risk score, predominantly 
on account of the nature of the continuous estimation 
approach enabling efficient generation of risk score maps. 
However, some parameters of KDE have a large effect on 
score results. Parameter optimization should therefore 
play a major role during score model development.
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