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SUMMARY

Gamma oscillations (�30–150 Hz) are widespread correlates of neural circuit functions. These network
activity patterns have been described across multiple animal species, brain structures, and behaviors, and
are usually identified based on their spectral peak frequency. Yet, despite intensive investigation, whether
gammaoscillations implement causal mechanisms of specific brain functions or represent a general dynamic
mode of neural circuit operation remains unclear. In this perspective, we review recent advances in the study
of gamma oscillations toward a deeper understanding of their cellular mechanisms, neural pathways, and
functional roles. We discuss that a given gamma rhythm does not per se implement any specific cognitive
function but rather constitutes an activity motif reporting the cellular substrates, communication channels,
and computational operations underlying information processing in its generating brain circuit. Accordingly,
we propose shifting the attention from a frequency-based to a circuit-level definition of gamma oscillations.
INTRODUCTION

Oscillatory dynamics are ubiquitous signatures of operating neu-

ral circuits. Multiple types of oscillations have been described

across animal species and neural structures, being commonly

associated with a large array of behaviors, computations, and

codes, in the sensory, cognitive, and motor domains. Notably,

it has been proposed that the fast rhythms marking the gamma

frequency band, broadly defined from �30 to �150 Hz, modu-

late action potential timing, neuronal population synchrony,

and cross-structural communication channels for selective pro-

cessing and routing of information.1–6 Yet, despite the wealth of

research on this topic, the extent to which gamma oscillations

report mechanisms of neural operations remains unclear, and

a unifying view is still missing.

Gamma oscillations differ in spectral properties, cellular

substrates, brain states, and behavioral correlates. Different

methods are used to record these rhythms, ranging from

non-invasive whole-brain techniques such as electro- or

magneto-encephalography (E/MEG) to intracranial recordings

of extracellular potentials, multi-unit spiking activity, or single-

cell membrane dynamics.7–12 The common way of identifying

gamma oscillations is then based on their spectral peak fre-

quency, and their generation is typically attributed to the circuit

where the electrode is placed. Although this approach has led

to considerable progress, it is increasingly clear that gamma os-

cillations form a complex set of rhythms that is generated by

different cellular substrates and circuits, featuring distinct, yet

overlapping, frequencies.9,13–23 Oscillations recorded by the
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same electrode and of similar frequency can yet originate from

different underlying rhythm-generating circuits and be volume

conducted to the recording electrode from different current gen-

erators.24–26 At the same time, the frequency of the gamma oscil-

lation generated by the same circuit may vary depending on the

inputs that drive it.27,28 Recording gamma oscillations away from

their current generators introduces the added complication of

mixing of signals, contamination from extrinsic sources, and vol-

ume conduction of electric fields.1,29,30 These nuances

regarding the measurement and classification of gamma oscilla-

tion patterns call for a more principled approach to investigate

them, over and above an ill-defined frequency band.

Accordingly, in this perspective, we review recent advances in

the analysis, recording, and manipulation of neural oscillations

that indicate a roadmap for addressing these challenges and

reaching a better understanding of the diversity of gamma fre-

quency patterns. Notably, we propose shifting the attention

from a frequency-based to a circuit-level definition of gamma os-

cillations, focusing on two anatomically based defining features,

namely their underlying rhythm-generating and current-gener-

ating circuitries. Such a mindset draws from the analogy with

the problem of ‘‘spike sorting’’ (Figure 1). Extracellular electrodes

allow for simultaneously recording action potentials (‘‘spikes’’) of

many neurons in the surrounding tissue. Spike sorting then aims

to assign each spike to an individual neuron (i.e., a ‘‘unit’’), allow-

ing the replacement of coarse population activity (i.e., ‘‘multi-unit

firing’’) readout with fine-grain dynamics and interactions among

individual neurons (Figure 1A). Mechanisms of active generation

of the action potential and transmembrane current generation
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Figure 1. Sorting network gamma
oscillations: An analogy with neuron spike
sorting
(A) Action potentials discharged by nearby neurons
are recorded on the same electrode, resulting in an
aggregated signal of multi-unit activity (MUA).
Spike sorting relies on sampling of the action po-
tentials by an array of recording sites that allows for
assigning each action potential to an individual
neuron (color-coded single units), notably using
spike waveform features.
(B) Likewise, multiple oscillations generated by
different rhythm-generating circuits project repet-
itive volleys of synchronous action potentials via
axonal pathways to their downstream targets,
producing synaptic current-generating sources
that sum up in the extracellular space and give rise
to the recorded local field potentials (broad-band
LFPs). These individual (color-coded) oscillations
can then be de-mixed and assigned to their
generating sources and subcellular domains,
notably using their spectrotemporal and spatial
characteristics.
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are both localized to the cell body of one neuron. Likewise,

gamma oscillations emerge from different rhythm-generating

circuits that each give rise to different current sources. In turn,

these mix in the extracellular space, yielding mesoscopic local

field potentials (LFPs) (Figure 1B). Importantly, and in contrast

to spikes, the identification and labeling of gamma oscillations

require tracing back the current generators (synaptic currents

giving rise to measured LFP oscillations) to the rhythm genera-

tors (the neural circuit generating the oscillatory pattern). This re-

quires knowledge of anatomy, connectivity, and biophysics of

the underlying circuits.31 We thus propose that the ‘‘sorting’’ of

gamma oscillations and the identification of their rhythm- and

current-generating substrates will move the field forward, as

the progress in spike sorting and cell-type electrophysiological

identification is currently doing. In line with this, instead of merely

reporting changes in the overall gamma power in a given brain

area during a given condition, we would shift toward discrimi-

nating gamma oscillatory patterns that reflect circuit-level motifs

of activity and interactions among defined neuronal populations.

GAMMA OSCILLATIONS AS MESOSCOPIC READOUTS
OF OPERATING CIRCUITS

The discovery of the electrical nature of neural communication

has been central to the field of systems neuroscience, where as-

sessing the selectivity of neuronal activity allows for studying

mechanisms at the nexus of brain and behavior. Following the

pioneering work of Richard Caton, who reported electrical im-

pulses from the brains of animals using a galvanometer,32

Hans Berger made the seminal observation of the low-frequency

electroencephalogram (EEG) waves featuring alpha (8–12 Hz),

delta (1–4 Hz), and theta (5–10 Hz) rhythms in the human brain.33

From there on, neural oscillations have been widely examined

using their frequency range, localization of origin, or brain state

dependency. In vivo approaches, including electrophysiology,

opto/chemogenetics, and imaging, now allow for linking individ-

ual neuron activities to network dynamics across spatiotemporal

scales. Neuronal population synchrony appears as a theoreti-

cally predicted and experimentally demonstrated principle of
organization for various neural operations, and at the same

time, it allows for experimental measurement and dissection of

network dynamics.34–36 A remarkable observation is that many

features of neural rhythms are evolutionary preserved, enabling

the identification of homologous oscillations across a wide range

of species, from reptiles to birds to mammals.37–39 This general-

ization stems from conservation of neural circuits, intrinsic

neuronal properties, and neuromodulatory correlates of behav-

ioral and brain states associated with these rhythms, suggesting

that both the mechanisms and functional roles of these oscilla-

tions could be conserved across a wide range of species. This

generalization of slow rhythms, from animals to humans, also

provides a framework for translational research of cognitive

functions and neural pathologies.37,40–42

In contrast to slow-frequency oscillations, the discovery of the

faster (>30 Hz) gamma rhythm counterparts took much longer.

Except for early observations of beta and ‘‘faster-than-beta’’ os-

cillations in humans,43,44 it was only much later that robust

gamma rhythms in olfactory bulb45,46 and visual cortex17 were

reported, bringing gamma oscillations into the focus of research.

However, by then, the term ‘‘gamma’’ already encompassed a

large array of oscillations in the wide �30–150 Hz frequency

band. Compared with other rhythms, one primary challenge is

that gamma oscillations typically do not appear as one clear

peak in the power spectrum,7,22,23,30 and both their generating

mechanisms and their biological relevance differ from that of

the slow ones. Historically though, gamma oscillations were

treated in a similar way as the slow rhythm, namely as a spectral

band.

Slow neural rhythms, such as those mentioned above, are

typically brought about by the coordinated activity of multiple

cell types that rely on upstream and/or local pacemaker

circuits.1,47 Divergent connectivity allows for distributed or local

circuits to be synchronized by a global rhythm, giving rise to

macroscopically measurable oscillations. For example, theta

(5–10 Hz) oscillations appear in the rodent hippocampus during

active locomotion, where they are sustained over second-long

timescales.48 During these periods, most hippocampal neu-

rons receive rhythmic synaptic inputs that elicit coordinated
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Box 1. Extracting gamma oscillations

The electrical potential reflecting neural oscillators spread by volume conduction and can be captured by nearby electrodes.

Therefore, at any point in the brain, the raw LFPs are typically composed of multiple superimposed oscillations generated by

different sources that can overlap in both frequency and time. Various decomposition techniques have been designed and

employed to detect and disambiguate coexisting oscillations.

One of themost common approaches is the use of linear/Fourier-based filters to isolate oscillations in frequency bands determined

by the user, based on past work and/or observations of the raw signals. For example, onemight filter CA1 LFPs from 20 to 50 Hz to

extract slow gamma oscillations while filtering the same LFP signal from 50 to 90 Hz to extract mid gamma oscillations. This comes

with the assumptions that each oscillation of interest is (1) mostly contained within the defined frequency band (in the Fourier

sense), and (2) the interference caused by other oscillations in that specific band is negligible. Violation of such assumptions

has consequences for the study of coexisting oscillations and hinders the uncovering of yet unknown oscillators. Of note, param-

etrizing the LFP (or EEG) power spectra can separate the aperiodic components (or ‘‘1/f’’) and putative oscillations, without the

need to predefine specific frequency bands.58 However, while frequency-based dissociation of different gamma sources is

possible, it does not provide a principled way to uniquely assign an oscillation to generating circuit.

Another approach to reveal different oscillators is to explore both their frequency and temporal dynamics, i.e., by studying how

their features vary over time. This is often achieved using time-frequency representations of LFPs by filtering these signals in

narrower frequency bands (computed with common linear filters, the continuous wavelet transform or multi-taper short-time

Fourier-transform) and computing the instantaneous amplitude (spectral power) of these components at each frequency.59

Decomposition techniques, such as factor analysis (e.g., Sirota et al.30) and independent component analysis (ICA) (e.g.,

Lopes-Dos-Santos et al.24), can be employed to reduce the dimensionality of the spectrograms to a set of spectral patterns. These

techniques combine correlated frequencies in a broad spectrogram into components that are statistically orthogonal or indepen-

dent from one another and therefore potentially reflect different oscillators. Another strategy consists of detecting local maxima in

the 2D (frequency versus time) representation of spectrograms, thus detecting isolated and transient oscillatory bursts (e.g., Sirota

et al.30; Dvorak and Fenton60), which generalizes conventional detection of oscillations in one, typically broad, predefined

frequency band.52,61

Additional to the frequency content and temporal dynamics, spatial distribution provides key information for decomposing and

attributing oscillatory signals to their anatomical sources. This can be achieved by dense sampling covering the anatomical sour-

ces that provide spatial information that allows for discriminating different oscillators. Thus, the underlying cellular basis of an oscil-

latory pattern would be identified by their spatial profile. In contrast to a single channel-based detection, this approach does not

require a high detection threshold to avoid spurious out-of-band contamination and is less affected by volume conduction. Spatial

information has been particularly successful for the analysis of hippocampal CA1 signals since different sources generated by

afferent synaptic pathways, which convey gamma oscillations from the upstream generators, are segregated along the so-

mato-dendritic axis (Figure 2). At least three dominant oscillatory components can be isolated using current source density anal-

ysis (CSD) and blind source separation techniques such as ICA.29 Likewise, ICA has been applied to isolate layer-specific gamma

oscillations in other structures such as the hippocampal dentate gyrus62 and the neocortex.26 Joint use of space-time-frequency

spectral content allows for statistical decomposition that benefits from all the above-mentioned features allowing unique identifi-

cation of different gamma patterns.30
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transmembrane currents, giving rise to the observed theta-

rhythmic field potentials and corresponding frequency peak in

the power spectrum.49,50 However, this same reason makes it

a daunting task to isolate the contribution of specific cells to

the global rhythm.51 Gamma oscillations are, on the other

hand, typically more localized in time and space, as they reflect

the synchronous activation of smaller ensembles of cells.18,52–54

This could offer an advantage for their mechanistic investigation

since the generating circuit can be dissected. Various analysis

methods are considering this spatiotemporal selectivity to distin-

guish gamma oscillations (Box 1) (see reviews dedicated to this

topic, e.g., Einevoll et al.47; Fernández-Ruiz and Herreras55; Pe-

saran et al.56; Voytek and Knight57).

The initial description of gamma rhythms had focused on sen-

sory-input-driven oscillations. Controlled presentation of olfac-

tory or visual stimuli activates downstream circuits in a predictive

manner, allowing for direct raw data observation and statistical

quantification of gamma oscillations. However, in the absence
938 Neuron 111, April 5, 2023
of controlled timing and strength of circuit activation, gamma os-

cillations appear to emerge in a stochastic manner, with variable

power, frequency, and timing influenced by multiple sources of

excitability fluctuation. Gamma oscillations also appear during

different states of vigilance, from active behavior to awake rest

to sleep or anesthesia. This highlights that gamma frequency

patterns are neither uniquely coupled to specific brain states

(as their slow counterparts) nor exclusively support specific

functions. Theymight rather reflect a dynamicmode of operating

circuits that could, potentially, serve different functions in

different behavioral and brain states.2,22,26,30,52,69,70

Building from all these features, we propose an analogy be-

tween gamma frequency patterns and action potentials as

elementary units of collective neural activity (see also Freeman71;

Tal et al.72; van Ede et al.73). Of course, analogies have their own

intrinsic limitations. But for the purpose of this perspective,

distinct neuron types emerge when comparing action potential

waveforms, refractory periods, inter-spike intervals, or firing



ll
OPEN ACCESSPerspective
rates. Different cell types can also exhibit similar action potential

waveforms while further defined by their molecular profile,

anatomical location, postsynaptic recipients, or synaptic inputs.

Similarly, gamma oscillations can be uniquely identified by the

rhythm-generating circuit from which they emerge and the cur-

rent circuit from which they are recorded, while the power, fre-

quency, and temporal dynamics of gamma bursts generated by

the same oscillator may yet vary (e.g., as a function of behavioral

states). In direct analogy with spike sorting of neurons based on

triangulation of their anatomical localization, distinct gamma os-

cillators can be identified by their anatomical location and the

properties of the circuit they emerge in. As nearby neurons pro-

duce multi-unit activity that cannot be fully interpreted unless

they are individually sorted, so is the mixing of gamma signals

generated by temporally correlated neighboring circuits. Thus,

the spectral profile of gamma power is not a full descriptor of

the underlying circuits. It is also important to note that, contrary

to the discrete, all-or-none nature of action potentials, the ampli-

tude of gamma oscillations is graded. This indicates that the un-

derlying circuits operate at varying strengths or levels of syn-

chrony rather than in an ON or OFF manner. Instead, driven by

various external inputs, the gamma rhythm-generating circuit

acts as a non-linear integrator of this input. Variable synchrony

and frequency of the oscillation could be compared with the

emergence of a burst in a single neuron with variable inter-spike

interval and duration in response to variable input. Further, con-

trary to action potentials that come from a well-defined and

discrete unit (i.e., the corresponding neuron limited by its cell

membrane that clearly defines the anatomical substrate), gamma

oscillations emerge from the stochastic synchronization of inter-

connected neurons within specific circuits, and in this respect,

they are not ‘‘real’’ physical units. Due to the stochastic nature

of synchronization, all neurons in the population do not partici-

pate in every cycle of the oscillation, but the global output of

the population of similarly projecting neurons active at every cy-

cle gives rise to the transmembrane currents that generate the

LFP signal with macroscopically invariant spatial structure.

Moreover, no circuit is exclusive to a specific oscillation, similar

to how the firing of specific neurons is not limited to a certain

temporal pattern and rate. For example, the networks generating

hippocampal gamma oscillations overlap with those involved

in other oscillatory events such as sharp-wave ripples and

theta oscillations.50,74 The anatomical substrate of gamma oscil-

lations is furthermore complicated by the temporal overlap of

oscillations generated by interconnected circuits, making their

circuit-level isolation difficult and requiring knowledge of their

biophysical mechanisms and anatomical connectivity. Accord-

ingly, herewe highlight that the oscillogenesis of different gamma

frequency patterns pertains to dynamical, yet well-defined, neu-

ral circuits, which defines their mechanistic basis. We thus sug-

gest that future researchwould need to uncover these underlying

dynamic mechanisms along with their functions.

TOWARD A CIRCUIT-BASED DEFINITION OF GAMMA
OSCILLATIONS

Experimental and theoretical work have synergistically sug-

gested several candidate generating mechanisms for—and
identified key features of—gamma oscillations. For instance,

in the interneuron gamma (ING) model, gamma frequency pat-

terns emerge from a mutual inhibition between inhibitory

GABAergic neurons in response to a tonic excitatory drive to

the network. In the pyramidal-interneuron gamma (PING)

model, a tight excitation-inhibition (E-I) balance involving

the ubiquitous motif of reciprocally connected excitatory-

inhibitory cells allows for an alternation between fast excitation

and delayed feedback inhibition to generate gamma oscilla-

tions.1,19,75–80 Consistent with this, the frequency of gamma os-

cillations depends on the fast GABAA and glutamate AMPA syn-

aptic time constants.11,81 Moreover, gamma oscillations

decohere as spatial scale increases because both conduction

delays and heterogeneous connectivity preclude synchroniza-

tion over large distances.22,71,82 High-amplitude gamma is

also typically transient, instantiating bursts that typically last

50–100 ms.14,24,30,60,83 Finally, the power and frequency of

gamma bursts both depend on the synaptic time constants of

neuronal interactions, the underlying circuit motifs, the temporal

structure and strength of the excitatory and inhibitory popula-

tion drives, and the neuromodulatory states.1,18,21,53,81,84

Hence, while under certain conditions (e.g., a strong sensory

stimulus inducing high network synchrony) the central fre-

quency of gamma oscillations emerging in a circuit might

appear relatively stable over time, the heterogeneity of the in-

puts constantly impinging that circuit can lead to moment-by-

moment variation of some features, including frequency. More-

over, gamma oscillations can be generated by local neuronal in-

teractions (e.g., recurrent excitatory-inhibitory synaptic connec-

tions) or inherited from afferent synaptic inputs (i.e., generated

by an upstream network), which hinders their attribution to a

particular circuit without additional information. Afferent gamma

frequency inputs originating from multiple upstream circuits can

also mix in the target (recorded) region where they converge,

together with local gamma oscillations, making their separation

a necessary step for further analysis. These confounds highlight

again the importance of distinguishing between the current gen-

erators of a particular gamma pattern (i.e., transmembrane cur-

rents in the region where oscillations are recorded) and their

rhythm generator (which can be local as the current generation

but also in a distant afferent region). If temporally isolated and

transient and anatomically localized and frequency defined,

then gamma oscillations can be identified as local maxima of

the spectral power. These considerations have allowed for the

separation of multiple neocortical and hippocampal gamma

generators.30,60 By contrast, gamma detection solely based

on the power of one band-pass-filtered raw signal risks

contamination by other (e.g., volume-conducted) sources and

can be biased by the selection of a given frequency band,

requiring a high threshold to avoid spurious out-of-band

contamination. Some of the caveats and proposed solutions

that will be discussed here in regard to gamma oscillations

can also be applied to the study of other brain rhythms. Prom-

inent examples are hippocampal theta-frequency (5–10 Hz)

oscillations and those commonly present in the EEG from fron-

tal-midline cortical regions. These patterns, despite having a

similar spectral profile, have completely disparate generating

mechanisms and functional correlates.85
Neuron 111, April 5, 2023 939



Box 2. Measuring spike-to-LFP and LFP-LFP coupling

In addition to their presence in LFPs, genuine oscillatory patterns are observable in the spiking activity of their corresponding cir-

cuits. Relating spiking activity to an oscillation of interest is crucial to the understanding of its origin. For example, demonstrating

that neurons in a circuit are coupled to an LFP oscillation adds evidence that such oscillatory activity is either generated by that

circuit or driven by the afferent circuit, as opposed to being recorded by volume conduction. Studying the timing (e.g., bymeans of

spiking preferred phase) of principal cells and interneurons relative to an oscillation provides further insight into its generation

mechanism.

Multiple statistics have been developed to characterize LFP-to-LFP63–66 and spike-to-LFP phase coupling,64,67,68 capturing the

level of consistency between the fluctuations in phase and/or amplitude of two LFP signals, or between the firing of a neuron

and the phase of an oscillation (Figure 3A). The more concentrated the distribution of spike phases, the higher the coupling.

Note that this approach involves the computation of the instantaneous phase of the LFP signal filtered in different narrow frequency

bands. Alternatively, coupling might be quantified as the coherence between LFPs and spike time series (Figure 3B).

The presence of an oscillation might also be derived from the analysis of inter-spike interval (ISI) distribution or auto/cross-correlo-

grams of the spike trains, which are the time-domain analogs of the LFP spectral analysis. Auto- or cross-correlations of rhythmi-

cally firing neurons reveal the dominant oscillation frequency, comparable to the LFP spectrum but with precise circuit specificity.

Likewise, triggered averages or peri-event histogram analyses, an equivalent of the cross-spectrum, can be used to visualize oscil-

latory pacing of spike trains (Figure 3C). When appropriately normalized and corrected, these quantities are equivalent to spike-

LFP coherence.

In addition to being generated by the local circuitry, gamma coupling often reflects cross-area communication. Simply stated, a

‘‘source’’ region produces a gamma rhythm and ‘‘projects’’ its rhythmic output to a ‘‘target’’ circuit. The gamma-paced spiking in

the source region causes field postsynaptic potentials (fPSP) in the target region with the same periodicity, generating time-de-

layed gamma currents that are reflected in the local LFPs and potentially entrain target neurons. This implies that a local gamma

oscillatory signal in the source region is coherent with LFP in the target region, both reflecting connectivity between areas and not

necessarily the interaction. Thus, demonstrating phase coupling between oscillators in two connected circuits A and B requires

decomposing the signal in B into an afferent gamma (originated in upstream region A) from the local gamma oscillatory signal

generated by the circuit B. Another possible scenario for LFP-LFP coherence between circuits A and B is that a third circuit C pro-

jects its gamma pattern to both A and B, giving rise to coherent gamma signals despite no direct coupling between A and B os-

cillators. As a typical confound, distant gamma sources and non-neuronal (e.g., EMG) sources can volume conduct to both circuit

A and B, giving rise to a spurious high coherence.

In contrast to LFP signals, spiking activity can be directly attributed to the circuit it is recorded in. A tight temporal relationship

between gamma LFP patterns featuring circuit A and spiking activities recorded in circuit B is robust support that A is driving

B and potentially for direct coupling between the two circuits. Likewise, gamma-timescale cross-correlation or coherence in

the gamma band of the unit firing in A to unit firing in B is robust evidence of interaction between A and B. At the same time, phase

coupling of units firing in A to gamma frequency patterns in B is robust support for gamma LFP patterns in B being directly gener-

ated or indirectly driven by the oscillator in A. It is important to note that since conduction delay for action potential propagation

from A to B is typically longer than recurrent delay within A, local gamma patterns in A will thus be causal to those in B, with this

asymmetry providing an electrophysiologically derived connectivity metric. Similar directionality can be inferred, under some

circumstances, from the unit-LFP phase spectra.
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Investigating gamma oscillations thus requires distinguishing

their internal generating mechanisms from the externally observ-

able signals. Leveraging again the analogy used above, both the

generation of gamma rhythms and the intracellular mechanisms

generating action potentials cannot be directly observed. The

mean-field synaptic transmembrane currents produced by the

synchronous firing of the excitatory and inhibitory populations

at every gamma cycle give rise to periodically repeated re-

sponses macroscopically observable as oscillatory frequency

patterns. Moreover, neurons receiving gamma currents can be

either members of the local oscillating circuit (recurrent sources)

or of the remote circuits (afferent sources), producing multiple

copies of a gammaburst. The smaller the gamma-generating cir-

cuit and the sparser the activity of the generating population, the

smaller the power of the corresponding oscillation (both locally

and remotely). The larger the degree of convergence of the

gamma oscillator circuit to the downstream circuit and the stron-
940 Neuron 111, April 5, 2023
ger the synaptic connectivity in respective synapses, the larger

the afferent signals. Thus, the power of gamma frequency pat-

terns is a complex function influenced by the properties of

both the oscillator (e.g., E-I circuitry) and its target structure

(e.g., synaptic connectivity to cellular recipients).86,87 Such a

complex relationship between the gamma generator and the

readout signals qualitatively differentiates the gamma bursts

from the action potentials, which exhibit relatively stable proper-

ties for a given neuron. The spatiotemporal features of the

gamma mesoscopic (e.g., LFP) readout thus provide both pros

and cons for their interpretation (Box 2). Furthermore, as gamma

oscillations can be detected both locally and in remote locations,

the attribution of oscillatory signals to their original circuit re-

mains ill-defined without additional information. As mentioned

above, afferent gamma oscillation sources originating from mul-

tiple upstream circuits can mix in the downstream target region.

Likewise, afferent gamma sources can mix with the local



Figure 2. Diversity of gamma oscillations: Example of the hippocampal CA1 region
(A) Example of co-occurring theta (top) and gamma (middle) CA1 oscillations (black trace: raw LFPs; color-coded traces: corresponding theta and supra-theta
signals) during spatial exploration. Spectrogram at the bottom showing spectral features of hippocampal gamma oscillations. Adapted from Lopes-Dos-Santos
et al.24

(B) Depth profile of hippocampal theta and gamma oscillations (black traces) and underlying current sources (color map) during learning. Blue arrows show slow-
frequency gamma oscillations in the proximal apical dendrites of CA1 pyramidal cells (stratum radiatum, rad). Red arrows mark mid-frequency gamma oscil-
lations in the distal dendrites (stratum lacunosum-moleculare, l-m). Adapted from Fernández-Ruiz et al.62

(C) Left, depth profile of hippocampal LFP traces during slow-wave sleep (note slow gamma during down state, arrow); right, average spectrogram for CA1
stratum radiatum (top) and lacunosum-moleculare (bottom) triggered on the entorhinal up state onset. Note similar spectral content of the slow/medium gamma
in the dendritic domains innervated by CA3/EC3 to those during theta state. Adapted from Isomura et al.69

(D) Schematic showing that entorhinal cortex layer 3 (EC3) input to distal CA1 apical dendrites elicits mid-frequency gamma oscillations (red) at the peak of CA1
pyramidal layer theta (black trace), whereas CA3 inputs to proximal CA1 apical dendrites elicit slow gamma oscillations (blue) at the descending theta phase. Fast
gamma oscillations (green) during theta troughs are generated by a local excitatory-inhibitory circuit motif.
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recurrent and volume conducted ones, making their separation a

necessary step for further analysis.

To illustrate the diversity of gamma oscillations, we are

focusing on two regions of themammalian brain where consider-

able progress has been made to identify the underlying cellular

substrates: the CA1 region of the hippocampus and the primary

visual cortex. The hippocampal CA1 presents an important

advantage for the study of network oscillations: its principal (py-

ramidal) cells form parallel layers of cell bodies and dendritic

trees where synaptic inputs are stratified. Synchronous EPSPs

and IPSPs at gamma timescales elicit transmembrane currents

that add up in the extracellular space to generate mesoscopic

fluctuations of the LFPs.31,53 The stratification of different synap-

tic inputs along the dorso-ventral CA1 axis and the alignment of

dendritic compartments across the pyramidal cell population

facilitate the summation of transmembrane currents in the extra-

cellular space, giving rise to large amplitude LFPs with a stereo-

typical laminar profile.7,88,89 In other structures, such as the

neocortex, where neurons are not as well aligned as in CA1,

the spatial discrimination of gamma oscillations becomes more

challenging.17,23,26,30 Synaptic and circuit time constants and

the cycle-by-cycle balance of excitation and inhibition modulate
the amplitude and frequency of gamma oscillations.18,81 Distinct

gamma oscillations have been related to selective synaptic cur-

rent sources along the radial axis of CA1 pyramidal cells

(Figure 2). The two main excitatory inputs to CA1 arise from the

neighboring area CA3 and from the entorhinal cortex layer 3,

which target the proximal (stratum radiatum) and distal (stratum

lacunosum-moleculare) apical dendritic domains, respectively.

CA3 generates slow gamma oscillations (30–50 Hz) through

the interaction of recurrent excitatory connections between

pyramidal cells and feedback inhibition from perisomatic-target-

ing basket cells.53,90,91 This then projects slow gamma oscilla-

tions to CA1, where they are recorded with largest amplitude in

the stratum radiatum.19,22,29,52 Similarly, gamma oscillations of

faster frequency (60–100 Hz) are generated by recurrent circuits

in the layer 3 of entorhinal cortex and are projected to the stratum

lacunosum-moleculare of CA1.14,24,92 Although these oscilla-

tions are generated in regions upstream of CA1, local interneu-

rons play an important role in modulating them and in their

efficacy to entrain somatic action potentials.11,93,94 In addition,

and despite its lack of dense recurrent excitatory connections,

CA1 also generates its own gamma oscillations. These have

faster frequency (100–150 Hz) than the ones previously
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Figure 3. Spiking activity coupling to gamma oscillations
(A) Mean vector length method for coupling quantification. Raw LFPs are filtered for the extraction of a gamma signal, which is then used to compute the
instantaneous gamma phase. The distribution of the phases sampled by the spike times of a given neuron is next analyzed in a polar plane, where each spike-
sampled phase is represented by a vector (phasor) with that corresponding angle. The more consistent the firing of the neuron, the more concentrated this
distribution is around a given mean phase. Thus, the spike-to-phase coupling is quantified as the length of the mean phasor. Non-coupled neurons produce
phasors homogeneously distributed around the polar plane that cancel out when averaged, whereas phasors obtained for highly coupled neurons stack up,
resulting in larger mean vectors. A thresholdmight be applied to the instantaneous amplitude of gamma to avoid using spikes when the oscillation is not present in
the signal, as shown in this figure. Bottom right panel shows coupling strength (relativemeasure for spikes inside of over outside of place fields) of CA1 place cells
calculated for signals in CA1 strata radiatum and lacunosum-moleculare, estimated by ICA (adapted from Fernández-Ruiz et al.92 Copyright 2010 Society for
Neuroscience).
(B) (Magnitude-square) Coherence between neocortical LFPs and spike train of a local neuron during REM (darker blue) and slow-wave sleep (lighter blue). These
results show how oscillation frequency of the same oscillator localized near the cell, revealed by spike-LFP coupling, can vary depending on the behavioral state
(adapted from Sirota et al.30).
(C) Spike coupling to different gammaoscillations revealed by time-domain analysis. Top panels showCA1 raw and filtered LFP averaged around slow (left) ormid
(right) gamma troughs. Bottom panels show firing rate of CA1 principal cells aligned to the same gamma troughs. Importantly, for this analysis a single trough of
gamma is taken per theta cycle. Note that instantaneous rates of these cells oscillate around the trough of each gamma paced by its corresponding rhythm
(adapted from Lopes-Dos-Santos et al.24).

ll
OPEN ACCESS Perspective
mentioned and are supported by local recurrent interaction be-

tween pyramidal cells and perisomatic-targeting fast-spiking

interneurons.19,22,95,96 These three hippocampal CA1 gamma

patterns are also coupled to different phases of the pyramidal

layer theta rhythm, indicating a temporal segregation of inputs

to CA1 pyramidal cells.13,14,22,24,92,97–99 In addition, the same

gamma oscillations appear in non-theta states (e.g., slow-

wave sleep; Figure 2C; e.g. see Isomura et al.69), indicating

that it is the generating circuit that underlies a particular gamma

frequency pattern. As briefly discussed here, a large body of

experimental evidence converges on both the existence and

circuit mechanisms of different gamma-band oscillations in the

CA1 region. Despite this broad agreement, some reports differ

in the specific behavioral correlates of these oscillations

(such as their modulation by theta rhythms or animal locomotion

during exploration) or their proposed functions.14,22,24,83,92,97–102

Furthermore, the analysis of gamma oscillations can be
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confounded due to other sources of activity that also generate

spectral power in the gamma frequency band, such as spikes,

electromyographic artifacts (EMG), or theta harmonics (see

Box 3). Switching to a circuit-based definition of gamma oscilla-

tions and incorporating specific experimental and computational

approaches for their study could clarify most differences across

these observations, which could be heightened when studying

gamma oscillations in other brain structures.

Advances of recording technologies and data analysis

methods, as well as control of the sources of variability and input

parameters, have resulted in rapid progress toward the dissec-

tion of the origin of gamma oscillations in sensory thalamo-

cortical circuits. A central difference between the dynamics of

hippocampal gamma oscillations and those in sensory neocorti-

ces is the source of excitability that modulates them. While

brain state, locomotion speed, and task demand modulate the

engagement of different hippocampal circuits and their control



Box 3. Slower rhythms modulate gamma oscillations

Slower rhythms provide a natural pacing of gamma oscillatory burst rate or, equivalently, the amplitude modulation of gamma po-

wer. This gives rise to the well-known power-phase correlation or cross-frequency coupling (CFC) phenomenon.7,103–105 As we

cannot describe a neuron just by its firing rate at a given phase of a slow rhythm, so we cannot describe a gamma pattern by

its frequency that has the largest power modulation by the phase of a slow rhythm, or maximal CFC strength. The mean power

spectrum, under typical non-stationary conditions, is ill-defined, and it reflects a combination of sparse gamma occurrence and

power statistics. CFCmetrics are bivariate statistics that quantify non-stationary gamma dynamics better than average spectrum,

but they should generally only be seen as descriptive statistics and not unique identifiers of the oscillators. While convenient to

reveal temporal dynamics of the gamma oscillators, CFC metrics alone generate a bias toward those gamma patterns that are

more strongly and consistently modulated by the slow rhythms. For example, hippocampal dendritic gamma sources give rise

to specific bands in CFC in CA1 stratum radiatum at �30–50 Hz and in lacunosum-moleculare at �60–90 Hz, reflecting strong

theta-modulated gamma frequency inputs originating in the hippocampal CA3 and medial entorhinal cortex (MEC) layer 3. Con-

taminants of LFPs such as spike leakage or EMG can, respectively, positively or negatively, bias CFC at a broad range of fre-

quencies above 50 Hz.13,106,107 Furthermore, bivariate analyses relating to fast and slow spectral components of the signal might

be affected by harmonic artefacts.108When assuming that a complex signal can be described as a sumof sinewaves, performing a

spectral decomposition of such a function of time using linear filters can produce harmonics (a set of mathematically produced sine

waves whose frequencies are a multiple of the frequency of the original signal). This is especially pronounced for strongly asym-

metric non-linear waveforms, such as those featuring hippocampal theta cycles. In this case, theta harmonics could bleed into the

gamma frequency band, potentially confounding some cross-frequency coupling analyses, notably phase-phase coupling mea-

sures.108–110 For gamma amplitude to theta phase coupling, this is less of a concern as the gamma range starts around the third

theta harmonic (�32 Hz) where the harmonics are orders of magnitude below the power of slow gamma oscillations (provided the

recording is near the gamma source). Furthermore, it has been shown (in rats) that the amplitude of slow gamma is negatively

correlated to speed,24,111,112 while the amplitude113 and asymmetry114 of theta are positively correlated, showing a clear disam-

biguation between theta harmonics and slow gamma power. Moreover, phase coupling analysis reveals that spike coupling starts

at gamma range but not around the first theta harmonics (�16 or 24 Hz), which are stronger than the following ones (>30 Hz)

(Figures 3A and 3B). In the same line, triggering spiking activity by a single trough of gamma per theta cycle clearly reveals three

cycles (at least) of rhythmic modulation in hippocampal firing activity matching the corresponding gamma frequency (Figure 3C),

whereas a saw-tooth-like waveformwould be present if theta harmonics significantly explained the gamma range coupling. Finally,

LFPs fromCA3 and ECpresent strong slow22,115 gamma andmid92 gamma amplitudemodulation by theta phase, respectively, yet

no contamination indicating harmonic artifacts below gamma frequencies are observed (which would include the first two theta

harmonics), demonstrating that in fact harmonic artifacts are orders of magnitude weaker than the modulation of genuine gamma

oscillations. Nevertheless, it is good practice to evaluate in each dataset if theta harmonics are contaminating the gamma range.

Notably, visual inspection of raw traces, spectrograms using small windows (100–200 ms), and tests as those mentioned above

should help to determine if energy observedwithin gamma frequency range comes solely from the non-linearity of lower-frequency

signals (such as theta) rather than from genuine gamma-rhythmic patterns of activity. Further methodological development for

capturing the space-time-frequency localized non-stationary nature of neural oscillations, and handling of non-linear wave shape

of slow oscillations, will help the field to study gamma patterns moving forward (e.g., Quinn et al.114; Cole and Voytek116; Dou-

champs et al.117).

ll
OPEN ACCESSPerspective
allows for measuring their modulatory role of the gamma

dynamics, experimental control of timing and parameters of

the sensory stimuli and their presentation in different brain states

present an opportunity for investigating gamma oscillations in

the sensory thalamo-cortical circuits. Layer- and frequency-spe-

cific gamma oscillation generators have been reported

in vitro.118–120 In vivo, recordings in rodents, cats, and primates

revealed differential spectral content and differential laminar

neuronal entrainment by spontaneous and evoked gamma oscil-

lations.26,121,122 While layer-specific hippocampal gamma oscil-

lations tend to be prevalent at relatively broad frequency ranges,

gamma oscillations in thalamo-cortical circuits can be narrower

bands. In particular, narrow-band gamma (50–70 Hz) in the

mouse visual system has been a focus of intense research in

recent years. Anatomical rhythm generators of this oscillation

pattern have been identified in the dorsal lateral geniculate

nucleus, and its current generators are in layer 4 of the primary
visual cortex.21 Their expression is robustly induced by visual

stimulation, similarly to how early neonatal gamma in somato-

sensory thalamo-cortical circuit is evoked by the whisker stimu-

lation.123 They have been shown to be modulated by brain state

and arousal level,26,86,124 as well as active locomotion.125,126

Controlling parameters of the visual stimulus revealed that high

luminance modulates narrow-band gamma power,21,127 which

is practically absent in darkness. Visual stimulus contrast

decreases narrow-band gamma power21 while promoting

broadband-gamma oscillations.120,128,129 This is reminiscent of

sensory-triggered gamma oscillations in other thalamo-cortical

circuits, such as whisker stimulation-triggered early neonatal

gamma in somatosensory areas.123

A prominent role for rapid changes in behavioral states and

sensory inputs as sources of excitability fluctuation in thalamo-

cortical circuits provides mechanistic insights into the basis for

non-stationary oscillations. Visual stimulus presentation induces
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sustained narrow-band gamma oscillations in the visual cortex,

of which the peak frequency in turn can vary with stimulus

parameters21,27,130 and attentional state.131 However, spontane-

ously emerging gamma oscillations under naturalistic states

and stimuli are associated with non-stationary transient

gamma bursts.28,72 Future analysis of the anatomical circuits

contributing to thalamo-cortical gamma oscillations and their

modulation by diverse sources will provide an important tempo-

ral framework for dissecting the role of gamma patterns in coor-

dinating information processing and flow in sensory systems

across animal species.132–134

In this section, we have reflected on the definition of gamma

oscillations where, instead of solely focusing on peak fre-

quencies, one would also consider the underlying cellular

substrates. For example, in the context of hippocampal gamma

oscillations, one would probe and validate ‘‘CA3/CA1 stratum-

radiatum gamma frequency inputs’’ instead of detecting ‘‘slow

gamma’’ from bulk signals and assuming neural pathway and

process from the frequency band. The CA3 to CA1 gamma fre-

quency input is a well-defined anatomical-physiological entity

while slow gamma oscillations can yet be generated by different

cellular sources and can have distinct functional correlates, even

within the hippocampus itself.62,100,135 This shift in definition has

several advantages. First, it would unequivocally ascribe a

mesoscopic gamma pattern to the operation of a well-defined

circuit. Indeed, the frequency and other spectrotemporal proper-

ties of an oscillation can largely vary, because of the related

biological variables and detection approaches. But the cellular

substrates do not. This would also prevent a given term creating

confusion between different neural oscillatory phenomena that

have similar frequency but distinct mechanisms or functions as

they are produced by different circuits. Likewise, oscillations

generated by the same neural substrates and mechanisms in

distinct species (e.g., humans versus rats versus mice) would

then be considered analogous even if their frequency band is

not the same. Here, the relevant question will no longer be

‘‘what is the function of x-Hz gamma’’ where x is a frequency

value, but ‘‘what is the gamma-reported function of a specific

neural circuit and pathway’’ (e.g., the CA3/CA1 pathway).

ABOUT THE COMPUTATIONAL FUNCTION OF GAMMA
OSCILLATIONS

While important progress continues to be made on the charac-

terization of network oscillations, the central question about

the functional relevance of those spanning the wide gamma

band yet remains uncertain. What are the neural operations re-

ported by gamma patterns? Do gamma dynamics provide any

mechanistic insights into information processing?What possible

computational benefits does the temporal structure provided by

gamma oscillations bring? The fine-timescale coordination of

neural population firingwithin and across regions is the expected

basis for effective computation in gamma oscillations. Discrete

gamma patterns could indeed constitute elementary ‘‘units’’ of

neural computations, but they need to be assessed with respect

to their host circuit where afferent inputs, balance of excitation

and inhibition, and local connectivity are all dynamically interact-

ing. While we do not intend to provide an overview of this vast
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topic here, we aim to provide a biophysical and anatomical back-

drop to the proposed computations that gamma could serve.

Gamma oscillations are thought to aid the precise orchestra-

tion of spatiotemporal patterns in the recruited neural popula-

tions, thereby providing the basis for neural coding.136 While

appealing and supported by theoretical and experimental evi-

dence, this tenet yet faces the instability and variability of oscil-

lation frequency and sparseness of neuronal firing. Ensemble

synchrony likely underpins attractor dynamics that give rise to

low-dimensional representations in many circuits, including the

olfactory bulb, motor cortex, and hippocampus.137,138 Surround

suppression of competing cell assemblies by gamma recruited

inhibition can provide means for selective resonance of the

circuit to a specific input.84 Another hypothesis of gamma syn-

chronization posits that excitation/inhibition balance yields a

gain control function.18 Constructive interference between

gamma synchronization of a circuit with an afferent gamma-

rhythmic input could also aid information transfer, as put forth

by the communication through coherence hypothesis.139 The

commonly reported mismatch between synchronization fre-

quencies in LFP-LFP and spike-LFP metrics (e.g., Schomburg

et al.22), and between source and target, remains to be resolved.

Fine-timescale synchrony is also a good candidate for synaptic

plasticity.140–142 While the computational role of pairwise plas-

ticity (Hebbian plasticity or spike timing-dependent plasticity

[STDP]) is well understood, higher-order plasticity rules associ-

ated with different physiological conditions and conduction de-

lays are yet to be further investigated.143 Also, the existence

and variability of axonal conduction delays across regions

remain a major anatomical constraint that need to be consid-

ered.144 In fact, STDP over long and variable conduction delays

can result in desynchronization.145 This problem takes special

relevance when considering zero-lag long-range synchroniza-

tion, which is suggested to contribute to the integration of neural

representations (binding; 146). Although long conduction delays

are a major impediment to achieve zero-lag synchronization be-

tween two brain areas, this can still be accomplished by intro-

ducing a third, upstream structure projecting to both areas.147

In this setting, the strength of connectivity between the three

areas and the dynamic control of firing in the upstream structure

can determine the type of synchrony, ranging from zero-lag to

out-of-phase coupling.148

The periodic nature of neural oscillations is appealing for the-

ories of their function (e.g., temporal coordination of spiking), in

addition to their practical use for detection and characterization.

Yet, it is not strictly necessary for most of the proposed func-

tions. For example, the periodicity of theta oscillations in the

rodent hippocampus has long been assumed essential for the

orchestration of spatial coding and learning; but recent work

suggests that it is synchrony, not periodicity, that is a necessary

component of the theta-like dynamics organizing spatial coding

in the bat hippocampus.149 It follows that neither the exact fre-

quency nor its stability within a gamma oscillatory transient

might be functionally critical. Similarly, an increased level of syn-

chrony does not necessarily imply a computational advantage:

robustness might come at the expense of flexibility. Moreover,

sparse spatiotemporal activation of distributed ensembles may

not give rise to mesoscopically observable gamma patterns.
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High neuronal synchronization might result in strong gamma

power but might not be associated with qualitatively different

ensemble activation. Altogether, this evidence suggests that

gamma oscillations do not report one but many different compu-

tations, which can also be dynamically weighted on a moment-

by-moment basis. Identifying and testing the specific computa-

tional function(s) reported by gamma oscillations thus require

robust unbiased methods that are invariant across experimental

paradigms, brain states, and animal species. Achieving this will

pave the road to developing a comprehensive framework linking

circuit motifs, neural dynamics, and computations.

EXPERIMENTAL APPROACHES FOR INVESTIGATING
GAMMA OSCILLATIONS

The brain features non-linear dynamics linked to the structural

connectivity, functional properties, and biophysical constraints

of its composing elements. As it happens with many other com-

plex systems, it is not feasible to study a particular aspect of it in

isolation. To understand the functional relevance of gamma os-

cillations, one would ideally manipulate these rhythms while

other variables in the system (e.g., neuronal firing rates) remain

fixed. Unfortunately, this is not possible due to the interdepen-

dency between the various components of the underlying neural

circuitry. In this section, we summarize recent developments

enabled by novel experimental approaches to study the mecha-

nisms and functions of gamma oscillations and suggest a road-

map for future studies.

Obtaining experimental evidence for any particular role(s) of

gamma oscillations would require first to pursue their identifica-

tion. A well-known example and success story of network

pattern study is provided by hippocampal ripples that emerge

as 150–250 Hz oscillatory bursts in the hippocampal CA1 region

driven by CA2/3 sharp waves.74,150 Decades of work have docu-

mented how temporally structured firing activity (in the form of

neuronal sequences or short-timescale coactivations), emerging

from and organized by these mechanistically well-described

oscillatory bursts, relates to memory and other higher-order

functions. Notably, it is the anatomical localization and not the

precise frequency that provided selectivity of the research on

ripples. Drawing from this successful case study, meticulous

dissection of anatomically and temporally defined readouts of

gamma-paced neuronal activity will report circuit-specific com-

putations and their relevance to behavior and information pro-

cessing. Such readouts can be obtained using LFP recordings

as an effective low-dimensional sampling of population-level

firing structure. The hippocampus provides again a useful illus-

tration on the progress in the identification of the cellular mech-

anisms of gamma oscillations. Classical studies have focused on

the importance of local circuit interactions, in particular recurrent

connections between excitatory and inhibitory cells, for the gen-

eration of gamma oscillations.75–77 In vitro experiments have

demonstrated that the local circuitry is sufficient for the genera-

tion of gamma oscillations.78,151 Both in vitro and in vivo studies

have highlighted the importance of perisomatic inhibition

mediated by fast GABAA postsynaptic inhibitory potentials

(IPSPs) in synchronizing the rhythmic output of pyramidal cells

(‘‘rebound from inhibition’’).11,53 Reciprocal interactions between
excitatory cells driving local interneurons and delayed feedback

inhibition became the canonical model for gamma generation

(‘‘E-I model’’).152–154 In vivo optogenetic studies have confirmed

parvalbumin-expressing basket cells as a key cellular element in

gamma generation.155–157 Most of these studies focused on

local mechanisms of gamma oscillations. Gamma oscillations

have also been implicated in mediating interregional communi-

cation (Figure 4). Early studies performing surgical lesions or

pharmacological inactivation demonstrated the importance of

extrinsic inputs for the generation of hippocampal gamma oscil-

lations. In a classical study, Bragin et al. surgically de-afferenti-

ated the rat hippocampus from all its entorhinal inputs and

showed a strong reduction in gamma oscillations in the dentate

gyrus.7 In this study, theta oscillations were also affected, illus-

trating the tight relationship between both signals and their

dependence on the entorhinal inputs. More recent studies

have employed optogenetic manipulations to transiently perturb

entorhinal inputs to the hippocampus. Fernández-Ruiz et al. en-

trained GABAergic cells in either the medial or lateral portions of

the rat entorhinal cortex with a spurious gamma frequency stim-

ulation pattern, disrupting their natural gamma spike timing.62

This manipulation in turn reduced power and CFC of different

anatomically distinct gamma oscillations in the hippocampal

dentate gyrus, while global theta oscillations were relatively

spared. Furthermore, perturbation of the fast gamma synchrony

between medial entorhinal cortex and dentate gyrus impaired

spatial learning, whereas perturbation of the slow gamma syn-

chrony between lateral entorhinal cortex and dentate gyrus

impaired object learning. Despite these selective physiological

and behavioral effects, one may not conclude that the ‘‘func-

tions’’ of fast and slow dentate gyrus’ gamma oscillations are

spatial and object learning, respectively. Rather, the conclusion

would be that fast and slow gamma oscillations report the func-

tional interactions between the dentate gyrus and upstream

(medial and lateral) entorhinal cortices and that such coordina-

tion is necessary for those behaviors in which these neural path-

ways are implicated (e.g., spatial and object learning). This way,

spatiotemporally localized gamma bursts can be conceived as

the elementary units reporting ensemble dynamics and interac-

tions in these circuits, in an analogous manner to action poten-

tials mediating communication among individual neurons. In

this case, the perturbation of the endogenous rhythm generation

in the particular gamma oscillators provided the means to study

the function of a specific circuit and to shed light on network

processing of different information streams. Despite their multi-

ple uses and advantages, optogenetic interventions also have

important limitations for the study of oscillations. Due to the inter-

connected nature of neural circuits, perturbing one of its

elements (e.g., a defined cell type) is likely to induce additional

physiological and behavioral effects that complicate the inter-

pretation. Furthermore, using optogenetic stimulation to induce

oscillations may result in stronger synchrony over a larger

volume of tissue than what happens during endogenous oscil-

lations.

Ascribing a specific behavioral or cognitive function to

‘‘gamma oscillations’’ remains complicated. The specific role

of a particular oscillation is not invariant to its neural substrate

but rather depends on the function of the circuit that generates
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Figure 4. Behavioral modulation of gamma synchrony
(A) Fine odor discrimination is associated with stronger gamma oscillations in the rat olfactory bulb (top: wide-band and gamma filtered LFP traces from rat
olfactory bulb and its main target region, the piriform cortex, around the time of odor presentation), compared with coarse odor discrimination (bottom blue and
red curves are average power spectra for olfactory bulb responses during fine and coarse odor discrimination, respectively).158

(B) Monkey higher-order visual cortex (V4) displays synchronized gamma oscillations, with primary visual cortex (V1) neural population representing behaviorally
relevant visual stimulus, but not those linked to irrelevant stimulus.131 The plots on the bottom indicate directional influence of different areas within V1 on V4
gamma oscillations (as supported by Granger causality), depending on which of the two simultaneously presented grating stimuli the monkey was attending to.
(C) Synchronized fast gamma oscillations appear in the rat dentate gyrus and medial entorhinal cortex during spatial learning (top). However, during object
learning, coherent gamma oscillations of slower frequency appear between the dentate gyrus and lateral entorhinal cortex (bottom).62 Plots on the right show the
increase in LFP-LFP gamma synchrony between rat entorhinal cortical areas and the hippocampal dentate gyrus during different learning tasks as comparedwith
baseline conditions.
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it. Yet, since gamma oscillations emerge from determined neural

circuits, the instantaneous amplitude of such rhythms can be

used as proxies for the strength of interactions in those net-

works. This is particularly convenient for studying the function

of a brain pathway or area in behaving animals. As a notable

example, the two main excitatory inputs to hippocampal CA1

are associated with different gamma oscillations: CA3 input to

proximal apical dendrites of CA1 pyramidal cells typically relates

to slow gamma, whereas entorhinal layer 3 input to distal apical

dendrites is associated with mid gamma (Figure 2). Consistent

with this, optogenetic silencing of the CA3/CA1 pathway dur-

ing learning reduces the power of CA1 slow, but not mid,

gamma101,102 (but see also Middleton and McHugh159). During

REM sleep, hippocampal network dynamics also display prom-

inent theta and nested gamma oscillations. During this state, the

strength of entorhinal gamma frequency input to CA1 is

enhanced and the firing of some CA1 pyramidal cells shifts to

the opposite theta phase, compared with the awake state,

consistent with the phase of entorhinal layer 3 inputs.92,160,161

The theta rhythm, both during locomotion and REM sleep,

strongly modulates hippocampal gamma oscillations (Box 3).

The contamination by theta harmonics has led some authors to

debate the existence of slow gamma.162 Yet, a large body of

converging evidence supports the existence of distinct slow

gamma oscillations localized to CA1 stratum radiatum. Most

notably, the same gamma patterns are observed during non-

theta states, such as slow-wave sleep69 or anaesthesia29

(Figure 2). Furthermore, the frequency range of the ‘‘slow’’ CA3

gamma frequency input can extend up to 80 Hz as evidenced

by CA3 unit to CA1 LFP coherence22 (Figure 3A; Box 3). Memory

demands and environment novelty also influence the strength of
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these two (slow and mid) gamma frequency inputs and the coor-

dination of CA1 with upstream CA3 or entorhinal ensembles.

During spatial memory retrieval, both CA1 slow gamma power

and CA3-CA1 slow gamma coherence increase, suggesting a

role of the CA3/CA1 pathway in mediating the recall of previ-

ously formed memories.22,24,70,92,102 On the other hand, the po-

wer of entorhinal mid gamma frequency input has been shown to

be enhanced during first-time exposure to (novel) informa-

tion.24,83,92,163 Despite this distinct modulation by behavioral

task demands, concluding that the function of slow gamma is

to solely mediate recall and mid gamma encoding remains

complicated. The dynamic interplay between both gamma fre-

quency inputs determines the precise timing of action potential

discharge of CA1 pyramidal cells.24,164 The phase of firing of

CA1 cells within the theta cycle thus varies as a function of the

relative strength of CA3 and entorhinal inputs (and associated

interneuron activation), contributing to the gradual shift of theta

phase preference of CA1 spikes within their place fields (‘‘phase

precession’’).92,98,165 Theta phase of CA1 firing can influence

which downstream targets read out hippocampal inputs,

providing a potential mechanism for routing information to

different circuits (Box 2).

A promising approach for the interrogation of circuit functions

and oscillations is to perform selective manipulations timed by

the ongoing neural activity in a ‘‘closed-loop’’ manner. This

approach has been successfully applied to the study of sharp-

wave ripples. Closed-loop disruption or stimulation of hippo-

campal ripples respectively impaired or improved spatial mem-

ory performance166–168 and the consolidation of newly formed

hippocampal cell assemblies,169 supporting their long-time hy-

pothesized roles. This approach has not yet been widely applied



Figure 5. Proposed experimental manipulations to study gamma oscillations
High-density recordings in upstream and downstream areas allow for the recording of input patterns (upstream spike trains), input integration (postsynaptic
potentials in target neurons), and firing output of target neurons. Such recordings combined with closed-loop optogenetic manipulations allow for the dissection
of input-output signal transformation in neural circuits
(A–D) A gamma pattern (blue trace) generated by a specific synaptic pathway can be optogenetically disrupted (A) or enhanced (B) to probe the function of that
pathway. To test the role of the precise timing of spikes for inter-areal communication, optogenetic stimulation of target neurons (gray) can be timed by the phase
of gamma oscillations in a projecting area (blue) to increase their synchrony (C). In a similar manner, two connected neuronal populations that normally display
gamma coherence can be decoupled by transient inhibition timed by the phase of ongoing gamma oscillations (D). Neurons, oscillations, and spikes are color-
coded according to the circuit generating them. Silicon probes and optic fibers are depicted in each region. Blue and yellow trapezoids indicate optogenetic
activation and silencing, respectively. Vertical black arrows indicate event detection.
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to gamma oscillations. Kanta et al. performed closed-loop opto-

genetic stimulation in the mouse basolateral amygdala (BLA) by

detecting gamma bursts,170 reporting opposite effects on mem-

ory performance depending on gamma phase when stimulation

was delivered. Although the cellular mechanisms of BLA gamma

remain elusive, this illustrates the importance of timing external

manipulations to features of ongoing neural dynamics. The

observation of interregional gamma phase entrainment of

neuronal spiking has led to the proposal that gamma coherence

mediates selective communication between brain areas.139 The

‘‘communication through coherence’’ hypothesis posits that

those inputs arriving at particular phases are preferentially inte-

grated by target neurons, functionally coupling upstream and

downstream regions. Numerous correlational studies have pro-

vided support for the relation between interregional gamma syn-

chrony and neuronal communication.3,12,14,62,100,131,146,171–173

A recent study tested this idea by optogenetically perturbing

interhemispheric prefrontal cortex gamma synchrony.174 Dis-

rupting the phase synchronization of parvalbumin interneurons

across hemispheres impaired rule learning in mice, but not if

stimulationwas delivered at the opposite gammaphase. Howev-

er, interregional gamma interactions can be more complex, and

usually the observation of coherent LFP oscillations or spike

entrainment across areas without accessing the underlying

cellular mechanisms is not enough to make functional infer-

ences. Gamma coherence across regions can reflect feedfor-

ward inhibition or presence of synaptic connectivity rather than

synchronization of principal cells.75,93 Gamma frequency inputs

to the distal dendrites of pyramidal cells undergo low-pass fre-

quency filtering in their propagation to the soma due to the prop-

erties of the cell membrane, thus reducing the efficacy of those

inputs to rhythmically entrain somatic action potentials.22,175

On the other hand, gamma resonant properties of the target
network can transform a tonic input into an output gamma-rhyth-

mic pattern of spiking.130,133,176 The relevance of frequency-

specific gamma resonance has been further illustrated by exper-

iments in which constant optogenetic stimulation of neocortical

pyramidal cells induced gamma oscillations and unit firing

entrainment.133,177 Thus, to understand the role of gamma syn-

chrony it is necessary to determine its cellular mechanisms in

both upstream and downstream regions. Recording and selec-

tively manipulating input spiking patterns and dendritic integra-

tion, as reflected by gamma oscillations and output spiking,

will enable the understanding of input-output transformation in

neural circuits (Figure 5).

CONCLUSIONS AND FUTURE PERSPECTIVES

We have discussed in this perspective that gamma oscillations

represent units of operating neural circuits. Yet, a given gamma

oscillation does not per se implement any specific function (e.g.,

attention or memory recall), but it rather reports the underlying

computations and communication channels for information pro-

cessing. A first step toward reaching a comprehensive mecha-

nistic understanding of gamma patterns is the identification of

their diversity in the brain regions of interest, in terms of both bio-

logical implementation and activity dynamics. In line with this, we

propose a shift from a definition of gamma oscillations based on

their peak frequency to one based on their neuronal substrates,

pathways, and mechanistic underpinnings. We believe that this

approach will contribute to moving the field forward in a similar

manner to the recent progress in classifying and identifying

neuronal cell types. Considering all the factors and challenges

that influence the study of gamma frequency patterns, from the

gamma-band dynamics generated in a circuit to the (local or

remote) gamma LFP readout signals, we would like to conclude
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by highlighting four considerations for future studies (Figure 5).

First, gamma patterns, when recorded far from the source that

generates them, can be influenced by the effects of volume con-

duction and contamination by non-local sources of activity.

Multi-channel cross-laminar recordings provide the principled

means of anatomical localization and source separation that

are essential for identification of oscillatory patterns generated

by distinct circuit generators. Second, to relate gamma patterns

to circuit operations, it is helpful to also record the action poten-

tials discharged by neurons in both upstream and downstream

regions along the pathway of interest and to examine the tempo-

ral relationships between these spikes and gamma oscillations.

Third, the occurrence, frequency, and magnitude of gamma os-

cillations are modulated by brain and behavior states, but these

changes are typically not restricted to specific generators (and

different oscillatory circuits are often densely interconnected).

Thus, studying a gamma pattern of interest across a variety of

states and behaviors and in relation to other rhythmic patterns

in the same circuits may provide important insight. Fourth,

leveraging from recent and future advances in cell-type-selec-

tive and neural-input-defined tools with real-time signal process-

ing for closed-loop manipulations could provide much needed

increased spatial and temporal resolution to investigate specific

gamma oscillations. Over and above such challenges, the study

of well-defined gamma patterns will offer an invaluable window

to study circuit-level mechanisms of information processing

during behavior.
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